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Products of the Parkinson’s disease-related glyoxalase DJ-1,

D-lactate and glycolate, support mitochondrial membrane

potential and neuronal survival
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ABSTRACT

Parkinson’s disease is associated with mitochondrial decline in

dopaminergic neurons of the substantia nigra. One of the genes

linked with the onset of Parkinson’s disease, DJ-1/PARK7, belongs

to a novel glyoxalase family and influences mitochondrial activity. It

has been assumed that glyoxalases fulfill this task by detoxifying

aggressive aldehyde by-products of metabolism. Here we show that

supplying either D-lactate or glycolate, products of DJ-1, rescues

the requirement for the enzyme in maintenance of mitochondrial

potential. We further show that glycolic acid and D-lactic acid can

elevate lowered mitochondrial membrane potential caused by

silencing PINK-1, another Parkinson’s related gene, as well as

by paraquat, an environmental toxin known to be linked with

Parkinson’s disease. We propose that DJ-1 and consequently its

products are components of a novel pathway that stabilizes

mitochondria during cellular stress. We go on to show that

survival of cultured mesencephalic dopaminergic neurons,

defective in Parkinson’s disease, is enhanced by glycolate and D-

lactate. Because glycolic and D-lactic acids occur naturally, they are

therefore a potential therapeutic route for treatment or prevention of

Parkinson’s disease.
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INTRODUCTION

Parkinson’s disease is caused by inexorable deterioration of

dopaminergic neurons from the substantia nigra (Corti et al.,

2011). Although little is known about the onset of Parkinson’s

disease, one clue is that a number of genes associated with it are

linked to mitochondrial activity (Corti et al., 2011; Federico et al.,

2012). One of such genes is DJ-1/PARK7, which was originally

reported as an oncogene (Nagakubo et al., 1997), and associated

with familial Parkinson’s disease (Bonifati et al., 2003). DJ-1

deficiency was reported to lead to abnormal mitochondrial

morphology and dynamics, increased sensitivity to oxidative

stress, decreased mitochondrial membrane potential, and opening

of the mitochondrial permeability transition pore (Irrcher et al.,

2010; Giaime et al., 2012). DJ-1 protein exerts its neuroprotective

function against oxidative stress primarily in mitochondria (Junn

et al., 2009). Although DJ-1 is predicted and reported to have

activity as protease and chaperon (Mizote et al., 1996; Bonifati

et al., 2003; Shendelman et al., 2004; Gautier et al., 2012), it is

unclear whether these activities contribute to mitochondrial

fitness.

DJ-1 was recently reported to belong to a novel glyoxalase family

(Lee et al., 2012). Glyoxalases are enzymes that can transform

2-oxoaldehydes glyoxal and methylglyoxal into corresponding

2-hydroxyacids glycolate and D-lactate, respectively. Glyoxal and

methylglyoxal covalently react with proteins or lipids to form

advanced glycation end-products (AGEs), which are implicated

in neurodegenerative diseases including Parkinson’s disease

(Castellani et al., 1996; Li et al., 2012). So far, two systems of

glyoxalases have been described: 1) Glutathione-dependent Glo I

and Glo II systems (Thornalley, 2003) and 2) cofactor-independent

Glo III system (DJ-1) (Misra et al., 1995; Lee et al., 2012). Because

substrates of glyoxalases are aggressive aldehydes produced

by oxidation of glucose during glycolysis (methylglyoxal) and

peroxidation of fatty acids (glyoxal), it is assumed that the major

function of glyoxalases is to detoxify aldehyde by-products of

metabolism (Thornalley, 2003). However, this view has not always

been prevalent. Glyoxalases, and their corresponding products (e.g.

D-lactate) were considered major components of glycolysis (Ray

and Ray, 1998). With the elucidation of the Embden–Meyerhof–

Parnas pathway of glycolysis, production of D-lactate was

considered an artifact of a biochemical procedure or an undesired

side product of glycolysis. Thus, the cellular role of the products of

glyoxalases remains unclear.

Here we show that in both HeLa cells and C. elegans, the

products of DJ-1, glycolate and D-lactate, are required to maintain

mitochondrial membrane potential. Remarkably, D-lactate and

glycolate increase in vitro survival of primary dopaminergic

neurons from Parkinson’s model mice embryos. We propose that

the products of the glyoxalases are components of a novel pathway

that maintain high mitochondrial potential during cellular stress,

and that production of glycolate and D-lactate is required to
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prevent degeneration of dopaminergic neurons in the substantia

nigra.

RESULTS

Recently we reported that the Caenorhabditis elegans dauer
larva, an arrested stage specialized for survival in adverse
conditions, is resistant to severe desiccation (Erkut et al., 2011).
However, this requires a preconditioning step at a mild
desiccative environment (98% relative humidity) to prepare the
organism for harsher desiccation conditions (60% relative
humidity). We found that during preconditioning, glyoxalase
genes djr-1.2 and glod-4 were very strongly upregulated (Erkut
et al., 2013) (Fig. 1A,B; supplementary material Fig. S1). We
asked whether glyoxalases are required to survive desiccation
stress. To address this question, we first produced djr-1.1;djr-1.2
double mutant missing both DJ-1 homologs (DDdjr), and djr-

1.1;djr-1.2;glod-4 triple mutant defective additionally in Glo I/II
system (Dglo) (see Materials and Methods). Dauer larvae of these
mutants were first preconditioned, and then further desiccated at
60% relative humidity. Subsequently they were rehydrated and
measured for their survival rate (Fig. 1A,C). The Dglo mutant
showed significantly increased sensitivity to 60% relative
humidity compared to wild type. For instance, 76% of wild-
type dauers recovered from this stress, while only 22% of Dglo
did. This result shows that glyoxalases are required for survival
after desiccation stress.

How does DJ-1 contribute to survival under stress conditions?
DJ-1 is reported to exert its neuroprotective function in
mitochondria (Junn et al., 2009). Many genes involved in
Parkinson’s disease, among them DJ-1, have been linked to
alterations in mitochondrial structure and function and an

enhanced sensitivity to mitochondrial toxins like Complex-I
inhibitors (Clark et al., 2006; Park et al., 2006; Irrcher et al.,
2010; Kamp et al., 2010; Sai et al., 2012; Wang et al., 2012;
Burchell et al., 2013). Thus we decided to test the structure and
function of mitochondria in the absence of DJ-1 (DDdjr) or
complete glyoxalase activity (Dglo), as revealed by staining with
MitoTracker CMXRos (Fig. 2A) (Pendergrass et al., 2004). In
wild type (N2, top left), mitochondria exhibited elaborated
networks, whose intensity of staining represent mitochondrial
membrane potential (arrows, Fig. 2A) (Pendergrass et al., 2004).
Single mutant glod-4 or DDdjr greatly reduced networks. In the
triple mutant (Dglo) the staining and thus the membrane potential
of mitochondria was negligible, and only gut granules
(arrowheads) were visible. Thus we conclude that glyoxalases
are essential to maintain the mitochondrial structure, potential
and function under desiccation stress.
One possibility to explain the data so far presented is that the

lack of glyoxalases could lead to the build up of their substrates,
toxic aldehydes, leading to phenotypic alteration. However, we
propose another hypothesis: the defects may result not only from
a build up of toxic aldehydes, but also from the lack of the
enzymatic products themselves (a-hydroxyacids). To support this
idea, we looked at the effects of the products of glyoxalases, D-
lactic acid (DL) and glycolic acid (GA) (Thornalley, 2003; Lee
et al., 2012), on the structure and activity of mitochondria. There
is no easy way to supply these compounds to dauer larvae,
because they do not feed. Therefore we decided to use HeLa cells

Fig. 1. Glyoxalases are required for desiccation tolerance in the C.

elegans dauer larva. (A) Experimental procedure for preconditioning and

further desiccation of C. elegans dauer larvae. RH, relative humidity.

(B) Differential expression of djr-1.1, djr-1.2, and glod-4 genes in the C.

elegans dauer larva upon preconditioning. Tsp-21 gene was used as the

internal control. (C) Survival rates of desiccated dauer larvae. Columns show

the estimated means of triplicates. Blue, 98% RH; Red, 60% RH. Error bars,

standard error of the estimate. ***p,0.001.

Fig. 2. Glycolate and D-lactate are required for mitochondrial

membrane potential. (A) Disruption of the mitochondrial network upon

desiccation at 98% RH and rehydration in mutants for glyoxalases. Arrow,

mitochondrial networks stained with MitoTracker. Arrowhead, non-specific

staining of the gut granules. (B) JC-1 staining in live HeLa cells with 1 mM of

glycolate (GA), D-lactate (DL), and L-lactate (LL). Red, JC-1; blue, DNA. For

merged images and quantification, see Fig. 4. Scale bars: 10 mm.
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as an alternative model for studying the role of glyoxalases in
mitochondrial function.

In HeLa cells, DJ-1 RNAi specifically decreased expression of
DJ-1 protein (supplementary material Fig. S2) and decreased
mitochondrial membrane potential as probed with a J-aggregate
forming lipophilic dye JC-1 (Fig. 2B) (Smiley et al., 1991),
consistent with the previous reports (Larsen et al., 2011; Giaime
et al., 2012; Heo et al., 2012). Remarkably, addition of 1 mM GA
or DL but not L-lactate (LL) restored mitochondrial membrane
potential, while these substances did not affect control Luciferase
(Luc) RNAi treated cells (Fig. 2B). These results suggest that GA
and DL, products of glyoxalases, are required for the activation or
maintenance of mitochondrial membrane potential.

Paraquat is an environmental poison known to affect
mitochondria (Palmeira et al., 1995); it has been implicated in
the onset of Parkinson’s disease, and has been shown to decrease
mitochondrial membrane potential (McCarthy et al., 2004;
Mitsopoulos and Suntres, 2011). In our assay, paraquat indeed
decreased mitochondrial membrane potential in both control and
DJ-1 RNAi cells as tested by JC-1 (Fig. 3A). Remarkably,
addition of GA or DL, but not LL, restored mitochondrial
membrane potential of the paraquat-treated cells. In addition to
affecting mitochondrial potential, paraquat also induces change in
mitochondrial structure (Ueda et al., 1985). Thus we imaged
structure of mitochondria in the presence of paraquat with
MitoTracker, as it robustly stained mitochondria in HeLa.
Although DJ-1 RNAi in HeLa cells did not produce an altered
mitochondrial structure (supplementary material Fig. S3),
together with a low dose of paraquat in DJ-1 RNAi cells,
mitochondria became more circular (Fig. 3B, insets). This

circular phenotype was also rescued by the addition of DL and
GA (Fig. 3B, insets; supplementary material Fig. S3).
Increasing doses of paraquat resulted in shorter lengths of wild-

type, DDdjr and glod-4 mutant reproductive larvae of C. elegans,
suggesting inhibition of development or growth of worms
(supplementary material Fig. S4A,B). DDdjr mutant exhibited
slightly increased sensitivity to paraquat (supplementary material
Fig. S4C). The decreased viability was rescued by addition of
GA (supplementary material Fig. S4C). Similar to human
cells, paraquat disrupted mitochondrial membrane potential in
reproductive larvae of C. elegans, which was rescued by the
addition of GA (Fig. 3C).
We wanted to test whether GA and DL can rescue a

mitochondrial defect caused by loss of other Parkinson’s genes,
i.e. PINK1 and Parkin. These genes are genetically and
functionally related to DJ-1 (Exner et al., 2007; Hao et al.,
2010; Irrcher et al., 2010). Because Parkin was not detected in
HeLa (Matsuda et al., 2010), PINK1 was investigated. The
protein was downregulated by RNAi (supplementary material
Fig. S5). PINK1 RNAi decreased mitochondrial membrane
potential, as reported previously (Exner et al., 2007).
Remarkably, GA and DL rescued this defect (Fig. 4A,B). In
addition, the substances restored mitochondrial membrane
potential of paraquat-treated PINK1 RNAi cells.
So far, we have shown that the addition of products of

glyoxalases can rescue lowered mitochondrial membrane
potential caused by downregulation of DJ-1 or PINK1 or by
environmental stress. But are GA and DL produced endogenously?
We asked whether activation of DJ-1, or glyoxylases in general,
during stress leads to a bulk accumulation of DL or GA. For this

Fig. 3. Glycolate and D-lactate rescue the stress-induced mitochondrial defects. (A) JC-1 staining in live esiRNA-transfected HeLa cells treated with

50 mM paraquat (PQ2+) and 1 mM of glycolate (GA), D-lactate (DL), and L-lactate (LL). Red, JC-1; blue, DNA. For merged images, see Fig. 4A. (B) Mitochondria

of paraquat-treated HeLa cells. Green, MitoTracker; Blue, DNA. Inset, 46magnification of the boxed area. (C) Mitochondria in worm glyoxalase mutant larvae.

Wild type (N2), DJ-1 mutant (DDdjr) and GLOD-4 mutant (glod-4) were treated with PQ2+ with or without 10 mM GA, and stained with MitoTracker (green).

Dashed lines show the outlines of larvae. Scale bars: 10 mm.
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purpose, we looked for both these compounds in C. elegans as well
as in HeLa cells. By using a chiral column in an LC-MS
application, we could separate D- and L-lactate very effectively
(arrows in supplementary material Fig. S6A). In dauer larvae
before preconditioning, almost all of lactate was present as the L-
stereoisomer (supplementary material Fig. S6A). Preconditioning
did not increase D-lactate to any significant extent. Interestingly,
the amount of L-lactate decreased 3-fold, perhaps due to entry of
the metabolite into gluconeogenesis. We could not detect any GA
in the same amount of extract, while an increased amount of
trehalose was detected upon preconditioning, consistent with a
previous report (supplementary material Fig. S6B,C) (Erkut et al.,
2011). Thus we conclude that either these substances are transient
intermediates of a pathway needed for the activation of
mitochondria, or they are produced in very small amounts and
act as signaling molecules.

We have shown that the products of glyoxalases are required
for maintenance of mitochondrial potential in HeLa cells and C.

elegans. Because toxins that affect mitochondrial function can
hasten Parkinson’s disease (Bové et al., 2005), we wondered
whether GA and DL would protect neurons against mitochondrial
damage. We generated embryonic mesencephalic primary neuron

cultures and analyzed the survival of tyrosine hydroxylase-
positive (TH+) neurons by immunostaining. Strikingly the in vitro
survival of dopaminergic neurons was stimulated by GA, and DL,
but not by LL (Fig. 5A; supplementary material Fig. S7A).
Furthermore, GA and DL significantly rescued the toxic effect of
paraquat on the TH+ neurons (Fig. 5B). We also investigated the
effect of these substances on dopaminergic neurons from DJ-1
knock out mice (supplementary material Fig. S7B). Similarly, GA
and DL could stimulate neuronal survival. These results stress the
importance of GA and DL in survival of dopaminergic neurons.

DISCUSSION

In this paper, we have shown that the products of glyoxalases,
glycolate and D-lactate, are required to maintain mitochondrial
membrane potential. Maintenance of mitochondrial membrane
potential is associated with response to desiccation stress in
worms, and importantly, the survival of dopaminergic neurons in
mammals. Our data therefore highlight an understudied aspect of
the Embden–Meyerhof glycolytic pathway: A small fraction of
triose-phosphate is converted into methylglyoxal, which is further
transformed into D-lactate by glyoxalases (Thornalley, 2003). It
has so far been thought that glyoxalases protect cells by removing

Fig. 4. Glycolate and D-lactate rescue lowered mitochondrial membrane potential caused by silencing PINK1. (A) Merged images of JC-1 fluorescence

in live esiRNA-transfected HeLa cells. Blue, DNA; Green and red, mitochondria with low and high membrane potentials, respectively. Scale bars: 10 mm. (B) The

ratio of JC-1 fluorescence intensities in the individual cells. The column and the bar represent the mean and SD, respectively. n§6. *p,0.05; **p,0.01;

***p,0.001.
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products of glycolysis or lipid oxidation. Thus, our data allow us
to suggest the idea that glyoxalases have two functions: on one
hand they detoxify chemically aggressive aldehydes and on the
other hand they produce compounds necessary for maintaining
mitochondrial potential.

DJ-1 is a member of a new class of glutathione-independent
glyoxalases that have recently been identified, and studies of their
enzymology are just beginning. In vitro enzyme assays using
NMR have shown that both human and C. elegans DJ-1 can
produce glycolic acid and lactate, but they did not distinguish
between L- and D-lactate (Lee et al., 2012). More recently,
studies on the biochemical activity of DJ-1 expressed in vitro,
using enzyme-coupled assays, suggest that it has only a weak
activity as a methylglyoxalase (Hasim et al., 2014). Indeed, our
measurements of D-lactate and glycolate (supplementary material
Fig. S6) show that they do not accumulate in high amounts, which
further suggests that they do not function in high concentration.
However, it is also possible that these glyoxalases use other
substrates more efficiently. Further studies will be required to
understand the in vivo regulation and activity of the DJ-1 family,
but this will require improved methods to detect flux through the
glyoxalase pathway in vivo. However, the facts that D-lactate and
glycolic acid have such an effect on mitochondria, and rescue the

DJ-1 phenotype, strongly suggest that these substances are
important products of the DJ-1 glyoxalase in vivo.
We do not yet understand how D-lactate and glycolate increase

or maintain mitochondrial potential. For instance it is quite
possible that these products are further processed. We know,
however, that GA and DL restore mitochondrial membrane
potential in cells depleted of DJ-1, PINK1 or treated with
paraquat. Thus, GA and DL are core compounds in a general
pathway that maintains mitochondrial potential. Because both
paraquat and loss of DJ-1 are thought to increase permeability of
the inner mitochondrial membrane (Costantini et al., 1995;
Giaime et al., 2012), one possibility is that GA and DL decrease
permeability of the mitochondrial membrane under stressed
conditions. Understanding this molecular mechanism is an
avenue for future investigation.
It seems likely that the symptoms of Parkinson’s disease,

neuronal cell death in the substantia nigra, arise from an
increased sensitivity of dopaminergic neurons to diminished
mitochondrial membrane potential (Corti et al., 2011; Federico
et al., 2012). A decline in mitochondrial activity would therefore
tend to exacerbate this problem. Indeed, recent experiments in
C. elegans show that mitochondria are required for survival of
neurons (Rawson et al., 2014). Further investigation of the
phenotypes we observe should clarify which aspects of cellular
metabolism require mitochondrial potential. Our data show that
there is no reduction in ATP levels in DJ-1 mutant conditions,
suggesting that it is not an energy requirement (data not shown).
Rather, other mitochondrial metabolism cycles, such as one-
carbon metabolism (Tibbetts and Appling, 2010; Locasale, 2013)
may be involved. Other pathways, such as the glyoxylate shunt in
worms, may also play a role.
Therapeutic routes for Parkinson’s disease have so far

been symptomatic and intractable. It has been shown that
environmental toxins that affect mitochondria are strongly
linked to the appearance of Parkinson’s disease (Song et al.,
2004; Freire and Koifman, 2012) and impairment of the
mitochondrial function is a common feature of both idiopathic
and genetic Parkinson’s disease (Schapira et al., 1989; Clark
et al., 2006; Park et al., 2006; Irrcher et al., 2010; Kamp et al.,
2010; Pan-Montojo et al., 2012; Wang et al., 2012; Braidy et al.,
2014; Burchell et al., 2013). Our discovery that the production of
molecules from endogenous enzymatic pathways can protect
neurons, offers a potential therapeutic direction that could include
preventive strategies. Both products of glyoxalases exist in many
natural products. Thus, providing neurons with these substances
might protect them against metabolic or environmental
stress. Because many diseases are associated with a decline in
mitochondrial activity (Schapira, 2012), the products of
glyoxalases could have a general role in protecting cells from
decline.

MATERIALS AND METHODS
Chemicals

Glucose (Merck), glycolic acid (15451, ACROS Organics) neutralized

with NaOH to pH57.4, and sodium D-lactate (71716, Sigma), glyoxal

(128465, Sigma), paraquat (sc-257968, SantaCruz biotechnologies or

36541 FlukaH from Sigma–Aldrich) were used.

Cell culture, RNAi, worm strains

HeLa cells were maintained in DMEM (Life Technologies)

supplemented with 10% fetal bovine serum (FBS), 2 mM GlutaMAX,

100 unit/ml penicillin, 100 mg/ml streptomycin at 37 C̊ in a 5%

CO2 environment. HeLa cells were RNAi-transfected with 10 nM

Fig. 5. Glycolate and D-lactate support viability of dopaminergic

neurons in vitro. (A) Viability of the dopaminergic neurons in vitro from wild-

type and DJ-1 mutant mice embryos in the presence or absence of 10 mM

glycolate (GA), D-lactate (DL), or L-lactate (LL). Points show the ratio of

tyrosine hydroxylase-positive (TH+) cells to the control (no supplement).

Horizontal blue bars and error bars represent the mean and SD, respectively.

**p,0.01; ***p,0.001. (B) Viability of the dopaminergic neurons in the

presence of 12.5 mM paraquat (PQ2+) in the absence or presence of 10 mM

GA, DL, or LL. Primary neurons isolated from wild-type E14.5 embryos were

cultured in vitro in the presence of the indicated supplements and PQ2+.

Points show the ratio of TH+ cells to the control. Horizontal blue bars and

error bars represent the mean and SD, respectively.
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endoribonuclease-digested small interfering RNA (MISSION esiRNA,

Sigma) using Oligofectamine RNAi MAX reagent (Invitrogen). Cells

were assayed after 48 hours from RNAi.

All C. elegans strains were maintained on NGM agar plates seeded

with Escherichia coli NA22 at 15 C̊ (Brenner, 1974). Mutant strains djr-

1.1(tm918), djr-1.2(tm951) and glod-4(tm1266) were obtained from

National Bioresource Project, Japan. Wild-type (N2) and daf-2(e1370)

mutant strains were obtained from Caenorhabditis Genetics Center,

USA. All mutants were outcrossed at least twice with the wild type to

eliminate background mutations.

Preparation, culture and treatment of primary mesencephalic

dopaminergic neurons from mouse embryos

Primary mesencephalic neuronal cell cultures were prepared as previously

described (Gille et al., 2004). Briefly, brain mesencephalons from E14.5

C57JBL6 or DJ-1 embryos were dissected under the microscope and

digested with Trypsin-EDTA (Sigma–Aldrich). The trypsin reaction was

stopped by adding the basic medium (BM) containing Neurobasal A

medium (Gibco), 1 mg/ml penicillin/streptomycin, 10% (v/v) fetal calf

serum (Invitrogen) and 2 mM L-Glutamine and cells were mechanically

dissociated using a fire-polished Pasteur pipette. Medium was fully

replaced by centrifuging for 5 minutes at 1200 rpm, aspiring the

supernatant and adding 8 ml of the fresh BM to the pellet. Concentration

of cells in the medium was estimated and cells were plated in a volume of

250 ml in 4-well plates (176740, Nunc, Thermo Scientific) or 35 ml in m-

clear 96-well plates (Greiner) coated with poly-D-lysine (Sigma–Aldrich)

at a concentration of 26106 cells per ml. The same volume of medium

containing the different treatment substances was added 4 hours after

plating to obtain the following treatment concentrations: control, 10 mM

GA, 10 mM DL and 10 mM LL. 24 hours later 1/3 of the medium was

replaced with fresh BM. On DIV3 (day-in-vitro-culture 3) half of the

medium was replaced with B27 medium containing Neurobasal A medium,

1 mg/ml penicillin/streptomycin, 2 mM L-Glutamine (Sigma–Aldrich) and

B-27 supplement (Life Technologies) and on DIV5 all medium was

replaced by B27 medium. On DIV7 cell were either fixed using AccustainH

(Sigma–Aldrich) for 30 minutes or PQ2+ treated at a concentration of

12.5 mM for 72 hours more and fixed. All animal experiments were

performed in accordance with German animal welfare legislation.

Immunocytology of mesencephalic cell cultures

AccustainH fixed neuronal cell cultures were washed 36 10 minutes in

phosphate buffered saline (PBS), blocked using a blocking solution (BS)

(0.2% Triton X-100 in PBS and 5% donkey serum (DS)) for 1 hour at

RT, and incubated with mouse anti-TH (1:500, Millipore), chicken anti-

bIII-tubulin (1:500, Millipore) and rabbit anti-TOM20 (1:200, FL-145,

Santa Cruz Biotechnology) or rabbit anti-NeuN (1:500, Millipore)

primary antibodies in BS overnight at 4 C̊. On the next day cells

were washed 4610 minutes with PBS, incubated in donkey AlexaH 488

anti-rabbit, donkey AlexaH 555 anti-mouse (Life Technologies) and

donkey AlexaH 647-anti-chicken (Jackson Immunoresearch) secondary

antibodies for 1 hour at RT, washed 4610 minutes with PBS, incubated

with Hoechst33342 for 10 minutes and washed once more in PBS.

Generation of C. elegans multiple mutant strains

djr-1.1 and djr-1.2 males and hermaphrodites were first crossed

reciprocally. L4 hermaphrodites from the F1 generation were singled

out and let lay eggs for 2 days. Subsequently, the adults were lysed and

genotyped individually.

One adult was put in 100 ml lysis buffer (16PCR buffer and 200 ng/ml

proteinase-K in water), snap-frozen in liquid nitrogen and incubated for

1 hour at 65 C̊. Then, the enzyme was denatured at 98 C̊ for 15 minutes.

Genotyping PCR was performed in 16PCR buffer with MgCl2, 200 mM

dNTP mix, 400 nM of each primer, 0.02 U Taq polymerase and 5 ml of

gDNA from the lysis of an adult hermaphrodite using the primers listed

in supplementary material Table S1. PCR conditions were the following:

Initial denaturation at 94 C̊ for 10 minutes, amplification in 30 cycles of

94 C̊ for 30 seconds, 62 C̊ for 25 seconds and 72 C̊ for 30 seconds, final

extension at 72 C̊ for 10 minutes.

Populations arising from an individual heterozygous for both alleles

were selected and L4 hermaphrodites were singled out for one more

round of genotyping as described above. Finally, 3 lines homozygous for

both alleles were found. One of these lines was selected to be used in

subsequent experiments. We named this double mutant DDdjr.

As a next step, DDdjr mutants were crossed with glod-4(tm1266)

mutants. The genotyping and selection of homozygous triple mutants

were done similarly, using the primers listed in supplementary material

Table S1. PCR conditions were the same as above, except that the

annealing temperature was increased to 65 C̊. Finally, two lines

homozygous for all 3 alleles were obtained. One of these lines was

used in experiments. For convenience, we named this triple mutant Dglo.

Desiccation and measurement of desiccation tolerance in

dauers

N2, glod-4, DDdjr and Dglo dauers were generated on agarose plates by

sterol depletion/lophenol substitution (Matyash et al., 2004). daf-2 dauers

were generated in liquid culture by growing at 25 C̊. Worms were

preconditioned at 98% RH for 4 days and/or desiccated at 60% RH for 1

day in controlled humidity chambers (Erkut et al., 2013). Survival rate of

different strains were calculated as the percentage of survivors in the total

population after rehydration.

Measurement of desiccation-induced gene expression

Total RNA was extracted from daf-2 dauers before and after

preconditioning in 4 biological replicates. 500 ng of total RNA was

reverse transcribed using 250 ng oligo(dT)12–18 primer (Invitrogen, CA),

5 nmol dNTP and 200 U SuperScript III reverse transcriptase

(Invitrogen, CA) at 50 C̊ for 1 h according to the protocol supplied by

the manufacturer. PCR was performed in 16 PCR buffer with MgCl2,

200 mM dNTP, 500 nM of forward and reverse primers, and 0.05 U Taq

polymerase, using 0.1 ml of the cDNA product. PCR conditions were the

following: 94 C̊ for 10 minutes, 30 cycles of 94 C̊ for 20 seconds, 61.5 C̊

for 25 seconds and 72 C̊ for 15 seconds, finally 72 C̊ for 5 minutes. The

primer sequences are presented in supplementary material Table S1. PCR

products are separated on a 3% agarose gel and visualized using ethidium

bromide.

Paraquat treatment of HeLa cells and worm larvae

For experiments with paraquat (PQ2+) in cells, 50 mM PQ2+ and 1 mM

GA/DL/LL were added to HeLa cells and incubated for 24 hours. The

media and the supplements were replaced 1 hour before fixation or assay.

Worms were treated with 200 mM PQ with or without 10 mM GA, and

compared to worms that are not treated with either PQ or GA.

Subsequently, they were stained and imaged for mitochondrial

organization and activity.

Mitochondrial live staining of worm larva

Mitochondrial staining was performed as previously described (Yang and

Hekimi, 2010). Briefly, Mitotracker Deep Red and CMXROS (M22426,

M7512, Life Technologies) were dissolved in DMSO at a concentration

of 5 mM and kept at 220 C̊ as a stock solution. On the day of

microscopy worms were incubated in a 1:1000 diluted Mitotracker for

45 minutes at room temperature. Worms were then paralyzed with 1 mM

Levamizol (Sigma–Aldrich), placed on slides covered with a thin layer of

NGM medium on top of which the coverslip (22622 mm, Menzel–Glaser

no. 1) was fixed using nail polish.

Light microscopy, and image analysis

To image mitochondria of HeLa cells, MitoTracker Red CMXRos was

added at 150 nM and fixed with 3% (v/w) paraformaldehyde in PBS, 1 mM

MgCl2, and 5 mM EGTA. DNA was counter-stained by 1 mg/ml

Hoechst33342. As MitoTracker Red CMXRos robustly stained

mitochondria in HeLa, JC-1 (Santa Cruz Biotechnology, 10 mg/ml) was

used to visualize mitochondrial membrane potentials in live cells, with

100 ng/ml Hoechst33342. They were imaged on the DeltaVision system

(Applied Precision Inc., Issaquah, WA, USA) using a 606 objective

(PlanApo N, NA51.42, Olympus) equipped with a CO2 supply, and
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deconvolved and maximally projected images were used for the analysis.

Due to high background of MitoTracker in the center of the cell,

mitochondria in a 15615-mm area in the periphery were manually annotated

on ImageJ software. Total integrated intensity of green- and red-fluorescent

JC-1 in the individual cells was measured to obtain the fluorescence ratio.

All JC-1 images were adjusted for the contrast in the same way on ImageJ.

Microscopy images from live paralyzed worm larvae stained with

Mitotracker were taken using a confocal microscope (LSM510, Zeiss,

Germany). Samples were excited using a 514 (Mitotracker CMXRos) or a

647 (Mitotracker Deep Red) nm lasers and two channels, one BP505-550

or LP650 and the BF channel were used to acquire the images. Gain was

maintained between 450 and 515 for all samples to ensure the detection

of signal intensity differences.

Counting of dopaminergic neurons

Dopaminergic TH+ neurons were observed using an inverted

fluorescence microscope (Axiovert 200M, Zeiss) under a 106 objective

(PlanApo, NA50.45). The diameter of every well was scanned in two

perpendicular directions (i.e. top to bottom and left to right) and total

TH+ neurons were counted for every well.

Immunoblotting

EsiRNAi-transfected HeLa and mouse brains were lysed in a lysis buffer

(50 mM HEPES pH57.5, 150 mM KCl, 1 mM MgCl2, 10% glycerol,

0.1% NP-40) with a protease inhibitor cocktail (Complete, Roche),

resolved in SDS-PAGE, and transferred onto a nitrocellulose membrane.

In immunoblotting, the following primary antibodies were used: human

DJ-1 (FL-189, SantaCruz, 1:200 dilution); mouse DJ-1 (HPA004190,

Sigma, 1:250); PINK1 (38CT20.8.5, Thermo, 1:500); alpha-tubulin

(DM1A, Sigma, 1:2000). Horseradish peroxidase-conjugated anti-IgG

antibodies (Bio-Rad, 1:2000) were used for the secondary antibody.

Chemiluminescence by ECL reagent was developed on a Hyperfilm (GE

Healthcare).

Liquid chromatography mass spectrometry (LC-MS) analysis of

alpha-hydroxy acids

daf-2 dauers directly collected from the liquid culture or preconditioned

at 98% RH for 4 days were homogenized and extracted according to

Bligh’s and Dyer’s method (Bligh and Dyer, 1959). The aqueous phases

were dried and dissolved again in 50% methanol (v/v) using volumes

calculated according to total soluble protein amounts. HeLa cells

harvested directly or treated with GA were also extracted by the same

method. The final volume of their aqueous fractions was normalized

according to the number of cells.

Separation and detection of glycolic and lactic acids were performed

by normal-phase LC-MS using an Agilent G1312A pump equipped with

an Agilent Autosampler G1329A. Separation employed a Cogent

Diamond Hydride column (25 cm64.6 mm i.d., 4 mm, Microsolv)

coupled on-line to a Waters/Micromass LCT time of flight (TOF) mass

spectrometer equipped with electrospray ionization (ESI). Alpha-hydroxy

acid species were separated by isocratic elution. An aqueous formic acid

(0.1%; v/v), including 10 mM ammonium formate/acetonitrile mixture

(30:70; v/v) was used. The column was operated at 40 C̊ and flow rate

was set to 1 ml/minute with a split to 100 ml/minute into the mass

spectrometer. 5 ml of each sample were injected into the column.

For the separation of D- and L-lactic acid enantiomers, we employed

chiral chromatography by using an Astec CHIROBIOTIC R chiral

column (25 cm64.6 mm i.d., 5 mm, Supelco), as reported previously

(Henry et al., 2012). Isocratic elution was performed with the mobile

phase 15% (v/v) 30 mM ammonium acetate in H2O (adjusted with acetic

acid to pH 3) and 85% (v/v) acetonitrile. The column was operated at 5 C̊

with a split to 50 ml/minute into the same mass spectrometer.

The mass spectrometer was operated with a spray voltage of 2.5 kV

and a source temperature of 140 C̊ in negative and positive ion mode.

Nitrogen was used as the cone and nebulizing gas at flow rates of

approximately 40 and 500 L/h, respectively. Positive and negative ion

full scan mass spectra were acquired from the m/z range of 60–1000 mass

units in a scan time of 1 second. The system was operated and the

resulting data were processed by MassLynx (Version 4.1) software

(Waters).

Statistics and graph representation

Statistical differences between the tested treatments were determined by

ANOVA followed by the Tukey’s honestly significant differences post-

hoc test. Survival rates were compared using beta regression (Erkut et al.,

2013). Data expressed in percentages were first transformed by Tukey’s

double arcsine function (Freeman and Tukey, 1950) to achieve normal

distribution prior to ANOVA. Statistical analysis and graphs were done

on a Prism software version 5 (GraphPad Inc.) and an R environment.
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Fig. S1. Upregulation of glyoxalase genes upon desiccation of C.

elegans dauer. The differential expression of djr-1.1, djr-1.2 and glod-4 was

tested by RT-PCR in four replicates. See Fig. 1A for the procedure. tsp-21

was a control whose expression did not change by desiccation stress.

Fig. S2. DJ-1 downregulation by esiRNA. Expression of DJ-1 protein in

esiRNA-transfected HeLa cells. DJ-1 and tubulin proteins in the whole lysate

were detected by immunoblotting. By a densitometric analysis, RNAi of DJ-1

downregulated its expression by 75% in HeLa cells.
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Fig. S3. Glycolate and D-lactate rescue mitochondria structure of paraquat-treated DJ-1 RNAi HeLa cells. (A–D) Mitochondria stained with MitoTracker

(green) and DNA (blue) of cells treated with control Luciferase RNAi (A), DJ-1 RNAi (B), control RNAi and paraquat (PQ2+) (C), and DJ-1 RNAi and

PQ2+ (D). Scale bars: 10 mm. (E) Quantification of the mitochondrial network structure. Circularity of mitochondria in cell periphery was calculated (n§280 for

each box). On the right, the relation between the mitochondrial shape and circularity is drawn. Circularity in each condition was compared to its own control by

one-way ANOVA followed by Tukey’s HSD test. *p,0.05; **p,0.01; ***p,0.001.
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Fig. S4. Effects of paraquat on worm larvae. (A) Length of the worms treated with paraquat (PQ2+). Bars and error bars show the mean and SD, respectively.

Sensitivity to PQ2+ was comparable between strains (F52.334, df52, p50.1) but overall increased by concentration (F581.159, df55, p,0.001). Every strain

was compared to its control at different PQ2+ concentrations by two-way ANOVA followed by Tukey’s honestly significant differences (HSD) test.

(B) Worm larvae treated with PQ2+ or control. Scale bar: 250 mm. (C) Survival of the worm larvae treated with 200 mM paraquat and 1 mM of the indicated

supplements. Bars and error bars show the mean and SD, respectively. Every strain was affected differently upon each treatment (strain level F510.748, df52,

p,0.001; treatment level F524.467, df55, p,0.001). PQ2+ decreased viability of DDdjr mutant, which was restored by glycolate (GA), but not by D-lactate (DL),

L-lactate (LL). Viability of glod-4 was not affected by PQ2+ significantly; however, the lethality was rescued in a similar way as DDdjr. Every strain was

compared to its own control by two-way ANOVA followed by Tukey’s HSD test. Data were normalized by Freeman–Tukey’s double arcsine transformation prior

to ANOVA. *p,0.05; **p,0.01; ***p,0.001.

Fig. S5. PINK1 downregulation by esiRNA. Expression of PINK1 protein

in esiRNA-transfected HeLa cells. Before harvest, cells were incubated with

10 mM FCCP (Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone) for

1 hour. Loading of same amounts of total proteins was confirmed by

Ponceau S staining (not shown). A 54 kDa band near to the expected

molecular weight (63 kDa) was diminished in the PINK1 RNAi sample.
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Fig. S6. Detection of a-hydroxy acids and trehalose in worms before and after preconditioning. Selected ion monitoring (SIM) chromatograms for

molecules of interest are overlaid. (A) Separation of lactic acid stereoisoforms. L-lactate decreases 3-fold upon preconditioning whereas D-lactate is in trace

amount in worms and its abundance is not affected by desiccation stress. (B) No glycolate is detected in worms both before and after preconditioning.

(C) Trehalose level is increased more than 2-fold upon preconditioning.

RESEARCH ARTICLE Biology Open (2014) 000, 1–8 doi:10.1242/bio.20149399

S4

B
io
lo
g
y
O
p
e
n



Fig. S7. Glycolate and D-lactate support in vitro survival of the

dopaminergic neuron. (A) Survival of the primary dopaminergic neurons in

the presence of the different concentrations of D-lactate (DL) and glycolate

(GA). The primary neurons from wild-type mouse embryos were cultured with

the indicated substances for 6 days, fixed, and stained for tyrosine

hydroxylase (TH), a dopaminergic neuron-specific marker. The relative

number of the TH+ cells to none-treated control was plotted, with mean (blue)

and SD. Each dot indicates an independent experiment. *p,0.05;

**p,0.01; ***p,0.001. (B) Immunoblot of DJ-1 in wild-type and DJ-1 mutant

mouse brains. Total brains isolated from wild-type and DJ-1 mutant adults

and embryos were lysed, and tested for DJ-1 expression. Tubulin is the

loading control.

Table S1. Sequences of the primers used in genotyping and RT-PCR

Gene/allele Primer name Primer sequence

Genotyping

djr-1.1(tm918) tm918_ext_fwd CGACGAGTTGCGTATGAGAA

tm918_ext_rev CACAAGTTTTTCGGGGAGAA

tm918_int_fwd TATGCCGGATTAGATGGAGC

djr-1.2(tm951) tm951_ext_fwd GATTTCTTCGGCGTCTTCTG

tm951_ext_rev CACATCTCGGGCCACTATTT

tm951_int_fwd AAAATGCAACGACCGACTTC

glod-4(tm1266) tm1266_ext_fwd TCCTCCGCTCGCTTTTTCTC

tm1266_ext_rev TTGCAAGTTGCTTCGCATCC

tm1266_int_fwd TCGAAGCTTTGGTCGTTTCG

RT-PCR

djr-1.1 djr-1.1_fwd GCCGAAGGAGCTGAGGAAATG

djr-1.1_rev AGCACATTTTACCGGTTCGGC

djr-1.2 djr-1.2_fwd TGAACCTGTCAAATGTGCCAAAGG

djr-1.2_rev GGCACTCTGCCAGTTTGCTAC

glod-4 glod-4_fwd CCTGAAGATAAGCTCGAATCTCTCC

glod-4_rev ATGCTCATCTGGATCGGCAAG

tsp-21 tsp-21_fwd ACAGAGAGAGCTCCAATGCTGC

tsp-21_rev TTTCCCACAGTTTTCTGTGCCG
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