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The codon sequences predict 
protein lifetimes and other 
parameters of the protein life cycle 
in the mouse brain
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Proteins are crucial mediators of cellular processes, and the regulatory mechanisms that ensure the proteome 
homeostasis are essential for living organisms. Proteome homeostasis is a dynamic equilibrium that relies on sev-
eral events, including the regulation of protein synthesis, abundance, folding, trafficking, sub-cellular localization 
and degradation1. �e proteome homeostasis is also intimately linked to the mRNA homeostasis, although the 

Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence 
Department of Clinical 

Bioanalytical Mass Spectrometry 
Laboratory of Computational 

Center for 
Genes and Behavior Department, 

Department of Plant Biochemistry, 
Department of Cellular 

Laboratory of Epigenetics in 

Max 
Institute of Medical Systems Biology, 

)

Received: 6 April 2018

Accepted: 2 November 2018

Published: xx xx xxxx



www.nature.com/scientificreports/

2SCIENTIFIC REPORTS |         (2018) 8:16913 

variation in mRNA levels alone is not sufficient to explain the variation in protein abundance2. Proteome regu-
lation is an exceedingly complex process3, with many levels ranging from genomic architecture and chromatin 
packing4,5 to mRNA modifications6, protein modifications, or protein degradation1. �is complexity is required 
not only for maintaining cellular function, but also as a response to challenges as the imminent threat of a patho-
gen, which leads to the production of large new sets of proteins7.

It is thought that the various regulatory processes behind protein homeostasis are coordinated by a common 
framework, the nature of which has remained a fundamental challenge in biology8. Emerging studies indicate that 
such a framework might be encoded directly in the codon and amino acid sequences9. In fact, several correla-
tions have been observed between sequence features and parameters of protein homeostasis, such as mRNA and 
protein levels, translation rates and protein lifetimes10–17. In addition, other elements that are known to affect the 
protein life cycle, as the localization to specific organelles and/or the incorporation in specific protein complexes18 
may be encoded in the sequences, but in a fashion that is yet to be fully defined.

�e literature on the correlation between the protein homeostasis and protein or codon sequences has mainly 
been concerned with single-cell organisms, where precise quantifications are easier to obtain. As an example, 
in E. coli careful protein and mRNA measurements could demonstrate that the codon content is able to control 
both mRNA folding and protein translation19. Substantial work has also been performed in the yeast S. cerevisiae, 
which has been one of the first cellular systems where prediction models for the global regulation of the proteome 
have been developed20,21. Such models enabled the estimation of protein abundances from mRNA expression 
data, taking into consideration tRNA adaptation indexes and evolutionary rates. More recently, as an extension 
of these models, protein and codon sequences have been implemented to predict mRNA levels, translation rates, 
and protein levels22,23. In this context, the correlations with protein levels were highest for the sequences of the 
open reading frames of mRNAs, suggesting that the information in the untraslated regions (UTRs) is largely 
redundant for the prediction protein stability. �ese findings are complicated by the recent discovery of a 3′ UTR 
motif that explains most of the variability of mRNA levels in yeast24.

Such works have also been performed in mammalian, and in Drosophila cell culture25,26. For example, the deg-
radation of mammalian mRNAs has long been correlated to the presence of AU-rich mRNA motifs27, and protein 
expression regulation has been correlated to the motifs contained in the ORF regions of mRNAs26. �e con-
nections between mammalian sequences and parameters of the protein homeostasis have been suggested to be 
causal in nature, as indicated by protein expression experiments relying on different synonymous codons, which 
suggested that the codon bias14, the mRNA secondary structure28, and/or the G/C contents29 may induce changes 
in protein homeostasis parameters, and/or in the conformation of individual proteins30,31. However, no complete 
consensus exists on the causality issue, and the optimal interpretation of such experiments is still unclear32.

In contrast to the abundant information on prokaryotes and eukaryotic cell cultures, the connections between 
the protein sequences and protein homeostasis have been less explored for multicellular organisms, and especially 
for mammals in vivo (albeit several works have already focused on simpler multicellular organisms such as the 
bread mold Neurospora crassa33,34). In addition, an important parameter of protein homeostasis, the protein life-
time, has been only tangentially connected to sequence features35, and, to our knowledge, has not yet been consid-
ered in relation to codon proportions, neither in single-cell organisms, nor in mammalian cell cultures or living 
mammals. We therefore decided to test the link between the amino acid and codon sequences and the parameters 
of proteome homeostasis, focusing on the mouse brain. �is choice was due to the following arguments. First, 
neurons, one of the main cell types in the brain, are long-lived cells with extremely limited self-renewal capacity. 
�us, they require an optimal control of homeostasis to prevent the accumulation of misassembled proteins, 
or the insufficient production of necessary proteins. As such the brain has a very limited regenerative capacity 
and will depend more strongly on accurate protein homeostasis than most other organs. Second, the brain is a 
highly safeguarded tissue, and is maintained in virtually unchanging conditions. �erefore, its proteome would 
be considerably less variable over time than, for example, that of the liver or of the muscle, which respond to dif-
ferent conditions (e.g. feeding regime or activity regime) much more strongly than the brain, rendering the brain 
proteome more easily predictable. Finally, extensive in vivo and ex vivo measurements are feasible in the brain, 
for parameters such as protein and mRNA abundances, protein lifetimes, and translation rates. We performed 
such measurements, and we found that the protein lifetime, along with other parameters of homeostasis, could be 
predicted with fairly high precision from the sequences, with the most important sequence parameter being the 
G/C contents of the third (wobble) nucleotide.

We set out to test whether the amino acid and the codon sequences could predict the different param-
eters of protein homeostasis in mammals, such as the protein lifetimes, the mRNA and protein abundances, and 
the translation rates. Before proceeding to this work, we needed to test the context-dependent variability of these 
parameters among different tissues and conditions, to make sure that it is possible (and reasonable) to search for 
connections between the sequences, which are the same for all tissues, and the homeostasis parameters, which 
may vary substantially among different tissues and conditions. As mentioned in the Introduction, we expect tis-
sues to respond to different conditions by changes in their cell populations and proteomes. �e essential question 
in this context is whether such changes are extensive or whether they are relatively limited.

For this purpose, we first considered the protein abundances, since here we can rely on many previously 
published works that have produced high-precision data. Based on an extensive study of protein abundances36, 
we found that these show similarities across different tissues in human (Supplementary Fig. 1a). As discussed 
in the original study, individual protein species do change in abundance in particular tissues. For example, 
as expected synaptic proteins are more abundant in the brain than in all other tissues. However, despite the 
within-gene differences that occur between tissues, the relative abundances of the proteins are overall strikingly 
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similar, when regarded at the level of the whole proteome (Supplementary Fig. 1b), with highly significant corre-
lation coefficients (r2) that are on average > 0.5 for most tissue comparisons. �is is not an o�en-discussed result 
in the literature, where most observations understandably focus on the differences between tissues and condi-
tions. Nevertheless, this similarity for the protein abundances in different tissues and conditions is confirmed in 
other extensive studies37,38. �ese similarities have also been observed for mRNA abundances36,37,39–43 translation 
rates44,45 and protein lifetimes18,41,46; Supplementary Fig. 1c). Along the same lines, a recent work that has analyzed 
the variables that can predict protein lifetimes in vivo has revealed that protein lifetimes measured in vitro hold 
the highest predicting power47, suggesting that for some homeostasis parameters there are intrinsic similarities 
that are conserved both in vitro and in vivo.

Overall these findings reinforce the idea that there might be some common mechanisms among tissues and 
conditions, at least under steady-state/physiological situations, that regulate different homeostasis parameter. 
What the exact biological meaning of these similarities is surpasses the scope of this work. At the same time, these 
results do not exclude that there are differences among tissues, which might be regulated by sequence-related 
processes, such as codon optimality48,49. We could summarize these apparently contrasting concepts as follows: 
both specific and common regulatory mechanisms coexist in tissues to regulate their homeostasis. Common 
mechanisms (common to all tissues) are needed to regulate the housekeeping pathways on which cells depend for 
their survival, and which are similar among all cell and tissue types. �e tissue-specific mechanisms are essential 
for the terminal differentiation and the specific function of each tissue.

We therefore conclude that the protein and mRNA abundances, the translation rates, and the protein life-
times are similar enough among the tissues of an organism (and even among related organisms; see examples in 
Supplementary Fig. 1d) to test whether they can be predicted from a number of variables including codon and 
protein sequence composition.

To engage with the pre-
dictions, we first turned to the protein lifetimes, which have been the least studied in this context, as discussed 
in the Introduction. We performed all experimental work on the mouse brain, for the reasons mentioned in the 
Introduction. We initially performed all predictions on our own experimental data, but we always compared our 
results with the literature, as described below for each measurement and prediction.

We defined the protein lifetimes as the average time period spent between protein production and degrada-
tion. Along with our own dataset of protein lifetimes in the mouse brain41, we also relied on several sets of protein 
lifetimes obtained in the mouse brain, and, for comparison purposes, in the mouse heart and in primary neuronal 
cell cultures46,50,51. We first tested whether the protein lifetimes were related in any fashion to the amino acid 
composition of the proteins. We calculated the amino acid composition of all protein sequences in our database, 
in percentages. For example, the % of alanine in the proteins in our database spans from ~2% to ~20% (~5–10% 
for most proteins). We then plotted the percentages, for each amino acid, against the lifetimes of the respec-
tive proteins (see examples in Fig. 1a). To obtain a numeric value representative for this plot, we calculated the 
Pearson correlation coefficient (r) between the amino acid percentages and the protein lifetimes (Fig. 1b). �ree 
hydrophobic and/or non-polar amino acids, alanine (A), glycine (G) and valine (V), correlated positively to the 
lifetimes (Fig. 1a,b). �e opposite was observed for five negatively charged or polar amino acids, aspartate (D), 
glutamate (E), asparagine (N), glutamine (Q) and serine (S, Fig. 1a,b).

We then performed the same type of measurement for the codon sequences (see examples in Fig. 1c). To our 
surprise, we found that synonymous codons had different behaviors, and that, overall, the codons ending with a 
cytosine (C) or guanine (G) were more positively correlated with the protein lifetimes than codons ending in ade-
nine (A) or uracil (U, Fig. 1d). �is was true for all of the synonymous codon groups, with the sole exception of 
the two glutamine codons (CAA and CAG). Moreover, for 12 amino acids the C- and G-ending codons correlated 
positively to protein lifetimes, while the synonymous A- and U-ending codons correlated negatively. �is is easily 
visualized if the coefficients of the G- and C-ending codons, and of the A- and U-ending codons, are averaged for 
each synonymous codon group (Fig. 1e).

We therefore 
concluded that the protein lifetimes correlate to different codon and amino acid percentages, albeit these correla-
tions were relatively weak (r ranging from −0.21 to 0.27). To test whether such sets of correlations could predict 
the protein lifetimes, we used three regression machine-learning approaches to build predictive models (Fig. 2a,b 
and Supplementary Fig. 2). Based on the evidence that several features are linearly correlated, we choose two 
linear approaches including linear glmnet52 and FoBa regression53, and a third “random forests” (RF) approach54 
that can also capture non-linear dependencies. Datasets were split into training (72%), cross-validation (8%), and 
test (20%) sets, and models were fit using 10-fold cross-validation (Fig. 2b; see also Methods). Overall, the root 
mean squared error of the three regression approaches achieved similar cross-validation and test performances, 
although non-linear relations were appropriately modeled only by the RF approach, which was therefore chosen 
for building all the models presented in this study (Supplementary Fig. 2h,i). To avoid the risk of overfitting55 
when discussing the results of the models, we relied only on the test performances (for an example see Fig. 2c).

We used three RF models (Fig. 2a). First, a model including only the sequence composition, with 81 features: 
20 amino acid percentages, and 61 codon percentages. Second, a model containing the sequence composition, 
and several additional sequence-derived features, as follows. We relied on the Psipred56 so�ware to separate each 
sequence in estimated α-helix, β-sheet and random coil regions, and calculated the percentage of each amino 
acid or codon in these regions. We also added overall sequence features such as the length and the molecu-
lar weight, the grand average of hydropathy (GRAVY), the aliphatic index, the nature of the N-terminal amino 
acids15, and the theoretical isoelectric point (as detailed in Methods and in Supplementary Dataset 1). �ird, a 
model containing all of the previous composition and sequence-derived features, together with 354 features from 
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Figure 1. Protein lifetimes correlate to the sequence composition. (a) �e graphs plot the protein lifetimes 
against the percentages of alanine (le�) or aspartate (right) in the sequences. �e alanine (A) percentage 
correlates positively with the lifetime, while the percentage of aspartate (D) correlates negatively. �e two amino 
acids also anticorrelate significantly with each other (r = −0.28; P < 0.001). (b) Pearson’s correlation coefficients 
of the percentages of amino acids against the protein lifetimes. (c) �e graphs plot the protein lifetimes 
against the percentages of two synonymous codons (ACA and ACC). Despite coding for the same amino acid 
(threonine), these codons are differently correlated to protein lifetimes, and anticorrelate significantly with each 
other (r = −0.11; P < 0.001). (d) Pearson’s correlation coefficients of the percentages of single codons in the 
mRNAs against the protein lifetimes. We plot this value according to the encoded amino acids, and color-coded 
as in panel b. �ree amino acids (leucine, arginine and serine) are encoded by 6 codons, from two different 
subgroups: a pair with identical nucleotides at the first two positions, and a quadruplet, again with identical 
nucleotides at the first two positions. For clarity, the pairs and quadruplets are separated with segmented lines. 
�e differences between codons of individual amino acids are not random: codons ending with a C or a G tend 
to have more positive correlation values than codons ending in A or U. �is tendency holds true for 20 out of 
21 codon subgroups, the only exception being the glutamine-encoding codons (CAA and CAG, purple). (e) 
Summary of the correlations expressed as averages for the G-/C- or A-/U-ending codons. All differences are 
significant, with the exception of the UUN codon group (leucine) and of the glutamine codon group. Student’s 
t-test significance levels within the same codon group: **P < 0.01, ***P < 0.001. Error bars = s.e.m. For panels 
b, d and e, n = eight datasets from 4 independent lifetime studies18,41,46,50.
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Figure 2. �e amino acid and codon sequences can be used to reliably predict protein lifetimes. (a) 
Overview of the 36 models used for predicting lifetimes. Models were learned for three feature sets: (1) 
protein composition features (amino acid and codon percentages; 81 features); (2) composition features and 
275 additional features derived from sequences (e.g. secondary structure information, length, etc.); (3) all 
previous features and 354 additional features. Models were tested with or without filtering features that are 
redundant, using three different learning algorithms (RF, glmnet and FoBa) and reporting the best (lowest 
RMSE) and the tolerance models. (b) Model optimization. �e protein turnover dataset is split into test set 
(20%) and training-cross-validation set (80%). �e training-cross-validation set is further split into training set 
(90%) and cross-validation (cv, 10%). �e best cv-model, is obtained using a 10-fold cross-validation with 10 
initializations. Performance of each model is evaluated on the test set comparing the RMSE of the predictions 
to the observed values. (c) Le�: example scatter plot showing lifetimes measured in this study against respective 
predicted lifetimes (based on all features). Only the 20% test data relevant for measuring prediction precision 
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published databases, including gene ontology (cellular component, molecular function, and biological process), 
and protein family affiliations (PFAM). We defined these as “non-sequence features”, albeit some are derived 
from the sequences, as the protein family affiliations, the localization to some organelles (via signal peptides), 
and the molecular function (whose assignment is largely based on domain sequence homologies). Others may be 
encoded in the sequences, but in a fashion that is yet to be fully defined, such as localization to mitochondria. Yet 
others may not be encoded in the sequence at all, as for some of the cellular component tags.

�e lifetimes predicted by the RF model based on the sequence composition alone (i.e., amino acid and codon 
percentages alone) correlated to the experimentally measured lifetimes significantly (Fig. 2d, r = 0.41, P < 0.001). 
Virtually all codon and amino acid percentages were used in the prediction (Supplementary Dataset 1). Higher 
feature importances were assigned to the percentages of alanine and aspartate, and to those of some of their 
codons, as expected from the fact that they have the strongest positive (alanine) and negative (aspartate) correla-
tions to the lifetime (Fig. 1b).

While the value of the correlation between the measured and the predicted lifetimes appears small, it should 
be noted that the maximal possible correlation is similar to the experimental variation between independent 
samples, since values that cannot be reproduced between measurements are probably erroneous, and are unlikely 
to be predicted by any computational model. Lifetimes from independent studies of the brain18,57 correlated to 
each other with an average r of ~0.69, implying that the r obtained from the prediction corresponds to ~60% of 
the maximum achievable. Importantly, the literature relating protein homeostasis parameters to each other (e.g., 
mRNA amounts to protein amounts or production rates), the coefficient of determination, meaning the squared 
Pearson correlation coefficient (r2) has o�en been used to reflect correlations, rather than the r value58. We there-
fore employ here the r2 when referring to the strength of our predictions (see Supplementary Dataset 2 for a com-
parison of both r and r2 values for all predictions). When considering the r2, this model’s prediction (r2 = 0.17) 
corresponds to ~35% of the maximum expected value (r2 = 0.48; Fig. 2d).

Using the second model, containing the sequence composition and other sequence-related features, we pre-
dicted lifetimes that resulted in a coefficient of determination of r2 ~0.21 to the measured values (Fig. 2d), cor-
responding to ~44% of the maximum expected correlation. �e most important features in this prediction were 
once more the amino acid and codon percentages of alanine and aspartate, along with their presence in random 
coil (aspartate) or helix (alanine) structures (Fig. 2e). �e isoelectric point, the GRAVY, and the overall percent-
age of negatively charged amino acids were also important features (Fig. 2e and Supplementary Dataset 1).

N-terminal amino acids have been considered essential components of degradation signals, also known as 
N-degrons, leading to the formulation of the N-end rule15,59,60. Interestingly, the nature of the N-terminal amino 
acid did not result in any improvement of the predictive power, as confirmed by the almost absent influence of 
the N-terminal amino acid on the protein lifetimes (Supplementary Fig. 3a), and by the inexistent correlation 
between protein lifetimes measured in vivo and the N-end rule (r2 = 0.02, Supplementary Fig. 3b). Not surpris-
ingly, the same was observed for each single codon independently (Supplementary Fig. 3c,d). �e same was also 
observed for a more extensive list of known degron motifs61. �e observation that degrons seem not to have an 
influence on protein lifetimes is counterintuitive, but can be explained by the fact that at the global level other 
features are more predictive, and the information of degrons might be redundant.

Finally, we employed the model containing all sequence and non-sequence features described above. �is 
increased the correlation to an r2 ~0.39, or 81% of the maximum expected value (Fig. 2d). �is implies that this 
model can predict protein lifetimes almost as well as they can be measured. Most non-sequence features were 
actually of limited predictive value. �e most important ones were localization to mitochondria, myelin sheath, 
synaptic vesicle, and to the cytoskeleton (Fig. 2e and Supplementary Dataset 1). �is is in line with the obser-
vation that these structures have longer lifetimes than most other components of the brain (our observation41).

Having established that one key parameter of protein homeostasis, the protein lifetime, can be 
predicted by the sequence composition, we next sought to verify whether this is a general characteristic of home-
ostasis in mammalian tissues. We first sought to verify this in the same tissue we used for the protein lifetime 
predictions, the mouse brain. We measured protein abundances using iBAQ62, and mRNA abundances by whole 
transcriptome shotgun sequencing63. For the analysis of ribosome density we relied on published Ribo-seq data64, 
although this type of measurement has been under some scrutiny lately65. �ese parameters correlate to each 
other to varying extents (Supplementary Fig. 4), with r2 values ranging from 0.003 to only 0.178, in line with the 
available literature, which indicates that the protein homeostasis parameters are not linked to each other with 
very high strength58,66.

are shown. Right: experimental variation between independent samples for this set of protein lifetimes, plotting 
our lifetimes against the respective values from two other available studies from the literature (black18; red57). 
(d) Pearson’s correlation coefficients between measured and predicted lifetimes by three random forests 
(RF) models based on sequence composition alone, on all sequence features, or on the entire feature list. For 
comparison, correlation coefficient between different published lifetime datasets18,57 (maximum expected).  
(e) Most important protein features in predicting the lifetimes, as defined by models. Amino acids were grouped 
in small hydrophobic (A, I, L, V), negatively charged/polar (D, E, N, Q), positively charged (K, R), potentially 
phosphorylated (S, T), and unusually shaped/bonded (P, W, C). Sum of the importances of these amino acids, or 
of their codons, was calculated and plotted. Bars: average importances of the respective features in the three RF 
models; error bars: s.e.m. Gene ontology features lack error bar since they are present only in the third model.
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All of these parameters correlated to the amino acid and codon sequences, in the same fashion as the protein 
lifetimes did (Supplementary Fig. 5), and they all could be predicted from the RF models we introduced above 
(Fig. 3). As the protein length seems to be connected to homeostasis parameters16, we also included it in the 
predictions. Since this parameter is precisely known, it was important to test whether it can also be predicted 
with high precision. �e amino acid and codon composition predicted the protein abundance, the mRNA abun-
dance, the ribosome density, and the protein length to significant levels, approaching the accuracy with which 
these parameters can be reproduced between datasets: respectively 90%, 75%, 84% and 83% of the maximum 
expected coefficients of determination, r2, which refer to the experimental variation between independent stud-
ies. �e experimental variation between studies was determined by comparing our dataset with mouse brain 
protein abundance datasets38, and with mouse mRNA abundance datasets39,64,67,68, or by calculating the variability 
between independent measurements in the published Ribo-seq data we used64. While the experimental reproduc-
ibility of mass spectrometry measurements is becoming excellent69, the values reported in our analysis also take 
into account the reproducibility of the animal housing and animal care conditions, and of the sample preparation 
steps taken to obtain the proteins, peptides or RNA molecules analyzed in the different laboratories. �e length 
was considered to have no variability, meaning that the maximum expected correlation is 100%. �e relative 
importance of each of the codons and of the amino acids in all of the predictions is detailed in Supplementary 
Dataset 1.

We next investigated whether 
these observations made in mouse would translate to other organisms. Lifetimes in vivo have not yet been exten-
sively studied in vertebrates other than the mouse, so we cannot state whether the same sequence correlations 
apply to, for example, human tissues. However, the other parameters (protein and mRNA abundances, ribosome 
densities and the protein length) have been studied in numerous model organisms. Using 800 published data 
sets, representing different tissues and conditions, from 25 different studies (see Supplementary Dataset 3 for the 
additional references), ranging from E. coli to human, we determined that the codon correlations to the different 
parameters are very similar among mammals (mouse, rat and human), mammalian (human) cell cultures, and 
for zebrafish (Supplementary Fig. 6). Furthermore, RF models built with murine data were able to predict the 
human protein abundance, mRNA abundance, ribosome density and protein length (with r values on average 
only 18% lower than when predicting the respective mouse parameters). Conversely, the human data could be 
used to predict the mouse parameters (with almost identical performance to predicting the human parameters). 
�e correlations are far poorer for invertebrates and plants, and even poorer for unicellular organisms, suggesting 
that the correlations described here apply primarily to vertebrates and more specifically to mammals.

Having thus verified that the amino acid and codon sequences can predict various cell 
biology parameters, we sought to provide a proof-of-principle experiment that would determine whether a 
manipulation of the sequences could change such parameters. �is remains a hypothetical question for the amino 
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Figure 3. �e protein and mRNA abundances, the ribosome density and the protein length can be predicted 
from the sequences. We used the same models as in Fig. 2 to predict the protein and mRNA abundances, the 
ribosome density and the protein length. As in Fig. 2, the models were based on (1) the protein composition – 
the amino acid and codon percentages; (2) these percentages and features derived from the sequence; (3) all of 
the previous features and additional overall features. �e bar graphs show the Pearson’s correlation coefficients 
between the measured protein and mRNA abundances, ribosome densities and lengths, and the respective 
values predicted by our models, as in Fig. 2d. Remarkably, the amino acid and codon compositions alone are 
sufficient to predict these parameters with an accuracy that is on average ~70% of the maximum expected (the 
reproducibility of the data between different data sets, from different laboratories).
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Figure 4. �e nature of the third nucleotide coordinates a number of parameters linked to protein homeostasis. 
(a) Scheme of the approach. �e turnover sensor is composed of the wild-type sequence of α-synuclein 
(a protein connected to Parkinson’s disease) fused to SNAP-tag73. �is sensor is covalently labeled with an 
O6-benzylguanine tag labeled with tetramethylrhodamine (TMR-BG), revealing the turnover of proteins 
in pulse-chase experiments. We optimized five versions of this sensor with increasing percentages of G-/C-
ending codons (0%, 25%, 50%, 75% and 100%). �e five plasmids were transfected in equimolar quantities. 
Before the pulse, pre-existing sensors were blocked, to label exclusively the newly synthesized proteins, using 
an unlabeled tag (BLOCK-BG). Cells were then pulsed for 2 h with TMR-BG and chased in BLOCK-BG, 
to reveal turnover. Following the chase, cells were fixed, imaged and analyzed in an automated fashion. In 
parallel, mRNA samples were collected, retrotranscribed, and mRNA levels were analyzed by RT-qPCR. �e 
LightCycler 480 (Roche Life Science) and the Cytation 3 Cell Imaging Reader (BioTek) were used for these 
experiments and the creation of these scheme. (b) Results of the pulse chase experiment, showing decay of 
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acid sequence, since any modification would change the protein too drastically for meaningful interpretation. 
However, this question can be approached from the codon perspective, since the codon composition effects were 
not random, but depended on the G/C versus A/U nature of the wobble nucleotide. �is nucleotide can be manip-
ulated without changing the amino acid sequence, which opens the possibility of testing whether the sequence 
composition influences these parameters. �is has already been suggested, for example, for the translation rate in 
bacteria70,71, or for the protein and mRNA amounts in HeLa cells29. For this purpose, we initially generated five 
synthetic genes based on the wild-type sequence of α-synuclein (a protein whose pathogenic accumulation has 
long been connected to Parkinson’s disease72) linked to a SNAP-tag73, which enables pulse-chase experiments. All 
five genes coded for the same amino acid sequence, but contained different percentages of G-/C-ending codons, 
ranging from 0% to 100% (Supplementary Dataset 4). �e resulting mRNAs had, as expected, different folding 
strengths, with the G-/C-containing ones being most strongly folded (with an estimated ∆G decreasing linearly 
from −220 to −420 kcal/mol with increasing percentages of G-/C-ending codons).

�ese genes were transiently transfected in a mammalian fibroblast cell line (COS7), and the cells were pulsed 
with an O6-benzylguanine (BG) derivative carrying a modified rhodamine dye, which becomes covalently bound 
to the SNAP-tag (Fig. 4a). �is was followed for 24 h in a chase experiment, to monitor the degradation of the 
fluorescently-pulsed proteins. In parallel, the mRNA amounts were monitored by reverse transcription poly-
merase chain reaction (RT-qPCR)74. �e results confirmed that the codon composition determines the turno-
ver parameters. Cells transfected with constructs containing higher percentages of G-/C-ending codons had the 
strongest fluorescence intensity, and lost the fluorescence more slowly (Fig. 4b), indicating that both the protein 
lifetime and the protein abundance were larger (Fig. 4c). �e same was observed for the mRNA abundance and 
the protein production rate (Fig. 4c).

To confirm that the effects of the G/C-ending codons on protein lifetimes were not specific for alpha synu-
clein, which might undergo complex oligomerization events75, we extended the protein turnover experiments to 
four additional genes (complexin-1, cofilin-1, protein DJ-1/Park7 and Rab5a), for a total of 20 other sequences 
with GC contents ranging from 0% to 100% (Supplementary Dataset 4). Since the measurements of protein sta-
bility might be influenced by our detection system, we performed a control calibration of all our imaging settings, 
which allowed us to rely on the precision of our measurements (Supplementary Fig. 7). We also checked that 
the lifetimes that we measured are compatible with lifetimes measured with analogous imaging approaches76 
(Supplementary Fig. 8). Altogether, these experiments reveal that, although variably, the effects of G/C-ending 
codons on protein turnover and protein abundance can be extended to different protein species (Fig. 5a–d). In 
detail, higher G-/C-ending codon percentages increasingly extend the lifetimes of these sensors, roughly doubling 
their stability when comparing the lifetimes of 0% to 100% G/C-ending sensors (Fig. 5e,f).

�is implies that changing the composition of the synonymous codons can tune all of the parameters of pro-
tein homeostasis measured here (although such in vitro experiments have different levels of uncertainty that can-
not be controlled perfectly, including, for example, the use of codons that may be particularly under-represented 
in the tRNA population of the cell line utilized).

Discussion
In this work we tested the correlation between protein and codon sequences, alongside with other features, and 
several basic parameters of protein homeostasis obtained from in vivo data, in the mouse brain. We provide an 
extensive characterization integrating more than 800 multi-omics data sets, from several published studies. Our 
results demonstrate that both codon and amino acid sequences hold a predictive power in the determination of 
protein lifetimes, protein abundances, mRNA abundances and translation rates in the mouse brain. �e data also 
imply that the wobble nucleotide could be used to fine-tune multiple protein turnover parameters, which should 
prove interesting for synthetic biology and protein production technologies, in agreement with previous work on 
this issue29.

�e idea of a protein and codon sequence-based regu-
lation of the proteome in vivo might raise substantial skepticism. �is is in part due to the fact that there is a 
disproportioned amount of experimental work that deals either with tissue-specific differences, or with dynamic 
changes of the proteome following a perturbation (such as a stimulus, a toxic insult, the ablation of a protein, 
or the transition into a new developmental step). �us, the impression arises that the proteome is continuously 
changing, and should therefore not be predictable from an unchanging parameter such as the protein sequence. 
In spite of this impression, the parameters of the proteome are strongly conserved under normal conditions in 
adult organisms, across different tissues, between different physiological conditions, and even between related 

the labeled sensors encoded with increasing percentages of G-/C-ending codons. Segmented line: percentage 
of the dye lost by cell division dilution. Protein lifetimes are increased for sequences with higher percentages 
of G-/C-ending codons, as shown by slower decay of the sensors with higher G-/C-ending codons (see also 
Fig. 5f). Each dot represents the average of three separate experiments with SEM (n = 3). Similarly, higher 
percentages of G-/C-ending codons increase protein abundance, as shown in the inset that represents the 
relative protein expression at the beginning of the experiment (time0), measured as absolute fluorescence for 
each sensor. (c) Turnover parameters analyzed during the experiment comprising the mRNA abundance (le�), 
and the protein production rate (right). Each dot represents a separate experiment (n = 5). Not only the protein 
lifetime is increased for sequences with higher percentages of G-/C-ending codons, but also mRNA abundance 
and protein production rate. �e graphs show means from 5 independent experiments. Trends statistically 
significant for all graphs, linear regression P < 0.001.
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Figure 5. �e nature of the third nucleotide influences protein lifetimes. (a–d) We designed four additional 
families of protein turnover sensors composed of the sequence of four different proteins fused to the SNAP-tag. 
For each one of the four protein species, we optimized five versions of their coding sequences with increasing 
percentages of G-/C-ending codons (0%, 25%, 50%, 75% and 100%), corresponding to 20 additional constructs. 
For each protein, the five plasmids with increasing percentages of G-/C-ending codons were separately 
transfected in COS7 cells in equimolar quantities. Also in this case, as for Fig. 4b, the sensors were pulsed for 
2 h and chased for 24 h, revealing the turnover of the different proteins. For each desired chase time, cells were 
fixed, imaged with a high content microscope and the fluorescence analyzed in an automated fashion. �e 
segmented lines represent the percentage of the dye that was lost due to the dilution caused by cell division from 
the beginning of the experiment. Each dot in the graphs represents the average of three separate experiments 
with SEM (n = 3). �e inset in the upper right corner of each graph shows the relative protein expression at the 
beginning of the experiment (time0), measured as absolute fluorescence of every sensor. Each panel shows the 
results from >10.000 cells analyzed. (e) Summary of the lifetimes (expressed as t1/2), calculated through the 
fitting of the data represented in in Fig. 4b for Synuclein (Snca) and in panels a–d for the remaining proteins. 
�e r2 indicates the coefficient of determination for each fitting used for the calculation of the lifetimes. (f) 
Lifetimes increase versus the 0% GC3 condition. Higher G-/C-ending codon percentages continuously increase 
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organisms (Supplementary Fig. 1). �is finding is to some extent expected, given the high similarity of the basic 
metabolic pathways that are shared by all animal cells, which would leave their proteomes broadly similar, and 
therefore potentially predictable. At the same time, the work performed here has dealt with the brain, an organ 
which is expected to change little over different conditions. Results in organs that change more extensively over 
time (liver, muscle, fat tissue, and others) may be somewhat different, and may require additional analyses for 
accurate predictions.

To our knowledge, this parameter has not yet 
been considered in relation to the composition of the codon sequence. It has also been just incidentally linked 
to the amino acid sequence, beyond the nature of the N-terminal amino acid or the protein size and isoelectric 
point16,17. We found that the percentages of some amino non-polar or hydrophobic acids correlated positively to 
the lifetimes (Ala, Gly and Val), while others, mainly negatively charged or polar, correlated negatively (Asp, Glu, 
Asn, Gln). �ese observations could be interpreted by taking into account the possible role of negatively charged 
residues for increasing protein solubility77,78. �is would render negatively charged proteins more exposed to 
damage (e.g. oxidative) and to recognition by elements of the degradation pathways. In contrast, hydrophobic 
proteins may be more tightly packed, or may be buried in membranes, and should therefore receive less damage, 
and be less easily degraded.

Further effects were seen at the level of the codon sequences, as synonymous codons ending with a C or G 
were more positively correlated with the protein lifetimes than codons ending in A or U. �is correlation is true 
for all of the synonymous codon groups, with a sole exception (CAA vs. CAG, the Gln codons). �is is in line 
with the suggestion that the nature of the third nucleotide may serve to regulate aspects that could be linked to the 
stability of proteins, such as protein folding (Hanson & Coller, 2018). However, the observation that the codon 
percentages tended to be more important in the predictions than the amino acid percentages was surprising, 
since the former have not been directly linked to protein lifetimes, as indicated above. Many protein features have 
been used to model protein degradation, with varying degrees of success (for example see35), but not the codons. 
One could argue that, since codons have been linked to parameters spanning from mRNA abundances to trans-
lation rates, and since these parameters are related to the protein lifetimes (Supplementary Fig. 4), the lifetimes 
should also be connected to the codon percentages, thus making our observation expected, and somewhat trivial. 
However, this is not the case, in view of the relatively poor correlations between the different protein homeostasis 
parameters in the mouse brain (Supplementary Fig. 4). As o�en discussed in the literature, these parameters 
(mRNA and protein abundances, translation rates, protein lifetimes) do not always predict each other with high 
precision2, and thus having one of them predicted by the sequences does not automatically imply that others 
should be predicted by the sequences as well. �is is all the more evident in the fact that different codons were 
important in the predictions of the different parameters (Supplementary Dataset 1).

From our data it is also apparent that the predictions are more precise when other features are included, such 
as organelle localization. Hence, the influence of the sequence is not absolute, and non-sequence features are 
presumably overlaid onto the sequence-derived framework to provide the final values for turnover parameters. 
Several other features could be investigated, and could be added in the future to improved predictive models. 
�ese might include the genomic organization and chromosome architecture79,80, the composition and regulation 
of promoter and enhancer regions81–83, the composition of pre-mRNA splicing regions84 and of mRNA untrans-
lated regions85. At the same time, both yeast and cell culture work indicate that coding sequences are more rele-
vant for the prediction of protein parameters in general than accessory untranslated or regulatory sequences22,26.

Protein sequences contain several degradation motifs, 
termed degrons. �ese include the N-terminal amino acids (N-degrons)15,59,60. Other specific degrons within 
each protein sequence are also thought to contribute to protein turnover61.

In our models the degrons, including the N-degrons, were features of negligible importance for the predic-
tion of protein lifetimes. �is is in line with a recent study that also found little support for the N-end rule in a 
computational analysis of protein degradation rates in cell cultures35. �is does not argue against the impor-
tance of degrons, or against the N-end rule. Degrons might be implicit in other more general sequence features, 
which render degron signals redundant in our models, and lead our models to give them a limited importance. 
We cannot exclude other reasons as, for example, the lack of information about post-translational modifica-
tions that are particularly relevant for triggering degradation pathways (as N- terminal acetylation and poly/
mono-ubiquitination). Additionally, while it is known that virtually all proteins are translated with a N-terminal 
methionine, the co-translational cleavage by the methionine N-terminal aminopeptidases is a rather complex 
process, and the final product of this enzyme is difficult to predict86–88. As a technical note, in the original paper 
establishing the lifetimes which led to the formulation of the N-end rule, the lifetimes were measured from an 
exogenous protein containing different amino acids at its N-terminus in reticulocytes in vitro59, an experiment 
which is linked to the endogenous lifetimes in a limited fashion, although this rule is still used as a gold standard 
for the prediction of protein half-life in mammalian cells89. Our study, which shows stronger predictive power, 
might serve as foundation for more efficient tools allowing the prediction of protein turnover in vivo.

the t1/2 from 0% to 100% GC3 (statistically significant trend with a linear regression P < 0.0001). With respect to 
the 0% GC3, in the 100% GC3 the lifetimes of these sensors are increased on average up to 229.0 ± 24%, roughly 
doubling their stability. ANOVA followed by Bonferroni post-hoc comparisons test: **P < 0.01, ***P < 0.001. 
Error bars = s.e.m.
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We 
extended our models to other crucial aspects of the proteome homeostasis, as the protein abundances, the mRNA 
abundances, and the translation rates. For all models the sequence composition was dominating the predictions, 
reinforcing the idea that common regulatory mechanisms might take advantage of the unequal use of synony-
mous codons. Although the discussion of the individual effects of all features is beyond the scope of this work, 
our list of predictive features, with their relative weights, may serve as a basis for future research and for the 
fine-tuning of protein production technologies.

�e interdependence of the different protein homeostasis datasets could in principle explain why protein 
lifetimes can be predicted just on the basis of these correlations. Nevertheless, this is not the case for three main 
reasons: (1) �e correlations of other values with the homeostasis parameters are overall low (Supplementary 
Fig. 4); (2) As previously mentioned the relationships between different codons and the homeostasis parameters 
are not the same for the different protein homeostasis parameters (Supplementary Fig. 5), reinforcing the concept 
that the interdependence of these parameters is not high enough to allow cross-predictions and (3) �e random 
forest algorithm that we have used allows to measure the relative importance of each feature in the prediction 
(as indicated in Supplementary Dataset 1). �e relative importances (the weights) of these features in the pre-
dictions are different, and sometimes have opposite signs, thus indicating that there is no direct interdependence 
between different homeostasis parameters. Overall, this indicates that the parameters of protein homeostasis are 
not enough correlated to efficiently predict protein hal�imes.
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Figure 6. Hypothetical scenarios linking the G/C contents at the third position of codons to protein lifetimes 
and to other turnover parameters. (a) Hypothetical scenario for low G/C contents at the third nucleotide. 
(b) Same scenario for high G/C contents. For simplicity we discuss in detail only the scenario represented on 
panel a. �e same relations apply to the scenario on panel b but in reversed fashion. Molecules of mRNA with 
a low G/C contents on the third nucleotide will have low overall G/C contents (inference 1; demonstrated in 
Supplementary Fig. 9a,b). Low G/C contents at the third nucleotide correspond to less stably folded mRNA 
molecules (inference 2; demonstrated in Supplementary Fig. 9c for mouse brain mRNAs, and Supplementary 
Fig. 9d for the synuclein synthetic genes). Less stably folded mRNA molecules allow faster ribosome progression 
(inference 3; reviewed in10). Fast ribosome progression decreases the time for co-translational protein folding 
(inference 4; discussed by Faure and collaborators90). �is implies that the low G/C contents at the third 
nucleotide results in less structured proteins (inference 5; demonstrated in Supplementary Fig. 9g). Less 
structured proteins, i.e. with poor folding or with a relatively higher amount of exposed surface, should have 
shorter lifetimes, since they have larger surfaces that can be affected by damaging interactions, such as oxidation 
(inference 6; reviewed in113, and demonstrated in our previously published results41). Low overall G-/C-ending 
codons decrease mRNA lifetime and result in less abundant mRNAs (inference 7), albeit the precise mechanism 
is not yet clear for mammals114 (inference 8; suggested, with significant albeit not very strong correlations, 
by our mouse brain data, Supplementary Fig. 9e, and by our data on synthetic genes, Supplementary Fig. 9f). 
Lower amounts of mRNA then lead to lower protein production rates (inference 9; reviewed by Maier and 
collaborators115). In conclusion, the low G/C contents at the third nucleotide induces shorter protein lifetimes 
(inference 6) and lower protein production rates (inference 9), which converge to low abundance for the 
respective proteins (inference 10).
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Intriguingly, the models did not rely on uniquely specific features, such as individual low-abundance codons. 
In contrast, virtually all amino acids and codons were important in the predictions, implying that the predictive 
power is distributed along the entire sequence. Importantly, the codon percentages tended to be more important 
in the predictions than the amino acid percentages, underlining the observation that synonymous codons of one 
amino acid correlate differently to the various parameters. �is is all the more evident for the amino acids with 6 
synonymous codons (serine, arginine, leucine), whose codon importances are disproportionally large, implying 
that the multiple synonymous codons of these amino acids serve the purpose of modulating cellular parameters.

As a side note, in our study we used protein length as a control, since to our knowledge there is no 
context-dependent regulation of protein length, and since this parameter is very precisely determined for mouse 
proteins. At the same time, the idea that the sequence composition can predict protein length might be interesting 
for the discovery of new proteins and for the mammalian proteomes that are yet not studied in detail. �e strong 
correlations seen between all mammals investigated (Supplementary Fig. 6) suggest that such aspects should be 
conserved also for such proteomes.

Whether the links between the sequence and the homeostasis parameters are causal in nature remains an open 
question. We do provide a proof-of-principle experiment to test this relationship in cells. One caveat still remains, 
since GC-rich constructs (which are expressed to a higher level than the low-GC variants) might overload the 
degradation machinery and thus become more stable. However, while being far from perfect, our approach is 
based on several experiments, each performed on several thousands of cells, and provides initial evidence for the 
idea that the parameters of protein lifetimes can be regulated through codon choices. �is is in line with previ-
ous experiments that have targeted similar genes (albeit not codifying for identical proteins) with 2–4 different 
G-/C-ending codon percentages29, and have studied the resulting protein and mRNA amounts. �is issue, how-
ever, remains controversial, and awaits further proof, especially from in vivo studies.

�e exact 
mechanism(s) by which unequal use of synonymous codons can be used to control proteome parameters, espe-
cially protein turnover, are still to be understood, especially in vivo. We summarize the possible mechanisms in 
Fig. 6, with some additional supporting information included in Supplementary Fig. 9. One could speculate that 
a high percentage of G-/C-ending codons lead to mRNAs with a stronger folding energy (Supplementary Fig. 9a–
d), due to higher proportion of triple hydrogen GC bonds that would arise during mRNA folding. �e resulting 
strongly folded mRNAs may be more stable, and would tend to accumulate (Supplementary Fig. 9e,f), enabling 
high protein production rates, and leading to higher protein abundances. In addition, tightly folded mRNA mol-
ecules might prompt for slower ribosome progression10 (albeit the overall protein production rate is still high, 
due to the high abundance of the mRNAs). In other words, while ribosomes might be slower on these mRNAs, 
they contribute to higher levels of protein production, since their stability is higher and they are more abundant.

Slower ribosome progression in turn presumably enables more accurate co-translational protein folding14,90–92, 
thereby leading to stably folded proteins. �is is strongly suggested by our data set, since G-/C-ending codons 
were significantly enriched in folded areas of the proteins (α-helix or β-sheet), while A-/U-ending codons were 
enriched in unfolded areas (Supplementary Fig. 9g). �us, the local effects of high G/C-ending codons in some 
proteins might result in the relative stabilization of these proteins preferentially.

More accurately folded proteins should have smaller solvent-exposed surfaces than unfolded proteins41, 
which would lead to lower rates of chemical damage (e.g. oxidation), and thus to longer lifetimes. �is reasoning 
also gives an indication as to why A-/U-ending codons may be preferred in long proteins: to increase the speed 
of ribosome progression in long transcripts, thereby ensuring their timely translation. An additional possible 
explanation of some of these effects (at least for mRNAs rich in G- or U-ending codons), could arise from the 
use of wobble-base pairing during translation. In fact, in some circumstances a tRNA family is being used for 
both standard (Watson and Crick; G:C) recognition and for wobble (G:U) base-pairing93,94. In the case of this 
non-standard “wobble” base pairing the first nucleotide of the tRNA anticodon (G) can engage with a U in the 
third position of a codon. Since in metazoans and protozoa this has the effect of reducing protein expression 
and mRNA stability for the genes that contain high levels of these U-ending codons, this mechanism might in 
turn promote faster elongation, higher mRNA stability and higher protein levels for mRNAs that are rich of the 
G-ending codons.

Altogether, these hypothetical scenarios might thus explain how all of the protein homeostasis parameters are 
interrelated. At the same time, a number of aspects will need further validation. As an example, the helicase activ-
ity associated with the ribosome may allow to overcome complex mRNA structures95,96, so that the secondary 
structure of mRNAs may not have as great an influence on the translation efficiency. Another aspect that awaits 
further clarification is the notion that slow ribosome progression implies better protein folding, since the real 
situation may be considerably more complex97,98.

Conclusions
Our study contributes to the increasing list of evidence that protein homeostasis parameters are dynamically 
regulated. We support the idea that codon usage might be used to tune protein turnover, in agreement with scat-
tered evidence that is accumulating in the literature9,19,90. At the same time, our work is a step in the direction of 
shi�ing the attention on the proteome regulation mechanisms from single cells to entire organisms. �is direction 
will doubtlessly continue to progress, since the expanding palette of “omics” approaches ensures that upcoming 
studies will benefit from the availability of extended datasets, including protein posttranslational modifications, 
mRNA modifications and possibly metabolic measurements that will complement the available data.
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Material and Methods
In addition to our mRNA and protein abundance data from mouse41, we used several 

public external datasets for computing the codon correlations to the turnover parameters taken into consider-
ation in this study. �ese include 15 lifetime data sets, 103 protein abundance data sets, 631 mRNA abundance 
data sets and 51 data sets of ribosome profiling. �e mRNA coding sequences of E. coli, O. Sativa and A. thaliana 
were obtained respectively from EcoGene 3.099, RAP-DB100, and TAIR101. For the remaining organisms sequences 
were obtained from the Ensembl release 84102. Protein lengths were acquired from the reviewed protein sequences 
deposited in Uniprot103. Supplementary Dataset 3 summarizes the sources of the datasets that have been included 
in our analysis.

Determination of protein lifetimes in the mouse brain in vivo A detailed description of the meth-
ods that we have used for determining and validating protein lifetimes in vivo is described elsewhere41. Briefly, 
mice have been metabolically pulsed with a Lys(6)-SILAC-Mouse labeling diet (13C6-lysine, Silantes Proteomics, 
Germany) for different time intervals. Mice were sacrificed, tissues dissected and precise lifetimes were deter-
mined through fitting following a thorough evaluation of the pool of available 13C6-lysines.

Syntetic genes were designed in silico as detailed in 
Supplementary Dataset 4 and were ordered at GenScript (USA). Sequences were subcloned in pcDNA3.1(+) 
plasmids. All final plasmids were confirmed by sequencing. African Green Monkey Fibroblast-like Kidney Cells 
(COS7) were subcultured according to standard protocols and were incubated at 37 °C in 5% CO2. For imaging 
experiments cells were plated on SensoPlate 96-well glass-bottom plates (Greiner Bio-One) coated with 0.1 mg/
ml poly-L-lysine. Cells were transfected in solution with Lipofectamine 2000 (�ermo Fisher Scientific). Before 
transfection the quantity of DNA was measured in triplicate at the NanoDrop 2000 and confirmed by densito-
metric analysis on quantitative DNA gel electrophoresis. Using two quantification methods in parallel gave us the 
same results and allowed us to exclude any possible bias in the measurement of DNA concentration introduced 
by GC content. As an additional note, since the total length of the plasmid used is >6000 bp, the GC optimization 
on the final sequence has a very little effect on the total percentage of GC. �e overall sequences containing the 
0% GC construct have a GC content of ~50%, while the sequence containing the 100% GC constructs have ~54% 
of GC. For each well of the 96-well plate the same quantity of DNA (330 ± 3 ng) was incubated with 0.66 µl of 
Lipofectamine. During the imaging experiments, the fluorophore-binding pocket of the protein turnover sensor 
was blocked overnight with 2 µM SNAP-Cell Block a membrane permeable bromothenylpteridine that binds the 
SNAP tag73, New England Biolabs). Cells were pulsed for 2 h with 1 µM of SNAP-Cell TMR-Star, washed thor-
oughly and chased in medium containing SNAP-Cell Block, to avoid any possible staining of newly synthetized 
sensors with the unreacted dyes. Cells were then chased, fixed in 4% buffered PFA, quenched, stained with DAPI, 
and imaged in PBS at the Cytation 3 cell imaging multi-mode reader (BioTek). In parallel the RNA was extracted 
from transfected cells using the QIAzol/RNAeasy kit (Qiagen), treated with DNase to avoid any contamination 
from plasmids, retrotranscribed and analyzed by RT-qPCR using the LightCycle 480 SYBR Green I Master kit 
(Roche) on a LightCycler 480 system by Roche. To avoid an amplification bias due to the annealing of primers 
to the optimized sequences, PCR primer pairs were designed for the common 3′-end of the synthetic mRNAs. 
�e following primers (5′ to 3′) were used for amplification: forward, CCCGTTTAAACCCGCTGAT; reverse, 
ACAGTGGGAGTGGCACCTT.

For the predictions we used sequence-based 
features (Supplementary Dataset 1), either alone or in conjunction with Gene Ontology (GO) and protein family 
information (all features). �e rationale for the selection of features was to a large extent driven by postulated 
theoretical principles and/or observations55,104.

We first extracted and compiled relevant information from public databases. In general, the features that we 
chose can be directly obtained from the gene and protein sequence, or can be calculated from them (e.g. second-
ary structure prediction). In total we selected 710 features (Supplementary Dataset 1). Of these, 11.4% are the 
percentages of codons or amino acids in a given protein, which could be termed sequence composition features.

We also took into consideration the N-terminal amino acid for each protein15, that corresponds to 2.8% of 
the features. Other potential interesting features that might govern physiological parameters are the protein 
size, hydrophobicity, and charge, including the isoelectric point, molecular weight, grand average hydropathy 
(GRAVY), and alipathic index, which make up 1.0% of the total feature set. Since it is probable that the secondary 
structure of a protein might be important for its biological characteristics, 34.6% of the database consisted of the 
percentages of codons or amino acids that were predicted to be in β-sheets, α-helixes or coiled-coils. All of these 
features can be easily calculated from the primary sequence of the proteins (albeit not from the composition 
alone), and can therefore be termed sequence features.

Gene and protein features such as the percentages of codons and amino acids, N-end amino acids were directly 
obtained from Universal Protein Resource (UniProt)103. Protein features such as the isoelectric point, molecular 
weight, grand average of hydropathy (GRAVY), and aliphatic indexes were computed with ProtParam105 using the 
perl module (Bio::Tools::Protparam). Secondary structure predictions of proteins were calculated using PSIPRED 
v3.356,106. �e N-terminal amino acid was defined as the amino acid at position 2 of a given protein.

Finally, we added features that describe the localization of a protein or the nature of its domains, resulting 
in 50.1% non-sequence-derived features from public databases such as GO and PFAM. �e biomaRt R package 
version 2.22.0 was used to extract GO, protein, and protein family information. In more detail, we extracted GO 
information for the categories ‘biological process’, ‘molecular function’, and ‘cellular component’ from the GO 
database107. Since GO contains a large number of terms we limited GO-derived features to the ones that can be 
found in at least in 10 proteins. Protein family information was extracted from PFAM108. It is important to note 
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that we excluded certain features in some predictions, since they were directly related or equal to the response 
variable. As an example, we have excluded the ‘protein length’ as a feature when predicting protein length.

Our prime interest was to predict protein characteristics (e.g. protein half-life) 
with as high accuracy as possible, using a set of features (predictors). �e importance of the predictors from the 
models can provide biological insights on how (strongly) they influence biological characteristics. Based on this 
information we can then modify genes or proteins for a defined biological outcome (e.g. half-life). �e first step 
was to generate a high-quality database of predictors and response variables of interest, as described in the pre-
vious section for the response variables. Further crucial steps in model building were data pre-processing, model 
selection, model optimization, and quality control. �e remaining paragraphs of this section will give a general 
description of these steps.

Pre-processing. All predictors were centered and scaled to avoid predictor selection bias. In addition, models 
were built with and without filtering for co-linear predictors, predictors that are linear combinations of each 
other, or close to zero-variance predictors to avoid model optimization problems. In general we did not see per-
formance or feature selection differences for models built with filtered or non-filtered data, and we therefore do 
not report the filtered model performances in this manuscript, beside what shown in Supplementary Fig. 2.

Model selection. �e next crucial step is the model selection, which defines the machine-learning algorithm best 
suited to the task. �e first choice is easy: do we choose a regression or classification algorithm? Or, in other 
words, is the response variable continuous or categorical? In our case, all responses are real ( ) (e.g. protein turn-
over) or natural ( ) numbers (e.g. mRNA expression), which are best represented by a regression model.

�e second consideration is if we choose a linear regression model or a non-linear regression model, or, in 
other words, whether our predictors are linearly or non-linearly related to the response variable. For sequence 
data, each predictor was fit to the response variable using univariate first and fi�h degree polynomial regression 
and the RMSE was measured. For most response variable several predictor combinations polynomials of degree 
1 (linear models) fit the data best or almost as good as fi�h-order polynomial functions, pointing towards linear 
relationships of the predictors to the response variables. �erefore, we chose to use two strictly linear regression 
approaches, elastic-net109 (glmnet) and FoBa53. Although it seemed that the individual response variables have a 
linear relationship to the respective response variables, it was not clear if combinations of predictors might not 
have a non-linear relationship that explains the response variable better. In order to capture linear and potential 
non-linear relationships we also used the random forests (RF) approach54.

Moreover, our data contained in general many predictors (pmin = 71, pmax = 710) as compared to the observa-
tions (nmin = 1325, nmax = 4560), which made it easy to overfit the model (performance overestimation), and made 
the model hard to interpret (model complexity). In addition, we expected that only few predictors might carry 
valuable information in predicting the response variable, a condition referred to as ‘sparsity in representation’ in 
the literature. Several algorithms have been developed to efficiently learn a sparse target function, among them 
being popular tools such as lasso110, FoBa53, and elastic-net109. All of these algorithms have in common that they 
simultaneously solve for the two main interests: predictor selection (selecting the basis functions with non-zero 
coefficients) and estimation accuracy (reconstruction of the target function from noisy data). In other words, the 
algorithms optimize for a simple model that is easy to interpret biologically while being very accurate.

Model optimization. Given the relatively large number of observations (at least for biological and medical 
machine learning) and the algorithm’s inherent feature selection during cross-validation, we decided to optimize 
models using a classical training – cross-validation – testing approach. In detail, data was split into a test set 
(20% of the total dataset), which was only used for the performance evaluation of the final model as reported in 
the main text, and a training – cross-validation set that encompassed the remaining 80% of the dataset. Model 
hyper-parameters and model sparsity (predictor selection) were optimized by minimizing the root-mean-square 
error (RMSE) during the 10-fold cross-validation with 10 different initializations (repetitions), splitting the train-
ing – cross-validation set into balanced 90% training and 10% cross-validation sets. Subsequently, models were 
optimized by minimizing the RMSE on the full training – cross-validation set and final model performance was 
assessed on the test set.

Quality control. Proper model selection and optimization was assessed with a multitude of metrics and plots. 
We used model selection plots to assess the training and cross-validation error against the degree of model com-
plexity, a strictly convex process for our learning algorithms. Whereas high training and cross-validation errors 
would signify high bias (under-fitting), low training and high cross-validation errors would indicate high vari-
ance (over-fitting). In general, we did not observe over-fitting, which is due to our careful model optimization, 
but cannot exclude that some models, especially for mRNA abundance, are under-fitted due to missing predictors 
such as promoter and enhancer region information. In addition, the prediction of protein length is non-linearly 
dependent from the predictors, and the strictly linear elastic-net and FoBa algorithms are in consequence biased 
(systematic error due to wrong model selection).

An additional diagnostic we used are learning curves, plotting increasing sets of observations against train-
ing and cross-validation errors. Low training error and high cross-validation error signify high variance and 
could most probably be optimized by increasing the amount of observations. High training and cross-validation 
errors indicate high bias and an increase in the number of observations would most probably not enhance model 
performance, whereas usage of a different model or addition of predictors could help. Overall, we did observe 
convergence of training and cross-validation errors with increasing observations for our models, indicating that 
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models are neither affected by high variance nor by bias, and that the addition of further observations might not 
result in dramatic increases of model performance.

To assess the stability of the models we plotted the RMSE and r2 of all cross-validation folds. While high var-
iability would indicate model instability, which could be due to unbalanced data partitions or to highly variable 
data, we observed mostly low variance for cross-validation folds. Furthermore, cross-validation and test RMSE 
and r2 values were in almost all instances comparable (emanate from same distribution), indicating model stabil-
ity and generalizability. Model stability is also reflected in the near equal performance of the elastic-net, FoBa, and 
RF algorithms in most cases. To assess the importance of specific predictors we calculated feature importances for 
each model and scaled the resultant values between 0 and 100, to make them comparable between the different 
algorithms. Unscaled feature importances for FoBa and elastic-net models represent the coefficient estimates 
divided by the standard deviation of the coefficients (t-statistic), as estimated from a 30-fold cross-validation on 
the training – cross-validation set. Unscaled RF feature importances represent the mean decrease in node impu-
rity. For the actual computations we used the R caret package111 with the packages glmnet (elastic-net), FoBa, and 
RF, complemented by in house scripts.

�e code used in this work is available from the corresponding authors upon reasonable 
request.

Protein information was retrieved from �e Universal Protein 
Resource (UniProt Consortium112). All analyses were performed with the help of Matlab (�e Mathworks Inc., 
Natick, MA, USA) and SigmaPlot so�ware (Systat So�ware), using self-written routines.

�e codon usage (the frequency with which a particular codon appears for each 1000 codons in the mouse 
mRNA-ome) was taken from the publicly available Kazusa database (http://www.kazusa.or.jp/e/index.html). 
Image analysis (Fig. 4) was performed using self-written routines in Matlab. Briefly, the cell nuclei were selected 
in the DAPI channel by applying an empirically derived threshold, which was identical for all of the images. �e 
threshold procedure generated region-of-interest masks for all of the nuclei, which following segmentation were 
expanded to include the extranuclear region of the cells. �e fluorescence intensity in the channel corresponding 
to the dye used to label the protein turnover sensors (rhodamine channel) was then determined in the masks (typ-
ically 3000–4000 masks per time point and experiment, for a total of >10,000 cells analyzed for each experiment). 
�ese values were then averaged for each of the experiments. To make sure that in our imaging experiments were 
carried out in the range of accurate detection we performed a calibration experiment where we measured serial 
dilutions of the SNAP-Cell TMR-Star that was used in our SNAP-tag labeling. Briefly, the TMR-Star was diluted 
in 25 µl of PBS and imaged on the Cytation 3 high content microscope on 96-well plates with exactly the same 
settings that were used for imaging the cells in our turnover experiments (see also Supplementary Fig. 7).

�e authors declare that the data supporting the findings of this study are available or, as stated elsewhere, will be 
given upon reasonable request.

 1. Labbadia, J. & Morimoto, R. I. �e Biology of Proteostasis in Aging and Disease. Annu. Rev. Biochem. 84, 435–464 (2015).
 2. de Sousa Abreu, R., Penalva, L. O., Marcotte, E. M. & Vogel, C. Global signatures of protein and mRNA expression levels. Mol. 

Biosyst. 5, 1512–1526 (2009).
 3. Harper, J. W. & Bennett, E. J. Proteome complexity and the forces that drive proteome imbalance. Nature 537, 328–38 (2016).
 4. Kim, T. K. & Shiekhattar, R. Architectural and Functional Commonalities between Enhancers and Promoters. Cell 162, 948–959 

(2015).
 5. Dekker, J. & Mirny, L. �e 3D Genome as Moderator of Chromosomal Communication. Cell 164, 1110–1121 (2016).
 6. Gilbert, W. V., Bell, T. A. & Schaening, C. Messenger RNA modifications: Form, distribution, and function. Science 352, 1408–12 

(2016).
 7. Jovanovic, M. et al. Immunogenetics. Dynamic profiling of the protein life cycle in response to pathogens. Science 347, 1259038 

(2015).
 8. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).
 9. Brar, G. A. Beyond the Triplet Code: Context Cues Transform Translation. Cell 167, 1681–1692 (2016).
 10. Dana, A. & Tuller, T. Properties and determinants of codon decoding time distributions. BMC Genomics 15(Suppl 6), S13 (2014).
 11. Bazzini, A. A. et al. Codon identity regulates mRNA stability and translation efficiency during the maternal‐to‐zygotic transition. 

EMBO J. 35, 1721–1843 (2016).
 12. Presnyak, V. et al. Codon optimality is a major determinant of mRNA stability. Cell 160, 1111–24 (2015).
 13. Konu, O. & Li, M. D. Correlations between mRNA expression levels and GC contents of coding and untranslated regions of genes 

in rodents. J. Mol. Evol. 54, 35–41 (2002).
 14. Quax, T. E. F., Claassens, N. J., Söll, D. & van der Oost, J. Codon Bias as a Means to Fine-Tune Gene Expression. Mol. Cell 59, 

149–61 (2015).
 15. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 

179–86 (1986).
 16. Dice, J. F., Dehlinger, P. J. & Schimke, R. T. Studies on the correlation between size and relative degradation rate of soluble proteins. 

J. Biol. Chem. 248, 4220–8 (1973).
 17. Dice, J. F. & Goldberg, A. L. Relationship between in vivo degradative rates and isoelectric points of proteins. Proc. Natl. Acad. Sci. 

72, 3893–3897 (1975).
 18. Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B. & Ghaemmaghami, S. Analysis of proteome dynamics in the mouse brain. Proc. 

Natl. Acad. Sci. USA 107, 14508–13 (2010).
 19. Boël, G. et al. Codon influence on protein expression in E. coli correlates with mRNA levels. Nature 529, 358–63 (2016).
 20. Tuller, T., Kupiec, M. & Ruppin, E. Determinants of protein abundance and translation efficiency in S. cerevisiae. PLoS Comput. 

Biol. 3, 2510–2519 (2007).



www.nature.com/scientificreports/

17SCIENTIFIC REPORTS |         (2018) 8:16913 

 21. Belle, A., Tanay, A., Bitincka, L., Shamir, R. & O’Shea, E. K. Quantification of protein half-lives in the budding yeast proteome. Proc. 
Natl. Acad. Sci. USA 103, 13004–9 (2006).

 22. Zur, H. & Tuller, T. Transcript features alone enable accurate prediction and understanding of gene expression in S. cerevisiae. BMC 
Bioinformatics 14(Suppl 1), S1 (2013).

 23. Huang, T. et al. Analysis and prediction of translation rate based on sequence and functional features of the mRNA. PLoS One 6, 
4–11 (2011).

 24. Cheng, J., Maier, K. C., Avsec, Ž., Rus, P. & Gagneur, J. Cis -regulatory elements explain most of the mRNA stability variation across 
genes in yeast. Rna 23, 1648–1659 (2017).

 25. Zhao, F., Yu, C.-H. & Liu, Y. Codon usage regulates protein structure and function by affecting translation elongation speed in 
Drosophila cells. Nucleic Acids Res. 45, 8484–8492 (2017).

 26. Vogel, C. et al. Sequence signatures and mRNA concentration can explain two‐thirds of protein abundance variation in a human 
cell line. Mol. Syst. Biol. 6, 400 (2010).

 27. Yang, E. et al. Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. TL - 13. Genome 
Res. 13 VN-r, 1863–1872 (2003).

 28. Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence determinants of gene expression in Escherichia coli. 
Science 324, 255–8 (2009).

 29. Kudla, G., Lipinski, L., Caffin, F., Helwak, A. & Zylicz, M. High guanine and cytosine content increases mRNA levels in mammalian 
cells. PLoS Biol. 4, 0933–0942 (2006).

 30. Zhou, M. et al. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495, 111–5 
(2013).

 31. Fu, J. et al. Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD. Genes Dev. 30, 
1761–75 (2016).

 32. Arhondakis, S., Clay, O. & Bernardi, G. GC level and expression of human coding sequences. Biochem. Biophys. Res. Commun. 367, 
542–5 (2008).

 33. Zhou, M., Wang, T., Fu, J., Xiao, G. & Liu, Y. Nonoptimal codon usage influences protein structure in intrinsically disordered 
regions. Mol. Microbiol. 97, 974–87 (2015).

 34. Zhou, Z. et al. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc. 
Natl. Acad. Sci. USA 113, E6117–E6125 (2016).

 35. Correa Marrero, M., van Dijk, A. D. J. & de Ridder, D. Sequence-based analysis of protein degradation rates. Proteins Struct. Funct. 
Bioinforma. 85, 1593–1601 (2017).

 36. Kim, M.-S. et al. A dra� map of the human proteome. Nature 509, 575–581 (2014).
 37. Wilhelm, M. et al. Mass-spectrometry-based dra� of the human proteome. Nature 509, 582–7 (2014).
 38. Sharma, K. et al. Cell type- and brain region-resolved mouse brain proteome. Nat. Neurosci. 18, 1819–31 (2015).
 39. Zapala, M. A. et al. Adult mouse brain gene expression patterns bear an embryologic imprint. Proc. Natl. Acad. Sci. USA 102, 

10357–10362 (2005).
 40. Lu, T. et al. REST and stress resistance in ageing and Alzheimer’s disease. Nature 507, 448–54 (2014).
 41. Fornasiero, E. et al. Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular 

fractions. Nat. Commun.,https://doi.org/10.1038/s41467-018-06519-0 (2018).
 42. Yu, Y. et al. A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages. Nat. Commun. 5, 3230 (2014).
 43. Levin, M. et al. �e mid-developmental transition and the evolution of animal body plans. Nature 531, 637–641 (2016).
 44. Ori, A. et al. Integrated Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old Rats. Cell 

Syst. 1, 224–237 (2015).
 45. Housley, M. P. et al. Translational profiling through biotinylation of tagged ribosomes in zebrafish. Development 141, 3988–93 

(2014).
 46. Lau, E. et al. A large dataset of protein dynamics in the mammalian heart proteome. 1–15 https://doi.org/10.1038/sdata.2016.15 

(2016).
 47. Rahman, M. & Sadygov, R. G. Predicting the protein half-life in tissue from its cellular properties. PLoS One 12, 1–15 (2017).
 48. Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, 

2107–2115 (2006).
 49. Waldman, Y. Y., Tuller, T., Shlomi, T., Sharan, R. & Ruppin, E. Translation efficiency in humans: Tissue specificity, global 

optimization and differences between developmental stages. Nucleic Acids Res. 38, 2964–2974 (2010).
 50. Cohen, L. L. D. et al. Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic 

maintenance. PLoS One 8, e63191 (2013).
 51. Price, J. C. et al. �e effect of long term calorie restriction on in vivo hepatic proteostatis: a novel combination of dynamic and 

quantitative proteomics. Mol. Cell. Proteomics 11, 1801–14 (2012).
 52. Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. So�w. 

33, 1–22 (2010).
 53. Zhang, T. Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models. Nips 1–8 (2008).
 54. Breiman, L. Randomforest2001. 1–33 https://doi.org/10.1017/CBO9781107415324.004 (2001).
 55. Guyon, I. & Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 3, 1157–1182 (2003).
 56. Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).
 57. Zhang, Y. et al. Proteome scale turnover analysis in live animals using stable isotope metabolic labeling. Anal. Chem. 83, 1665–72 

(2011).
 58. Liu, Y., Beyer, A. & Aebersold, R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell 165, 535–50 (2016).
 59. Gonda, D. K. et al. Universality and structure of the N-end rule. J. Biol. Chem. 264, 16700–16712 (1989).
 60. Varshavsky, A. �e N-end rule pathway and regulation by proteolysis. Protein Sci. 20, 1298–1345 (2011).
 61. Guharoy, M., Bhowmick, P., Sallam, M. & Tompa, P. Tripartite degrons confer diversity and specificity on regulated protein 

degradation in the ubiquitin-proteasome system. Nat. Commun. 7, 10239 (2016).
 62. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–42 (2011).
 63. Holt, R. A. & Jones, S. J. M. �e new paradigm of flow cell sequencing. 839–846 https://doi.org/10.1101/gr.073262.107.cell (2008).
 64. Gonzalez, C. et al. Ribosome Profiling Reveals a Cell-Type-Specific Translational Landscape in Brain Tumors. J. Neurosci. 34, 

10924–10936 (2014).
 65. Gerashchenko, M. V. & Gladyshev, V. N. Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic 

Acids Res. 42 (2014).
 66. Edfors, F. et al. Gene-specific correlation of RNA and protein levels in human cells and tissues. Mol. Syst. Biol. 12, 883 (2016).
 67. Bhave, S. V. et al. Gene array profiles of alcohol and aldehyde metabolizing enzymes in brains of C57BL/6 and DBA/2 mice. Alcohol. 

Clin. Exp. Res. 30, 1659–1669 (2006).
 68. Kadakkuzha, B. M. et al. Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and 

neuronal populations. Front. Cell. Neurosci. 9, 63 (2015).
 69. Collins, B. C. et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass 

spectrometry. Nat. Commun. 8, 1–11 (2017).



www.nature.com/scientificreports/

1 8SCIENTIFIC REPORTS |         (2018) 8:16913 

 70. Sørensen, M. A., Kurland, C. G. & Pedersen, S. Codon usage determines translation rate in Escherichia coli. J. Mol. Biol. 207, 
365–77 (1989).

 71. Chevance, F. F. V., Le Guyon, S. & Hughes, K. T. �e effects of codon context on in vivo translation speed. PLoS Genet. 10, e1004392 
(2014).

 72. Shulman, J. M., De Jager, P. L. & Feany, M. B. Parkinson’s disease: genetics and pathogenesis. Annu. Rev. Pathol. 6, 193–222 (2011).
 73. Juillerat, A. et al. Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small 

molecules in vivo. Chem. Biol. 10, 313–7 (2003).
 74. Weis, J. H., Tan, S. S., Martin, B. K. & Wittwer, C. T. Detection of rare mRNAs via quantitative RT-PCR. Trends Genet. 8, 263–4 

(1992).
 75. Marques, O. & Outeiro, T. F. Alpha-synuclein: From secretion to dysfunction and death. Cell Death Dis. 3, e350–7 (2012).
 76. Eden, E. et al. Proteome half-life dynamics in living human cells. Science (80-.). 331, 764–768 (2011).
 77. Chan, P., Curtis, R. & Warwicker, J. Soluble expression of proteins correlates with a lack of positively-charged surface. Sci. Rep. 3, 

3333 (2013).
 78. Warwicker, J., Charonis, S. & Curtis, R. A. Lysine and arginine content of proteins: Computational analysis suggests a new tool for 

solubility design. Mol. Pharm. 11, 294–303 (2014).
 79. Seshasayee, A. S. N. Gene expression homeostasis and chromosome architecture. Bioarchitecture 4, 221–5 (2014).
 80. Schmitt, A. D., Hu, M. & Ren, B. Genome-wide mapping and analysis of chromosome architecture. Nat. Rev. Mol. Cell Biol. https://

doi.org/10.1038/nrm.2016.104(2016).
 81. FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al. A promoter-level mammalian expression atlas. Nature 507, 

462–70 (2014).
 82. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–61 (2014).
 83. Halder, R. et al. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat. 

Neurosci. 19, 102–10 (2016).
 84. Lee, Y. & Rio, D. C. Mechanisms and Regulation of Alternative Pre-mRNA Splicing. Annu. Rev. Biochem. 84, 291–323 (2015).
 85. Dvir, S. et al. Deciphering the rules by which 5′-UTR sequences affect protein expression in yeast. Proc. Natl. Acad. Sci. USA 110, 

E2792–801 (2013).
 86. Xiao, Q., Zhang, F., Nacev, B. A., Liu, J. O. & Pei, D. Protein N-terminal processing: Substrate specificity of escherichia coli and 

human methionine aminopeptidases. Biochemistry 49, 5588–5599 (2010).
 87. Bonissone, S., Gupta, N., Romine, M., Bradshaw, R. A. & Pevzner, P. A. N-terminal protein processing: A comparative 

proteogenomic analysis. Mol. Cell. Proteomics 14–28 https://doi.org/10.1074/mcp.M112.019075 (2012).
 88. Meinnel, T. & Giglione, C. Tools for analyzing and predicting N-terminal protein modifications. Proteomics 8, 626–649 (2008).
 89. Wilkins, M. R. et al. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 112, 531–52 (1999).
 90. Faure, G., Ogurtsov, A. Y., Shabalina, S. A. & Koonin, E. V. Role of mRNA structure in the control of protein folding. Nucleic Acids 

Res. gkw671 https://doi.org/10.1093/nar/gkw671 (2016).
 91. Yu, C. H. et al. Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding. Mol. 

Cell 59, 744–754 (2015).
 92. Rodnina, M. V. �e ribosome in action: Tuning of translational efficiency and protein folding. Protein Sci. 25, 1390–406 (2016).
 93. Stadler, M. & Fire, A. Wobble base-pairing slows in vivo translation elongation in metazoans. Rna 17, 2063–2073 (2011).
 94. Chan, S., Ch’ng, J. H., Wahlgren, M. & Thutkawkorapin, J. Frequent GU wobble pairings reduce translation efficiency in 

Plasmodium falciparum. Sci. Rep. 7, 1–14 (2017).
 95. Takyar, S., Hickerson, R. P. & Noller, H. F. mRNA helicase activity of the ribosome. Cell 120, 49–58 (2005).
 96. Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding 

of mRNA structures in vivo. TL - 505. Nature 505 VN-, 701–705 (2014).
 97. Buhr, F. et al. Synonymous Codons Direct Cotranslational Folding toward Different Protein Conformations. Mol. Cell 61, 341–351 

(2016).
 98. O’Brien, E. P., Vendruscolo, M. & Dobson, C. M. Kinetic modelling indicates that fast-translating codons can coordinate 

cotranslational protein folding by avoiding misfolded intermediates. Nat. Commun. 5, 2988 (2014).
 99. Zhou, J. & Rudd, K. E. EcoGene 3.0. Nucleic Acids Res. 41, D613–24 (2013).
 100. Sakai, H. et al. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell 

Physiol. 54, e6 (2013).
 101. Lamesch, P. et al. �e Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40, 

D1202–10 (2012).
 102. Herrero, J. et al. Ensembl comparative genomics resources. Database (Oxford). 2016 (2016).
 103. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–12 (2015).
 104. Kohavi, R. & John, G. H. Wrappers for Feature Subset Selection. Artif. Intell. 97, 273–324 (1997).
 105. Gasteiger, E. et al. Protein Identification and Analysis Tools on the ExPASy Server. Proteomics Protoc. Handb. 571–607 https://doi.

org/10.1385/1592598900 (2005).
 106. McGuffin, L. J., Bryson, K. & Jones, D. T. �e PSIPRED protein structure prediction server. Bioinformatics 16, 404–5 (2000).
 107. Ashburner, M. et al. Gene ontology: tool for the unification of biology. �e Gene Ontology Consortium. Nat. Genet. 25, 25–9 

(2000).
 108. Finn, R. D. et al. �e Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–85 (2016).
 109. Zou, H. & Hastie, T. Regularization and variable selection via the elastic-net. J. R. Stat. Soc. 67, 301–320 (2005).
 110. Tibshirani, R. Regression Selection and Shrinkage via the Lasso. Journal of the Royal Statistical Society B 58, 267–288 (1996).
 111. Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. So�w. 28, (2008).
 112. UniProt Consortium. �e universal protein resource (UniProt). Nucleic Acids Res. 36, D190–5 (2008).
 113. Goldberg, A. L. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895–9 (2003).
 114. Geisberg, J. V., Moqtaderi, Z., Fan, X., Ozsolak, F. & Struhl, K. Global Analysis of mRNA Isoform Half-Lives Reveals Stabilizing and 

Destabilizing Elements in Yeast. Cell 156, 812–824 (2014).
 115. Maier, T., Güell, M. & Serrano, L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 583, 3966–73 

(2009).

We thank the members of the Rizzoli laboratory for careful comments and helpful discussions. E.F.F. is 
supported by an EMBO Long Term Fellowship and a HFSP Fellowship (EMBO_LT_797_2012 and HFSP_
LT000830/2013). S.D. is supported by an ERC-AdG No. 339580 MITRAC. �e work was supported by grants 
to S.O.R. from the European Research Council (ERC-2013-CoG NeuroMolAnatomy) and from the Deutsche 
Forschungsgemeinscha� (DFG) SFB 889/A5, 1967/7-1, and SFB1190/P09, and by grants to S.B. from the DFG 
(BO4224/4-1), iMed – the Helmholtz Initiative on Personalized Medicine, and the Volkswagen Sti�ung.



www.nature.com/scientificreports/

1 9SCIENTIFIC REPORTS |         (2018) 8:16913 

S.O.R. and E.F.F. conceived the initial project. S.O.R., E.F.F. and S. B. wrote the manuscript. E.F.F., S.O.R. and S.B. 
designed the experiments and supervised the work. E.F.F. performed the majority of the experiments. S.M. and 
H.U. performed the initial Mass spectrometry experiments. E.F.F., H.W. and S.O.R. performed the initial analysis 
of all data. E.F.F., S.O.R., R.R. and R.O.V. analyzed the online databases. T.P.C., R.R., R.O.V. and S.B. modeled the 
data and made predictions. R.R. and S.B. performed the RNA-Sequencing. B.R., I.U., T.I., I.F. helped with the first 
version of the manuscript. S. K. helped with mRNA extraction and RT-qPCR experiments. F.O. helped with the 
initial design of synthetic gene experiments. R.Y.Y. helped with the turnover constructs. E.B. and A.F. helped with 
the original mouse work. E.F.F., S.O.R., K.K., R.R. and S.B. did the initial bioinformatic measurements. S.D. and 
P.R. helped with the interpretation of mitochondrial data.

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-35277-8.

Competing Interests: �e authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2018


