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vector machine trained with completely unrelated data to differentiate between Alzheimer’s disease (AD), frontotemporal

dementia (FTD), Lewy body dementia, and healthy aging based on 3D-T1 weighted MRI data sets. Furthermore, we predicted

progression to AD in subjects with mild cognitive impairment (MCI) at baseline and automatically quantified white matter

hyperintensities from FLAIR-images. Separating additionally recruited healthy elderly from those with dementia was accurate

with an area under the curve (AUC) of 0.97 (according to Fig. 4). Multi-class separation of patients with either AD or FTD from

other included groups was good on the training set (AUC > 0.9) but substantially less accurate (AUC = 0.76 for AD, AUC = 0.78

for FTD) on 134 cases from the local clinic. Longitudinal data from 28 cases with MCI at baseline and appropriate follow-up

data were available. The computer tool discriminated progressive from stable MCI with AUC = 0.73, compared to AUC = 0.80

for the training set. A relatively low accuracy by clinicians (AUC = 0.81) illustrates the difficulties of predicting conversion in

this heterogeneous cohort. This first application of a MRI-based pattern recognition method to a routine sample demonstrates

feasibility, but also illustrates that automated multi-class differential diagnoses have to be the focus of future methodological

developments and application studies.

Keywords: Dementia diagnostics, machine learning, magnetic resonance imaging, prognosis, support vector machine

INTRODUCTION

An accurate diagnosis of different types of dementia

or the prediction of conversion to dementia from a state

of mild cognitive impairment (MCI) is important in

order to recruit homogeneous populations for diagnos-

tic and treatment studies, clinical trials, and eventually

also in the clinical routine. Accurate clinical diag-

nosis based on medical history, clinical assessment,

neuropsychological tests, and laboratory assessment

as originally recommended by the National Insti-

tute of Neurological and Communicative Disorders

and Stroke/Alzheimer’s Disease and Related Disor-

ders Association (NINCDS-ADRDA; [1]) and recently

further developed [2] is the gold standard for clinical

management. Cognitive testing and clinical examina-

tion necessary for differential diagnosing of dementia

is, however, labor intensive. As part of the routine

workup, imaging initially served to exclude secondary

causes such as tumor, abscess, or hydrocephalus [56],

but several studies demonstrated information gain

from structural magnetic resonance imaging (MRI),

positron emission tomography (PET), or computerized

tomography scans in the context of dementia diagnos-

tics either in combination with a neuropsychological

assessment or in isolation [3–6]. So far, diagnostic use

of imaging depends heavily on the quality and expe-

rience of the radiologist [7], which may be limited

outside specialized centers where the majority of cases

is diagnosed [8].

Compared to visual assessment, automated diag-

nostic methods based on MRI are more reproducible

and have demonstrated a high accuracy in detecting a

range of pathological conditions [9]. Automated MRI

based volumetry separates Alzheimer’s disease (AD)

or MCI from healthy aging [10–14], but also, clinically

more challenging, separates between different types of

dementia [11, 15], or between those with MCI who

convert to dementia or remain stable [16–21]. Some

studies on structural imaging already considered more

than two diagnostic options or used probabilistic rather

than categorical diagnostic labels [20, 22–24]. These

supervised machine-learning approaches run on a stan-

dard PC and rely on a set of labelled training data—for

example structural MRI and reliably established diag-

nostic label for each subject—to diagnose new cases

in the absence of expert radiologists.

Although reported performance is encouraging,

drawing conclusions on the usefulness of these auto-

mated methods in routine application is difficult

for several reasons: i) previous studies such as the

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

[25] recruited a sample representative of the popula-

tion for clinical trials rather than clinical routine [26].

They excluded patients with comorbidities associated

with structural brain changes (e.g., stroke, Parkinson’s

disease, atrophy caused by alcohol abuse) or cognitive

impairment unrelated to dementia (e.g., depression);

ii) MRI scans with lower data quality were often

excluded. While clinicians can read through some

image artifacts [27], the effect on automated meth-

ods is largely unexplored; iii) With few exceptions [11,

28], studies have either reported cross-validation accu-

racy or have taken test and training data from the same

source. For maximum usefulness, classification meth-

ods need to perform well even when training cases

differ in characteristics such as co-morbidity, age, or

scan-parameters from the clinical set to which the
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scanner is applied; iv) Finally, studies on automated

diagnosing have not considered the presence of mul-

tiple pathologies in the same individual despite their

high frequency. White matter hyperintensities (WMH)

most often related to vascular pathology, co-occur in

a range of neurodegenerative dementias [29]. WMH

extent and location affect clinical phenotype [30], but

the occurrence of multiple neurodegenerative patholo-

gies is also frequently observed [31, 32].

To overcome these limitations and assess a realis-

tic clinical scenario, we implemented a prospective

study in a single memory clinic with liberal inclu-

sion criteria. We applied automatic tools to determine

to what extent gold standard clinical diagnosis could

be reflected by automated MRI based classification.

High level multidisciplinary diagnosis is available in

expert centers, such as a dedicated memory clinic,

but not part of routine care. Therefore, an automated

method that can serve to assign patients to clinical

categories with similar accuracy than clinical gold

standard diagnosis would be a major step forward in

clinical care of dementia. To this end, we extracted

volumetric information from 3D-T1 weighted data

sets to separate different neurodegenerative conditions.

WMH were quantified on Fluid Attenuated Inver-

sion Recovery (FLAIR) images [33–36]. In addition

to computing receiver-operator characteristics (ROC)

curves, we examined positive (PPV) and negative pre-

dictive values (NPV) and therewith the ability to reach

a diagnostic decision with high reliability in a sub-

stantial fraction of patients or the ability to rule out

some possible diagnoses in a reliable manner to reduce

the further diagnostic process compared to the current

work up. We separately recruited a small number of

healthy controls (HC) to evaluate the performance of

the classifier more completely.

MATERIAL AND METHODS

All referrals to the Freiburg dementia clinic with

reported progressive decline of cognitive functioning

and age above 40 were screened between June 2011

and June 2014 (total 1,303 cases). Inclusion criteria

were kept liberal for a good representation of the typ-

ical population of a memory clinic. Therefore, the

presence of disorders affecting brain structure (e.g.,

stroke, past alcohol-abuse, depression, and trauma)

did not lead to exclusion unless deemed the exclusive

cause for present cognitive symptoms. Routine clini-

cal workup did not change for the study and included

clinical evaluation (neurological examination, medical

history, etc.) with input from relatives when available,

a neuropsychological assessment and structural imag-

ing, sometimes complemented by laboratory tests,

such as blood tests. PET, single photon emission com-

puted tomography imaging, and cerebrospinal fluid

(CSF) analyses were arranged as part of the rou-

tine when diagnostic confidence remained low after

assessing medical history, clinical examination, neu-

ropsychological testing, and MRI. Keeping the routine

workup unchanged also meant that subjects without

cognitive impairment or referrals with a previous CT

or MRT examination did not enter the study as no

additional MRI was required. Cognitive performance

was assessed using the CERAD battery [37], some-

times extended by trail-making tests A and B [38] as

well as tests of aphasia. The clinical dementia rating

scale (CDR) was used to evaluate severity of impair-

ment [39]. All MCI patients had a CDR score of

0.5 and no impairment in activities of daily living

(ADL). For patients with dementia, we focused on

mild to moderate dementia stages including those with

impairment in ADL and a CDR of ≥0.5 and ≤2 as sep-

arating different types of dementia becomes difficult

in late stages. 18 HC were recruited through adver-

tisements and received the same clinical assessment

and imaging protocol. Normal cognitive performance

was confirmed using the sensitive Montreal Cognitive

Assessment (MOCA) [40]. Informed written consent

was obtained from all participants and the study was

approved by local ethics committee and internationally

registered (ID: DRKS00003199).

Gold standard diagnosis

Gold standard for differential diagnosis of demen-

tia, in case of dementia at baseline, was established

based on the baseline assessment in a panel decision

and according to established diagnostic criteria includ-

ing a standard visual evaluation of MRI images and all

other available data [2, 41, 42].

For subjects fulfilling criteria for MCI at baseline

[43], follow-up clinical assessment was considered

the diagnostic gold standard: Prediction of conversion

from MCI to dementia based on data from baseline was

expected to be easier the earlier after baseline the con-

version happened, i.e., the closer to onset the patient

was at baseline. On the other hand, the reliability of a

diagnosis of a subject with stable MCI based on data

from the baseline was assumed to increase with the

follow-up interval. To make use of the available follow-

up data, we defined a minimal follow-up period of 12

months but used longer follow-up data for the grouping
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when available: MCI to dementia converters fulfilled

criteria of dementia within two years of the baseline

visit. Subjects that converted later than twelve months

were excluded. Subjects classified as stable MCI had

to remain stable over their full observation period of

at least 12 months. Consequently, subjects that were

observed over a period of less than twelve months and

remained stable during this period were excluded.

Questionnaire (pre- and post clinical scoring)

To obtain further insights in the diagnosis process

and the potential added value of MRI and thereof

derived automated method, the clinicians were asked

to complete a questionnaire for each participant. When

dementia was determined clinically at baseline, the

specific type had to be indicated. For those with

MCI at baseline, clinicians had to indicate if they

expected conversion to dementia within 12 months.

A three-point scale allowed clinicians to rate their

diagnostic confidence (i.e., low: <70%, intermedi-

ate: 70–90%, high: >90%). Such a coarse discrete

rating was preferred over a continuous rating of

certainties as a continuous scale would be pseudo-

accurate and because a categorization is clinically

useful. To compare the automated method to clini-

cians in their accuracy of prediction of conversion,

we used a six-point scale predicting 12-months con-

version with confidence levels ranging from <10%

(stability expected with high confidence), 10–30%,

30–50%, 50–70%, 70–90%, up to >90% (conversion

expected with high confidence). Clinicians completed

the questionnaire twice, first after clinical interview

and neuropsychological testing (i.e., pre-MRI clinical

scoring), and second after they had access to the MRI

scan and the report from an expert neuroradiologist

(i.e., post-MRI clinical scoring).

Table 1

Included subjects in training or test set. Please note: Provided references may refer to slightly different samples. ∗Mini-Mental State Examination

(MMSE) scores were not available for all subjects. Last rows includes relative volumes of white matter hyper intensities (WMH) for the frontal

lobe, the temporal lobe, and the whole brain

HC AD FTD LBD MCI stable MCI converter

ADNI [25]

Age 74.7 ± 5.8 75.2 ± 7.8 73.4 ± 7.8 74.5 ± 7.0

f/m 185/177 129/149 104/170 51/65

MMSE 29.0 ± 1.2 23.1 ± 2.0 27.7 ± 1.8 26.6 ± 1.9

AIBL [44]

Age 74.5 ± 7.5 72.6 ± 7.9

f/m 81/60 18/13

MMSE N.A. N.A.

Train3 [24]

Age 55.7 ± 9.2 61.6 ± 6.4 58.6 ± 6.4

f/m 8/15 11/9 5/5

MMSE 29.0 ± 1.3 22.8 ± 3.8 24.2 ± 4.0

Train4 [64]

Age 72.7 ± 7.1 64.9 ± 8.9

f/m 5/1 8/9

MMSE 23.8 ± 1.5 24.5 ± 3.8

Train5 [65]

Age 73.4 ± 4.6

f/m 6/10

MMSE 21.7 ± 4.5

Train6 [66]

Age 67.9 ± 7.6 70.4 ± 8.3 62.4 ± 5.4 74.4 ± 4.4

f/m 25/35 15/11 6/6 1/6

MMSE∗ 27.6 ± 6.2 21.8 ± 4.1 24.9 ± 4.6 25.1 ± 1.7

Test

Age 70.3 ± 8.3 76.1 ± 7.1 66.0 ± 6.3 72.9 ± 3.3 72.8 ± 6.9 74.3 ± 6.7

f/m 9/9 76/46 7/5 1/3 8/8 6/6

MMSE 29.0 ± 1.7 20.4 ± 4.1 21.8 ± 3.5 21.0 ± 3.6 26.1 ± 2.9 23.5 ± 2.4

FLAIR available (n = 12, 66%) (n = 70, 57%) (n = 3, 25%) (n = 1, 25%) (n = 7, 43%) (n = 6, 50%)

temporal 5.0 ± 2.3 5.9 ± 2.5 5.6 ± 4.7 4.9 ± N.A. 5.8 ± 3.0 5.2 ± 1.7

frontal 6.4 ± 2.1 8.2 ± 4.1 4.3 ± 2.9 6.7 ± N.A. 9.0 ± 6.2 6.2 ± 2.2

#total WM 6.3 ± 1.8 7.3 ± 2.8 4.7 ± 3.3 5.8 ± N.A. 7.4 ± 3.5 6.1 ± 1.8
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Table 2

Scanning parameters of training data. TR, repetition time; TE, echo time, FA, flip angle; RES, resolution of volume in pixels; VX, voxel size in

mm; FS, magnetic field strength in Tesla

Dataset Sequence # scanners TR [ms] TE [ms] FA RES [ms] VX FS

ADNI MP-RAGE >50 2,400/2,300 ∼3 8◦/9◦ 192 × 192 × 160 2400/2300 1.5/3.0

(typical) (typical) (typical)

AIBL MP-RAGE 2 2,300 2.98 9◦ 240 × 256 × 160 1 × 1 × 1.2 mm 3.0T

Train 3 MDEFT or 2 1,300 3.93 n.a. 256 × 256 × 128 1 × 1 × 1.5 mm 3.0T

MP-RAGE

Train 4 MP-RAGE 1 2,200 2.15 12◦ 1 × 1 × 1 mm 3.0 T

Train 5 MP-RAGE 1 1,100 4.3 256 × 256 × 160 1 × 1 × 1 mm 1.5 T

Train 6 MP-RAGE 1 2,500 4.82 7◦ 256 × 256 × 192 1 × 1 × 1 mm 3.0

MRI training and testing data

We combined training data from multiple sources

to train the predictive computer models. This resulted

in a fairly large training sample of more than 1,600

instances, and we assumed that combining data from

multiple centers would help to learn models that are

more robust to systematic inter-scanner effects. As

indicated in Table 1, there was a large imbalance in the

number of training instances per class. Subjects with

AD and elderly controls were most abundant, while

other types of dementia were scarcer. While elderly

controls and AD patients were acquired on many scan-

ners, cases diagnosed with non-AD dementia were

acquired on very few scanners. The strong correlation

of some diagnosis with acquisition scanner/sequence

implied potential decrease in classification accuracy

as the classifier could learn to separate scanners rather

than disease [44].

The largest number of publicly available scans was

from the ADNI-study (http://www.adni-info.org). The

ADNI was launched in 2003 by the National Institute

on Aging (NIA), the National Institute of Biomedical

Imaging and Bioengineering (NIBIB), the Food and

Drug Administration (FDA), private pharmaceutical

companies and non-profit organizations, as a $60 mil-

lion, 5-year public- private partnership. The public data

base provides extended longitudinal data including

neuropsychological tests, genetic data, imaging, and

CSF data. The second publicly available data set was

obtained from the Australian Imaging, Biomarker and

Lifestyle Flagship Study of Ageing (AIBL) [45]. The

AIBL MRI data was acquired at only two sites, with

a similar protocol as the ADNI. Further, we included

data from four memory clinics to study the ability of

separation of different types of dementia as detailed

in Tables 1 and 2. We included AD, frontotemporal

dementia (FTD, without distinguishing subtypes) and

Lewy body dementia (LBD) as well as healthy elderly.

Of note, diagnoses in the training set typically relied

on clinical criteria with biomarker confirmation (e.g.,

PET, CSF) only in a subset.

Training data for the predicting of conversion from

MCI was derived from ADNI only. The respective sub-

jects were classified with MCI at baseline and were

sub-divided into two groups of patients. As with the test

data from the local clinic, we considered the available

follow-up intervals which were longer than those from

the local set: one group was formed by subjects who

remained MCI in all follow-ups and their last follow-

up was at least 360 days after the baseline check, and

the other converting to AD within 720 days after the

baseline examination. Individuals whose disease sta-

tus changed more than once or fell in neither category

were excluded from the training set.

Prospective test data were acquired locally on

a 3T Siemens system using a 32-channel head

coil. 3D-FLAIR and T1-weighted images were

acquired with a 1 mm isotropic resolution. Parame-

ters for the MPRAGE sequence included: TR 1440 ms

and TE = 2.15 ms with a parallel imaging protocol

(<4 min). FLAIR was performed in just under 8 min

with TR = 5000 ms and TE = 388 ms. Scan quality in

the test set was graded as good quality (no artifacts),

intermediate quality (some movement artifacts and/or

reduced contrast without affecting visual assessment of

scans) and low quality (substantial artifacts reducing

visual interpretability of scans). None of the training

data were acquired on the same scanner as the test data.

Image pre-processing and adjustment for

covariates

The same images that were inspected by the neu-

roradiologists were used for the automated diagnosis

pipeline. To this end, all images were pre-processed

as detailed below in order to obtain data suitable for

the automated algorithm. We employed pre-processing
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as in previous work [46] as it performed among the

best in terms of area under the curve [28]. Effects

of age, gender, and total intracranial volume were

removed. Instead of adjusting for covariates by kernel

linear regression, we adjusted using Gaussian process

regression with a non-linear covariance function as in

previous work [44].

T1-weighted images of all data sets were pre-

processed using the VBM8 Toolbox (http://dbm.neuro.

uni-Jena.de/vbm/). This essentially performs tissue

segmentation into gray matter (GM), white matter, and

CSF, and a subsequent normalization to a standard

stereotactic Montreal Neurological Institute (MNI)

space formed by 550 healthy subjects. Modulation was

applied after affine spatial transformation in order to

correct local volume changes by the non-linear spatial

transformation procedure and to preserve the amount

of GM. This processing step computed a map of GM

tissue probability for every subject that was spatially

aligned across subjects. Based on these maps, we

computed three dot-product matrices that captured the

similarities between pairs of GM maps. The first was

computed from the raw modulated GM maps, the sec-

ond from the smoothed (8 mm FWHM) modulated GM

maps, and the third of the region-wise weighted aver-

ages of the modulated GM maps. The weight for the last

dot-product matrix were taken from the LONI proba-

bilistic brain atlas [47], as the latter was reported to

perform best in prediction of the conversion from MCI

to AD compared to two other atlases [48]. To reduce

confounding effects of total intracranial volume, age,

and gender, we adjusted each dot-product kernel using

Gaussian process regression as in previous work [44].

The methodological details are outlined in the Supple-

mentary Methods section. For the classification, the

three dot-product kernels were normalized such that

the mean of each diagonal was one and then the ker-

nels were summed up. Data from the local memory

clinic (i.e., the test data), from which the performance

is reported, neither entered the estimation of regression

parameters nor the training of the SVM.

Quantification of white matter changes

We rated total volume of WMH in temporal and

frontal lobe using FLAIR images from scans of the

local memory clinic. WMH lesions load in these two

lobes has been shown to affect cognitive speed and

memory [49]. To meet the requirements of the clini-

cal setting for fast and automated detection of WMH,

we used a simpler version of our previously proposed

processing pipeline [36] and applied a threshold to the

standardized FLAIR image [50]. We first generated a

native space white matter mask using the unified seg-

mentation algorithm [51] as implemented in SPM8.

Second, FLAIR images were normalized to identical

interquartile ranges. Voxel with values >0.5 in white

matter mask and FLAIR image were considered as

WMH in a binary image. This step identified bright

regions in the FLAIR image but reduced the number

of false positives by a restriction to voxels with an at

least 50% probability of belonging to the white mat-

ter segment. We co-registered the Talairach Daemon

Lobe atlas [52] to each subjects structural images (i.e.,

T1 and FLAIR) and computed the relative amount of

detected WMH with respect to the total size of temporal

and frontal lobe, respectively. As a plausibility check,

WMH were correlated with age across all prospec-

tive subjects of the local memory clinic with available

FLAIR image as a strong positive correlation could be

expected from the literature [53].

SVM-based predicting and results reporting

For all analyses, the same adjusted kernel was used

for a soft-margin C-Support Vector Machine (SVM)

[54] classification. All models were trained using lib-

svm ([55], http://www.csie.ntu.edu.tw/∼cjlin/libsvm/;

version 3.18). For all learning tasks, the cost param-

eter C was selected among the candidates C =

{exp(−4), exp(−2), . . . , exp(2)} such that the cross-

validation performance on the training set was highest.

SVMs are supervised binary classifiers, meaning

that they learn a decision function based on training

examples that belong to two classes. The grouping is

based on a decision value, which codes the distance to

a separating plane. Values close to zero indicate uncer-

tain decisions. Binary classification is appropriate for

the classification of stable MCI versus progressive MCI

and, e.g., the classification of AD versus FTD. In con-

trast, a four class SVM (i.e., HC; AD; FTD; LBD) was

used for the differential diagnosis of dementia. The

multi-class SVM implementation in libsvm employs

a one-versus-one classification as the algorithm inter-

nally computes (m*(m−1)/2), where m is the number

of classes. In case of four classes, this results in six

decision values. To simplify the performance analyses,

these six values were combined into (pseudo-) proba-

bilities according to [56]. This results in one probability

value per class. For example, a subject could get 78%

AD, 8% FTD, 10% HC, and 4% LBD, in which case

the probability for AD was highest and picked as dis-

crete prediction. Note, that the probabilities add up

to 100%. Posterior probabilities for the four possible
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diagnostic labels predicted by the multi-class classifier

were used for the ROC curves (Fig. 4) to plot the index

class against the combination of all other classes and

radar plots to illustrate the distribution of class spe-

cific probabilities. Thus, although the ROC analysis is

intrinsically binary, the data presented in Fig. 4 were

obtained from the outputs from a multi-class classi-

fier. The proportion of WMH relative to the volume

of frontal or temporal lobe formed two extra axes in

the radar plot with the case with the maximum volume

of WMH in the whole sample scaled to the maximum

of the axis. Following discussions with clinicians we

choose to use radar plots to display the probability

profile for each individual visually. These plots pro-

vide visual patterns for the typical cases although the

ordering of diagnostic entities could misleadingly indi-

cate that some diagnosis would be more similar to

each other. In addition, as probabilities sum to one

(i.e., 100%), the presence of two pathologies would

lead to relatively low probabilities for both while high

probabilities for both would be more straightforward

to interpret. The analysis of the differential diagno-

sis using a multi-class classifier is complemented by

a binary distinction between AD and FTD, as the dis-

tinction between different types of dementia is often

difficult and because relatively many cases per group

were available in the test set. For that classifier, we

report separate ROC when excluding cases with low

scan quality (n = 24) or coexisting cerebral pathology

(n = 34).

Diagnostic usefulness and comparison to

clinicians

We were interested in the ability of the classifier to

assign a significant fraction of the population with a

sufficiently large confidence to the correct class. To

rate the usefulness of the computer tool, we aimed to

identify the cut point for the probability output which

results in a PPV above 0.9 or in a NPV above 0.95.

For computing PPV and NPV, we used the observed

prevalence in the test data sets. Based on internal a pri-

ori panel discussions, we regarded the computer tool

as clinical useful, if at least one of the potential diag-

noses could be given above the PPV threshold for 15%

of all patients. Alternatively, the tool was deemed use-

ful if at least one of the four possible diagnoses could

be excluded for 25% of patients. To assess the use-

fulness, we plotted NPV and PPV as function of the

probabilistic classifier output.

To assess the necessity for an additional diagnos-

tic tool, we report the proportion of cases for which

clinicians rated their own diagnostic certainty as low

(i.e., <70%) at pre- and post-MRI clinical scoring. We

compared the performance achieved by clinicians at

post-MRI to the predictions of the SVM in respect

to the clinical gold standard defined by follow-up

examinations. In addition, we computed ROC and

the area under the ROC curve (AUC) for the cor-

rect identification of MCI converters by comparing

the probabilistic outcome of the SVM [57] against the

diagnostic certainty of clinicians on the six-point scale.

No comparisons between clinicians and the computer

tool was attempted for differential diagnosis of demen-

tia as clinician’s rating at post-MRI was no longer

independent from the gold standard diagnoses while a

comparison with pre-MRI clinical scoring was deemed

uninformative as both decisions would be based on

completely different information.

RESULTS

Screening

A total of 1,303 were screened for this study over

an interval of three years. 961 cases did not enter this

study because clinical interview and neuropsycholog-

Fig. 1. Distribution of patients entering the memory clinic and their inclusion in the differential diagnosing of dementia (left panel) and predicting

of MCI conversion (right panel). LBD, Lewy body dementia; FTD, frontotemporal dementia; AD, Alzheimer’s disease; HC, healthy controls;

VaD, vascular dementia; MCI, mild cognitive impairment.
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ical testing indicated no need for MRI and in 10 cases,

no image was taken (e.g., patient did not show up).

Imaging was deemed unnecessary when it had already

been done recently, when subjects were cognitively

normal, or when impairment could be fully attributed

to a non-neurodegenerative cause (e.g., stroke, severe

depression). Cases with very typical medical history

and cognitive profile tended to receive a CT rather

than MRI scan and were thus unavailable to this study.

In line with the German guidelines for diagnostics in

MCI and dementia [58], individuals with MCI did not

always receive imaging. Three hundred and forty-two

(26.8% of 1303) subjects were referred to the Freiburg

dementia clinic with reported progressive decline of

cognitive function, age above 40 and the request for

MRI. Of those, 327 entered one of the two arms of the

study (Fig. 1). Therefore, fifteen were excluded from

the study after being referred to the dementia clinic.

Ten subjects were scheduled for a scan but were not

scanned (e.g., subjects did not show up, or could not be

scanned because of a metallic implant), and five sub-

jects were not assigned to one of the study arms because

of other reasons (e.g., depression). Visual inspection

indicated an accurate detection of WMH. Across all

included subjects who also had a usable FLAIR image,

the percentage of WMH in the frontal lobe (p < 0.001)

and temporal lobe (p = 0.019) was positively correlated

with age. On average, approximately 5% of the voxels

of the temporal and frontal lobe volumes were clas-

sified as hyperintense (see Table 1, bottom row, for

statistics grouped by diagnosis).

Prediction of conversion to dementia

Of all 132 scans that entered the MCI study branch,

a total of 28 cases (16 stable) with 12-months follow-up

gold standard diagnosis were available for final analy-

ses (Table 1 and Fig. 1, lower panel). A large proportion

of individuals had to be excluded because insufficient

follow-up data were available (n = 76). Two cases con-

verted after 720 days, 8 cases converted within less

than 90 days, and four cases had incompatible diag-

nosis, such as dementia of unknown origin or normal

pressurehydrocephalus.Thirteencasesremainedstable

but were observed for less than 360 days and there-

fore excluded. Of note, one subject converted from

MCI to FTD and was not included in order to focus

on conversion from MCI to dementia due to AD. In

only 10% of the cases, clinicians were very certain

(>90% certainty) at pre-MRI clinical scoring whether

a subject would progress to dementia or remain stable.

That figure rose to 29% of cases after MRI (Fig. 2).

Fig. 2. Histograms showing increased levels of diagnostic con-

fidence for the prediction of conversion from MCI (x-axis) by

clinicians after learning about the MRI-results. In addition, a separa-

tion into cases correctly (green) or incorrectly (red) predicted by the

SVM indicates no association between the diagnostic confidence of

clinicians and the accuracy of the SVM.

Figure2 indicates that therewasnoassociationbetween

theconfidenceratingofcliniciansand thecorrectnessof

theSVM.Thepredictiveratingsbycliniciansweremost

accurate when they rated their diagnostic confidence as

high irrespective of pre- or post-MRI clinical scoring.

The AUC was highest for the clinicians (0.81), followed

by 0.80 for the training set using SVM. The AUC of the

test set based on the SVM decision value was 0.73. If the

default threshold from the SVM was taken to perform a

classification, sensitivity of detecting progressive MCI

was 0.25 and specificity was 0.93. ROC-curves as well

as plots of PPV and NPV for the SVM are depicted in

Fig. 3. PPV and NPV were constantly below 90% and

95% respectively and thus did not indicate a clinically

useful performance.

Differential diagnostics of dementia

A total of 195 subjects entered the study branch

dementia (Fig. 1, upper panel). Thirty-two subjects

were excluded because no or no compatible gold

standard diagnosis was available (e.g., dementia of

unknown origin, primary progressive aphasia without

further differentiation, progressive supranuclear palsy,

Balint-Holmes-Syndrom in posterior cortical atrophy).

A demographic and clinical evaluation of test sub-

jects with dementia is reported in Table 1. Clinicians

were certain with their diagnosing in 42% of cases

at pre-MRI clinical scoring. The figure rose to 80%
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Fig. 3. Separating stable (MCIs) from those converting to dementia (MCIc). Left: ROC curve for different levels of diagnostic confidence

(clinicians) and decision values (SVM). The cross-validated SVM performance on train set (dashed black line), test set (solid blue line) and

performance by clinicians at post-MRI (dotted light blue) is shown. FPR, false positive rate; TPR, true positive rate. Right: True positive (TPR)

and negative rate (TNR) together with positive (PPV) and negative predictive value (NPV). Markers on the x-axis indicate individual cases: green

circles: MCIs; red crosses: MCIc. p(MCIs) and p(MCIc) indicate the fraction of stable and progressive MCI subjects in the sample, respectively.

Fig. 4. Performance of multiclass differential diagnosis of dementia. The top row displays the ROC curve of each class versus the rest. Dotted

black line and solid blue line indicate cross-validated training using cross-validation and test performance respectively. The bottom row shows

several performance measure such as positive predictive value (PPV), negative predictive value (NPV), true positive rate (TPR), and true negative

rate (TNR). See main text for AUCs of the training set.

at post-MRI clinical scoring. Performance of differ-

ential diagnosis is shown in Figs. 4–6. Separation

of controls from rest was achieved with high accuracy

(AUC = 0.97). Classification of AD and FTD against

all other entities were above chance level (AUC = 0.76

for AD and AUC = 0.78 for FTD; Fig. 4) when using
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Fig. 5. Performance of differential diagnosis of FTD versus AD. Left: ROC curve, where the dashed black line indicates the cross-validated

result from the training data and the solid blue line the test result. Red and green dashed lines illustrate the performance when cases are restricted

to those with high quality (HQ) or cases without comorbid brain disorders (no comorb). Right: Indication of usefulness in terms of PPV and

NPV. Markers on the x-axis indicate FTD (green circles) and AD (red crosses).

Fig. 6. Radar plot illustrating the posterior probability for each diagnostic class and the proportion of white matter hyperintensities (WMH).

Center hexagon indicates minimum diagnostic probability or WMH load. Each line represents one case. All cases with dementia are shown in

each subplot but with intransparent lines for a different class to aid visualization. Lines representing cases without available FLAIR imaging do

not show values for the WMH. pHC, probability of healthy controls; pFTD, probability of FTD; pAD, probability of AD; pLBD, probability of

LBD; WMH temporal, proportion of WMH in temporal lobe; WMH frontal, proportion of WMH in frontal lobe.
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the posterior probability for AD and FTD, respectively.

Performances on the training sets were all >0.9. Specif-

ically AUCs were 0.96, 0.97, 0.97, and 0.92 for AD,

FTD, HC, and LBD versus REST, respectively. As an

example, a binary classifier separating AD from FTD

(Fig. 5) revealed PPV constantly above 90% due to the

highly unbalanced groups. Of note, the PPV increased

with the decision value indicating additional diagnostic

certainty from the classifier output. In contrast, NPV

was always low. Excluding cases with low scan quality,

additional CNS pathology did not substantially alter

the results. Only four cases with LBD were included

in the study, which challenges a meaningful interpre-

tation of the classifiers ability to separate LBD from

other types of dementia.

Radar plots (Fig. 6) show the combination of

diagnostic probabilities for each alternative diagnosis

together with the volume of WMH. Cases with AD

frequently showed a high probability for AD and low

probabilities for the other groups. Volumes of WMH

were often relatively high. A subset of AD cases

showed high probabilities for FTD and another for

LBD. Of note, as the sum of probability values

for each case always adds to one, a high probability for

AD automatically means a low probability for the other

groups. The majority of HC were correctly assigned.

DISCUSSION

We set out to explore the clinical usefulness of auto-

mated diagnosing in a university based memory clinic

with liberal inclusion criteria and when either MCI

converters or the type of current dementia had to be

identified.

Clinicians and SVM achieved a similar perfor-

mance for the detection of MCI converters (Fig. 3).

Encouragingly, performance of the SVM did not dif-

fer substantially between test and train set arguing

against severe overfitting. Overall, the achieved pre-

diction accuracy of 65% on the test set was low but a

balanced accuracy of 77% (AUC = 0.8) on the train set

was comparable to existing studies typically reporting

values close to or above 80% [59–61]. On the test set

PPV and NPV were never above the predefined thresh-

olds (PPV >0.9; NPV >0.95). As detailed below, it is

likely that the MCI cases recruited into the study were

particularly difficult to diagnose which may explain

this relatively low performance on the test set.

In the multi-class differential-diagnosis model,

HC were well separated from all neurodegenerative

diseases. The multi-class classifier achieved AUCs

between 0.92 and 0.97 on the training set when sepa-

rating one class from the rest, despite combining data

from different sources and not explicitly modeling the

systematic variance between the sites. This confirms

the validity of the concept of using computer-aided

diagnosis tools. However, this result was expected,

since all MRI data sets were known to contain sig-

nificant and detectable differences between diagnostic

groups. Interestingly, performance separating HC from

cases with neurodegeneration was equally good for

training and test set which underlines the robustness

of this separation. On the other hand, separating AD

from all other groups was relatively inaccurate and this

was true even for the binary separation between AD

and FTD (Fig. 5). Fig. 5 also indicates that eliminat-

ing cases with low image quality or with additional

structural brain changes did not further increase clas-

sification accuracy. At first sight, the observed drop

between train and test set could indicate overfitting.

While this possibility cannot be fully excluded, we

consider it relatively unlikely given the heterogeneity

of the training data. Systematic differences between

training and test set in terms of recruitment strategy or

the use of parallel imaging sequences for the test data

only are likely explanations. We did not use WMH

lesion load to define a separate diagnostic category

(i.e., vascular dementia) but quantified it in addition

to atrophy for each case. Visual inspection revealed

good detection accuracy with around 5% of the vol-

ume of temporal and frontal lobe identified to contain

WMH. A direct comparison to existing studies is dif-

ficult as those typically report WMH load across the

whole brain. For that, Burton and colleagues suggested

to define a percentage over 4.5% as an indication of

severe lesion load [49].

Rader plots (Fig. 6) indicate that among cases with

AD, subsets showed a high likelihood of belonging

to the group of FTD or LBD cases. Relatively high

probabilities for both could indicate the presence of

two different pathologies in the same individual or

alternatively, a misdiagnosing. We have no means of

separating both possibilities with certainty. The co-

occurrence of FTD and AD in the same individual

is relatively rare except for the logopenic subtype but

high for AD and LBD [31, 62].

Besides reporting ROC curves and radar plots, we

also aimed to evaluate the need for an additional diag-

nostic method and its ability to make decisions with a

sufficient NPV and PPV. Confidence ratings by clin-

icians indicated the need for a further diagnostic tool

primarily for the detection of MCI converters (Fig. 2)

in line with previous work [4]. This need is likely
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to be higher outside dementia centers where clini-

cians and radiologists typically have less experience

with dementia diagnostics and where less detailed neu-

ropsychological test results are available.

As an additional aspect of clinical usefulness, we

examined PPV and NPV. For the binary separation

of AD from FTD (Fig. 5), PPV was constantly above

90%. This is most likely due to the highly imbalanced

groups (AD: n = 122, 91%; FTD: n = 12, 9%) but a fur-

ther improvement of the PPV with the SVM- based

decision value indicates some added value. Looking

at the multi-class classification, rare conditions such

as FTD and LBD showed the expected high NPV. On

the other hand NPV and PPV for the separation of HC

from all other groups were high but are clinically less

difficult.

As we did not change routine clinical work in

the memory clinic, the final sample consisted of less

than 30% of cases that were initially referred. Most

importantly, subjects could enter the study only when

clinicians deemed the acquisition of an MRI scan as

clinically warranted. Therefore, and in line with the

German guidelines for diagnostics in MCI [58], imag-

ing was not done routinely for subjects with MCI.

Finally, cases with already manifest dementia and a

very typical medical history and neuropsychological

profile tended to receive a CT rather than MRI as this

is available during the same visit. These factors made

it more likely, that the cases finally recruited into the

study were in fact more difficult to diagnose than the

full sample initially referred to the clinic.

In this study, training and test data were strictly

separated and differed in several characteristics which

likely reduced diagnostic accuracy: Training data were

acquired for research studies, typically applying sub-

stantially more exclusion and sometimes different

inclusion criteria. In addition, accelerated imaging pro-

tocols which can systematically influence volumetry

[63] were used for the test set only. Training data from

the different diagnostic groupings were not equally

balanced across scanners and differed substantially

in number for each entity. Methods we recently pre-

sented to adjust for between scanner differences [44]

for binary classification problems could not be applied

to the current data as they require data from HC from

all scanners. Using the set of HC in the test set would

have challenged the interpretation of the classifier per-

formance on HC. Another limitation of the training set

is the low number of cases with FTD and particularly

LBD which contributed to relatively low classifica-

tion accuracy of LBD already for the training set.

Applying feature selection might further improve the

performance. However, these issues are not straight-

forward to implement in a multi-class setting.

A further limitation concerns the definition of the

gold standard. Cases used for the training and test set

had clinical diagnoses, only sometimes supported by

biomarker evidence. As a consequence, the level of

diagnostic certainty was limited. Ideally, all training

cases should have clear clinical signs and/or corre-

sponding biomarker changes. For the test set, several

scenarios would be interesting. For example, a clin-

ical diagnosis could be based only on data available

from routine clinical workup and biomarker evidence

could be added for validation. While we relied on clin-

ical diagnoses which currently represent the basis of

clinical management, in an alternative setting, MRI

could be left out completely from the definition of the

gold standard and thereby avoid any circularity. Lim-

ited access, particularly to cases with FTD and LBD

with a high diagnostic certainty, made such approaches

infeasible. Restricting our analyses only to cases with

PET validation did not change AUCs (Supplemen-

tary Figure 2), most likely because of the sometimes

inaccurate diagnoses of the training cases. We neither

attempted to define subtypes such as posterior cortical

atrophy in AD or the language or behavioral subtypes

in FTD nor did our gold standard definition consider the

presence of more than one neurodegenerative disease.

We considered three different types of neurodegenera-

tive dementias in addition to an evaluation of vascular

pathology. Although they may cover 90% of dementia

cases it is far from complete. In the MCI study arm,

stable MCI was defined by stability over 12 months

which is comparable short. On the other hand, longer

follow-up intervals were available for the majority of

subjects. Our study included imaging to reach diag-

nostic decisions and used this to validate an imaging

based method. The two approaches are therefore not

fully independent, but this should primarily affect cases

with a very clear and highly localized atrophy pat-

tern. When considering the clinical routine outside a

specialized memory clinic, expert radiologists are

often unavailable and an automated method that can

extract the same information as an expert radiologist

would have substantial clinical value.

In summary, we report the application of automated

classification methods to a routine sample from a

memory clinic and thereby present a potential routine

application of these methods. We found that reported

performances from clean research data—usually cross-

validated and regarded as good estimates of the

potential performance in practice—could not be con-

sistently achieved on a test set acquired in the clinical
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routine. Nevertheless, the presented design could be

extended to multicenter studies and applied by radiolo-

gists outside specialized memory clinics where the full

benefit of the automated method can be played out. In

addition, future studies should systematically evaluate

the effect of the SVM classification on the diagnostic

process in respect of diagnostic accuracy as well as

perceived diagnostic confidence if made available to

clinicians. At the same time, such studies should eval-

uate, if clinicians consider radar plots a helpful way of

presenting results.
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