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Making mechanistic sense of genetically complex biological systems such as
adult hippocampal neurogenesis poses conceptual and many practical challenges.
Transcriptomics studies have helped to move beyond single-gene approaches and have
greatly enhanced the accessibility to effects of greater numbers of genes. Typically,
however, the number of experimental conditions compared is small and the conclusions
remain correspondingly limited. In contrast, studying complex traits in genetic reference
populations, in which genetic influences are varied systematically, provides insight
into the architecture of relationships between phenotypes and putative molecular
mechanisms. We describe that the correlation network among transcripts that builds
around the adult neurogenesis phenotype and its endophenotypes is, as expected, a
small-world network and scale free. The high degree of connectivity implies that adult
neurogenesis is essentially an “omnigenic” process. From any gene of interest, a link to
adult hippocampal neurogenesis can be constructed in just a few steps. We show that,
at a minimum correlation of 0.6, the hippocampal transcriptome network associated
with adult neurogenesis exhibits only two “degrees of separation.” This fact has many
interesting consequences for our attempts to unravel the (molecular) causality structure
underlying adult neurogenesis and other complex biological systems. Our article is not
written with the expert on network theory in mind but rather aims to raise interest among
neurobiologists, active in neurogenesis and related fields, in network theory and analysis
as a set of tools that hold great promise for coping with the study of “omnigenic”
phenotypes and systems.
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INTRODUCTION

The mammalian hippocampus is a brain structure with a key role in learning and memory.
It is also unusual in harboring a population of neural stem cells that can be activated by
environmental cues to generate new additional granule cell neurons, both at a baseline level and
on additional functional demand (Kempermann et al., 2015). Adult hippocampal neurogenesis
persists throughout life and can be conceptualized as consisting of several distinct developmental
sub-processes such as stem cell recruitment and proliferation, migration of lineage-determined
progenitor cells, maturation and neurite outgrowth, synaptogenesis and functional integration, and
so on (Kempermann et al., 2004, 2015; Toni et al., 2008; Overall et al., 2012; Bonaguidi et al., 2016;
Dulken et al., 2017). Each of these component processes is under distinct genetic control resulting
in a diverse constellation of genes regulating adult neurogenesis as a whole (Kempermann et al.,
2006; Overall et al., 2012).
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FIGURE 1 | The neurogenic trajectory in the adult hippocampus. The stem cells (red) give rise to rapidly proliferating progenitor cells (orange-yellow) that finally exit
the cell cycle (green) and mature into new-born neurons (blue), which integrate into the surrounding granule cell network (gray). The bars below reflect the number of
genes with a reported role in the neurogenic process. Each of the 390 stacked lines making up the image represents one entry in the MANGO database
(http://mango.adult-neurogenesis.org) covering the stages in which a single gene is known to have a certain function.
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The genetic complexity of this system is extreme and this
makes determining the genes and molecular pathways underlying
the normal function of adult neurogenesis extraordinarily
difficult. To overcome this limitation we have, over the last
decade, applied approaches from the growing field of systems
genetics to our subject in order to investigate the interactions
between genes and phenotypes. The central idea is to exploit
the immense statistical power in genetic reference populations.
A genetic reference population is a collection of lines or strains
with defined, and well-characterized, genetic background which
can be used to identify the contributions of genes to measured
traits. It should be noted, that the term “trait,” as used in this
manuscript, refers generally to any measurable feature of the
biological system. This is in contrast to the traditional sense of
observable feature. Thus, for the mouse model described, possible
traits can include physiological, behavioral, and histological
variables. In fact, even gene expression levels can be considered
a “trait,” as these measurements can be analyzed in exactly the
same way as traditional traits; and this is the approach taken
in the present study. Using one such resource in mice, in 2006
one of us (GK) published a study describing four cellular traits
(based on histology) relating to adult hippocampal neurogenesis
(Kempermann et al., 2006). As might be expected for a system
under complex genetic control, these traits did not have strong
associations to a single locus in the genome, suggesting there is no
one single gene that governs their expression. But when the traits
were related to whole brain gene expression data, a number of co-
varying candidate transcripts could be discerned. Since then, new
resources and tools have become available, which now allow us to
re-analyze these data to provide deeper insight into the genetic
control of adult hippocampal neurogenesis. The current study
presents the results of such analyses and uses this example to
discuss the technological advances as well as the open questions.

RESULTS

Genetic Reference Populations as Model
of Genetic Diversity

There have been astonishing advances made by reductionist
genetics, and several projects are making impressive
progress in systematically perturbing all known genes in
the mouse (for example'). Nevertheless, such attempts
at understanding genetic control of complex traits are
limited as they do not take into account the combinatorial
effects of multiple genes. Polygenic effects are often not
additive so that the dizzyingly vast number of possibilities
makes such an undertaking wholly intractable. In addition,
any combination containing lethal mutations cannot be
studied.

There are, however, other approaches that are based on
investigating combinations of naturally occurring genetic
variability. Genetically diverse populations contain large
numbers of essentially randomly segregating alleles providing a
sort of “shotgun” combination of genetic variants. The task then
becomes to dissect the effects of any particular gene or subset of
genes. This can be done if the number of genotypes is sufficiently
high and the phenotyping error low. For this approach there are
good tools available including genome-wide association studies
[GWAS; which also recently celebrated a 10th birthday (Visscher
et al., 2017), a technique that has been successfully used to map
risk genes for common sporadic diseases, such as Parkinson’s
disease (Nalls et al., 2014)], and quantitative trait locus (QTL)
mapping. Although the mathematical details differ, both GWAS
and QTL mapping aim to match the quantitative trait data to the
genotype at different positions across the genome. If a certain

Thttp://www.mousephenotype.org/
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allele (a genomic variant) is consistently associated with higher
or lower trait measurements, then this suggests that a gene at or
near that position in the genome could be causing the difference
in trait expression. These are powerful techniques to investigate
potential links between genes and measurable phenotypic or
clinical outcomes.

Over the last decade we have focused our attention on
a particularly powerful genetic population in mice; the BXD
recombinant inbred panel (Taylor, 1978; Taylor et al., 1999; Peirce
et al., 2004). This genetic reference population is derived from
two very well characterized laboratory mouse strains, C57BL/6]
(on which the mouse reference genome is based) and DBA/2]J (the
oldest existing fully inbred strain). Both of these parental strains
have been fully sequenced. The BXD panel has been derived by
crossing the F1 hybrids of these two strains and inbreeding the
resulting F2 progeny. In fact, additional recombinations have

been fixed in many of the strains by also including several
rounds of intercrossing prior to inbreeding (Peirce et al., 2004).
The resulting panel thus contains very many recombination
events fixed by sibling mating over more than 20 generations
to yield inbred lines — hence the designation as a “recombinant
inbred” population. Advantages of such a model include genetic
tractability (there are only two alleles segregating, albeit in highly
shuffled combinations) and reproducibility (the inbred nature
of the lines means that an unlimited supply of animals of each
genotype can be phenotyped). An additional implication is that,
because the lines remain stable over time, new traits can be
matched to existing ones allowing reanalysis and extension of
historical datasets — as we have done for the current report.
Because the strains have been genotyped, association of
a trait with the genotype at any locus can be calculated,
allowing potentially causal genes to be identified. In addition,

TABLE 1 | A summary of the published neurogenesis traits.

Statistics Correlations
N Var Range PROL SURV NEUR ASTR
PROL (10795) 29 10.50 3.88 0.72 0.63 0.16
SURYV (10796) 31 0.20 4.40 0.76 0.93 0.05
NEUR (10797) 31 0.45 4.48 0.74 0.95 -0.14
ASTR (10798) 31 0.19 415 0.12 0.01 -0.16

Shown are summary data for the four neurogenesis traits described in the text including the number of samples (N), the variance (var), and the range (given as standard
deviations between the highest and lowest strains). Also shown are the correlations between traits (Pearson’s r in the lower triangle and Spearman’s p in italics in the

upper triangle). Very strong correlations are highlighted in red.

TABLE 2 | Top 20 correlating transcripts for each of the neurogenesis traits.

PROL SURV NEUR ASTR
Symbol r Symbol r Symbol r Symbol r
1 Zfp771 0.72 Gceat 0.82 Vsig8 0.77 Lig1 0.71
2 Arvcf 0.68 Fitm1 0.79 Gceat 0.76 Nign3 0.64
3 Krt7 0.68 Krt7 0.77 Gm9905 0.76 Tet2 0.62
4 Dgat2 0.67 Dxo 0.76 Krt7 0.76 Rbm33 0.61
5 Mzf1 0.66 Vsig8 0.76 Fitm 0.76 Arhgap35 0.59
6 Tnks1bp1 0.66 [117rc 0.76 Pmf1 0.74 Meaf6 0.56
7 Atxn2| 0.66 Oastf 0.74 Dxo 0.73 Rad54b 0.56
8 Capn10 0.65 2310050C09Rik 0.74 2700049A03Rik 0.72 Igkv1-117 0.56
9 Tuba3a 0.64 Gm9905 0.72 Mroh4 0.71 Srpki 0.56
10 Arhgdia 0.64 Pmf1 0.72 Actl7b 0.71 Spacai 0.56
11 Cad 0.64 Ece2 0.71 Amh 0.7 Srrm3 0.55
12 Gm9905 0.64 Mroh4 0.7 Oas1f 0.7 Mapk8ip1 0.55
13 Kens1 0.63 2700049A03Rik 0.7 Nrtn 0.7 Rreb1 0.55
14 Panx3 0.63 Tsfm 0.7 Tsfm 0.7 AA386476 0.54
15 Aamp 0.63 AY761184 0.69 AY761184 0.7 Cdkall 0.54
16 Ifrd2 0.63 Amh 0.69 Cort 0.7 Coléal 0.54
17 Rcei 0.63 Nrtn 0.69 Txnrd2 0.7 Saet 0.54
18 Tfip11 0.63 Acrbp 0.69 Fam229a 0.7 Tmigd1 0.53
19 Myo18a 0.63 Cort 0.68 Nfkbib 0.69 0610030E20Rik 0.53
20 Ccdc12 0.63 Igcd 0.68 Rax 0.69 Hap1 0.53

Each of the neurogenesis traits was correlated to all hippocampal transcripts and the 20 strongest correlations are shown.
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FIGURE 2 | The network of genes surrounding the adult neurogenesis traits. The four traits are depicted as green circles and the connections to correlating
transcripts (- > 0.6) are drawn in a color representing the correlation strength. The transcript nodes are left undrawn.
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correlation between different traits measured across the
population can suggest links between the traits themselves
which may be due to commonalities in their genetic
regulation.

Adult Hippocampal Neurogenesis Is a

Polygenic Process

Our biological process of interest is adult hippocampal
neurogenesis - the generation of new neurons from a stem
cell population in the adult mammalian hippocampus.
This development is comprised of several sub-processes
(Figure 1) which appear to be under distinct genetic control

(Kempermann et al., 2006) and which in total require the
concerted action of many genes (Overall et al., 2012). The stem
cells divide to produce rapidly proliferating precursor cells (type
2) and these become less proliferative and more neuron-like
(type 3) as they differentiate along the neurogenic trajectory.
Eventually, after around a week, the new-born cells exit the cell
cycle and become immature neurons and finally, if they survive,
mature to become fully functional granule cells integrated into
the surrounding neural network.

Performing histology with an endogenous marker of
proliferating cells, such as Ki67, a bulk quantification of all the
cycling cells (types 1, 2, and 3) can be obtained. In addition, by
labeling cells in S-phase with a thymidine analog, it is possible

Frontiers in Neuroscience | www.frontiersin.org

September 2018 | Volume 12 | Article 641



Overall and Kempermann

The Small World of Adult Hippocampal Neurogenesis

TABLE 3 | Gene centrality in the adult neurogenesis network.

Degree Betweenness Eigenvector Closeness PageRank

Symbol Score Symbol Score Symbol Score Symbol Score Symbol Score
1 Rpl18 75 Pmf1 605 Rpl18 0.83 Pmf1 0.149 Rpl18 0.013
2 Pmf1 73 Rpl18 473 Snai3 0.82 Ccdc13 0.148 Snai3 0.012
3 Snai3 72 Tmem134 422 Pmf1 0.82 Snai3 0.148 Pmf1 0.012
4 Prap1 65 Sppl2b 348 Prap1 0.77 Prap1 0.148 Prap1 0.011
5 Kif12 62 Pold4 337 Slc41a3 0.75 Slc41a3 0.147 Kif12 0.011
6 Tmem134 61 Snai3 327 Gsdmcl2 0.74 Rpl18 0.147 Gsdmcl2 0.011
7 Slc41a3 61 Ccdc13 319 Tmc8 0.73 Fitm1 0.147 Slc41a3 0.011
8 Tmc8 61 Prap1 313 Krt78 0.72 Tmem134 0.147 Tmem134 0.011
9 Gsdmcl2 61 Leng9 302 Ccdc13 0.72 Gsdmcl2 0.147 Tmc8 0.010
10 Krt78 60 Pacsin3 296 Cblc 0.71 Pold4 0.147 Krt78 0.010

Several measures of node centrality were calculated for the network surrounding the adult neurogenesis traits at a correlation of r > 0.6.

A

B

FIGURE 3 | Dissociation of the network at higher thresholds. Threshold choice alters network structure, as fewer connections survive the increasingly stringent filter.
At thresholds of r > 0.5 (A), r > 0.6 (B), r > 0.7 (C), or r > 0.8 (D), the transcript network surrounding the adult neurogenesis traits falls apart so that at the highest
threshold no transcript nodes are present and the “network” becomes uninformative. The four neurogenesis trait nodes are depicted in green, the transcript nodes

are white. Transcript nodes with no connections to other nodes are not shown. Edge coloring is as in Figure 2.

to mark all cells which were proliferating at the time of labeling.
When histology is performed 4 weeks later, after all labeled cells
have left the cell cycle, it is possible to measure the number of
surviving cells (typically around 50% of all new-born precursor
cells die before reaching the mature neuron stage). Further
co-staining the surviving new-born cells with endogenous
markers of mature neurons or astrocytes, the rate of production
of these cell types can be calculated. This methodology was
applied previously to measure adult hippocampal neurogenesis

in 31 strains of the BXD panel (Kempermann et al., 2006).
The phenotypes measured were Ki67-positive proliferating
cell number (PROL), thymidine analog-retaining surviving
new-born cells (SURV), new-born neurons (NEUR), and
new-born astrocytes (ASTR). The data are available from the
web resource GeneNetwork® under the BXD phenotype IDs
10795-10798. All of the traits exhibit a wide range of expression

Zhttp://genenetwork.org
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FIGURE 4 | Scale freedom of the hippocampal transcriptome network. The number of neighbors of each node (k) and the probability of nodes having k neighbors (p)
are plotted for the correlation thresholds 0.1-0.9. The log-log plots of these values reveal a linear relationship when a network exhibits “scale free” behavior. Scale
freedom is a property seen in most biological networks. Because the true biological network underlying a correlation network is expected to exhibit this behavior, a
threshold where a linear relationship is first seen could indicate an appropriate threshold selection.

across the different strains (summarized in Table 1) and a strong
genetic basis for this variance is evidenced by the generally
high estimates of heritability; 0.53 (PROL), 0.68 (SURV), 0.70
(NEUR), 0.23 (ASTR) (Kempermann et al., 2006), which implies
that (except in the case of ASTR) the majority of the trait
variance can be explained by the genotype of the mice rather
than individual or environmental influences. Despite the clear
role of genetic background, the roles of individual genes is less
clear. To date, over 250 genes have been implicated in some
aspect of adult hippocampal neurogenesis (Overall et al., 2012).
Are all of these genes essential for control of the system? Do
they all act on distinct features or do they all act together? It
is more likely that genetic control is a complex mix of these
extremes.

We can discover genes with potential links to our trait
of interest by calculating the correlation of the trait against
expression of all the genes in a tissue sample. This was done in the
original study using whole brain transcript abundance estimates,
but can now be performed using a more relevant dataset we
have since generated in which dissected hippocampal mRNA
from 69 BXD strains was hybridized to Affymetrix M430v2
microarrays (Overall et al., 2009). Transcripts with the strongest
correlation with a trait of interest are expected to be more directly
involved in genetic control of the trait. Table 2 shows the top
20 transcripts correlating with each of the neurogenesis traits.
We can see from Figure 1 and Table 1 that many of the same
genes correlate with each of the different traits, indicating that
they share some common genetic control. But to get a better
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FIGURE 5 | Degrees of separation. Starting from the “seed” node (numbered
0), the nodes and edges are colored according to how many steps it takes to
reach them. Thus, nodes labeled “1” are 1 step (0 intermediaries = 0 “degrees
of separation”) from “0,” nodes labeled “2” are 2 steps (1 intermediary) and so
on. The gray node (labeled “c00”) is not connected to the node “0” at all. It is
unreachable from that node so cannot be included in the degrees of
separation calculation.

picture of which regulatory pathways are shared between traits
and which are specific, we need to look at the data in a different
way.

Networks as Tools for Complexity
One appealing approach to study the interactions of many
genes simultaneously is to view them as a network. Formally,
a network (or “graph” as it is known in mathematics) is a
collection of entities (genes or histology traits in our case) which
can be connected in some way (for example by sharing similar
expression profiles). Figure 2 shows a network constructed from
the neurogenesis-related traits and all genes correlating with any
one of them with a Pearson’s r of at least 0.6. Pearson’s correlation
coeflicient (r) is a measure of how similar the expression patterns
of two variables (traits/genes) are. Although two traits may be
correlated through indirect causality (e.g., both are under the
control of a third trait) and there is a certain “background”
influence of all other traits on the traits being correlated, the
fact that two traits share a similar pattern of expression reveals
the presence of some link and is a useful tool in the dissection
of functional genetic interactions. Visualized in this way, it is
immediately obvious that ASTR is under quite distinct genetic
control while the other traits share many correlating transcripts,
with SURV and NEUR (not surprisingly) being most similar.
Using this network, we can also ask which genes might be
more likely to be part of a regulatory pathway by identifying
transcripts which not only correlate to the histology traits but
also to each other (at the same threshold of r > 0.6). These nodes

»

in the network will have high measures of “centrality,” meaning
that they are connected to more of the other nodes. The more
neighbors (or “friends”) a node has, the more likely it is to be
influential in the network, so nodes with a high centrality score
(often called “hubs”) could be important modulators of tissue
function. Various centrality scores are presented in Table 3 which
suggest several potential key genes in the regulation of adult
hippocampal neurogenesis.

Correlation Networks Are “Omnigenic”
When interpreting expression correlation networks, it is
important to be aware that the correlation is a mathematical
property, and not a biological one. The adage “correlation
does not imply causality” is very true here, and there are
several reasons why two phenotypes might exhibit co-varying
expression. For example, two genes might be correlated because
they are both under the direct control of a third gene. In a whole-
tissue sample such as used here, it is also possible that two genes
are strongly correlated because they are expressed in a certain cell
type and the abundance of that cell type could be regulated by a
gene in a different cell. Nevertheless, correlations are likely to be
indicative of some shared or indirect causality. Unlike other types
of approaches, network analyses enable such shared underlying
causalities to be potentially identified.

While a true direct causal relationship (A causes B; where A
might be a transcription factor binding the promoter of B, for
example) ought to be reflected in a strong correlation, an indirect
relationship (such as B correlating with C; where both B and C
are similarly regulated by A but not directly interacting with each
other) can also lead to above-threshold correlations. Of course,
many weaker correlations may also arise purely by chance. As
the threshold for inclusion into the network is lowered, more
such indirect or spurious connections will be present. As the
threshold tends to zero (or —1 in a network based on signed
Pearson correlations), the connectivity of the network tends
toward completeness, i.e., everything connected to everything.
At the extremes, a threshold of zero means that all nodes are
connected to all other nodes and the number of connections
equals (n*—n)/2, where # is the number of nodes; at a maximum
threshold of 1, on the other hand, nodes can only be perfectly
correlated to themselves, so there are no connections between
nodes at all. Figure 3 shows the effect of different thresholds
on the 1st-level (direct connections) network surrounding the
neurogenesis-related traits.

This behavior is different from most other biological network
types, where connections are based on a biological property
and might vary only within the ranges of measurement error.
Protein-protein binding networks are a good example, in
which a connection represents the binding between protein
species. Nevertheless, even in the absence of measurement error,
molecular interactions may extend far beyond typically accepted
pathway boundaries (Boyle et al., 2017).

Because the properties of a network are dependent on the
pattern of connections, the selection of a threshold becomes
a consequential task. Often, the criterion of “scale freedom”
is used to decide if a network conforms to expected norms.
The “scale-free” property of biological networks simply means
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FIGURE 6 | Degrees of separation in the whole correlation network. Networks are shown for the phenotype NEUR at a correlation threshold of r > 0.6. In these
plots, all edges for the full correlation network (at r > 0.6) are drawn in gray and then the edges connecting other nodes to NEUR by one step are colored (A). The
colored subnetwork is then extended to also include nodes connected by two steps (one “degree of separation”) to NEUR (B). Subsequent steps are shown in the
other panels (C-). It is clear that the entire (reachable) network is essentially already covered by 3 steps; i.e., aimost all nodes are within two degrees of separation
from the NEUR phenotype. The edges not connected by any path (unreachable edges) remain gray in this plot.

that the structure of the network is very uneven. In a very
simple network, such as a lattice or a random network, every
node is connected to roughly the same number of other nodes
(neighbors). Such a network is homogeneous and the number
of connections per node tends to scale in proportion to the
network size. In scale-free networks, on the other hand, the
number of neighbors is very different for different nodes; some
have very many friends, some have very few, following what
is termed a “power law” distribution. This can be observed
by counting the number of neighbors (the “degree”) of each
node and seeing how likely it is that any particular node has a

certain number of neighbors (the “degree probability”). When
plotted together, these values in scale-free networks exhibit a log-
log relationship (very few very rich and very many very poor).
Figure 4 shows plots of the degree distribution for the whole
hippocampal expression network filtered at various thresholds.
The relationship between degree and degree probability clearly
breaks down at very high and low thresholds but appears stable
between values of 0.6 and 0.8. Thus our choice of r > 0.6 for
the network in Figure 2 is a good compromise that maximizes
the size of the network assayed while remaining in this scale-free
range.
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The Small World of Adult Neurogenesis

Even when a restrictive threshold is applied, the scale-free nature
of the network means that the minimal “distance” between any
two nodes is smaller than would be expected if the network
were randomly connected. This is referred to as the “small
world” property of networks — a term that was inspired by a
famous experiment by Milgram (1967) and Travers and Milgram
(1969) that asked how many intervening acquaintances would
be required to pass a letter by hand across the United States.
The number turned out to be six. This finding inspired a play
by John Guare, whose title “Six Degrees of Separation” became
emblematic for the paradigm. In the hyper-connected computer
age, Facebook has since brought this number down to 3.57°.
A related concept is the Erdés number, relating any scientific
author to prolific mathematician Paul Erdés based on whether
two authors have published together (GK, for example, has an
Erd6s number of 4, RWO of 5). It is worthwhile noting here
that the use of the word “degree” in this popular sense is not
the same as the graph-theoretical meaning introduced above.
These “degrees of separation” are really related to the length of
the shortest path connecting two nodes (in fact they equal the
shortest path length minus one).

Watts and Strogatz (1998) proposed the “small world” model,
characterized by the clustering of nodes and short separations
of clusters via individual nodes in those clusters (“clustered
connectedness”). In effect, this model says that the clustering
around highly connected nodes (known as hubs) means that
every node is not very far from a hub, and thus it is more
likely that two nodes are connected via a hub. In other words,
the average length of the shortest path is reduced. They also
made the surprising discovery that this network structure is
very commonly found in real-world networks; such as social
and biological networks. This influential work turned out to
be the starting point for studies that increasingly revealed how
the underlying network structures determine the properties of a

*https://research.fb.com/three-and-a- half- degrees- of-separation/

TABLE 4 | Numbers of neighbors at different degrees of separation.

Number of neighbors

Level PROL SURV NEUR ASTR
1 56 138 163 4

2 1890 2897 3222 63

3 7568 8770 9187 1809
4 13498 13783 14067 7790
5 15078 15146 15175 14062
6 16333 15335 15339 15253
7 16376 16376 15376 16367
8 15381 15381 15381 15380
9 16382 16382 15382 15382

For each of the neurogenesis traits (in the four columns), the number of transcript
nodes connected at a correlation threshold of r > 0.6 are shown in the first row
(“Level 1”). The subsequent rows show the number of transcripts connected to the
transcripts from the previous level. The numbers in the “NEUR” column correspond
to the number of nodes connected by highlighted links in the panels of Figure 6.

FIGURE 7 | The influence of genes spreads rapidly throughout the network.
Network grid plots are shown for the phenotypes NEUR (A) and ASTR (B) at
a correlation threshold of r > 0.6. In these plots, all nodes of the full correlation
network (at r > 0.6) are laid out on a grid such that the distance between
them reflects the correlation (more strongly correlated nodes/traits are closer
together). The node layout is identical in both plots. Nodes are colored by how
closely they are connected to the seed nodes (NEUR or ASTR). The first-level
neighbors (i.e., nodes directly connected to the seed node) are shown in
bright yellow (1 in the color key), second-level neighbors (“neighbors-of-
neighbors” with a shortest path length of 2) in yellow, and so on. Unconnected
nodes are shown in gray and tend to get pushed to the periphery of the plot
by the layout algorithm. It can be clearly seen by the brighter colors that
NEUR is mode highly connected in this network than ASTR and its influence
spreads to cover the entire network in fewer steps.

system (Vespignani, 2018). Network theory evolved from just a
descriptive tool to an explanatory approach in complex contexts.

The observation that the neurogenesis-associated
transcription network is small-world means that the average
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number of steps required to join any two traits (i.e., the number
of intermediate nodes in the shortest path) is again smaller
than would be expected in a randomly connected network. The
implication is that the “friends-of-friends” network extending
out from the adult neurogenesis-related traits will spread to
cover a rapidly increasing number of nodes. The example
network in Figure 5 demonstrates the concept of “degrees of
separation” by showing how distant nodes in a network can be
connected by intermediate steps. Thus gene 1 might influence
expression of gene 2 which might influence gene 3, and so on.
In this way, despite a direct correlation between gene 1 and
gene 3 not being detectable, its effect can spread, or “percolate,”
throughout the network via intermediaries. In Figure 6, the
percolation effect of the NEUR trait can be seen by highlighting
the 1st-level neighbors in the first panel, and the 2nd-, 3rd-level,
etc., in consecutive panels until the entire transcriptome has
been covered (or at least the whole connected subnetwork -
some nodes are not reachable and so can never be connected to
the neurogenesis traits regardless how many steps are used, see
Figure 5). But otherwise it is clear already from Figure 6 that it
does not require many steps to cover the entire transcriptome
network. Visualization of this effect using such traditional
network plots is poor, however, as the edges rather than the
nodes are drawn and there is a lot of overdrawing in a densely
connected network. This results in the much discussed “hairball”
problem in the visualization of complex networks.

We have therefore devised a novel layout which arranges all of
the nodes on a grid such that the distance between the cells on
the grid reflects the correlation; nodes with stronger correlation
tend to be closer together. Starting from the NEUR trait, there are
163 1st-level correlating traits (see Figure 2 and Table 4), shown
in yellow in Figure 7. The 3222 2nd-level correlates are in pale
orange and so on until the entire reachable network is covered
within nine steps. A summary for all four neurogenesis traits is
shown in Table 4.

It is also possible to calculate the minimum number of links
(edges) required for any gene to reach any other gene (the length
of the shortest path between the nodes). At a threshold of r > 0.6,
the average of the shortest paths between all pairs of genes is
only 3.16, implying that any gene might be exerting an effect on
any other gene with only around two intermediates. Thus, the
gene network surrounding adult hippocampal neurogenesis at
this threshold approximates two degrees of separation.

CONCLUSION

Our research is continuing to identify influential genes affecting
the various aspects of adult hippocampal neurogenesis and asking
how the many implicated genes work together to shape the
fate of the stem cells and their progeny. But the presented
results highlight that the combination of phenotyping and
whole transcriptome expression profiling in genetic reference
populations, together with now readily-available network analysis
tools, can yield a very different view of biology than used to
be possible. It becomes clear from a glance at the networks
presented above that a reductionist program of genetics will

hit difficulties at some point. In particular, studies based on
only two genotypes (knockout vs. wild-type, for example) assess
effects of the mutation on the phenotype that is the result of a
complex alteration of the underlying genetic network. This is the
reason why knockout experiments might have different results in
different genetic backgrounds.

Consequently, from adding together the information of single-
gene studies, only very limited insight into the detailed genetic
network architecture underlying the trait can be gained. Our
BXD study on adult neurogenesis revealed a heritability of the
new neuron phenotype of 0.7 but, despite this high value, the
QTL analysis did not reveal any significant loci. Instead, a large
number of weaker associations were observed suggesting a role
for many genomic loci with only small influence on the trait.
These minor associations, in sum, reflect the underlying genetic
network and imply the presence of many genes with individually
small effects but which together shape expression of the trait.
This is an example of the “missing heritability” that has been
reported for many other traits (Manolio et al., 2009). Human
body height is a much publicized example where, even taking an
enormous number of polymorphisms into account, still less than
half of the variance in the population can be explained (Yang et al.,
2010). Network-based analyses and visualization at the very least
expose this complexity and provide tools to dissect the problem
in ways not accessible by the traditional approaches that still
prevail in molecular neuroscience today. The use of networks
to aid analysis is not restricted to the methods presented above.
For example, structural equation modeling [SEM; see (Kline,
2015) for a recent overview], whose predecessors were actually
invented in a genetic context, has become a key technique in
other disciplines such as psychology and sociology but deserves
broad re-introduction to biology. The key feature of SEM is
that it can be used to test causality models involving latent
variables - that is variables that cannot be directly measured or
are conceptual. Adult neurogenesis as a process has many such
latent properties and might even be considered a latent variable
itself. Combining QTL mapping with SEM can further help in
dissecting out the genetic regulation of highly complex traits (Li
et al., 2006).

The highly connected nature of molecular biological pathways
means that a systems-level Weltanschauung, the consideration of
genes in the context of their molecular environment, together
with the corresponding bioinformatics toolkit will be more
often called for over the next decade of biology and beyond.
The “two degrees of separation” of the molecular network is
not only a mathematical analytical concept but reflects the
connectivity (and hence structure) of the underlying biology.
Perturbation of a gene, by experimental manipulation or in
disease, is likely to have much wider effects than might at first
be predicted. This idea has important consequences for drug
development, gene therapy safety and the handling of genetic
diseases. But it also fundamentally changes what we consider as
a “genetic” or “molecular mechanism” underlying complex traits
and phenotypes. In fact, our work suggests that the influence of
single genes might extend far wider than generally thought.

The example presented here demonstrates that teasing useful
information out of complex networks can be started today by any
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researcher in biomedicine, and that we, as a field, might have to
rethink our range of methodologies to achieve complex goals.
This progress should not, and ultimately cannot, be deferred
to the experts of systems biology - systems thinking must, and
will, go mainstream. As the technologies to deal with complex
data mature and the appreciation of genes as parts of networks
becomes more widely established, it will surely be seen that all
traits are “omnigenic” to some degree. But with tools to manage
the complexity, this information will only help us to better
understand the role of genes in shaping biologically important
traits.

MATERIALS AND METHODS
Trait Summary Statistics and Heritability

The adult hippocampal neurogenesis traits are from a previous
study (Kempermann et al., 2006) and are available from the
GeneNetwork BXD phenotypes database under the accessions
10795-10798. The summary statistics in Table 1 were directly
retrieved from the GeneNetwork records for the traits. The
heritability scores, h?, of the traits are likewise taken from this
previous study.

Preparation of Transcript Expression
Data

The transcript expression data used for the examples in this
manuscript are derived from a previously published Affymetrix
M430v2 microarray dataset (Overall et al., 2009) that has been
remapped to ENSEMBL gene identifiers using a custom CDF
from the Brainarray project*. For this work, the version 22
CDF was further processed using custom code to remove probes
containing a polymorphism between C57BL/6] and DBA/2]. The
R package used for this, CDFSnipeR, is available from http://
research.rupertoverall.net/resources/cdfsniper/. The microarray
data were processed, using this custom CDF, with the R package
affy using the RMA normalization algorithm as implemented by
the function justRMA.

*http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/
genomic_curated_CDF.asp

5h'ctp:/ /mbni.org/customcdf/22.0.0/ensg.download/Mouse4302_Mm_ENSG_
22.0.0.zip
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