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The demographic change in industrial countries, with increasingly sedentary lifestyles,

has a negative impact on mental health. Normal and pathological aging leads

to cognitive deficits. This development poses major challenges on national health

systems. Therefore, it is necessary to develop efficient cognitive enhancement

strategies. The combination of regular physical exercise with cognitive stimulation seems

especially suited to increase an individual’s cognitive reserve, i.e., his/her resistance to

degenerative processes of the brain. Here, we outline insufficiently explored fields in

exercise-cognition research and provide a classification approach for different motor-

cognitive training regimens. We suggest to classify motor-cognitive training in two

categories, (I) sequential motor-cognitive training (the motor and cognitive training are

conducted time separated) and (II) simultaneous motor-cognitive training (motor and

cognitive training are conducted sequentially). In addition, simultaneous motor-cognitive

training may be distinguished based on the specific characteristics of the cognitive task.

If successfully solving the cognitive task is not a relevant prerequisite to complete the

motor-cognitive task, we would consider this type of training as (IIa) motor-cognitive

training with additional cognitive task. In contrast, in ecologically more valid (IIb) motor

cognitive training with incorporated cognitive task, the cognitive tasks are a relevant

prerequisite to solve the motor-cognitive task. We speculate that incorporating cognitive

tasks into motor tasks, rather than separate training of mental and physical functions, is

the most promising approach to efficiently enhance cognitive reserve. Further research

investigating the influence of motor(-cognitive) exercises with different quantitative and

qualitative characteristics on cognitive performance is urgently needed.

Keywords: exercise, cognition, dementia, dual task, cognitive enhancement

INTRODUCTION

A crucial aspect of human living is motion. While the control of movements requires cognitive
processes, moving probably influences cognition and its underlying processes (structures), too
(Hamacher et al., 2015c). Cognition is a term covering a wide range of mental abilities that are
necessary to percept, process, and interact with our environment (Bostrom and Sandberg, 2009;
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Borson, 2010). Therefore, intact cognitive processes are
fundamental for human living. Across the life span, cognitive
performance is influenced and changed by many factors. Normal
aging is associated with a decline of cognitive functions such as
processing speed and memory (Albert, 1997; Park et al., 2002;
Buckner, 2004; Hedden and Gabrieli, 2004; Fjell and Walhovd,
2010). Moreover, old age is also a risk factor for developing
neurological diseases like dementia (Fiest et al., 2016). Dementia
has a negative impact on the cognitive performance of an
individual and reduces the autonomy as well as the quality of life
(Andersen et al., 2004; Scherder et al., 2011; Fiest et al., 2016).
Remarkably, dementia is a major contributor to health care costs
(Hurd et al., 2013; Wimo et al., 2013), and it is expected that the
number of those affected by dementia will almost double every
20 years (Prince et al., 2013). Furthermore, the neuropathological
signs of dementia aggravate with physical inactivity (Scherder
et al., 2010). Physical inactivity and sedentary behavior are
associated with reduced cognitive functions (Falck et al., 2016;
Ku et al., 2017) and increased welfare costs (Janssen, 2012;
Peeters et al., 2014), too. Unfortunately, the average time people
are physically inactive in daily life has increased substantially in
the last decades in western countries (Owen et al., 2010; Church
et al., 2011). Taken together, the proportion of individuals with
poorer cognitive capacities will increase in the next years, which
makes it necessary to develop effective cognitive enhancement
strategies (Colzato, 2016) that serve to enhance the cognitive
reserve [defined as individual differences in how people process
tasks; detailed description of term and concept could be found in
Stern (2002, 2009)] and the resilience against neurodegeneration
(Nithianantharajah and Hannan, 2009; Stern, 2012, 2013).

PHYSICAL ACTIVITY AND COGNITION

Apart from a healthy diet and cognitive stimulation, (I)
physical activity which is defined as any bodily, muscle-
produced movement that increases the energy expenditure
above ∼1.5 metabolic equivalent of task [1 MET = 1 kcal
(4,184 kJ) × kg−1

× h−1] (Caspersen et al., 1985; Ainsworth
et al., 2000; Mansoubi et al., 2015) and (II) physical exercise
(training), which is defined as a planned, structured (repetitive)
form of distinct physical activities (Caspersen et al., 1985;
Howley, 2001; Budde et al., 2016) are proposed crucial for
the preservation of cognitive functions and the enhancement
of the cognitive reserve. For instance, physical activity and/or
exercise were shown to improve cognition in children (Hillman
and Schott, 2013; Chaddock-Heyman et al., 2014; Khan and
Hillman, 2014; Verburgh et al., 2014; Ludyga et al., 2016), in
adolescents (Verburgh et al., 2014; Esteban-Cornejo et al., 2015;
Greeff et al., 2017; Li et al., 2017), in young and middle-aged
adults (Verburgh et al., 2014; Cox et al., 2016), in older adults
(Colcombe and Kramer, 2003; Bherer et al., 2013; Erickson
et al., 2013; Carvalho et al., 2014; Northey et al., 2017), and
in persons suffering from neurocognitive disorders such as
dementia or mild cognitive impairment (Heyn et al., 2004;
Smith et al., 2013; Groot et al., 2016; Ahn et al., 2017; Song
et al., 2018). Moreover, regardless of whether physical exercise

is conducted in a single (acute) exercise bout (Chang et al.,
2012; Roig et al., 2013) and/or in form of multiple (chronic)
exercise bouts (Bherer et al., 2013; Hötting and Röder, 2013;
Roig et al., 2013; Esteban-Cornejo et al., 2015), it has been
demonstrated to enhance cognitive performance. Furthermore, it
is speculated that regular physical activity and physical exercising
prevent cognitive decline and neurological diseases (Ahlskog,
2011; Sofi et al., 2011; Blondell et al., 2014; Paillard, 2015).
However, which exact prerequisites (e.g., intensity, duration,
frequency, type of exercise) make an exercise optimal for
effectively enhancing cognition are largely unknown (Hillman
et al., 2008; Lustig et al., 2009; Rolland et al., 2010; Bherer
et al., 2013; Voelcker-Rehage and Niemann, 2013; Cai and
Abrahamson, 2015; Esteban-Cornejo et al., 2015; Lauenroth et al.,
2016; Batouli and Saba, 2017; Tait et al., 2017). Often, aerobic
(cardiovascular) exercises like cycling, walking, or running are
used in interventions to enhance cognitive fitness, especially in
the elderly (Roig et al., 2013; Voelcker-Rehage and Niemann,
2013). For instance, a 6-month walking intervention leads
to an increased hippocampal volume and improved memory
performance in seniors (Erickson et al., 2011). Remarkably,
preceding aerobic exercises boost performance in an alter
reaction-time test (Pontifex et al., 2009) but not in executive
functions when compared to preceding resistance exercises
(Alves et al., 2012).

Interestingly, physical and motor fitness (coordinative
abilities) are both related to cognitive performance in older
individuals (Voelcker-Rehage et al., 2010) but do evoke
differential structural adaptions (Voelcker-Rehage et al., 2011;
Voelcker-Rehage and Niemann, 2013; Paillard, 2015) or
correlate only with distinct cognitive functions (Marchetti et al.,
2015). For instance, a 12-month aerobic exercise intervention
led to increased activation in sensori-motor networks while
coordinative training increased activation in the visual–spatial
network during an executive function test (Voelcker-Rehage
et al., 2011).

An exercise type that demands a high level of coordinative
abilities is dancing (Dhami et al., 2014; Hamacher et al., 2015a,b).
Participating in a 6-month dancing intervention enhanced
attentional performance to a higher degree than participating
in a fall prevention or Tai Chi Chuan program (Coubard et al.,
2011). Additionally, in Parkinson disease dancing led to higher
improvements in physical and cognitive functions than aerobic
exercise (Hashimoto et al., 2015). Regular dancing has been
associated with a lower risk of dementia (Verghese et al., 2003)
presumably because it induces a larger increase in gray matter
volume in frontal regions (Müller et al., 2016, 2017) and the
hippocampus (Rehfeld et al., 2017).

Similar to chronic exercise, acute bouts of different exercise
types have divergent effects on cognitive performance. Acute
physical exercise with a high coordinative demand leads, in
comparison to a purely aerobic exercise, to higher scores in
attention tests (Budde et al., 2008), in working memory tests
(Koutsandreou et al., 2016; Zach and Shalom, 2016), and in
cognitive flexibility measures (Benzing et al., 2016). Taken
together, acute and chronic physical exercises with high cognitive
(coordinative) demands enhance cognitive performance. The
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beneficial effect of cognitively demanding exercises supports the
recommendation of Pesce (2012) who proposes to shift the focus
of exercise–cognition research from quantitative (e.g., exercise
duration or intensity) to qualitative aspects (e.g., type of exercise).

Remarkably, it has been speculated that the combination of
physical and cognitive exercise (also known as motor-cognitive
training) could evoke a higher cognitive enhancement than
cognitive or physical exercise alone (Kraft, 2012; Fissler et al.,
2013; Bamidis et al., 2014; Lauenroth et al., 2016; Levin et al.,
2017). The reasons why combined physical and cognitive exercise
may be more effective than physical or cognitive training alone
as well as the underlying neurophysiological mechanism are
elucidated in the next section.

NEUROPHYSIOLOGICAL MECHANISMS
OF MOTOR-COGNITIVE TRAINING

To understand the beneficial effects of combined physical and
cognitive exercises, it is advisable to consider our evolutionary
past. From an evolutionary perspective, the human body and
its organic systems exhibit a high adaptability to environmental
constraints (Raichlen and Alexander, 2017). Moreover, over
centuries the human physiology was adapted to an active
lifestyle which ensured human survival, for example, through
foraging, hunting, and fishing (Raichlen and Alexander, 2017).
In industrialized nations, an increasing sedentary lifestyle (Owen
et al., 2010; Church et al., 2011) probably promotes negative
adaptations which minimize energy consumption, but also
cause a decline of the motor and cognitive systems (Raichlen
and Alexander, 2017). In contrast, the foraging activities
(e.g., hunting) of our ancestors required a simultaneous use
of cognitive and sensori-motor resources (e.g., walking and
simultaneously scanning the environment for food) (Raichlen
and Alexander, 2017). Such cognitive processes (e.g., detecting
a deer in the landscape) were intertwined with related actions
of the body (e.g., throwing a spear on a moving deer). The
idea expressing that cognitive processes, bodily movements
and interaction with the environment are interrelated is
close to those theories known as “embodied cognition” and
“embedded cognition” (Wilson, 2002; Pouw et al., 2014a,b).
These considerations suggest that the combination of physical
and cognitive challenges are essential to preserve or enhance the
neural capacity which, in turn, ensures that cognitive processes
function well (Kempermann et al., 2010; Fissler et al., 2013;
Bamidis et al., 2014; Raichlen and Alexander, 2017).

According to the “guided plasticity facilitation” framework
(see Figure 1), the combination of physical and cognitive
activities has positive synergistic effects that exceed the pure
addition of the positive effects of cognitive and physical exercises
(Kraft, 2012; Fissler et al., 2013). These super additive synergistic
effects emerge from (I) the “facilitation effects” of physical
exercises and (II) the “guidance effects” of cognitive exercises (see
Figure 1). The “facilitation effect” of physical exercises triggers
neurophysiological mechanisms, which promote neuroplasticity
(Fissler et al., 2013). A possible physical exercise-induced
mechanism, which promotes neuroplasticity is the enhanced

release of neurotrophic factors such as the brain-derived
neurotrophic factor (BDNF) (Knaepen et al., 2010; Coelho
et al., 2013; Szuhany et al., 2015; Assis and Almondes, 2017;
Dinoff et al., 2017). BDNF is associated with synaptogenesis
and neurogenesis which may foster improved cognition (Cotman
et al., 2007; Lu et al., 2013; Brigadski and Leßmann, 2014; Borror,
2017). Notably, an increased level of BDNF was observed during
physical exercises and up to 60 min after cessation of the acute
bout of physical exercises (Knaepen et al., 2010; Piepmeier and
Etnier, 2015; Dinoff et al., 2017). Based on this observation, the
“facilitation effects” of acute physical exercises seem transient and
time-constrained (Fissler et al., 2013). While physical exercises
induce neurophysiological processes that are fundamental for
transient neuroplasticity (e.g., neurogenesis (Geibig et al., 2012),
cognitive stimulation is assumed to “guide” these neuroplastic
processes (Fissler et al., 2013; Bamidis et al., 2014). The “guidance
effects” of cognitive exercises probably initiate distinct survival
mechanisms of newborn cells (Fabel et al., 2009). These survival
mechanisms are presumably part of a complex, multi-step
mechanism that depends on the activation/stimulation of the
newly generated synapses or neurons. The activation/stimulation
of synapses and neurons occurs due to the execution of cognitive
tasks and enables the functional integration of new neuronal
structures in the respective brain circuits (Trachtenberg et al.,
2002; Bruel-Jungerman et al., 2007; Bergami and Berninger,
2012; Bamidis et al., 2014). The integration in functional brain
circuits seems to be crucial in order to stabilize the (by motor-
cognitive training) induced neuroplastic changes. In addition to
neuroplasticity, the stabilization of central nervous structures is
likewise important to ensure good brain function (Kasai et al.,
2003; Koleske, 2013).

TYPES OF MOTOR-COGNITIVE
TRAINING

As shown in the framework in Figure 2, motor and cognitive
exercises can be combined in several ways. In the first stage,
we categorize motor and cognitive exercises based on their
temporal order, which is a key factor for the effectiveness of the
intervention (Roig et al., 2012; Fissler et al., 2013; Frith et al.,
2017) in (I) sequential (or subsequent) motor-cognitive training
and (II) simultaneous motor-cognitive training (see Figure 2).

Sequential Motor-Cognitive Training
In sequential (or subsequent) motor-cognitive training, both the
motor training and the cognitive training are each conducted
at separate time points on the same day (prior to or after
a bout of physical exercises) or at separate days (Tait et al.,
2017). Commonly, themotor component of simultaneousmotor-
cognitive exercises compromises aerobic, resistance, balance,
flexibility training, or a combination of them (for review see
Lauenroth et al., 2016; Tait et al., 2017). In sequential motor-
cognitive training interventions, the cognitive training was
mainly focused on attention, memory, or multiple cognitive
domains (for review see Lauenroth et al., 2016; Tait et al., 2017).
An advantage of sequential motor-cognitive training (compared
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FIGURE 1 | Schematic illustration of the “Guided plasticity facilitation” framework.

to simultaneous motor-cognitive training) is the absence of (1)
possible dual-task costs [performance decrements in the motor
task, the cognitive task, or in both tasks that may occur when
two tasks are solved simultaneously (Hamacher et al., 2017)]
and (2) prioritization effects (given a priority either to the
motor task or the cognitive task), which vary individually and
which might influence the results of the intervention. However,
drawbacks of a sequential motor-cognitive training are the
unknown appropriate load characteristics (frequency, length,
duration, type of exercise, and the temporal order of the cognitive
intervention and the motor intervention) for favorable cognitive
outcomes (Lauenroth et al., 2016). For instance, the best benefit
of an acute bout of motor exercises on cognitive performance was
observed 11–20min after cessation of themotor exercises (Chang
et al., 2012). In contrast, another study reported that performing
motor exercises 4 h after learning resulted in higher cognitive
performance as compared to learning immediately afterward
(van Dongen et al., 2016). Hence, it remains unclear whether
cognitive training should be performed prior to or after motor
exercises.

Interestingly, a recent review that compared the effects of
sequential with simultaneous motor-cognitive training, reported
that the simultaneous training significantly improved cognitive
performance in various populations, whereas the sequential
training yield inconclusive results (Tait et al., 2017). The latter
finding may be explained by the fact that up to day it is unknown
what time interval between motor and cognitive exercises is
optimal (see Figure 1). Different time intervals may activate
different neurobiological pathways (Tait et al., 2017). Based on
these findings, simultaneous motor-cognitive training seems a
more promising and time-efficient approach to foster cognitive
functions than sequential training regimens.

Simultaneous Motor-Cognitive Training
Simultaneous motor-cognitive training or motor-cognitive dual-
task training is defined as training where both motor training and
cognitive training are performed at the same time (Lauenroth
et al., 2016). Simultaneous motor-cognitive training can be
further classified regarding the supposed demands of the
cognitive task (see Figure 2). We suggest to differentiate the two
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FIGURE 2 | Schematic illustration of the classification of motor-cognitive training and a exemplifying illustrations of the differences between “additional” and

“incorporated” cognitive training.

types of the supposed demands of cognitive tasks in simultaneous
motor-cognitive training, which are presented in the following.

Motor-Cognitive Training With Additional Cognitive

Tasks

A motor-cognitive training with additional cognitive task is
similar to the “classical” dual-task approaches where, the
secondary cognitive task is typically used as a distractor of the
motor task (Schott, 2015). Distractor means that the additional
cognitive task is not a relevant prerequisite to successfully
complete themotor-cognitive task (task nonrelevant; e.g., walking
and solving an arithmetic task or stationary cycling while citing
alternate letters) and can be described as Thinking while Moving.

Motor-Cognitive Training With Incorporated Cognitive

Tasks

When the cognitive task is “incorporated” into the motor task,
the cognitive task is a relevant prerequisite to successfully solve
the motor-cognitive task (e.g., walking to certain cones in a
predefined order or dancing; see Figure 2) (Schott, 2015). Hence,
this form of motor cognitive training can be described asMoving
while Thinking.

We argue that incorporating the cognitive task(s) into
the motor task(s) is more beneficial in terms of stabilizing
neuroplasticity effects than using the cognition task as a
distractor. Below, we will outline several reasons why this might
be the case:

(1) Several studies suggest that the incorporation of a cognitive
task into the motor task combines the advantageous effects
of cognitive and motor training and leads to greater
(motor-) cognitive improvements (Paas et al., 2003; Paas
and Sweller, 2012; Moreau and Conway, 2013; Moreau,
2015; Ruiter et al., 2015). For example, it was observed
that the integration of the cognitive task into physical
activity enhanced cognitive learning in children more than
performing physical activity unrelated to the cognitive task
(Toumpaniari et al., 2015; Mavilidi et al., 2016, 2017, 2018).

(2) A training form that incorporates the cognitive task(s)
into the motor task(s) is closer to daily life situations. For
example, it is unlikely that an older person habitually solves
an arithmetic task during walking, but it is likely that he/she
walks through the supermarket while remembering what
goods to buy and where to find those.
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(2a) Exercise benefits are moderated by expectations (beliefs
toward the effectiveness of the intervention) and
preferences (Crum and Langer, 2007; Helfer et al.,
2015). Given that even neurophysiological parameters
are affected by individual preferences and expectations
regarding the exercise intervention (Crabbe and Dishman,
2004; Schneider et al., 2009; Mothes et al., 2016), it can
be assumed that the exercise-induced neural adaption
processes and, in turn, the cognitive outcomes are
influenced by those factors, too. For example, for
an intervention to be effective, the adherence rate
(compliance) to the training must be high. The latter
is largely influenced by the subjectively experienced
meaningfulness (perceived importance of the intervention
with respect to individual situation) of the training
(Trombly, 1995; Carlson et al., 2008; Fissler et al., 2013;
Lautenschlager and Cox, 2013). As a cognitive task that is
incorporated into a motor task closely resembles real-life
situations, it is likely that such a combination is regarded
as meaningful and, therefore, results in a high degree of
adherence and in training success.

(2b) Older adults (Park et al., 2002) and persons with dementia
(Pal et al., 2016), for instance, exhibit impaired visuospatial
abilities (e.g., remembering the location of a certain product
in the supermarket). As physical fitness effectively enhances
cognitive functions (Bherer et al., 2013; Carvalho et al.,
2014; Groot et al., 2016), an intervention, that targets the
deficit in visuospatial memory, should, in our opinion,
not only include a training of cognitive functions but also
one of physical fitness. Moreover, given that the adaptions
of the brain are task-specific (Dahlin et al., 2008; Green
and Bavelier, 2012; Schlaffke et al., 2014), we propose
that the ideal (motor-) cognitive training should also be
specific (e.g., related to spatial memory) and should induce
substantial transfer effects to everyday cognitive functions
(e.g., remembering shopping list) as well as to activities
of daily living (e.g., walking) (Jobe et al., 2001; Zelinski,
2009). These considerations suggest that the cognitive task
should be incorporated into the motor task. In the context
of our supermarket example remembering and walking to
the respective goods can be combined. This approach is
schematically depicted in Figure 2.

(3) If the cognitive task is incorporated into the motor task,
no prioritization effects (which can be observed in motor-
cognitive tasks with an additional cognitive task) would
occur (Yogev-Seligmann et al., 2012a; Plummer et al., 2013,
2014; Plummer and Eskes, 2015). Such prioritization effects
(giving priority either to the cognitive or the motor task)
are known to influence motor and cognitive performance
(Yogev-Seligmann et al., 2012b; Plummer et al., 2015a,b)
as well as the activation of prefrontal structures (Lague-
Beauvais et al., 2015). Theoretically, such prioritization-
related effects could evoke distinct (undesired) adaptation
processes.

(4) A further advantage of motor-cognitive training with
incorporated cognitive tasks could be that multiple sensory
systems are stimulated (due to the execution and control

of the cognitive task and the motor task at the same
point of time). Also, it is assumed that multisensory
training environments better approximate all-day settings
(which are ecologically more valid) and therefore provide
an optimal basis for cognitive processes such as learning
(Shams and Seitz, 2008).

Apart from a real-world setting as outlined for the
proposed supermarket task, virtual reality environments offer
the opportunity to combine cognitive and motor tasks without
the need to construct a complex scenery (Tarr and Warren,
2002; Bruin et al., 2010). Respective approaches are the so-called
“exergames” (Skjæret et al., 2016; Boissieu et al., 2017). Those
video games, that are also a type of physical exercise task, can
be classified within our proposed framework as simultaneous
motor-cognitive training because they pose motor and cognitive
demands simultaneously (Pichierri et al., 2012; Monteiro-Junior
et al., 2016). However, as expectations always prove the rule,
motor-cognitive tasks with an additional cognitive task are
sometimes also common in a modern world [e.g., walking while
texting or phoning (Hamacher et al., 2016)]. Nevertheless, we
argue that this circumstance does not challenge our proposed
framework; however, one would have to adapt the training
characteristics if the aim is to improve the use of a smartphone
while walking.

SUGGESTIONS FOR FURTHER
RESEARCH DIRECTIONS

We conclude that further exercise-cognition research is strongly
needed, and we recommend that the major goals of this research
should be:

(I) The identification of optimal qualitative (e.g., type of
exercise) and quantitative training characteristics (e.g.,
frequency, duration, intensity, and temporal proximity
of cognitive and motor training), which effectively and
sustainably enhance the individual cognitive reserve
and show transfer to daily life activities. Thereto, future
research should consider the concept of “personalized
training (or personalized medicine, if exercise is seen
as a “medicament”), which aims to understand the
heterogeneity in (motor-cognitive) exercise responsiveness
(Buford and Pahor, 2012; Buford et al., 2013; Barha et al.,
2017). “Personalized training” goes behind the “one-
size-fits-all approach,” and the overall goal is to deliver
tailored exercise prescriptions for the individual subject.
Hence, participating subjects in future studies should be
intensively screened and stratified into subgroups based on
measures of physical fitness (e.g., cardiorespiratory fitness
level or physical activity level assessed by questionnaires);
motor fitness (e.g., coordinative abilities such as fine motor
skills or hand/foot tapping speed); cognitive fitness (e.g.,
level of individual working memory performance); age,
gender health status, and socioemotional status (e.g.,
measures of motivation, mood or stress). Furthermore,
other potential moderators such as genotypic factors should
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be assessed if possible (Buford and Pahor, 2012; Barha
et al., 2017). In order to achieve a “personalized training,”
the programming of (motor-cognitive) exercise training
should not solely be based on external training load
characteristics (work performed by the subject, e.g., 70 % of
maximal oxygen uptake) but also on internal training load
characteristics (physiological and/or psychological effects
in response to the performed task; e.g., individual level
of blood lactate) (Bourdon et al., 2017; Burgess, 2017),
because the same external training loads could lead to
varying internal training loads (e.g., metabolic response
such as blood lactate level) (Meyer et al., 1999; Scharhag-
Rosenberger et al., 2010). For more detailed information on
exercise prescriptions, we refer to the articles of Hofmann
and Tschakert (2010), Mann et al. (2013), Bourdon et al.
(2017), Burgess (2017), and Vanrenterghem et al. (2017).

(II) In order to prove whether the incorporation of cognitive
tasks into acute or chronic exercise interventions (as
described, for example, in Figure 2) is more effective
regarding the enhancement of cognitive performance
than (I) a sole motor training, (II) a sole cognitive
training, (III) a sequential motor-cognitive training,

or (IV) simultaneous motor-cognitive training with
a non-task-relevant secondary cognitive task and in

order to verify (or identify further) underlying, causal
mechanisms, future work should elaborate on detailed
modeling of neurobehavioral effects of (motor-cognitive)

exercise interventions. Since physical exercises influence

cognitive performance on multiple levels (Stillman et al.,

2016) and also trough diverse short- and long-term
mechanisms (Stimpson et al., 2018), different behavioral
proxies (e.g., neuropsychological clinical tests and/or

gait analysis), neuroimaging modalities (e.g., functional
magnetic resonance imaging and/or functional near-
infrared spectroscopy) as well as molecular and cellular
measures (e.g., BDNF and/or lactate) should be used to
validate such a neurobehavioral model.
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