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Cytoskeleton dynamics in axon regeneration

Oriane Blanquie and Frank Bradke

Recent years have seen cytoskeleton dynamics emerging as a
key player in axon regeneration. The cytoskeleton, in particular
microtubules and actin, ensures the growth of neuronal
processes and maintains the singular, highly polarized shape of
neurons. Following injury, adult central axons are tipped by a
dystrophic structure, the retraction bulb, which prevents their
regeneration. Abnormal cytoskeleton dynamics are
responsible for the formation of this growth-incompetent
structure but pharmacologically modulating cytoskeleton
dynamics of injured axons can transform this structure into a
growth-competent growth cone. The cytoskeleton also drives
the migration of scar-forming cells after an injury. Targeting its
dynamics modifies the composition of the inhibitory
environment formed by scar tissue and renders it more
permissive for regenerating axons. Hence, cytoskeleton
dynamics represent an appealing target to promote axon
regeneration. As some of cytoskeleton-targeting drugs are
used in the clinics for other purposes, they hold the promise to
be used as a basis for a regenerative therapy after a spinal cord
injury.
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Introduction

After an injury in the adult mammalian central nervous
system (CNS), axons fail to regenerate [1]. This is fun-
damentally different in the peripheral nervous system
(PNS) and in the embryonic CNS, where lesioned axons
regrow [2,3]. Two major events hamper regeneration in
the adult CNS. First, inhibitory molecules secreted by
oligodendrocytes and scar-forming cells block axon
regrowth [4-7]. Second, central axons lose their intrinsic
growth ability upon maturation [8]. Among the variety of
intrinsic ~ processes preventing axon regeneration,
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pathological cytoskeleton dynamics have emerged as a
major impediment to CNS axon regeneration.

During development, the cytoskeleton creates and main-
tains the shape of neurons and non-neuronal cells. Due to
their dynamics, microtubules and actin filaments control
the establishment of neuronal polarity [9-12]. In this
review, dynamics of the cytoskeleton refer to any modifi-
cation of its stability and include events such as polymer-
ization, depolymerization, severing or bundling. Notably,
a stereotypical spatial organization and dynamics of the
cytoskeleton at the tip of the axon, within the growth
cone, ensure the elongation and steering of developing
and adult injured peripheral axons. The inability of adult
central neurons to re-form a growth cone following axot-
omy represents a major obstacle to axon regrowth [13].

In this review, we first outline the main stages leading to
axon eclongation during development and describe the
organization of the axonal cytoskeleton within the growth
cone of elongating axons in comparison to the retraction
bulb of growth-incompetent axons. We then summarize
evidence demonstrating that manipulation of cytoskele-
ton dynamics can restitute the intrinsic regenerative
ability of adult neurons and discuss the major signaling
pathways that underlie this cytoskeleton disorganization.
We also discuss the role of cytoskeleton-mediated axonal
transport in injured central neurons. Finally, we highlight
evidence demonstrating that modulating cytoskeleton
dynamics affects both the migration of cells toward the
lesion site and the release of inhibitory proteins by scar-
forming cells, thus modifying scar tissue composition.
Together, targeting cytoskeleton dynamics represents a
powerful and potentially clinically translatable strategy to
enhance regeneration following injury.

Axon growth during development

Cytoskeleton dynamics within the growth cone ensures
the growth and steering of developing axons. Apprehend-
ing how the cytoskeleton organizes within developing
axons and how its dynamics leads to axonal elongation
(Figure 1) is essential to understand the mechanisms
underlying the intrinsic inability of adult CNS neurons
to regrow their axons and provide a therapeutic strategy
overcoming this regeneration failure. The growth cone
contains an actin-rich peripheral domain (P-domain) that
contains filopodia, bundled parallel actin filaments, and
lamellipodia, that form a branched actin network in
between filopodia. The central domain (C-domain) of
the growth cone contains microtubules that project with
their polymerizing end toward the P-domain. Developing
axonal shafts display more stable microtubules whereas
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Figure 1
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Neuronal polarization and axonal elongation. (a) Shortly after plating, neurons form four to five neurites of about 15 wm length (stage 2). Neurons
acquire polarity when one of the neurites rapidly extends: this dynamic neurite differentiates into an axon while the remaining minor neurites give
rise to dendrites (stage 3). The polarity of developing neurons can be manipulated by modulating the cytoskeleton dynamics: low doses of the
microtubule-stabilizing agent taxol and application of the actin-depolymerizing drug cytochalasin D both lead to the formation of several axons. (b)
The axonal shaft of elongating axons contains stable and tightly bundled microtubules whereas their growth cone contains a dynamic
cytoskeleton. In the center of growth cones (grey stripped area), dynamic microtubules protrude from the axonal shaft. More peripherally (dark
grey area), long bundles of actin radiate outward, giving rise to the filopodia. Meshes of actin filaments, the lamellipodia, intertwine these radial
actin bundles. Interactions between actin and microtubules mostly occur in the transition domain (yellow area). Elongation takes place when
polymerizing microtubules protrude in the peripheral domain along filopodial actin. Red and blue arrows represent the main cytoskeletal dynamics
leading to axon elongation, respectively for actin and microtubules.
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Actin and microtubule dynamics. (a) Microtubules are 25 nm-thick hollow cylinders composed of 13 protofilaments, each of them arising from the
longitudinal polymerization of a-B-tubulin heterodimers. Microtubules are polarized: they present a minus end (—) on the soma side and a plus end
(+), where most of the catastrophes occur, facing the axonal tip. Two main families of proteins, the microtubule-associated proteins (MAPs) and
the plus-end tracking proteins (+TIPs), influence microtubule dynamics. The MAPs, for example, Tau, stabilize microtubule bundles and antagonize
severing proteins. At the plus end of microtubules, TIPs proteins such as end-binding proteins control microtubule growth and catastrophe events.
Post-translational modifications of a-tubulin further influence both the intrinsic stability of microtubules as well as their affinity to microtubule-
binding proteins and thus enable a tighter control of MT dynamics. Please note that tyrosination/detyrosination face the outside of the microtubule
whereas acetylation occurs in the lumen of microtubules. (b) Actin filaments are thin (~8 nm-thick) helical double-strand filaments composed of G-
actin (globular) monomers. Like microtubules, actin filaments are polarized: plus ends (+), or barbed ends, face the leading edge of the growth
cone while minus ends (—), or pointed ends, point toward the cell body. G-actin monomers are incorporated to the plus-ends of actin filaments.
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Figure 3
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Cytoskeletal organization in growth cones versus retraction bulbs. (a) Growth cones display three distinct regions. The center (C-domain, grey
stripped area) contains microtubules which emerge from the axonal shaft. In the periphery (P-domain, dark grey area), a dense network of actin
filaments controls the progression of microtubule toward the axon tip and excludes vesicles and organelles from the P-domain. This obstacle
occurs at the border between the C-domains and the P-domains, the transition domain (T-domain, yellow arc). (b) Regeneration failure is
associated with the formation of a retraction bulb at the tip of the injured axon. The separation between C-domain, T-domain and P-domain is
lost. In addition, microtubules are depolymerized to a large extent. The remaining ones are disorganized and do not reach the axon tip.

microtubules extending into the central domain (C-
domain) of the growth cone undergo dynamic events
(Figures 1b and 2a). Notably, detyrosination and acetyla-
tion are two posttranslational modifications correlating
with the age of microtubules and are mostly found in
the axonal shaft. Tyrosination is used as a marker for
dynamic microtubules and is found on microtubules
protruding into the growth cone. Protruding microtubules
are restrained by the actin filaments in the transition
domain ('T-domain) that have formed actin arcs mediated
by the motor protein myosin II.

The process of axon elongation is divided into three steps
[14,15]. In a first phase, the ‘protrusion’, actin filaments
polymerize their barbed-end (or plus-end) at the leading edge
of the growth cone (Figures 1b and 2b), thereby triggering the
elongation of filopodia and lamellipodia [10,16-18]. At their
minus-end, actin filaments undergo cofilin-mediated depo-
lymerization [19]. This leads to treadmilling of the actin
filaments, which is observed as retrograde flow [19]. Depo-
lymerization of actin filaments provides a pass through which
polymerizing microtubules can protrude and elongate into the
former peripheral domain [20°,21]. This second step is called
‘engorgement’. The transition from polymerization to stabili-
zation of microtubules within the proximal growth cone
enables the formation of a newly generated neurite shaft.

"This is the ‘consolidation’. Repeated cycles of these three
phases lead to axon elongation. T'ogether, the growth cone of
elongating neurons provides an environment in which poly-
merizing microtubules can protrude and thus lead to axon
clongation. In fact, these mechanisms enable the neuron to
polarize during development. On the one hand, microtubules
are more stable in the future axon shaft than in the shaft of the
non-growing minor neurites. Moderate stabilization of micro-
tubules by taxol enables the microtubules to polymerize and
to extend, which transform the non-growing neurites into
growing axons [9]. On the other hand, the axon growth cone
contains actin filaments that are more dynamic and less stable
compared to the non-growing minor neurites’ growth cones.
Actin destabilization is sufficient to transform non-growing
neurites into growing axons [11]. Could the reactivation of
these mechanisms induce axon regeneration in the adult
nervous system?

Anatomy of retraction bulbs

By contrast to developing neurons [10,22] or to axoto-
mized peripheral neurons [23], adult injured central neu-
rons do not display a growth cone following axon injury
[24,25]. Instead, injured mature CNS neurons form a
dystrophic bulb, the so-called retraction bulb [26,27]
(Figure 3). Retraction bulbs are heterogeneous oval struc-
tures about four times larger than the axon right after
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axotomy and continue to increase in size overtime [26]. In
cell culture, they lack filopodia but display lamellipodia-
like structures [27]. Surprisingly, although these atrophic
ends fail to elongate the axon, they are dynamic, with
their lamellipodia undulating back and forth [27]. The
growth-restrictive intracellular mechanisms associated
with these structures are still unclear. This is because
i vitro models in which injured central neurons generate
a retraction bulb comparable to the iz vivo situation are
relatively recent [26-28]. These studies highlight the
aberrant cytoskeleton organization in these atrophic
structures. Whereas growth cones display the aforemen-
tioned microtubule-rich central domain relatively segre-
gated from an actin-rich peripheral domain, the two
cytoskeleton components largely overlap in retraction
bulbs [27]. Instead of forming the parallel and tight
bundles typical in growing axons, microtubules disassem-
ble and are disoriented in retraction bulbs [26]. Like
growth cones, retraction bulbs present dynamic, polymer-
izing microtubules. However they are restricted to the
center of the bulb [26]. These observations raise the
question whether modulating cytoskeleton dynamics
could represent an efficient strategy to transform retrac-
tion bulbs into growth cones. If so, which differences in
the expression and activation profiles of cytoskeleton-
associated proteins and which upstream events preclude
injured adult central neurons from forming a growth-
competent growth cone? Gaining insight into these ques-
tions could enable the development of efficient thera-
peutic strategies to transform retraction bulbs into growth
cones and ultimately to overcome the growth failure of
injured CNS neurons.

From retraction bulbs to growth cones:
modifying the microtubule cytoskeleton
dynamics

Treating dorsal root ganglia (DRG) neurons with the
microtubule-depolymerizing drug nocodazole disperses
microtubules within the bulb and transforms the axon tip
into a retraction bulb-like structure similar to the one
found after CNS injury [26]. This finding supports the
hypothesis that pathological microtubule dynamics cause
microtubule disorganization and lack of regenerative
capacity of mature injured neurons. Conversely, enhanc-
ing microtubule polymerization at the axon tip by admin-
istering the microtubule-stabilizing agent epothilone B
reduces retraction bulb formation and boosts axon regen-
eration of central neurons following spinal cord injury
[29°°]. Accordingly, destabilizing microtubules by appli-
cation of low doses of nocodazole abolishes epothilone B-
dependent microtubule protrusion within the growth
cone as well as axon elongation [29°°]. Similar to epothi-
lone B, the microtubule-stabilizing drug taxol shifts
microtubule polymerization toward the axon tip [9] and
improves growth cone formation in adult injured CNS
neurons [30,31]. Hence, these data provide evidence that
an abnormal microtubule dynamics reduces the ability of

adult central neurons to re-form a growth cone and that
controlling microtubule dynamics could efficiently
enhance the regenerative capacity of injured adult neu-
rons. Interestingly, growth cone formation is observed
only with low doses of either taxol or epothilone, indicat-
ing that moderate stability of microtubules is required for
efficient axon regrowth. In the last years, effort has been
made in unraveling the mechanisms underlying the
abnormal cytoskeleton organization and dynamics
observed in retraction bulbs. As mentioned before, tubu-
lin acetylation is commonly used as a marker for micro-
tubule longevity and protects microtubules against break-
age [32°,33°]. In injured adult peripheral neurons — but
not in central neurons — HDACS promotes the deace-
tylation of axonal microtubules in a growing gradient from
cell body to lesion site [34]. This posttranslational modi-
fication is triggered by Ca** release at the injury site and is
necessary for axonal regrowth [34]. It should be noted that
only physiological levels of HDACS are required for axon
regrowth but both inhibition and overexpression of this
enzyme impair axonal repair [34] indicating that fine local
and quantitative control of microtubule dynamics is
required for the axon to efficiently regenerate. This
finding further suggests that peripheral axons require less
stable microtubules than central axons, a hypothesis that
could be explained by an environment more permissive in
the PNS than in the CNS [34]. It should be noted,
however, that HDACS targets other proteins than micro-
tubules [35,36]. We will now discuss the role of actin
filaments in axon regeneration.

From retraction bulbs to growth cones: the
actin dynamics

Although the microtubule reorganization following axot-
omy has been well described [26,29°°,30,37-39], there is
still relatively little known about the role of actin dynamics
in axon regeneration. Iz vitro, injury is followed by a
change in actin filaments at the tip of central neurons
[40°°]. This effect can be prevented by overexpressing the
doublecortin-like kinases 2 (DCLK2), a protein promoting
axon regeneration in adult central neurons [40°°]. How-
ever, which modality of actin is necessary for the axon to
regenerate remains to be investigated. In fact, it is even
unclear whether neurons extend their axon by the growth
cone ‘pulling’ the axon or if axon growth occurs more
through an amiboid-type of movement. Cytoskeleton
reorganization can be further achieved by targeting the
cytoskeleton-associated protein nonmuscle myosin IT [41].
In adult DRG neurons, the specific inhibitor of nonmuscle
A'TPase activity blebbistatin results in drastic actin reor-
ganization, including decreased actin filament-positive
areas and increased filopodia formation, and improves
the protrusion of microtubules into the peripheral domain
[42]. The inhibitor also promotes axon regeneration, an
effect which can be abolished treating blebbistatin-treated
cells with low doses of nocodazole [42]. These data
underline the role of actin in axon regeneration and
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illustrate how fine modifications of its dynamics allow
adult injured neurons to upscale their intrinsic regenera-
tive ability. It is expected that by studying regeneration
paradigms, the role of actin dynamics in axon regeneration
will be better understood. For example, DRG neurons
form a growth cone and regenerate their central axon
coursing in the CNS when the axon in the PNS was
injured beforehand, a phenomenon called ‘conditioning’
[43-45]. Since part of the conditioning induced regenera-
tion might be attributed to recapitulating a developmental
growth program [2,46°°] and actin dynamics are instru-
mental for neurite formation [19], it might be possible that
conditioning fundamentally affects actin regulating pro-
teins to drive regenerative growth. This hypothesis, how-
ever, requires rigorous testing in the future.

The cytoskeleton, intracellular trafficking and
axon regeneration

The cytoskeleton ensures the active transport of proteins,
vesicles and organelles along the axonal shaft besides
promoting the forward movement of the axon tip and
constituting the backbone of neurons. After a first phase
of Ca**-dependent retrograde signaling [13,47], a cyto-
skeleton-based retrograde transport is believed to convey
the ‘injury signal’ to the nucleus and activate pro-survival
and pro-regenerative programs [48-50]. Axotomy of the
peripheral branch of DRG neurons leads to increased
local transcription of the protein importin 3, which in turn
enables dynein-mediated retrograde transport of nuclear
localization signal-bearing proteins, invoking regenera-
tion [49]. Translation of the pro-regenerative transcrip-
tion factor STAT3 is also locally increased following
peripheral nerve injury and retrogradely transported to
the soma along microtubules by the motor protein dynein
[48]. Together, these data demonstrate that retrograde
transport is necessary for axon regeneration. Conversely,
the increase in retraction bulb size over time together
with the observation that retraction bulbs display a higher
density of mitochondria and small vesicles in comparison
to growth cones [26] indicate that retraction bulbs might
be associated with a deficient retrograde transport. The
mechanisms initiating retrograde injury signaling are
beginning to be elucidated. Injury-dependent activation
of the enzyme tubulin-tyrosine ligase ('T'T'LL) promotes
the tyrosination of a-tubulin in peripheral neurons and
thereby promotes minus-end directed transport [34,51°].
Notably, TTL knockdown delays the activation of the
pro-regenerative transcription factor c-JUN and signifi-
cantly prevents the regeneration of DRG neurons [51°].
In this context, it is interesting to note that chronic
treatment of the sciatic nerve with the microtubule-
depolymerizing drug colchicine recapitulates a condition-
ing lesion [52]. Thus, microtubules have certainly a dual
function in axon regeneration. Besides their role in sup-
porting axon growth they provide the transport roads for
retrograde signals back to the nucleus. Injured central
neurons fail to sustain expression of pro-regenerative

transcription factors [53] and reactivation of these factors
restore their regenerative ability [54,55].

Axon regeneration further requires the anterograde trans-
port of organelles (e.g. mitochondria) and material (e.g.
actin and tubulin) at the lesioned axonal tip. In Aplysia
growth cones, microtubules rapidly depolymerize follow-
ing axotomy before reorganizing into two distinct pools of
opposite polarity [38]. This reorganization allows the
formation of two vesicle-rich traps: a plus-end trap cap-
turing anterogradely transported vesicles and a distal trap
concentrating retrogradely transported vesicles [38]. The
density of anterogradely transported Golgi-derived vesi-
cles increases due to this microtubule reorganization and
is necessary for the extension of growth cones after
axotomy, indicating the importance of microtubule-
directed anterograde transport for axon regeneration
[38]. Moreover, in retraction bulbs, repolymerized micro-
tubules fail to point their end toward the axon tip [47]. A
direct correlation between transportation rate and regen-
eration capacity in injured central axons support the
hypothesis that anterograde transport represents a limit-
ing factor of regeneration in CNS neurons [56,57,58°°]. In
support of this hypothesis, the pro-regenerative action of
DCLK requires the anterograde transport activity of their
microtubule-binding domain [40°°]. Conversely, inhibit-
ing the motor kinesin 5, a protein which restrains trans-
port of short microtubules along the axons [59], improves
in vive axon regeneration when neurons grow within a
permissive graft [60]. Together, these data indicate that
adjusting microtubule stability might improve antero-
grade transport to the growth cone to supply elements
necessary for axon regrowth.

Cytoskeleton dynamics and the formation of a
scar tissue

Fibrotic and glial scar tissue contains inhibitory molecules
and constitutes a major environmental obstacle to axon
elongation [4,5]. Besides promoting the intrinsic axon
elongation of neurons by stabilizing their axonal micro-
tubules, taxol hampers the formation of fibrotic scar tissue
and decreases chondroitin sulfate proteoglycan (CPGS)
deposition [30,31]. Following injury, an increase in T'GF-
B promotes the production of inhibitory proteins by
astrocytes [61]. Mothers against decapentaplegic homolog
2 (Smad2), a downstream effector of TGF-B, binds to
microtubules through kinesin-1 and transduces the signal
to the nucleus [62]. Thereby, enhancing microtubule
stability with taxol significantly alters kinesinl-depen-
dent intracellular transport and impedes the translocation
of Smad2 from microtubule to the nucleus [30]. Hence,
taxol-dependent inhibition of TGF-B/Smad2 signaling
pathway results in a significant reduction of inhibitory
proteins release by astrocytes in the lesion site [30].

Taxol injection further compromises the upregulation of
laminin, fibronectin and collagen IV [30], three extracellular

www.sciencedirect.com

Current Opinion in Neurobiology 2018, 51:60-69



66 Cellular neuroscience

Figure 4
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Manipulating microtubule and actin dynamics to achieve axonal regeneration. The presence of microtubule and actin in neurons as well as in scar-
forming cells and their role in a variety of cellular processes including intracellular transport, proliferation and migration place these two

intracellular constituents as promising therapeutic targets.

matrix proteins released by fibroblasts in response to injury
[63]. Immunostaining experiments have confirmed that
impediment in fibroblasts migration underlies this effect
[30]. Similar to taxol, epothilone B and D decrease the
expression of inhibitory fibrotic molecules [29°°,37]. In fact,
besides promoting the intrinsic growth ability of neurons,
epothilone B stabilizes the whole microtubule network in
fibroblasts and hence abolishes the polarization necessary
for the migration of these cells toward the site of injury, thus
allowing the reduction of the fibrotic scar tissue [29°°,64].
The antithetic effect of epothilone B on microtubule
polymerization in fibroblasts versus neurons is due to the
neuron-specific expression of Tau, a microtubule-associ-
ated protein regulating microtubule polymerization, bun-
dling and binding to microtubule-stabilizing proteins [29°°].
It is likely that taxol decreases the fibrotic tissue through a
similar mode of action as taxol and epothilones bind to the
same pocket of B-tubulin [65].

Together, these data demonstrate that cytoskeleton
dynamics impact axon regeneration not only by boosting
the intrinsic regenerative ability of injured adult neurons

but also by modifying cellular migration toward the lesion
site and secretion of inhibitory extracellular signals by
these scar tissue cells (Figure 4).

RhoA signaling: linking extracellular inhibitory
signals to the cytoskeleton?

Although cytoskeleton dynamics appears to be a major
player in controlling axon regeneration, we still under-
stand relatively little about how the various growth inhibi-
tory signaling pathways act onto the cytoskeleton. Inter-
estingly, various inhibitory signaling cascades hampering
axon regeneration appear to be mediated through RhoA
signaling. RhoA is activated in response to a variety of
inhibitory cues including CSPGs [66], myelin-associated
glycoprotein (MAG) [67] or Nogo [68] and controls the
stability of actin cytoskeleton [69]. Overexpression studies
and the usage of bacterial enzymes deciphered that the
major downstream effector of RhoA is the kinase ROCK.
ROCK, in turn, phosphorylates and activates the actin-
binding protein profilin. Another major target of Rho A is
the LIM-kinase 1. This kinase inactivates the major
depolymerizing protein enzyme cofilin and therefore
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improves actin filaments stability [70,71]. ROCK also
phosphorylates the myosin light chain, which in turn
increases the actomyosin contractility and thus reduces
neurite extension [72]. Thus, these iz vitro studies suggest
that RhoA may be crucial to translate extracellular inhibi-
tory cues into intracellular cytoskeletal changes. Consis-
tently, the Rho GTPase inhibitor C3 improves axonal
regeneration in cultured adult retinal neurons and after
spinal cord injury  vivo [73,74] and the inhibitor is
presently in the phase of clinical trials for the treatment
of acute spinal cord injury [75]. However, the physiological
role of RhoA in axon regeneration is unclear. Moreover,
the physiological effectors downstream of RhoA remain to
be identified. The analysis of a RhoA knockout mice will
facilitate our understanding of this pathway and the role of
cytoskeleton therein substantially.

Conclusion

Central neurons fail to regenerate following injury but
efficient treatments do not exist. This is because targets
which both boost the intrinsic regenerative capacity of
neurons and hamper the formation of an inhibitory scar
tissue were not available until recently. Modifying the
cytoskeleton dynamics restores a growth cone in non-
regenerating neurons and enhances axonal transport.
Recently, it has been highlighted that targeting the cyto-
skeleton further decreases formation of inhibitory sur-
roundings by reducing the migration of fibroblasts toward
the lesion site and preventing the release of inhibitory
proteins by astrocytes and fibroblasts. Thus, cytoskeleton
dynamics appear as an optimal target to promote axon
regeneration. In fact, treating spinal cord injured rats with
taxol, epothilone B or epothilone D leads to functional
recovery [29°°,30,37,76]. In the future, understanding the
molecular players leading to pro-regenerative cytoskeletal
rearrangements will be crucial to translate these findings
into efficient clinical treatments.
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