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Abstract

Background: Deficits in gait and balance are common among neurological inpatients. Currently, assessment of

these patients is mainly subjective. New assessment options using wearables may provide complementary and

more objective information.

Methods: In this prospective cross-sectional feasibility study performed over a four-month period, all patients

referred to a normal neurology ward of a university hospital and aged between 40 and 89 years were asked

to participate. Gait and balance deficits were assessed with wearables at the ankles and the lower back.

Frailty, sarcopenia, Parkinsonism, depression, quality of life, fall history, fear of falling, physical activity, and

cognition were evaluated with questionnaires and surveys.

Results: Eighty-two percent (n = 384) of all eligible patients participated. Of those, 39% (n = 151) had no gait

and balance deficit, 21% (n = 79) had gait deficits, 11% (n = 44) had balance deficits and 29% (n = 110) had

gait and balance deficits. Parkinson’s disease, stroke, epilepsy, pain syndromes, and multiple sclerosis were the

most common diseases. The assessment was well accepted.

Conclusions: Our study suggests that the use of wearables for the assessment of gait and balance features

in a clinical setting is feasible. Moreover, preliminary results confirm previous epidemiological data about gait

and balance deficits among neurological inpatients. Evaluation of neurological inpatients with novel wearable

technology opens new opportunities for the assessment of predictive, progression and treatment response

markers.
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Background

Gait and balance deficits occur in many neurological dis-

eases. The evaluation of these deficits at the wards of hos-

pitals is often based on qualitative parameters collected by

the treating physicians and allied health professionals or on

semi-quantitative scoring tools. For example, in Parkinson’s

disease (PD), the Unified Parkinson Disease Rating Scale

(MDS-UPDRS) is regularly used to rate motor symptoms

including gait and postural stability [1]. While such scales,

questionnaires and surveys have been subject to multiple

validation studies, they have limitations regarding

inter-rater variability and subjectivity [2–5].

With the recent and ongoing development of wear-

ables (mainly in the sport and fitness sectors), this tech-

nology has reached a sophisticated level making it

interesting for medical purposes [6–16]. A particularly

relevant field is the complementary assessment of inpa-

tients at neurological wards, as wearables are specifically
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capable of assessing gait and balance deficits which are

common in neurological patients [15, 17].

Only a small number of studies have investigated feasi-

bility and acceptability of wearables in an inpatient set-

ting, with limitations such as small sample sizes [18] and

the investigation of only one disease [19]. This study

aims to investigate the feasibility and usefulness of wear-

ables during clinical evaluation in a large sample of

neurological inpatients.

Methods

Participants

All inpatients referred to the three normal wards of the

Neurology Center at the University Hospital of Tübingen

between 09/2014 and 04/2015 (16-week assessment

periods for each ward) were asked to take part in the study

if they were between 40 to 89 years of age (this selection

criterion was chosen due to feasibility issues) and were

able to walk with or without walking aid. Exclusion cri-

teria were the inability to give informed consent, a fall fre-

quency of more than one fall per week (risk of falls during

the assessment too high), and impaired cognition as de-

fined by a Mini Mental State Examination (MMSE) score

below 10 points. Participants who had at least one fall dur-

ing the last 2 years were defined as fallers. The ethics com-

mittee of the medical faculty of the University of

Tübingen approved the study (No. 356/2014BO2) and all

participants gave written informed consent prior to

participation.

Quantitative gait and balance assessment

Participants were equipped with a wearable sensor

system (Rehawatch®, Hasomed, Magdeburg, Germany)

consisting of three sensor-units worn at both ankles

and at the lower back (L4-L5) [20]. Each sensor-unit

contains 3D accelerometers (±8 g), 3D gyroscopes

(±2000°/s) and 3D magnetometers (±1.3Gs) resulting

in nine degrees of freedom and the raw data was

processed and analyzed using validated and company

provided algorithms [21]. The assessment included

the following tasks: Participants walked seven times a

20 m distance under single (slow, comfortable, and

fast speed) and dual tasking conditions (checking

boxes and subtracting serial 7 s during comfortable

and fast walking) [22, 23]. Static balance during quiet

standing at the center of stability was tested on flat

ground with four different positions of the feet for

30 s each: open stance with feet placed in parallel

position with 5–10 cm in between, closed stance (par-

allel position), semi-tandem stance, and tandem

stance [24]. The task one difficulty level below the

one successfully performed on flat ground was then

performed for 30 s on a foam pad (Airex balance

pad, 50x41x6 cm). Static balance at the limit of

stability was tested with an adapted version of the

Functional Reach Test [25] over a 15 s period. Overall

mobility and transfer was tested with the

Timed-Up-and-Go test (TUG) under comfortable and

fast speed conditions [26–28]. Muscle strength was

assessed with a hydraulic hand dynamometer (DanMic

Global®, San Jose, USA) and muscle mass with bioim-

pedance (Akern Bia 101, SMT medical GmbH&Co.

KG, Würzburg, Germany).

Assessments with scales and questionnaires

Fear of falling was assessed with the German version of

the Falls Efficacy Scale-International (FES-I) [29].

Self-concepts of health, activity, cognition, social support

and risk factors for age-associated diseases were assessed

[30]. Depression was evaluated with the German version

of the Beck’s Depression Inventory II (BDI-II) [31, 32].

Health-related quality of life was assessed with the

EQ-5D-5 L. This scale addresses mobility, autonomy,

pain, fear, despondence, daily living activities and health

[33]. The MMSE [34] and the Trail Making Test (TMT)

[35] were used to assess cognition, and part III of the

Movement Disorders Society-sponsored Unified Parkin-

son’s Rating Scale (MDS-UPDRS) [1] was used for the

assessment of motor symptoms. Function of the sensory

nerves was assessed at the medial malleoli of the lower

extremities and the basal joint of each thumb with a

Rydel Seiffer tuning fork.

Classification of impaired gait and balance

A gait deficit was defined as > 15% lower walking

speed compared to mean age-corrected speed accord-

ing to [36, 37]. Presence of a balance deficit was con-

sidered when tandem stance could be performed no

longer than 10 s [38, 39].

Statistical analysis

Statistical analysis was conducted with JMP 11.1.1

(SAS). Demographic data of the different groups were

compared with Kruskal-Wallis-test (or Fisher’s exact test

for categorical data). Post hoc testing was performed

with Mann-Whitney-U test. P values below 0.05 were

considered significant. Bonferroni correction for mul-

tiple testing was applied for post-hoc tests (p < 0.0083).

Results

Of 468 inpatients eligible for the study (i.e., fulfilled all

inclusion criteria and no exclusion criterion, and were

not excluded due to logistic reasons), 384 (82%) partici-

pated. Of those, 60% were male. Mean age of the cohort

was 62 years. The 10 most common diagnoses (69% of

all investigated patients) were Parkinson’s disease (PD, n

= 51), stroke (n = 50), epilepsy (n = 30), pain syndromes

(n = 26), multiple sclerosis (MS, n = 23), CNS tumours
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(n = 19), polyneuropathy (n = 18), vertigo (n = 16), de-

mentia (n = 16), and meningitis/encephalitis (n = 15).

During the study, no severe adverse events occurred

(Fig. 1).

One hundred and 51 participants (39%) had no gait

and balance deficit (control group), 79 (21%) had a gait

deficit, 44 (11%) had a balance deficit and 110 (29%) had

a gait and balance deficit. The highest proportion of pa-

tients with gait deficits (33%) was found in the

meningitis/encephalitis cohort, the highest proportion of

patients with balance deficits (17%) in the MS cohort,

and the highest proportion of participants with gait and

balance deficits (41%) in the PD cohort. Patients with

pain syndromes had rarely gait and/or balance deficits.

Patients complied well with the quantitative gait

and balance assessment and descriptive results from

the balance, gait and postural transitions are shown

in Figs. 2, 3 and 4.

Fig. 1 Graphical representation of the ten most common diagnoses within the 384 study participants
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Fig. 2 During the balance assessment the participants with a balance or gait and balance deficit show the largest sway area compared to the

controls and the patients with the gait deficit
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Fig. 3 During the gait assessments (single and dual task conditions) the participants with a gait or gait and balance deficit show the largest

number of steps, the smallest stride length and the highest stride duration compared to the controls and the participants with a balance deficit

Fig. 4 The TUG tests shows a similar pattern and the duration of the individual phases is increased for participants with a gait or gait and

balance deficit compared to the controls and the participants with a balance deficit
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MMSE and TMT performances were significantly

worse in all cohorts with gait and/or balance deficits,

compared to the control cohort. Moreover, the cohort

with gait and balance deficits performed worse in the

TMT compared to the group with gait deficits. TUG

durations were slower in the cohort with gait and

balance deficits than in both the gait deficit cohort

and the balance deficit cohort, and fastest in the con-

trol cohort. The same pattern was observed with re-

gard to fear of falling, with highest FES-I values (i.e.

the highest fear of falling) in the gait and balance def-

icits cohort. BDI II values were higher in the cohort

with gait and balance deficits, compared to the con-

trol cohort. The cohort with gait and balance deficits

had lower grip force when compared to the cohort

with gait deficits and the control cohort. A more de-

tailed description of the inter-cohort comparisons is

presented in Table 1.

Discussion

In the presented study, we performed routine clinical

gait and balance assessments complemented by an ex-

haustive evaluation of geriatric parameters in a neuro-

logical department at a university hospital. To the

best of our knowledge, this is the first sensor-based

cross-sectional study in a clinical environment of a

university hospital, covering a wide range of neuro-

logical diseases. Our overall cohort represents a wide

range and representative number of neurological dis-

eases. A study with a similar setting but without

sensor-unit-based assessments displayed a comparable

composition of neurological diseases [17] with the five

most common diagnoses completely overlapping.

Acceptance of sensor-unit-based assessments in our

study was high. Only 18% of eligible patients refused to

take part in the study. We did not experience any logis-

tical issues during the assessments. The sensor system

Table 1 Demographic, clinical, and semiquantitative/quantitative study outcomes of the whole cohort, as well as of the subcohorts

with and without gait and balance deficits

Whole cohort
(N = 384)

Controls
(N = 151)

Gait deficits
(N = 79)

Balance deficits
(N = 44)

Gait and balance deficits
(N = 110)

P-Value

Median Range Median Range Median Range Median Range Median Range

Age [years] 64 40–90 57 40–86 60 40–89 70*# 44–89 69.5*# 41–90 < 0.0001

Gender [% female] 42.4 43.0 36.7 43.2 45.5 0.67

Height [m] 1.72 1.48–2.01 1.73 1.49–2.01 1.73 1.48–1.98 1.70 1.58–1.88 1.70 1.49–2.00 0.04

Weight [kg] 79 37–134 80 50–134 82 46–117 79 55–115 74 37–123 0.13

BMI [kg/m2] 26.2 14.9–43.0 26.3 19.4–41.8 26.4 17.3–41.6 26.8 19.4–38.4 25.9 14.9–43.0 0.77

Falls in the last 24
months [N]

0 0–100 0 0–50 0 0–50 1* 0–55 1*# 0–100 < 0.0001

At least one fall in the last
24 months [%]

46 29 42 62* 65*# < 0.0001

LACHS (0–15) 3 0–10 2 0–8 3* 0–6 3* 1–9 4*# 0–10 < 0.0001

MMSE (0–30) 28 13–30 29 24–30 28* 13–30 28* 13–30 27* 13–30 < 0.0001

TMT-A [s] 49 13–300 38 13–300 48* 23–300 55* 26–300 72*# 17.7–300 < 0.0001

TMT-B [s] 149 34–300 101 34–300 129* 38–300 174* 60–300 300*# 38.8–300 < 0.0001

∆TMT [s] 85 −30-280 60 −30-280 78* 0–253 98 0–257 149* 0–270 < 0.0001

Timed up and go
convenient speed [s]

12 6–92 10 6–25 12* 8–28 11* 8–18 16*#+ 8–92 < 0.0001

Timed up and go fast
speed [s]

9 5–47 7 5–15 10* 6–22 11* 6–15 14*#+ 7–47 < 0.0001

BDI II (0–63) 10 0–51 8 0–51 10 0–28 10 0–38 12* 0–51 0.0004

FES-I (0–64) 20 0–64 18 0–63 21* 0–44 20* 14–48 27*#+ 14–64 < 0.0001

EQ5D VAS (0–100) 60 1–100 70 20–100 55 10–95 50* 5–90 50*# 1–95 < 0.0001

Functional Reach [cm] 23 3–82 27 8–45 23* 3–82 20* 5–35 18*# 5–34 < 0.0001

Gait speed [m/s] 1.10 0.27–2.33 1.34 0.95–2.33 0.99* 0.56–1.67 1.15*# 0.81–2.03 0.80*#+ 0.27–1.5 < 0.0001

Grip force [kg] 27 3–76 29 10–76 29 7–56 28 15–51 23*# 3–51 < 0.0001

Data is presented with median and range. P-values were calculated using the Kruskal-Wallis-test, with post hoc Mann-Whitney-U-Test and Chi2 test. For post hoc

testing Bonferroni correction for multiple testing was applied. * p < 0.0083 for comparison with the control cohort group, #p < 0.0083 for comparison with the gait

deficit cohort, +p < 0.0083 for comparison with the balance deficit cohort. BDI II Beck’s depression inventory II, BMI Body mass index, EQ5D VAS Visual analog scale

of the EuroQol-5 dimension questionnaire, FES-I Falls efficacy scale international, LACHS Geriatric screening according to Lachs et al., MMSE Mini-mental state

examination, TMT Trail making test (part A, B, and B-A = ∆TMT)
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was easy and quick to apply and none of the patients

felt restricted by the sensor system. Moreover, no ser-

ious adverse events, e.g. falls, occurred. These results

bode well for the clinical uptake of wearable sensors

into regular care.

Not surprisingly, frequencies of gait and balance defi-

cits of neurological inpatients are higher compared to

observations in the community and in outpatient clinics.

However, these deficits are ubiquitously observed. In a

community-based study investigating 467 participants,

the prevalence of gait deficits was 14% in those between

67 and 74 years of age, 29% in those between 75 and

84 years and 49% in those 85 years and older [40]. In a

cross-sectional investigation of 488 community residing

adults aged between 60 and 97 years, 32% of the cohort

presented with impaired gait and the prevalence in-

creased with age. However, 38% of the subjects aged

80 years and older still had a normally preserved gait

[41]. In outpatients clinics, gait deficits occur in 35% of

patients, most of them having neurological causes [42].

It is of note that, in our study, the cohort with gait

(but not balance) deficits was of similar age as the con-

trol cohort. This suggests that the slower gait speed of

this group was not induced by an overall decline in per-

formance due to aging, but rather due to the underlying

disease processes. This could be an interesting observa-

tion in the light of ongoing studies investigating gait

speed as a relevant outcome parameter for disease and

disability. Moreover, groups with gait and/or balance

deficits showed impaired cognitive performance com-

pared to the control group, supporting the association

between motor performance and cognition [43–45]. It is

also of note that not only the balance deficit cohort but

also the gait deficit cohort performed worse than the

controls in the functional reach test. This finding sup-

ports the link between static balance and gait and

reflects the various aspects of postural control which

should be further investigated in future studies.

The current study has several limitations. First, only

gait velocity was used to define gait deficits. Although

reduced gait speed impacts patients’ mobility, there

are several additional gait variables (e.g. gait variabi-

lity, asymmetry) which are important features as they

are associated with fall risk [46–49]. However, nume-

rous more sophisticated algorithms are currently de-

veloped and validated allowing investigation of the

multidimensional aspects of postural control (e.g.,

[20, 50, 51]) in more detail. Including dynamic, pro-

active, and reactive postural control parameters will

give a broader view of the multidimensional aspects

of balance control and help understand different

pathologies of the diseases. This aspect is currently

the focus of a more detailed sensor-unit-based ana-

lysis of the dataset.

Conclusion

In conclusion, this study shows that the use of inertial sensors

in a clinical setting by investigating patients in neurological

wards of a university hospital over a time of 16 weeks is feas-

ible. These results should motivate to further design inpatient

assessments using wearable technology, and of collaborative

projects using such datasets for further in-depth analyses.
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