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Motivated by the challenges associated with accounting for the ascertainment when

analyzing secondary phenotypes that are correlated with case-control status, Lin and Zeng

have proposed a method that properly reflects the case-control sampling (Lin and Zeng,

2009). The Lin and Zeng method has the advantage of accurately estimating effect sizes

for secondary phenotypes that are normally distributed or dichotomous. This method can

be computationally intensive in practice under the null hypothesis when the likelihood

surface that needs to be maximized can be relatively flat. We propose an extension of the

Lin and Zeng method for hypothesis testing that uses proportional odds logistic regression

to circumvent these computational issues. Through simulation studies, we compare the

power and type-1 error rate of our method to standard approaches and Lin and Zeng’s

approach.
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INTRODUCTION

For the analysis of secondary phenotype data collected in a

case-control study, Lin and Zeng have proposed a method that

properly reflects the case-control sampling (Lin and Zeng, 2009).

This work is motivated by the challenges associated with account-

ing for the ascertainment when analyzing secondary phenotypes

that are correlated with case-control status. Several methods

have been proposed that accurately estimate the odds ratio of

genetic variants for binary secondary phenotypes associated with

case-control status, but most of these methods do not read-

ily accommodate continuous secondary phenotypes (Greenland,

2003; Kraft, 2007; Richardson et al., 2007; Monsees et al., 2009;

Li et al., 2010; Wang and Shete, 2011a,b; He et al., 2012; Li and

Gail, 2012). While two of these methods use an inverse probabil-

ity weighted (IPW) regression approach that can accommodate

continuous secondary phenotypes, these methods focus on cor-

recting for the bias in the estimator due to the ascertainment

conditions and involve a known disease rate (Richardson et al.,

2007; Monsees et al., 2009). Since this paper focuses on hypothesis

testing versus estimation of disease-association parameters with

an equal number of cases and controls, we do not present these

methods here.

Alternatively, the Lin and Zeng method has the advantage

of accurately estimating effect sizes for secondary phenotypes

that are normally distributed or dichotomous (Lin and Zeng,

2009). Under the null hypothesis when the likelihood surface

that needs to be maximized can be relatively flat, this method

can be computationally intensive in practice. To circumvent these

computational issues, we propose an extension of the Lin and

Zeng method for hypothesis testing that uses proportional odds

logistic regression. Since the approach by Lin and Zeng has the

advantage that effect sizes can also be estimated, we recommend

the following work-flow for the analysis of continuous secondary

phenotypes.

1. Test all SNPs with our approach using proportional odds logis-

tic regression since the vast majority of SNPs will be under the

null hypothesis.

2. For the significant SNPs, apply Lin and Zeng’s method to

obtain parameter estimates and confidence intervals.

This proposed approach circumvents the computational issues

encountered in the Lin and Zeng approach under the null hypoth-

esis, but utilizes the Lin and Zeng’s method to accurately estimate

effect sizes for significant SNPs found in Step 1. Through simula-

tion studies, we compare the power and type-1 error rate of our

method to standard approaches and Lin and Zeng’s approach.

METHODS

When the secondary phenotype is normally distributed, Lin and

Zeng propose an adjusted score test that incorporates genetic

associations with affection status into the test statistic and models

the likelihood function as follows (Lin and Zeng, 2009):

n
∏

i = 1

P(Yi, Xi|Di) =

n
∏

i = 1

{

P(Di = 1|Xi, Yi)P(Yi|Xi)P(Xi)

P(Di = 1)

}Di

{

P(Di = 0|Xi, Yi)P(Yi|Xi)P(Xi)

P(Di = 0)

}1−Di

(1)
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where D denotes the case-control status (1 = case and 0 = con-

trol), Y denotes the secondary phenotype, n denotes the total

number of subjects, and X denotes the genotype of interest.

Lin and Zeng calculate P(Di = 1) =
∑

y

∑

x

P(Di =

1|x, y)P(y|x)P(x). The probability P(D|X, Y) is defined as a

logistic regression model. They model P(Y |X) as a logistic

regression for dichotomous Y or a linear regression for normally

distributed Y. They maximize the likelihood with respect to P(X)

by the Newton Raphson algorithm. In this framework, likelihood

based statistics (i.e., Wald, score, and likelihood-ratio statistics)

can be used to make inference.

The Lin and Zeng approach requires the secondary phenotype

to be normally distributed and the method can be problem-

atic under the null hypothesis since the likelihood surface that

needs to be maximized can be relatively flat. Since Lin and Zeng’s

method estimates the parameters in the model by maximizing

the likelihood given in Equation (1), the approach is numeri-

cally exhaustive when testing a large number of SNPs where a

majority of the SNPs are under the null hypothesis. This is a

result of the maximization of the likelihood function being dif-

ficult under the null hypothesis, since the surface can be flat due

to the ascertainment condition.

If the primary goal of the secondary phenotype analysis is

hypothesis testing as opposed to estimation of disease-association

parameters, an alternative approach is to use the following likeli-

hood composition, which ultimately does not require maximizing

a relatively flat likelihood surface. Therefore, for the association

testing of secondary phenotypes in case-control studies, we pro-

pose using a simpler break down of the likelihood that requires

few assumptions.

n
∏

i = 1

P(Yi, Xi|Di) =

n
∏

i = 1

P(Xi|Yi, Di)P(Yi|Di) (2)

Under the null hypothesis, X is independent of Y given D and any

confounders. The likelihood ratio test becomes

LRT = −2ln













n
∏

i = 1

P(Xi|Di)P(Yi|Di)

n
∏

i = 1

P(Xi|Yi, Di)P(Yi|Di)













= −2ln













n
∏

i = 1

P(Xi|Di)

n
∏

i = 1

P(Xi|YiDi)













∼ χ2
1df (3)

As a result, one only needs to model P(X|D) and P(X|Y, D). For

an additive genetic model, i.e., X = 0, 1, 2, corresponding to allele

counts, instead of modeling the likelihood function, one can use

a cumulative logistic regression model with proportional odds

proportional for P(X|D) and the P(X|Y, D) such that

logit[P(X ≤ j|Y, D)] = α1j + δ1Y Y + δ1DD

logit[P(X ≤ j|D)] = α0j + δ0DD
(4)

for j = 0, 1. To control for any known confounders, these covari-

ates can be added to Equation (4). This model assumes the same

effect for different cumulative logits (Agresti, 2002). If assump-

tions are not met then we recommend a link function for which

the response curve is non-symmetric or adding a dispersion

parameter. For imputed dosages, j becomes the number of dosage

levels minus one, meaning the levels of X in the cumulative

logistic regression are increased to the number of dosage levels

minus one.

SIMULATIONS

To assess the performance of this approach and compare it to Lin

and Zeng’s method, we conducted simulation studies following

Lin and Zeng’s manuscript with a MAF of 0.3, an additive mode

of inheritance, and α = 0.01 level of significance (Lin and Zeng,

2009). We also compared both of these methods to the standard

case-only method, control only method and combined case and

control method where both cases and controls are included in the

analysis. For the model of the secondary quantitative trait Y and

the disease D,

Y |X ∼ N
(

β0 + β1X, σ 2
)

(5)

P(D = 1|X, Y) =
exp (γ0 + γ1X + γ2Y)

1 + exp (γ0 + γ1X + γ2Y)
(6)

where β0 = σ 2 = 1, β1 = 0 under the null hypothesis and β1 =

−0.12 under the alternative hypothesis. We let γ2 = log(2), γ1

varies from 0 to log(1.5), and γ0 was chosen such that the disease

rate is 1% or 5%. For each combination of simulation parameters,

we generated 1000 data sets with 500 cases and 500 controls.

Figure 1 shows the type 1 error rates and power for a disease

rate of 1% and 5%. Our method, using the proportional odds

logistic regression, maintains the type 1 error rate and has slightly

higher power as compared to Lin and Zeng’s method and supe-

rior power compared to the other methods. While the proposed

method and Lin and Zeng’s method have similar power, the pro-

posed method is computationally more feasible under the null

hypothesis than Lin and Zeng’s method since it does not involve

maximizing a relatively flat likelihood surface. The computing

time for the proposed approach is under 1 s per SNP where as the

software associated with the Lin and Zeng approach needs to be

run multiple times if there are issues with convergence which can

take 5 min to an hour per SNP. When running a GWAS with about

500,000 SNPs, this difference in computing time per SNP can be

substantial. To examine this concept further, the plot on the left

in Figure 2 shows the log Likelihood specified by Lin and Zeng

for varying values of β0 and β1 with all other parameters fixed at

their true values and for data generated under the null hypoth-

esis with γ1 = log(1.5) and the disease rate equal 5%. The plot

on the right is the log Likelihood specified by Lin and Zeng for

varying values of γ1 and γ2 with all other parameters fixed at their

true values, and for data generated under the null hypothesis with

γ1 = log(1.5) and the disease rate equals 5%. The red dots on the
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FIGURE 1 | Type 1 error rates and power for a disease rate of 1%

and 5%. As seen in the plots above the new method using

proportional odds logistic regression maintains the type 1 error rate.

The new method has similar power compared to Lin and Zeng’s

method called SPREG and superior power compared to the other

methods.

plots represent the true maximum. The surface for β0 and β1 has a

clear maximum whereas the surface for γ1 and γ0 is relatively flat,

demonstrating the difficulty in maximizing the likelihood surface

defined by Lin and Zeng under the null hypothesis.

DISCUSSION

While the power of the proposed method is comparable to the

method of Lin and Zeng, the proposed approach does not have

the issue of maximizing a flat likelihood surface under the hull

hypothesis that can be computationally intensive. Since the pro-

posed approach is limited in it’s ability to accurately estimate

effect sizes while the approach by Lin and Zeng has the advan-

tage that effect sizes can be accurately estimated, we recommend

the following work-flow for the analysis of secondary phenotypes.

1. Test all SNPs with the proposed approach using proportional

odds logistic regression since the vast majority of SNPs will be

under the null hypothesis.

2. For the significant SNPs, apply Lin and Zeng’s method to

obtain parameter estimates and confidence intervals.

By using our approach to test all the SNPs in the GWAS, the

hypothesis testing can be done quickly and efficiently since our

approach does not suffer from this issue of maximizing a flat

likelihood surface under the null hypothesis. By obtaining param-

eter estimates for only the significant SNPs with Lin and Zeng’s

method, one can make sure that the likelihood is properly max-

imized which is too computational exhaustive to apply to the

entire GWAS.
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FIGURE 2 | Log Likelihood surface specified by Lin and Zeng. The plot on

the left is the log Likelihood specified by Lin and Zeng for varying values of β0

and β1 with all other parameters fixed at their true values and for data

generated under the null hypothesis with γ1 = log(1.5) and the disease rate

equal 5%. The plot on the right is the log Likelihood specified by Lin and Zeng

for varying values of γ1 and γ2 with all other parameters fixed at their true

values and for data generated under the null hypothesis with γ1 = log(1.5)

and the disease rate equal 5%. The red dots on the plots represent the true

maximum. The surface for β0 and β1 has a clear maximum whereas the

surface for γ1 and γ0 is relatively flat, demonstrating the difficulty in

maximizing the likelihood surface defined by Lin and Zeng under the null

hypothesis.

There are potential limitations associated with this strategy of

combining two methodological approaches to reduce the compu-

tational burden while still being able to estimate the parameters

of interest. While the two approaches have comparable power, a

relatively small number of SNPs that are significant from the new

approach may not be significant in the Lin and Zeng’s method

and vice versa. Also both approaches may have issues if the case

control status is extremely correlated with the secondary phe-

notype. In this case, the secondary phenotype is not providing

new information compared to the case-control status and these

methods for testing secondary phenotypes in case-control genetic

association studies are not applicable.
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