
The inner fluctuations of the brain in presymptomatic Frontotemporal

Dementia: The chronnectome fingerprint

Enrico Premi a,b, Vince D. Calhoun c,d, Matteo Diano e, f, Stefano Gazzina a, Maura Cosseddu a,

Antonella Alberici a, Silvana Archetti g, Donata Paternic�o a, Roberto Gasparotti h,

John van Swieten i, Daniela Galimberti j, Raquel Sanchez-Valle k, Robert Laforce Jr. l,

Fermin Morenom, Matthis Synofzik n, Caroline Graff o, Mario Masellis p,

Maria Carmela Tartaglia q, James Rowe r, Rik Vandenberghe s, Elizabeth Finger t,

Fabrizio Tagliavini u, Alexandre de Mendonça v, Isabel Santanaw, Chris Butler x,

Simon Ducharme y, Alex Gerhard z, Adrian Danek aa, Johannes Levin aa, Markus Otto ab,

Giovanni Frisoni ac,ad, Stefano Cappa ac, Sandro Sorbi ae,af, Alessandro Padovani a,

Jonathan D. Rohrer ag, Barbara Borroni a,*, on behalf of the Genetic FTD Initiative, GENFI

a Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
b Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Spedali Civili Hospital, Brescia, Italy
c The Mind Research Network, Albuquerque, USA
d Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, USA
e Department of Psychology, University of Turin, Turin, Italy
f Department of Medical and Clinical Psychology, CoRPS – Center of Research on Psychology in Somatic Diseases, Tilburg University, the Netherlands
g Biotechnology Laboratory, Department of Diagnostic, Spedali Civili Hospital, Brescia, Italy
h Neuroradiology Unit, University of Brescia, Italy
i Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands
j Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, University of Milan, Fondazione C�a Granda, IRCCS Ospedale Maggiore Policlinico, Milan,

Italy
k Neurology Department, Hospital Clinic, Institut d’Investigacions Biom�ediques, Barcelona, Spain
l Clinique Interdisciplinaire de M�emoire, D�epartement des Sciences Neurologiques, CHU de Qu�ebec, Facult�e de M�edecine, Universit�e Laval, QC, Canada
m Department of Neurology, Hospital Universitario Donostia, San Sebastian, Gipuzkoa, Spain
n Department of Cognitive Neurology, Center for Neurology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
o Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogenetics, Sweden
p LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada
q Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON, Canada
r Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
s Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
t Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
u Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
v Faculty of Medicine, University of Lisbon, Lisbon, Portugal
w Neurology Department, Centro Hospitalar e Universit�ario de Coimbra, Portugal
x Department of Clinical Neurology, University of Oxford, Oxford, UK
y Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
z Institute of Brain, Behaviour and Mental Health, The University of Manchester, Withington, Manchester, UK
aa Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universit€at, Munich, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
ab Department of Neurology, University Hospital Ulm, Ulm, Germany
ac Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
ad Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
ae Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
af Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Don Gnocchi”, Florence, Italy
ag Dementia Research Centre, UCL Institute of Neurology, UK

* Corresponding author. Neurology Unit, University of Brescia, Piazza Spedali Civili 1, Brescia, 25125, Italy.

E-mail address: bborroni@inwind.it (B. Borroni).

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage

https://doi.org/10.1016/j.neuroimage.2019.01.080

Received 17 October 2018; Received in revised form 27 January 2019; Accepted 31 January 2019

Available online 1 February 2019

1053-8119/© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

NeuroImage 189 (2019) 645–654



A R T I C L E I N F O

Keywords:

Frontotemporal dementia

Mutation

Granulin

Microtuble associate protein tau

C9orf72

resting-state fMRI

Dynamic brain functional connectivity

Chronnectome

A B S T R A C T

Frontotemporal Dementia (FTD) is preceded by a long period of subtle brain changes, occurring in the absence of

overt cognitive symptoms, that need to be still fully characterized. Dynamic network analysis based on resting-

state magnetic resonance imaging (rs-fMRI) is a potentially powerful tool for the study of preclinical FTD.

In the present study, we employed a "chronnectome" approach (recurring, time-varying patterns of connec-

tivity) to evaluate measures of dynamic connectivity in 472 at-risk FTD subjects from the Genetic Frontotemporal

dementia research Initiative (GENFI) cohort.

We considered 249 subjects with FTD-related pathogenetic mutations and 223 mutation non-carriers (HC).

Dynamic connectivity was evaluated using independent component analysis and sliding-time window correlation

to rs-fMRI data, and meta-state measures of global brain flexibility were extracted.

Results show that presymptomatic FTD exhibits diminished dynamic fluidity, visiting less meta-states, shifting

less often across them, and travelling through a narrowed meta-state distance, as compared to HC. Dynamic

connectivity changes characterize preclinical FTD, arguing for the desynchronization of the inner fluctuations of

the brain. These changes antedate clinical symptoms, and might represent an early signature of FTD to be used as

a biomarker in clinical trials.

1. Introduction

Resting state functional magnetic resonance imaging (rs-fMRI) has

become a useful tool to investigate the connectivity changes in neuro-

degenerative dementias (Pievani et al., 2014a; Premi et al., 2014b).

Spontaneous brain activity at rest is organized in functionally specialized

large-scale networks, that roughly correspond to different functional

domains and that are selectively damaged by various neurodegenerative

conditions (de Pasquale et al., 2017).

However, previous results make the implicit assumption that the

functional coupling among brain regions is static and unchanging over

short periods of time (Damoiseaux et al., 2006; De Luca et al., 2006; Liu

et al., 2018).

This concept has since been modified with analytic approaches that

capture the fact that the human brain is an interacting dynamic network

and its architecture of coupling among brain regions varies across time

(termed “the chronnectome”) (Calhoun et al., 2014; Canolty et al., 2010;

Chang and Glover, 2010; Fries, 2005; Hillebrand et al., 2016; Sakoglu

et al., 2010). Dynamic connectivity studies have demonstrated reoccur-

ring patterns of brain functional connectivity, or functional connectivity

“states”, that are reproducible over time and across subjects (Allen et al.,

2014; Chang and Glover, 2010; Marusak et al., 2017). Initial dynamic

connectivity studies were based on the assumption that subjects were

allowed to be in only one “state” at a given point in time, while recent

work has introduced the concept of “meta-states”, suggesting that sub-

jects may be in multiple states to varying degrees at the same point in

time (Calhoun et al., 2014; Miller et al., 2016). Thus, for instance, if in the

time-course we are able to identify six distinct states of functional dy-

namic connectivity, at a given point in time each subject will have a

weighted probability to be in more than one state (Miller et al., 2016).

Meaningful measures of meta-state dynamic fluidity, such as the number

of meta-states a subject passes through or the number of switches from

one meta-state to another, have been suggested as an intuitive way to

characterize global dynamic connectivity behaviour, showing promise

for predicting mental states and cognitive performances (Liu et al., 2018;

Preti et al., 2017). From this point of view, meta-state measures could

provide a more “global” information on the effect of an ongoing neuro-

degenerative process, overcoming the evaluation of single specific brain

areas or connectivity pathways, and evaluating global perturbation of the

brain activity's temporal dynamics (Calhoun et al., 2014; Miller et al.,

2016).

Frontotemporal Dementia (FTD) is a neurodegenerative disease

characterized by behavioural abnormalities, impairment of executive

functions and language deficits (Gorno-Tempini et al., 2011; Rascovsky

et al., 2011) and defined by focal frontotemporal atrophy (Whitwell

et al., 2009). In a significant proportion of the cases, FTD is an inherited

autosomal dominant disorder; mutations in the Granulin (GRN), chro-

mosome 9 open reading frame 72 (C9orf72) orMicrotuble Associated Protein

Tau (MAPT) genes drive up to ~40% of Mendelian cases (Borroni et al.,

2008b). In genetic FTD, the neural substrates associated with the pre-

symptomatic stage need to be fully characterized: although the pertur-

bation of static large-scale networks has already been demonstrated

(Dopper et al., 2014; Lee et al., 2017; Premi et al., 2014a; Whitwell et al.,

2011; Zhou et al., 2010), the specific findings were not fully consistent, in

particular for Salience network. In fact, both an increased connectivity in

medial frontal regions in GRN carriers (Borroni et al., 2008a; Premi et al.,

2014b) (specially within the Salience Network), and a reduced

seed-based connectivity between anterior cingulate cortex and posterior

regions of the Default Mode Network in a group of GRN and MAPT car-

riers were reported (Dopper et al., 2014). Furthermore, a recent study on

presymptomatic C9orf72 carriers showed a reduced functional connec-

tivity in all the studied networks (Salience, Default Mode, Sensorimotor

and medial pulvinar networks) (Lee et al., 2017). Finally, a study on a

small group of MAPT carriers demonstrated an altered functional con-

nectivity in the Default Mode Network with no alteration of Salience

Network (Whitwell et al., 2011). The evaluation of large-scale structural

network topology along with their temporal dynamics might offer a

theoretical framework that can contribute to understand the earliest

abnormalities in FTD, with the new perspective of whole brain assess-

ment (Avena-Koenigsberger et al., 2017). Thus, by a data-driven

approach, we did not study single specific brain pathways, but the

global dynamic perturbation of the brain in the presymptomatic phase of

FTD.

These premises set the stage for the present study, in which we

analyzed dynamic brain connectivity in presymptomatic subjects car-

rying GRN, MAPT or C9orf72mutations with the purpose a) to assess the

chronnectome fingerprint by considering meta-state measures; b) to

study the association between chronnectome changes and cognitive

performances; and c) to correlate chronnectome changes with expected

age at disease onset, to evaluate if meta-state measures are associated

with proximity to clinical onset. To this end, we analyzed rs-fMRI data of

472 subjects from the Genetic Frontotemporal Dementia Initiative

(GENFI) cohort (http://genfi.org.uk) using a dynamic functional network

connectivity (dFNC) approach to investigate the chronnectome in pre-

symptomatic mutations carriers as compared to mutation non-carriers.

2. Methods

2.1. Subjects

Data for this study were drawn from the GENFI multicenter cohort

study, which consists of 23 research centers in Europe and Canada.
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Inclusion and exclusion criteria have been previously described (Rohrer

et al., 2015). Local ethics committees approved the study at each site and

all participants provided written informed consent according to the

Declaration of Helsinki.

We considered asymptomatic participants at risk to carry GRN,

C9orf72 or MAPT mutations. Between January 2012 and January 2017,

we considered 472 participants, of which 249 were mutation carriers (45

with MAPT, 122 with GRN, and 82 with C9orf72 mutations) and 223

were mutation non-carriers. Subjects were enrolled from 18 centers

belonging to the GENFI network (4 centers were excluded from the

present project for image artifacts, very low number of included subjects

(<2), or for using 1.5T MRI scanner); the MRI parameters for each of the

18 included centers was reported in Supplementary Table 1. De-

mographic characteristics of mutation carriers and mutation non-carriers

are reported in Table 1.

Estimated years from expected symptom onset in presymptomatic

mutation carriers were calculated as the age of the participant at the time

of the study assessment minus themean familial age at symptom onset, as

previously reported (Rohrer et al., 2015).

Included at-risk subjects underwent a careful recording of de-

mographic data and a standardized clinical and neuropsychological

assessment (derived from the Uniform Data Set (Morris et al., 2006)), as

previously published (Premi et al., 2017). We considered tests highly

sensitive to identify initial changes in presymptomatic genetic FTD, as

previously reported (Rohrer et al., 2015). Thus, we considered assess-

ment of behavioural symptoms with the Cambridge Behavioural In-

ventory Revised version (CBI-R) (Wear et al., 2008), general cognitive

function with the Mini-Mental State Examination (MMSE) (Morris et al.,

2006), and cognitive processing speed and executive functions assessed

with the part A and part B of the Trial Making Test (TMT) (Morris et al.,

2006), respectively. For each test, apart from the MMSE and CBI-R, we

calculated Z scores based on language-specific norms (Rohrer et al.,

2015). Neuropsychological evaluation was harmonized across sites.

2.2. MRI acquisition

MRI protocol was common to all the GENFI sites, and adapted for

different scanners; no pre-study phantom harmonization was performed

at local level. In summary, T2-weighted echo planar imaging (EPI) se-

quences sensitized to blood oxygenation level dependent (BOLD)

contrast for rs-fMRI were considered in the present study (see Supple-

mentary Table 1 for details on the fMRI protocol used by each site). As

the repetition times (TRs, ranging from 2200ms to 2500ms) and the

volume numbers (ranging from 140 to 200) varied across the GENFI

centers, we considered only the first 140 vol of the EPI images for each

subject (mean acquisition time: 311.5� 4.95 s). During scanning, sub-

jects were asked to keep their eyes closed, not to think of anything in

particular, and not to fall asleep.

2.3. Neuroimaging pre-processing and analysis

Functional data were pre-processed using the toolbox for Data Pro-

cessing & Analysis for Brain Imaging (DPABI, http://rfmri.org/dpabi)

(Yan et al., 2016) based on the Statistical Parametric Mapping (SPM12)

software.

For each subject, the first 2 volumes of the fMRI series were dis-

charged to account for magnetization equilibration. The remaining

138 volumes underwent slice-timing correction and were realigned to

the first volume. Any subject who had a maximum displacement in any

direction larger than 2.5 mm, or a maximum rotation (x,y,z) larger

than 2.5�, was excluded. We considered absolute (mean translation

and mean rotation) and relative (framewise displacement (FD): Power

(FD-P) (Power et al., 2012), Jenkinson (FD-J) (Jenkinson et al., 2012),

Van Dijk (FD-VD) (Van Dijk et al., 2012)) and DVARS (D for the

temporal derivative of time courses, VARS referring to RMS, root mean

squared head position change) (Power et al., 2012) (see Supplemen-

tary Table 2) motion parameters. Data were subsequently spatially

normalized to the EPI unified segmentation template in Montreal

Neurological Institute coordinates derived from SPM12 software and

resampled to 3� 3� 3 cubic voxels. We preferred a normalization to

the EPI template (instead of T1-based normalization) in line with

recent data demonstrating that EPI normalization is able to reduce

variability across subjects (especially when EPI distortion correction is

not applied, as in our case) and boost the effective sample size by

15–25%. Furthermore, studies assessing distance maps and intra sub-

ject variability in multicentre cohorts by EPI normalization are com-

parable to our data (Calhoun et al., 2017). Spatial smoothing with an

isotropic Gaussian kernel with full-width at half-maximum (FWHM),

10 mm was applied; this threshold smoothing value was chosen for a

number of reasons: 1) we assessed dFC within large areas, which are

not usually affected by a relative large spatial smoothing; 2) we

adopted Abrol's template to estimate the dFC (Abrol et al., 2017)

(which has been calculated on 7500 healthy subjects), and conse-

quently we opted for similar fMRI pipeline (Abrol et al., 2016) (10 mm

FWHM); 3) spatial smoothing of 8–10mm FWHM is recommended to

increase sensitivity (Mikl et al., 2008).

2.4. Functional networks decomposition

The functional imaging data were processed using the GIFT (GIFT

toolbox, http://mialab.mrn.org/software/gift) (Calhoun et al., 2001)

and a spatially constrained ICA algorithm (Wang et al., 2016) called

Group Information Guided independent component analysis (GIG-ICA)

was used to compute spatial maps that corresponded to those from a

previous analysis (Du et al., 2016). In this approach, brain network

spatial maps are used as reference templates to calculate functional

networks for each individual subject one-by-one by maximizing inde-

pendence in the context of the spatial constraint. These template maps

include the brain networks with a neuronal origin (not artefactual) and

assign the remaining data to be noise. We take advantage from the

recently published set of 37 spatial maps derived from 7500 healthy

subjects as spatial references for our network selection (Abrol et al.,

2017). We then considered only cortical and subcortical networks, and

we discharged cerebellar networks due to incomplete coverage of cere-

bellum in our sample, thus considering 35 spatial maps. The TR of each

subject was entered in GIFT pre-processing, and we accounted for the

differences in EPI acquisition protocols among centers. The Infomax

approach was applied (Bell and Sejnowski, 1995) to estimate the inde-

pendent group components and 35 functional networks were considered

Table 1

Demographic characteristics of included participants.

Characteristic Carriers

(n¼ 249)

Non-carriers

(n¼ 223)

P-

valuea

Age (years) 44.7� 11.7 47.2� 13.2 0.042

Female, % 64.7% 56.5% 0.073̂

Education (years) 14.4� 3.2 14.1� 3.3 0.242

Years at expected onset

(years)

�13.8� 11.3 – –

Cognitive and behavioural assessment

MMSE 29.2� 1.1 29.4� 0.9 0.633

CBI-R 4.45� 8.2 3.3� 6.1 0.098

TMT-A (Z-scores) �2.5� 64.5 �10.2� 70.3 0.075

TMT-B (Z-scores) �8.2� 80.7 �14.4� 69.0 0.345

a Mann-Whitney U test, otherwise specified; Ĉhi-Square test; results are

expressed as mean� standard deviation, otherwise specified. MMSE: Mini-

Mental State Examination; CBI-R: Cambridge Behavioural Inventory Revised

version; TMT-A: part A of the Trial Making Test; TMT-B: part B of the Trial

Making Test.
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(see Supplementary Fig. 1 for details). Subject-specific spatial patterns

and time-courses were derived using spatial-temporal regression and

then converted to Z-scores. The single time courses were detrended (to

remove baseline drifts from the scanners and/or physiological pulsa-

tions), orthogonalized with respect to 12-motion parameters, despiked

(replacement of outlier time points with 3rd order spline fitting to clean

neighbouring points) and filtered using a 5th order Butterworth filter

(0.01–0.15 Hz) (Abrol et al., 2016).

2.5. Windowed functional network connectivity and correlation patterns

decomposition (meta-states)

The dynamic functional network connectivity (dFNC) was achieved

using dynamic FNC toolbox implemented in GIFT (Damaraju et al.,

2014). dFNC was assessed using a sliding-window approach to esti-

mate correlation matrices between components for each segment.

Segments were defined with a tapered window convolving a rectangle

(width¼ 30, TRs¼ 66 s) with a Gaussian (σ¼ 3) and slide in steps of

1 TR. A LASSO approach with L1 regularization (100 repetitions) was

used to compute the covariance between the independent component

(IC) time-courses. To obtain the decomposition into connectivity pat-

terns (CPs), the spatial ICA (sICA) approach was applied, considering a

number of CPs of 6, in line with previous work on metastates in dy-

namic brain connectivity (5–6 CPs used) (Allen et al., 2014; Miller

et al., 2016). As previously described, the time-courses were dis-

cretized (to work over a more tractable space) into 8 bins (positive and

negative quartiles) and each timepoint was ended into a meta-state

(Miller et al., 2014). The time-courses for sICA CPs were derived

from the regression of each subject's dFNC information at each time

window on the group of sICA CPs. During dFNC preprocessing the

following covariates of no interest were considered: age, gender,

acquisition site, scanner type, family number, genetic status of the

proband, DVARS index (Power et al., 2012) and the variance associ-

ated with them has been regressed out from the windowed dynamic

functional network connectivity correlations for each subject at this

processing step. Furthermore, the potential confounding effect of

motion (DVARS index) across groups and the correlation with meta-

state measures were explored.

Four indexes of connectivity dynamism were considered: i) the

number of distinct meta-states the subjects occupied during their scans

(meta-state number); ii) the number of times that subjects switch from

one meta-state to another (meta-state changes), iii) the largest distance of

two meta-states that subjects occupied (meta-state span), and iv) the

overall distance travelled by each subject through the state space (the

sum of the L1 distances between successive meta-states, i.e. meta-state

total distance). Metastate indexes are global (not state specific) mea-

sures the describe the trajectory of the windowed correlations among the

different states. In meta-state framework, subject's state can be repre-

sented by varying degrees of multiple states, with lesser distortion in the

CPs, considering that contributions of all overlapping states were

recognized.

2.6. Statistical analysis

The assumption of normality for continuous variables was not satis-

fied for all group combinations, as assessed by Shapiro-Wilk's test

(p< 0.05). Thus, comparisons of demographic and clinical characteris-

tics between groups (mutation carriers vs. mutation non-carriers) were

assessed by Mann-Whitney U test for continuous variables and χ
2 test for

categorical variables. Pearson's correlation was used to assess the rela-

tionship between the meta-state measures (meta-state number, meta-

state changes, meta-state span and meta-state total distance) and age at

expected symptom onset. Finally, partial correlation (considering age as

a nuisance variable) was used to test the relationship between meta-state

measures and cognitive/behavioural performances (CBI-R, MMSE, TMT-

A, TMT-B). All the statistical analysis was performed using IBM SPSS

Statistics 22.0 (Chicago, USA) and statistical significance level set at

p< 0.05, corrected for multiple comparisons (Benjamini-Hochberg False-

Discovery-Rate (FDR) correction (Benjamini and Hochberg, 1995)),

considering four meta-state measures and four clinical tests. Direct

comparisons (mutations carriers vs mutation non-carriers) and correla-

tion analyses (between age at expected symptom onset and meta-state

measures and between clinical tests and meta-states measures) were

carried out. Taking into account that preprocessing (Independent

Component Analysis, ICA) was performed using all subjects together and

it was not completely optimized for the subgroup analysis (requiring

separated preprocessing for each mutation group but making the evalu-

ation of the main effect hardly interpretable) we performed exploratory

analyses considering each gene (GRN, C9orf72 or MAPT) separately

versus mutation non carriers.

2.7. Data and code availability statement

The data used to support the findings of this study were derived from

the Genetic Frontotemporal Dementia Initiative (GENFI, http://genfi.

org.uk/). They are available on request from the Principal Investigator

of the GENFI consortium (Dr Jonathan Rohrer, University College Lon-

don, genfi@ucl.ac.uk).

3. Results

Two hundred-forty nine mutation carriers (82 with C9orf72, 122

with GRN and 45 with MAPT mutations) were considered, and

compared with 223 mutation non-carriers. Considering clinical and

demographic variables, mutation non-carriers were slightly older than

mutation carriers (47.2� 13.2 vs 44.7� 11.7, p¼ 0.042) (see Supple-

mentary Table 2 for details). We considered six connectivity patterns

(CPs) of dFNC, which are reported in Fig. 1. The colors of each CP

represent the direction and the strength of the correlation among the 35

considered network components (red: positive correlation and blue:

negative correlation).

dFNC was expressed as a weighted sum of the discretized six-

dimensional CPs, for each given point in time and for each subject.

Mutation carriers exhibited diminished dynamic fluidity, as they occu-

pied a fewer number of meta-states (i.e., meta-state numbers) and

changed from one meta-state to another less often (i.e., meta-state

changes) than mutation non-carriers (see Table 2). Furthermore, muta-

tion carriers operated over a restricted dynamic range with decreased

meta-state total distance, as they travelled less overall distance, between

successive meta-states, through the state space than mutation non-

carriers (see Table 2). We did not find any difference in meta-state

span between groups.

Taking into account the statistically significant difference of age be-

tween groups (mutation non-carriers were older then mutation carriers)

we also performed an exploratory analysis considering a subgroup of

non-carriers (n¼ 200) with a comparable age versus mutation carriers.

As reported in Supplementary Analysis 1, the results were similar to the

original groups, with a significantly altered meta-state dynamic con-

nectivity in mutation-carriers, supporting the idea that age at visit did not

explain meta-state differences.

The potential confounding effect of motion on meta-state measures

has been tested (see Supplementary Table 2 and Supplementary Table 3):

no significant differences in DVARS values among groups (C9orf72, GRN,

MAPT versus mutation-negative carriers) as well as no significant cor-

relations between DVARS values and meta-state measures were evident.

When other parameters of motion were considered no significant dif-

ferences between groups (also considering the three mutations sepa-

rately) were found. Furthermore, a weak (even if statistically significant)

correlation between motion parameters (i.e. FD) and meta-state mea-

sures was evident (see Supplementary Table 3). However, with a selec-

tion of subjects (either mutation carriers and non-carriers) with low-

movement (mean FD� 0.2mm in line with literature data) (Parkes
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Fig. 1. The six connectivity patterns (CPs) resulting from the dynamic Functional Network Connectivity (dFNC) analysis. The six correlations' matrix (among

the 35 considered network components) are reported. The colorbar represents the direction and the strength of each correlation (red: positive correlation, blue:

negative correlation).
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et al., 2018), similar statistically significant findings on meta-states in-

dexes (mutation-carriers versus mutation non-carriers) were demon-

strated (see Supplementary Analysis 2).

In Fig. 2, meta-state dynamics through time, meta-state numbers,

meta-state change points, and meta-state total distance in a representa-

tive mutation carrier and in a representative mutation non-carrier were

reported. Representative mutation non-carrier showed a greater brain

dynamism, as compared to a representative mutation carrier (panel A),

as suggested by the more complex pattern in the former subject, with an

higher number of realized meta-states (panel B), meta-state changes

(panel C), and greater travelled overall distance (panel D), compared to

the mutation carrier subject.

In the exploratory analysis (not corrected for multiple comparisons),

we evaluated C9orf72, GRN and MAPT mutation carriers separately, as

compared to HC. C9orf72 mutation carriers showed reduced meta-states

numbers (p¼ 0.032) and reduced meta-state changes (p¼ 0.041);MAPT

mutation carriers had reduced meta-states numbers (p¼ 0.042) and

reduced overall meta-state total distance (p¼ 0.046), while we did not

find significant findings in GRN mutation carriers, as compared to HC.

The correlation between meta-state measures and age at expected

onset in mutation carriers was then considered (FDR-corrected for mul-

tiple comparisons). The closer the age at expected symptom onset, the

lower the number of meta-states (Pearson's correlation, r¼�0.174,

p¼ 0.012), the lower themeta-state changes (r¼�0.166, p¼ 0.012), the

lower the meta-state span (r¼�0.167, p¼ 0.012) and the lower the

meta-state total distance (r¼�0.141, p¼ 0.027) was found. As explor-

atory analysis, we also tested the aforementioned correlation in the three

groups of mutations (see Supplementary Table 4) demonstrating that the

effect was mainly supported by C9orf72 mutation carriers.

Finally, the correlation between meta-state measures and cognitive

performance in mutation carriers and mutation non-carriers, considering

age at evaluation as a covariate, was assessed (not corrected for multiple

comparisons). TMT-A scores (the higher the scores the worse the per-

formances) were inversely correlated with meta-state span (r¼�0.143,

p¼ 0.024) and meta-state total distance (r¼�0.124, p¼ 0.050): inter-

estingly, exploring the correlation of TMT-A scores and meta-state

measures, the inverse correlation with meta-state span was primarily

related to C9orf72 group (r¼�0.281, p¼ 0.011, not corrected for mul-

tiple comparisons). No other significant correlation between meta-state

measures and neuropsychological/behavioural tests in the three muta-

tions, separately, was demonstrated. No other significant correlations

between meta-state measures and MMSE, CBI-R or TMT-B were found.

4. Discussion

In this study, results showed consistent evidence of reduced global

flexibility and dynamism in the brain of presymptomatic FTD, which

progressively worse with proximity to age at expected symptoms onset.

Moreover, the impairment of global inner fluctuations of the brain was

well correlated with processing speed performances in asymptomatic

subjects carrying pathogenetic FTD mutations.

In the last decade, rs-fMRI has been used to estimate functional brain

connectivity, considering regions with temporally coherent brain ac-

tivity as “functional brain networks” (Buckner et al., 2009; Jafri et al.,

2008). Up to now, most studies have relied on two implicit assumptions:

the first is a “spatial assumption”, that each brain region participates in

exactly one network, and the second is a “temporal assumption”, that

the connectivity within each network are essentially static over time

(Allen et al., 2014; Ciric et al., 2017; Faghiri et al., 2018; Hutchison

et al., 2013). New evidence clearly suggests that the brain is dynami-

cally multistable, and spontaneous low-frequency fluctuations in BOLD

fMRI data during the acquisition capture reoccurring patterns (states) of

interactions among intrinsic networks at rest (chronnectome) (Calhoun

et al., 2014; Onton and Makeig, 2006). This is in line with spontaneous

activity fluctuations found in electrophysiological studies (Arieli et al.,

1996; Pascual-Marqui et al., 1995; Yanagawa and Mogi, 2009). This

“dynamic” inter-regional connections showed a high degree of repro-

ducibility (data analysis methods, grouping, decomposition techniques,

quality of the data, methodological validation with surrogate data

analysis) (Abrol et al., 2016, 2017). Such findings open a new chapter in

the study of neurodegenerative diseases, offering a different perspective

to investigate the earliest brain changes, thus considering global brain

connectivity instead of either single network connectivity or focal

neural damage.

In the present study, we assessed the chronnectome fingerprint in

preclinical monogenic FTD by considering meta-states. Meta-states

properly describe whole brain flexibility, moving from the concept that

each subject may be in a defined “state” of functional dynamic con-

nectivity in a given point in time to the concept that a subject may have

a weighted probability to be in more “states” in each given point in

time. Thus, in each subject, dynamic connectivity was represented by

the probability sum of the different connectivity patterns at a given

point in time. From this point of view, we explored those indexes (meta-

state numbers, changes, span, and total distance) related to the global

dynamic properties of the brain rather than specific states. This core

challenge allows us to better identify early and hidden features of brain

disorders, as already demonstrated in schizophrenia (Miller et al.,

2016).

Herein, we reported that asymptomatic mutation carriers a) passed

through a lower number of distinct meta-states (i.e., lower meta-state

number); b) less often switched between meta-states (i.e., lower meta-

state changes), and c) switched frequently between two meta-states at

close distal boundaries of the state space (i.e., lower mate-state total

distance), as compared to mutation non-carriers. Altogether, these find-

ings point to a precocious impairment of the inner fluctuations of the

brain with an effect on at-distance networks through a diminished dy-

namic fluidity (meta-state number and meta-state changes) and a

restricted dynamic range (meta-state total distance) in preclinical FTD

(Warren et al., 2013).

Prior work has primarily focused on topological differences among

networks in FTD, identifying structural and even functional changes of

specific brain networks in preclinical disease (Caroppo et al., 2015;

Dopper et al., 2014; Moreno et al., 2013; Pievani et al., 2014b; Premi

et al., 2014a, 2014b, 2016; Rohrer et al., 2015), evaluating neuropath-

ological progression according to the molecular nexopathy paradigm

(Warren et al., 2012). In the present work, we suggested that FTD at the

earliest disease stages affects whole brain efficiency, providing a com-

plementary view of presymptomatic FTD. From this point of view, the

potential perturbation of meta-state measures in the single mutation (as

supported by the exploratory analyses) should deserve attention with

separated dynamic connectivity analyses in each group.

Moreover, we reported that the greater the meta-state abnormalities

in mutation carriers, the closer the age at expected onset, in line with

the progressive changes which in turn lead to symptom onset and

structural damage in FTD. However, it should be noted that the degree

of correlation between meta-state perturbations and expected age at

onset was very low and statistically significant only in C9orf72 mutation

carriers. Finally, TMT-A, a test reflecting processing speed skills (Bowie

Table 2

Meta-state measures in the studied groups.

Variable Carriers

(n¼ 249)

Non-carriers

(n¼ 223)

pa

Number of distinct metastates,

mean� SD

51.0� 8.9 53.1� 8.8 0.024

Number of meta-state changes,

mean� SD

51.3� 8.5 53.3� 8.1 0.024

Meta-state span, mean� SD 23.0� 4.7 23.8� 4.5 0.136

Meta-state total distance,

mean� SD

82.1� 17.5 86.2� 17.3 0.027

a Mann-Whitney U test (carriers vs non-carriers) FDR-corrected for multiple

comparisons; SD: standard deviation.
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Fig. 2. Meta-state dynamics through time, meta-state numbers, meta-state change points, and meta-state total distance in a representative mutation carrier and in a

representative mutation non-carrier.
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and Harvey, 2006), inversely correlated with measures of dynamic

range connectivity. This confirms and extends the previous hypothesis

of a strict link between chronnectome fingerprint and cognition per-

formances (Chen et al., 2016; Jia et al., 2014) that needs to be further

explored, also considering the strength of correlations in the

mutation-carriers group. The lack of correlation between cognitive/be-

havioural performances and meta-state measures might be addressed to

the weak abnormalities of cognition and behaviour in preclinical FTD

(Rohrer et al., 2015). Conversely, TMT-A, an index of preprocessing

speed skill, is one of the early cognitive marker in preclinical FTD

(Rohrer et al., 2015). The absence of a significant correlation between

TMT-A scores and meta-state measures in healthy controls further

supports the idea that this finding is not age-driven but mutation-driven.

Our study presents a number of limitations that need to be acknowl-

edged. First, the influence of vigilance (even though rs-fMRI data were

collected with closed eyes) was not evaluated (Wang et al., 2016).

Second, subject motion is of particular concern in dynamic analyses of

rs-fMRI (Wang et al., 2016). To overcome this limit, we included motion

parameters estimation as well as DVARS index (that describes the rate

of change of BOLD signal across the entire brain at each frame of the

data compared with the next one; in this sense, DVARS represents a

measure of how much the intensity of a brain image changes in com-

parison to the previous timepoint) in the preprocessing and in the sta-

tistical design, respectively (Abrol et al., 2016; Power et al., 2012).

Furthermore, also considering further indexes of absolute and relative

movement (i.e. framewise displacement, FD) we tested the relationship

between the aforementioned indexes and metastate measures as well as

with cognitive performances: as described in Supplementary Table 3 a

residual significant relationship between relative movement indexes (in

particular FD) was evident, supporting the hypothesis of a potential

influence of the movement, even after the multi-level correction.

However, to further corroborate our findings we performed an explor-

atory analysis (Supplementary Analysis 3) only considering a selection

of carriers and non-carriers with low-movement, with comparable

findings. Third, considering the unconstrained nature of the

resting-state signal, thought content during the scan represented a sig-

nificant source of variability, can only be partially evaluated by retro-

spective questionnaires (Marusak et al., 2017; O'Callaghan et al., 2015).

Four, scan time of acquisition was in line with (or even greater than)

previous studies (Allen et al., 2014; Marusak et al., 2017) even though

the development of effective dynamic functional connectivity statistical

approaches is still an open field, deserving attention in the future

(Hindriks et al., 2016; Miller et al., 2016; Shakil et al., 2016; Shine

et al., 2015; Yaesoubi et al., 2015). In line with this, the utilization of

nuisance covariates (in particular in multi-center studies) represents a

challenging issue, considering the different types of confounders

(continue or categorical variables) as well as the time-point to remove

the variance associated with them. As described in the Methods section

we performed nuisance variables regression during the windowed

functional network connectivity processing before metastate calcula-

tion, even if this was not completely standardized for dynamic con-

nectivity analysis and should be considered as limitation. Fifth, the

choice of the dimension of CPs decomposition (6 CPs), even if in line

with previous studies, is arbitrary: from this point of view, a data-driven

approach (elbow criterion of the cluster validity index as for state

measures calculation) (Marusak et al., 2017; Rashid et al., 2014, 2016)

should be implemented also for metastates analysis to increase the

overall standardization. To obtain the decomposition into connectivity

patterns (CPs), the spatial ICA (sICA) approach was applied, considering

a number of CPs of 6, in line with previous work on metastates in dy-

namic brain connectivity (5–6 CPs used).

Despite these limitations, to the best of our knowledge, this is the first

study applying chronnectome approach to neurodegenerative dementias.

The exploration of time-varying aspects of functional connectivity un-

veiled aspects of the underappreciated early brain changes in FTD: beside

the well-established concept of the selective vulnerability of specific

brain regions (molecular nexopathy paradigm) in FTD (Warren et al.,

2013), the present findings supported the view that at the very early

disease stage FTD is affecting brain as global system as well. These

findings may have important implication on clinical grounds, as tracking

desynchronization of the inner fluctuations of the brain might be a

helpful prognostic marker to be used in future pharmacological and

prevention trials and it could be considered a feasible approach to

identify novel targets of intervention.
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Meta-state dynamics through time (panel A), meta-state numbers

(panel B), meta-state change points (panel C), and meta-state total dis-

tance (panel D) in a representative mutation non carrier (left column)

and representative mutation carrier (right column).

The colorbar represents the strength of probability to be in each meta-

state. X-axis: the six connectivity patterns (Cps) are reported, from 1 to 6;

Y-axis: time (seconds, after time course discretization in quartiles).
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