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ABSTRACT

Cellular prion protein (PrPC) is a plasma membrane glycophosphatidylinositol-anchored protein
and it is involved in multiple functions, including neuroprotection and oxidative stress. So far,
most of the PrPC functional research is done in neuronal tissue or cell lines; the role of PrPC in
non-neuronal tissues such as liver is only poorly understood. To characterize the role of PrPC in
the liver, a proteomics approach was applied in the liver tissue of PrPC knockout mice. The
proteome analysis and biochemical validations showed an excessive fat accumulation in the liver
of PrPC knockout mice with a change in mRNA expression of genes linked to lipid metabolism. In
addition, the higher Bax to Bcl2 ratio, up-regulation of tgfb1 mRNA expression in PrPC knockout
mice liver, further showed the evidences of metabolic disease. Over-expression of PrPC in fatty
acid-treated AML12 hepatic cell line caused a reduction in excessive intracellular fat accumulation;
shows association of PrPC levels and lipid metabolism. Therefore, based on observation of
excessive fat globules in the liver of ageing PrPC knockout mice and the reduction of fat
accumulation in AML12 cell line with PrPC over-expression, the role of PrPC in lipid metabolism
is described.
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1. Introduction

PrPC (prion protein cellular) is a plasma membrane glyco-

protein and its misfolded, proteinase K resistant isoform

called PrPSc (prion protein Scrapie) is known as a causative

agent of transmissible spongiform encephalopathies (TSE)

in humans and animals [1]. PrPC is widely expressed in the

body with the highest abundance in neuronal tissues and

involved in multiple functions [1]. Due to its conserved

gene sequence in different species, PrPC is supposed to

have fundamental functions. The expression of PrPC in the

peripheral tissues is comparatively low and far from being

understood. Though earlier reports in 1992–1993 showed

that autopsy of patients from Cruetzfeldet-Jakob disease is

associated with fatty liver [2,3], no further study has been

followed-up to understand and characterize the exact

molecular function of PrPC in the liver. Though a recent

study demonstrated that PrPC regulates the lipids level in

adipose tissue by negatively regulating autophagy pathway

[4]. In addition, it was earlier reported that inhibiting the

expression of PrPC in glial and non-glial cancer cells

induces cell death by activating autophagy [5]. However,

the role of PrPC in fatty liver or lipid metabolism in the

liver is not yet known.

Further, a few studies have reported that increased

PrPC expression in liver is associated with liver fibrosis

in Chronic Viral Hepatitis [6] and the proliferation of

hepatic stellate cells (HSCs) [7]. Therefore, the aim of

the current study is to elucidate the detailed molecular

and cellular mechanism of PrPC in the liver.

It is known that protein expression of PrPC in the

liver is very low [8–11], and we had earlier reported

a significant age-dependent up-regulation of PrPC

expression in the liver [12]. In addition, the expression

of PrPC is significantly higher in females as compared

to males. Based on our previous study that the expres-

sion of PrPC increases in the liver of ageing mice and

human, we intended to understand and characterize the
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hepatic function of PrPC with proteomics approach in

the liver tissue specimens from PrPC knockout Zürich

I and wild type mice of both sexes at different ages (3, 9

and 14 month-old). We used two-dimensional gel elec-

trophoresis-based proteomics approach in all age

groups and the gel-free quantitative proteomics in the

14 months only.

Proteomics results indicated that the liver of PrPC

knockout mice may have an excessive deposition of fat

in 14 months age and phenotype was subsequently

validated by Sudan III lipid stain and mRNA levels of

genes involved in lipogenesis. Further, in vitro experi-

ments validated that the negative regulation of autop-

hagy by PrPC in AML12 hepatocyte cell line regulates

the intracellular excessive fat levels.

2. Results

2.1. 2D gel electrophoresis of PrPC knockout mice

liver

Liver samples from 3, 9 and 14 month-old Zürich I PrPC

knockout and wild type mice of both sexes were subjected

to 2D gel electrophoresis-based proteomics approach. In

total, 46 gels (17 cm width) from liver tissues of 3, 9 and

14month-old (PrPC knockout and wild type with 4/3mice

from each group) with well-separated spots were obtained

(Details of biological replicates are provided in the support-

ing information, Table 3S). The images of each gel were

subjected to differential spot analysis by Delta2D. The

image analyses revealed 3035 protein spots and each spot

was identified with multiple sets of proteins. The compar-

ison of PrPC knockout and wild type mice gels revealed 26

differentially regulated spots (Supplementary Figures 1S

and 2s) and proteins with the highest score/spectral count

are shown in Table 1. However, more than one protein was

detected by mass spectrometry in each spot and the

detailed list of all proteins detected in each spot is presented

in the supporting information (Table 1S, supporting infor-

mation). In total, 8 spots were regulated in the liver of 3 and

14 month-old PrPC knockout male mice as compared to

the wild type while no significantly regulated spot was

found in the 9 months male group. Eighteen spots were

found to be regulated in the liver of 3, 9 and 14 month-old

PrPC knockout female mice as compared to the wild type.

2.2. Proteome analysis

Proteins from all age groups and both sexes were combined

together in a single list (i.e. 62 proteins) for IPA ingenuity

(Qiagen), because of the number of proteins in each group

Table 1. Detailed list of statistically significant (P-value ≤ 0.05) dataset from mass spectrometry analysis: List included regulated proteins in
the liver of 3, 9 and 14 month-old of PrPC knockout mice as compared to the wild type (No significant-regulated gel spots were found in the
liver of 9 month-old male PrPC knockout mice). Each spot containing proteins with the highest spectral count (score) is present in the table.
The screening of the raw dataset was done by their unique molecular mass and isoelectric pH (pI).

ID Protein name Accession number MW (kDa) Coverage % Score Fold Change P-value pI

Male – 3-month-old mice

1 Isoamyl acetate-hydrolysing esterase 1 homolog Q9DB29 27.98 36.90% 24 1.55 ↓ 0.018 5.34
2 Serine-threonine kinase receptor-associated protein Q9Z1Z2 38.44 40.30% 26 1.53 ↓ 0.014 4.99
3 Regucalcin Q64374 33.41 56.90% 155 1.59 ↓ 0.031 5.16
4 Not identified 4.65 ↓ 0.025
5 Propionyl-CoA carboxylase alpha chain, mitochondrial Q91ZA3 79.92 17.70% 17 1.58 ↓ 0.04 6.04

Male – 14-month-old mice

6 U5 small nuclear ribonucleoprotein 200 kDa helicase Q6P4T2 244.55 12.30% 36 1.77 ↓ 0.012 5.73
7 3-mercaptopyruvate sulfurtransferase Q99J99 33.02 67.30% 68 6.70 ↑ ≤0.001 6.12
8 Not identified 1.53 ↓ 0.046

Female – 3-month-old mice

9 Farnesyl pyrophosphate synthase Q920E5 40.58 42.80% 105 2.28 ↓ 0.02 5.48
10 Annexin A5 P48036 35.75 59.90% 182 2.16 ↓ 0.006 4.82
11 Alpha-soluble NSF attachment protein Q9DB05 33.19 70.5% 146 2.14 ↓ 0.013 5.30
12 3-mercaptopyruvate sulfurtransferase Q99J99 33.02 67.30% 68 3.54 ↑ 0.04 6.12
13 Vacuolar protein sorting-associated protein 29 Q9QZ88 20.50 44.50% 39 2.14 ↑ 0.006 6.29
14 14-3-3 protein gamma P61982 28.30 36.0% 21 2.66 ↑ 0.017 4.80
15 39 S ribosomal protein L12, mitochondrial Q9DB15 21.71 55.70% 48 2.07 ↑ 0.004 5.35

Female – 9-month-old mice

16 Histidine ammonia-lyase P35492 72.26 14.90% 30 2.05 ↓ 0.039 5.94
17 Leukocyte elastase inhibitor A Q9D154 42.58 44.10% 59 2.19 ↓ 0.009 5.85
18 3-mercaptopyruvate sulfurtransferase Q99J99 33.02 67.30% 68 2.53 ↑ 0.019 6.12
19 Proteasome subunit beta type-3 Q9R1P1 22.96 55.60% 103 2.28 ↑ 0.04 6.13

Female – 14-month-old mice

20 Not identified 1.82 ↑ 0.012
21 Stress-70 protein, mitochondrial P38647 73.46 69.50% 507 1.56 ↓ 0.029 5.44
22 Actin, cytoplasmic 1 P60710 41.74 37.60% 19 4.96 ↓ 0.0004 5.29
23 Leukocyte elastase inhibitor A Q9D154 42.58 44.10% 59 2.23 ↑ 0.012 5.82
24 Amine sulfotransferase O35403 35.18 41.3% 201 3.01↓ 0.036 6.08
25 Not identified 10.94 ↑ 0.031
26 Putative hydrolase RBBP9 O88851 20.91 19.4% 13 5.27 ↓ 0.003 5.62
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(male and female proteome dataset, separately) were less.

The analysis revealed four functional networks (Table 2S,

supporting information); Network 1: Lipid Metabolism,

Small Molecule Biochemistry, Vitamin and Mineral

Metabolism, Network 2: Cellular Function and

Maintenance, Cellular Growth and Proliferation, Cellular

Movement. Network 3: Cancer, Cellular Development,

Organismal Injury and Abnormalities. Network 4:

Metabolic Disease, Carbohydrate Metabolism,

Cardiovascular Disease.

The functional networks with diverse forms of func-

tions were obtained and network 1 has the highest

score, which pointed out to the regulation of lipid

metabolism (Figure 5 and Table 2S). Liver steatosis or

non-alcoholic fatty liver disease is a reversible condi-

tion in which large globules containing triglycerides are

deposited in the hepatocytes. In addition, IPA func-

tional networks also indicated a metabolic syndrome

in the liver of PrPC knockout mice as compared to the

wild type (Network 4, mentioned above). Therefore,

first the amount of triglyceride levels were measured,

followed by histopathological examination with H and

E (Hematoxylin and Eosin) and Sudan III fat stain.

2.3. Triglyceride content (mg/dl) in the liver of

PrPC knockout mice

Triglyceride content was measured in the liver of PrPC

knockout mice as compared to the wild type. We found a

significant up-regulation of triglyceride content (mg/dl)

in the liver of 14 month-old mice, which indicated the

presence of lipid metabolic syndrome or non-alcoholic

fatty liver disease (NAFLD) in the ageing PrPC knockout

mice (Figure 1(i)). In 14 month-old female PrPC knock-

out mice liver, the concentrations of triglycerides were

higher than a male group of the same age.

2.4. Effect of PrPC on in-vivo and in vitro fat

content

Further, we investigated the fat content by Sudan III

and H and E staining in the liver of 14 month-old mice.

We detected the fat globules in PrPC knockout mice

liver, which confirmed the excessive fat deposition in

the female PrPC knockout mice (Figure 1(a,e)) as com-

pared to the wild type (Figure 1(b,f)). However, the fat

globules were less in the liver of male PrPC knockout

mice vs female group (Figure 1(c,g)) as compared to the

wild type (Figure 1(d,h)).

Moreover, when AML12 cells were challenged with

Saturated Free fatty acid (Palmitate) and it results in the

accumulation of high-fat content in control cells in

absence of PrPC over-expression. Cells transfected with

plasmid DNA construct for EGFP-PrPC however,

showed a significant reduction in fat accumulation as

evidenced by the Oil-red-o staining of these cells (Figure

2(a)).

The close association of autophagy with metabolism in

the context of steatosis has been shown in many studies

[13]. There are clear evidences that free fatty acid accu-

mulation in hepatocytes induces autophagy which plays

an important role in fat metabolism [14]. This phenom-

enon is also called as lipophagy. The increased levels of

LC3 protein and the presence of autophagy vacuoles are

important markers for autophagy in the fatty liver [14,15].

Therefore, a number of mRFP-LC3 vesicles in AML12

cells treated with palmitate were analysed. We found

a significant upregulation of the number of mRFP-LC3

vesicles (Figure 2(b)). However, when we compared these

results with AML12 cells co-transfected with PrPC, we

found a significant decrease in the number and size of

mRFP-LC3 vesicles after palmitate treatment (Figure 2

(b)). We also observed a significant increase in the num-

ber of mRFP-Lamp1 vesicles after FAT treatment and the

number of same veiscles decreased after co-expression of

PrPC, however; in this case, the differences were not

significant (Figure 2(c)). Together, these results suggest

the role of PrPC in the trafficking of fat and mobilization

or degradation of excessive fat in these cells.

2.5. Quantitative gel-free proteomics of 14 months

age mice

As we have observed significant changes in the

amount of triglycerides specifically in 14 months

age group. Therefore, we wanted to obtain a robust

information of the proteome change in response to

change in the excessive deposition of lipids. We ana-

lysed 3 samples per group (PrPC knockout and wild

type) and 2718 proteins were detected by mass spec

(Heat map Figure 3(a)). Eighty proteins were signifi-

cantly up-regulated in PrPC knockout as compared

to the wild type group (Table 2, Figure 3(b) –

Volcano plot) and 21 proteins were significantly

down-regulated with a minimum fold change of 1.5

or log2 difference of 0.58 (Table 3, Figure 3(b) –

Volcano plot). The enrichment analysis by WEB-

based GEne SeT AnaLysis Toolkit showed networks

linked with non-alcoholic fatty liver disease

(NAFLD), Hepatitis C and Lysosomal function

(Table 4). Earlier proteomics datasets from 2DE ana-

lysis and chemical stainings showed a presence of
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Figure 1. Lipid levels in PrPC knockout mice: Liver tissue stained with Sudan III (a-d), H and E stain (e-h) shows a higher fat deposition
in the liver of 14 months female PrPC knockout mice (a and e) as compared to the wild type mice (b and f). Biochemical analysis
shows a higher triglyceride concentration in 14 months PrPC knockout mice as compared to the wild type controls (i). Comparatively,
the fat content in the liver of male PrPC knockout mice (c and g) was lower than the female group. Nuclei were stained with
hematoxylin. Western Blot analysis showed a significant down-regulation of Bcl2 expression in the liver of PrPC knockout mice as
compared to the wild type mice (j), while the expression of Bax was up-regulated in PrPC knockout liver with a net increase of Bax to
Bcl2 ratio. (k) TUNEL assay in the 14-month-old PrPC knockout mice liver and WT controls. (3-month-old – 3 M, 9-month-old – 9 M,
14-month-old – 14 M).
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higher lipid content in PrPC knockout liver.

Therefore, proteome analysis by gel-free proteomics

also showed a possible manifestation of non-alcoholic

fatty liver disease, further indicating the accumula-

tion of fat in the liver. Protein cluster which was

found to be linked with NAFLD includes a set of

four proteins: MAPK9, subunits of NADH dehydro-

genase (ubiquinone) 1 beta subcomplex 5, 9 and 8. In

addition, the previous study has reported a link of

PrPC expression to Hepatitis C [16]. Regulated pro-

teins associated with Hepatitis C observed in datasets

include eukaryotic translation initiation factor 3, sub-

unit E, protein phosphatase 2 (formerly 2A), catalytic

subunit, beta isoform, and mitogen-activated protein

kinase 9.

2.6. Regulation of PPARα, ACC and FAS genes in

the liver of PrPC knockout mice by qPCR

Further, IPA software analysis predicted a detailed list

of possible regulated genes linked with lipid metabo-

lism (Table 2S, supporting information). Among them,

Figure 2. FAT accumulation and trafficking after PrPC- overexpression in AML12 cells: Oil-red-o staining in palmitate (FAT) treated
AML12 cells shows that FAT accumulation is significantly reduced after PrPC over-expression in cells (a). The number of mRFP-LC3
vesicles are higher in FAT-treated cells as compared to BSA control and co-expression of PrPC-EGFP reduced the number of mRFP-
LC3 vesicles (b). LAMP1-mRFP expression shows an increase in the number of vesicles in FAT-treated cells and there was a non-
significant decrease in a number of LAMP1-mRFP vesicles after PrPC co-expression (c). A representative image shows an over-
expression of PrPC-EGFP in AML12 cells.
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Figure 3. Proteome analysis of 14 months old PrPC knockout mice. a) Heat map showing the differentially regulated proteins in the
liver of 14 month-old PrPC knockout mice (KO1, KO2, KO3) and WT (WT1, WT2, WT3) controls b) Volcano plot representing the all set
of proteins detected in both mice groups and 102 proteins were found be significantly regulated with minimum – log10 p – value of
1.3 (0.05) Gene ontology classifications for biological process, cellular component and molecular functions of 76 up-regulated (c) and
21 down-regulated (d) proteins are shown graphically.
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the crucial transcriptional factor PPARα is a regulator

of fatty acid β-oxidation (Figure 5). mRNA expression

of PPARα in the 14 month-old PrPC knockout mice

liver was analysed by qPCR and we observed a down-

regulation of PPARα in the male PrPC knockout mice

(Figure 4(e)), while no regulation of PPARα was

observed in the female PrPC knockout mice (Figure 4

(a)). We further analysed the expression of the enzymes

for de novo fatty acid synthesis, acetyl CoA carboxylase

gene (ACC) and fatty acid synthase (FAS) by qPCR.

We found a significant up-regulation of hepatic ACC

and FAS genes expression in 14 month-old female

PrPC knockout mice (Figure 4(b,c)) while the

Table 2. Detailed list of statistically significant (P-value ≤ 0.05)
protein dataset by gel-free proteomics of old-aged mice group
(up-regulation): List included proteins up-regulated in the liver
of 14-month-old of PrPC knockout mice as compared to the
wild type. – log10 p-value is significant when higher than 1.3
(equivalent to P-value of 0.05) and minimum log2difference
(fold change of 1.5) of + 0.58.

Sr. No.
T: Gene
names

Mol. weight
[kDa]

-Log10
p-value

log2Difference (Fold
Change)

1 Ppp2ca;
Ppp2cb

35.61 1.31 0.59

2 Plg 90.81 2.63 0.61
3 Atp2b1 134.75 1.41 0.61
4 Ap3b1 122.74 1.99 0.63
5 Mapk9 48.19 1.65 0.64
6 Pacsin3 48.58 1.36 0.66
7 Ndufb5 14.04 1.69 0.66
8 Vcl 116.72 1.52 0.67
9 Mal2 19.09 1.77 0.67
10 Nono 54.54 1.9 0.68
11 Gpt2 57.94 1.31 0.68
12 Agk 46.98 1.5 0.69
13 Csnk1a1 18.32 1.68 0.71
14 Ncbp1 91.93 1.31 0.75
15 Adhfe1 49.04 1.39 0.76
16 Calr4 49.45 1.55 0.8
17 Lpp 65.89 1.82 0.82
18 Bckdha 50.77 2.4 0.82
19 M6pr 31.17 1.62 0.85
20 Apoc3 10.92 1.34 0.86
21 Dars 57.15 3.95 0.9
22 Gstm2 25.72 2.11 0.92
23 Actg2 41.88 1.59 0.92
24 Ssb 47.76 1.66 0.94
25 Pxmp2 9.44 1.32 0.95
26 Adprhl2 39.41 1.58 0.98
27 Apol9a;

Apol9b
33.3 1.31 0.99

28 Zzef1 328.27 1.41 0.99
29 Mar-01 37.98 1.31 1.03
30 Ssfa2 133.46 1.37 1.05
31 Sfpq 75.44 1.42 1.07
32 Asah1 44.67 2.14 1.08
33 Paf1 60.52 1.52 1.12
34 Ca5a 34.07 1.52 1.13
35 Sars2 58.32 1.61 1.15
36 Cpn1 51.85 2.4 1.18
37 Chd4 216.37 1.55 1.26
38 Ddx23 95.49 1.39 1.27
39 Sigirr 46.16 1.3 1.28
40 Cul2 86.88 1.63 1.3
41 Nup214 212.98 1.43 1.33
42 Tns2 152.01 1.64 1.44
43 Rabggta 64.99 1.3 1.47
44 Ptpn11 68.46 1.33 1.52
45 Hebp1 21.05 1.95 1.53
46 Flot2 47.12 1.45 1.54
47 Glyr1 60.44 1.39 1.55
48 Gopc 44.67 1.44 1.61
49 Pdcd6 21.87 1.36 1.65
50 Ndufb9 21.98 1.36 1.69
51 Dhtkd1 102.79 1.34 1.7
52 Azgp1 35.33 1.87 1.7
53 Snx17 7.58 1.56 1.71
54 Ascc2 85.65 1.87 1.73
55 Abcb8 78 1.3 1.81
56 Oxr1 91.74 2.23 1.85
57 Igha 36.72 2.01 1.86
58 Eif2b5 80.09 3.21 1.87
59 Ece1 87.07 1.49 1.89
60 Pex5 69.84 2.19 1.93
61 Vps51 86.19 1.37 1.94
62 Farp2 121.28 1.57 2.09
63 Ifitm3 14.95 2.41 2.14
64 Ndufb8 21.88 1.77 2.2
65 Slc33a1 61.08 1.43 2.23

(Continued )

Table 2. (Continued).

Sr. No.
T: Gene
names

Mol. weight
[kDa]

-Log10
p-value

log2Difference (Fold
Change)

66 Manba 100.85 1.62 2.25
67 Eif3e 52.22 2.51 2.45
68 Stbd1 36.13 1.38 2.5
69 Ubxn4 56.46 1.31 2.54
70 Casp6 31.6 1.45 2.58
71 Cela1 28.9 1.43 2.77
72 Tpp1 61.34 1.81 2.83
73 Golim4 79.9 2.27 2.87
74 Cav1 20.54 1.32 2.94
75 Tmem109 8.03 1.57 3.14
76 Itih3 99.36 3.35 3.27
77 Lifr 122.57 2.05 3.53
78 Ighg;Igh-1a 36.39 3.1 3.68
79 P01878 36.88 4.72 5.67
80 Nnt 113.84 2.55 7.03

Table 3. Detailed list of statistically significant (P-value ≤ 0.05)
protein dataset by gel-free proteomics of old-aged mice group
(down-regulation): List included proteins down-regulated in the
liver of 14-month-old of PrPC knockout mice as compared to the
wild type. – log10 p-value is significant when higher than 1.3
(equivalent to P-value of 0.05) and minimum log2difference
(fold change of 1.5) of – 0.58.

Sr. No.
T: Gene
names

Mol. weight
[kDa]

-Log10
p-value

log2Difference (Fold
Change)

1 Bhmt2 39.87 5.83 −6.44
2 A0A0R4J0I1 46.67 4.01 −5.42
3 Serpina1d 46 4.28 −5.37
4 Akr1 c19 37.05 1.62 −2.69
5 Tmed7 21.28 1.95 −2.27
6 C8b 66.23 1.41 −1.53
7 Pcyt1a 29.76 1.97 −1.35
8 Mpst 33.1 1.82 −1.26
9 Hal 72.26 1.58 −1.23
10 Luc7l3 51.45 1.3 −1.2
11 Yme1l1 80.03 1.63 −1.18
12 Ca3 29.37 1.59 −1.18
13 Cdh13 78.19 2.54 −1.08
14 Snrpf 9.73 1.71 −0.91
15 Amacr 41.7 1.61 −0.78
16 Pgpep1 12.12 1.33 −0.72
17 Gyk;Gk 59.83 2.34 −0.66
18 Mtap 31.06 1.3 −0.66
19 Iigp1 47.57 2.35 −0.61
20 Khk 32.74 2.16 −0.6
21 Arf5 20.53 1.35 −0.58
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expression of ACC in male PrPC knockout mice was

down-regulated (figure 4(f)) and no significant differ-

ences of FAS mRNA expression was observed in the

male group (Figure 4(g)).

2.7. Evidences of metabolic disease in the liver of

female PrPC knockout mice

To further validate, if any pathological manifestation is due

to higher accumulation of fat, we analysed the expression

of tgfb1 by qPCR, which is a marker of fibrogenesis. We

found a significant up-regulation of tgfb1 in the 14 month-

old female PrPC knockout mice liver (Figure 4(d)) but not

in the male group (Figure 4(h)).

Furthermore, the imbalance of pro-apoptotic protein

Bax and anti-apoptotic protein Bcl2 has been reported to

contribute to hepatocyte apoptosis during the pathogen-

esis of excessive fat accumulation [17]. Hence, we further

analysed the expression of Bax and Bcl2 in the liver of

PrPC knockout female mice by Western Blot because

excessive fat accumulation was observed only in the female

group. We observed a significant increase of Bax to Bcl2

ratio in female PrPC knockout mice liver as compared to

the wild type (Figure 1(j)). Further quantification of apop-

totic cell death by TUNEL staining showed near significant

(P = 0.06) increase in the number of apoptotic cells in

PrPC knockout cells as compared to wild type.

3. Discussion

Our current study was focused on the illustration of

PrPC function in the liver. The proteome analysis of

PrPC knockout mice liver pointed to the regulation of

lipid metabolism in the 14 month-old PrPC knockout

mice. Further in vitro experiments validated that PrPC

regulates the fat accumulation in hepatic AMP12 cell

line with parallel regulation of autophagy.

Excessive fat deposition observed in the liver of

ageing PrPC knockout mice could be because of non-

alcoholic fatty liver disease (NAFLD). However, to con-

firm if excessive fat accumulation is due to NAFLD

needs further in detailed pathological as well as serolo-

gical investigations. In general, the incidences of fatty

liver disease are increasing among the ageing popula-

tion, which was earlier demonstrated, using senescence-

accelerated prone mice (SAMP8) [18]. The deposition

of excessive fat in the liver of PrPC knockout mice

showed that lipid metabolism is affected in absence of

PrPC; maybe because of multiple possibilities including

the enhanced release of non-esterified fatty acids from

adipose tissue (lipolysis), increased de novo fatty acid

synthesis (lipogenesis), decreased beta-oxidation of

fatty acids or due to trafficking defect [19].

3.1. Regulation of genes involved in lipid

metabolism

Ingenuity pathway analysis of 2DE proteome results

predicted the involvement of PPARα as a possible reg-

ulatory gene linked with lipid metabolism. PPARα is

a transcription factor which regulates the beta-

oxidation of fatty acids. The down-regulation of

PPARα causes fat accumulation due to decreased oxi-

dation of fatty acids [20,21]. Surprisingly, the down-

regulation of PPARα gene expression was observed

only in the male PrPC knockout mice, while the exces-

sive fat deposition was observed in the female group.

This may be due to PrPC dependent differential regu-

latory mechanisms of lipid metabolism by PPARα in

the female and male liver [22]. Therefore, it prompted

us to look for other genes associated with lipid

metabolism.

Acetyl CoA-carboxylase (ACC) is a rate-limiting

enzyme in de novo-lipogenesis while fatty acid synthase

(FAS) is a key enzyme involved in terminal catalytic

steps of fatty acid synthesis [23]. The expression of

ACC and FAS are known to be increased in NAFLD

[24,25]. We found a significant up-regulation of ACC

as well as FAS mRNA expression in the 14 months

female PrPC knockout mice. Therefore, higher expres-

sion of ACC and FAS mRNA indicates an increased de

novo fatty acid synthesis in the liver of PrPC knockout

mice. The above observation explains a metabolic reg-

ulatory mechanism, which leads to excessive fat deposi-

tion in the liver in the absence of PrPC.

This age-dependent shift in the genes expression of

lipid metabolism in PrPC knockout mice co-relates

Table 4. Enrichment analysis of the proteins which are signifi-
cantly up-regulated in PrPC knockout mice as compared to the
wild type. ‘C’ stands for the number of reference genes in the
category and ‘O’ stands for the number of genes in the user
gene list and also in the category (file:///C:/Users/Arora/
Desktop/Manuscript-submission/Figures/Proteomics/Up-
regulated/Report_wg_result1517501423.html).

Description C O Enrichment P-value

Lysosome – Mus musculus (mouse) 124 5 0.65 0.001
Non-alcoholic fatty liver disease
(NAFLD) – Mus musculus (mouse)

153 4 0.81 0.008

RNA transport – Mus musculus (mouse) 167 4 0.88 0.011
Aminoacyl-tRNA biosynthesis – Mus
musculus (mouse)

44 2 0.23 0.022

Sphingolipid signalling pathway – Mus
musculus (mouse)

124 3 0.65 0.027

Oxidative phosphorylation – Mus
musculus (mouse)

134 3 0.72 0.033

Hepatitis C – Mus musculus (mouse) 136 3 0.72 0.034
Parkinson’s disease – Mus musculus
(mouse)

144 3 0.76 0.040

Renal cell carcinoma – Mus musculus
(mouse)

67 2 0.35 0.048
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with the findings showed up- and down-regulation of

FAS and SREBP-1 c mRNA expressions, respectively, in

senescence-accelerated prone mice (SAMP8) mani-

fested with NAFLD [18]. Therefore, excessive fat accu-

mulation in the ageing PrPC knockout mice shows that

PrPC may have an anti-ageing effect on the age-

dependent shift of gene expression involved in lipid

metabolism.

Another observation from the current study showed

that PrPC has a differential effect on lipid metabolism in

the female and male groups, possibly because of gender-

dependent expression of PrPC in the liver of wild type

mice. The wild type female mice have a higher expression

of PrPC in the liver as compared to the male [12].

Apparently, PrPC has a more significant role in the liver

of female mice, because as we have observed, the knock-

out of PrPC gene affected female mice severely than male

mice. The understanding of the hormonal influence on

the gender-dependent expression of PrPC on lipid meta-

bolism is beyond the scope of the current study.

3.2. Evidences of metabolic disease linked with

excessive fat accumulation

Gel-free proteome analysis of 14 month-old PrPC knock-

out mice found an up-regulation of MAPK9 or JNK2,

NADH dehydrogenase (ubiquinone) 1 beta subcomplex

subunits 5, 8 and 9. All four genes are part of NAFLD

network of KEGG PATHWAY. It is reported that JNK2

promotes lipoapoptosis in hepatic steatosis and acts as

Figure 4. Gender-dependent regulation of hepatic mRNA expression of PPARα, ACC, FAS and tgfb1 in PrPC knockout mice: The mRNA
expression of ACC and FAS genes was significantly up-regulated in the 14 month-old female PrPC knockout mice (b and c), while the
expression of ACC in the 14 month-old male PrPC knockout mice was significantly down-regulated (f) and no significant differences in FAS
mRNAexpressionwas observed in themale group (g). The expression of PPARαmRNAwas significantly down-regulated in 14-month-oldmale
PrPC knockout mice (e) while there was no regulation in the female group (a). The mRNA expression of tgfb1 was significantly up-regulated
only in the female PrPC knockout mice (d). (3-month-old – 3 M, 9-month-old – 9 M, 14-month-old – 14 M).
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a pro-survival factor in lipid toxicity [14]. Therefore, the

up-regulation of JNK2 indicates increased lipotoxicity due

to increased fat accumulation in the liver of PrPC knockout

mice. Further, up-regulation of a cluster of three NADH

dehydrogenase (ubiquinone) 1 beta subcomplex subunits

was observed in the liver of PrPC knockout mice and all

three subunits are part of complex 1 of the mitochondrial

respiratory chain [26]. Fatty acids undergo mitochondrial

β-oxidation to release acetyl-CoAs which generates NADH

and NADH undergo oxidative phosphorylation through

mitochondrial respiratory chain [26]. Upregulation of

NADH dehydrogenase subunits in the liver of PrPC

knockout mice indicates a compensatory response because

of increased load of NADH which may be additionally

produced due to breakdown of excess fat as observed in

the liver in absence of PrPC. Interestingly, we also observed

a significant up-regulation of APOC3 protein in PrPC

knockout mice which regulates triglyceride metabolism in

multiple ways, including hepatic- and lipoprotein lipase-

mediated TG hydrolysis, by promoting hepatic VLDL-TG

production and by inhibiting uptake and clearance of TG-

rich lipoprotein remnants [27]. It is already known that

animal models with the over-expression of APOC3 lead to

excessive triglycerides levels [27]. Therefore, the up-

regulation of APOC3 in the liver of 14 months age PrPC

knockout mice as compared to controls may be one of the

contributing metabolic factors that leads to excessive fat

deposition in absence of PrPC [27].

As mentioned, excessive fat accumulation may be the

case of NAFLD which could further be associated with cell

Figure 5. IPA software network 1 – Functional network analysed by comparing the proteome dataset of PrPC knockout mice liver
and wild type (both genders and all age groups) (Details – Table 2S). Coloured proteins labels were found to be regulated in our
proteome dataset and uncoloured labels are predicted to be linked by the ingenuity software. The network is associated with Lipid
metabolism, Small molecular biochemistry, Vitamin and Mineral metabolism. PPARA (PPARα) gene has high connectivity in the
network with clusters of genes which are reported to be involved in lipid metabolism. For example, Amine sulfotransferase
(Gm4794/Sult3a1) is found to be 3.01-fold down-regulated in 14 months female PrPC knockout mice as compared to the wild
type and it has already reported being down-regulated in liver steatosis [39].
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death, fibrosis, or liver cirrhosis [28]. Although, the expres-

sion of Bax was not significantly increased; however, a net

increase of Bax/Bcl2 ratio was found due to a significant

decrease of Bcl2 in the liver of 14 month-old female PrPC

knockout mice as compared to the wild type by Western

Blot. Bax and Bcl-2 are anti- and pro-apoptotic members,

respectively, of the bcl-2 family [29] and higher Bax to Bcl-

2 ratio is increased in the progression of non-alcoholic fatty

liver disease with the manifestation of apoptosis [30].

However, it is possible that cell death in PrPC knockout

old age mice is mild as further evidenced by TUNEL cell

death assay which showed a non-significant, though near

to significant increase in the number of apoptotic cells with

a p-value of 0.06.

Tgfb1 is a growth factor with anti–inflammatory and

pro-fibrogenic properties [31]. Also, tgfb1 is known as

an early phase marker of NAFLD progression into non-

alcoholic steatohepatitis NASH [32,33]. We showed an

up-regulation of tgfb1 mRNA level in the 14 month-old

female PrPC knockout mice liver. Hence, it evidenced

that NAFLD in female PrPC knockout mice liver may

have a fibrogenic response.

3.3. Regulation of FAT accumulation in AML12

cells

To understand the mechanism of fat accumulation in the

liver of PrPC knockout mice; we analysed the fat levels in

AML12 liver cell line in the presence of PrPC overexpres-

sion. Interestingly, fat analysis in over-expressing PrPC

AML12 cells showed significantly decreased FAT content;

validating the role of PrPC in regulating the lipid meta-

bolism. However, as the liver of PrPC knockout mouse

showed an increased fat accumulation that could be due

to a lack of clearance of accumulated fat in hepatocytes in

the absence of PrPC. Further, the treatment of fatty acids

significantly decreased the number and size of accumu-

lated mRFP-LC3 marked autophagy vesicles, an effect

which is already known [34]. Interestingly, PrPC over-

expression reversed the accumulation of mRFP-LC3

marked autophagy vesicles. Previous studies already

reported that deficiency of PrP (C) may impair autopha-

gic flux in oxidative stress [16] and overexpression of

PrPC inhibits autophagy-mediated lipid accumulation in

3T3-L1 adipocytes [4] which correlates with our findings

that overexpression of PrPC not only reversed the accu-

mulated autophagosomes induced by fat treatment but

also reduced the excessive fat in the hepatic cells.

Therefore, our observations showed that PrPC is involved

in the regulation of intracellular fat mobilization.

3.4. Concluding Remarks

In the current study, with the help of proteomics and

cell biology approach, the significance of PrPC in lipid

metabolism in ageing liver is shown. The excessive

hepatic fat deposition is mainly observed in the female

PrPC knockout mice, with the evidences of non-

alcoholic fatty liver disease. Cell culture experiments

in the hepatic AML12 cell line further showed that

PrPC regulates the intracellular fat levels.

4. Material and methods

4.1. Animals

PrP knockoutmice from 3, 9 and 14months-old from both

sexes (4 mice per group) were derived from Zurich I with

a mixed genetic background (129/Sv and C57BL/6) and

were generated as previously described by Bueler et al. [35].

As control mice, we used WT mice from the same genetic

background. All protocols used were in accordance with

the ethical rules for animal experimentation.

4.2 Two-dimensional gel electrophoresis (2DE)

After the mice were sacrificed, liver tissues were dis-

sected, snap-frozen into liquid nitrogen and stored at

−80°C until further use. The tissues were lysed in lysis

buffer (7 M urea, 2 M thiourea, 4% CHAPS, 20 µl/ml

ampholytes, 10 mg/ml DTT, protease, and phosphatase

inhibitors) for 5 min at 50-hertz frequency and incu-

bated overnight at 4°C. Lysed tissue samples were cen-

trifuged at 14,000 rpm for 20 min at 4°C and

supernatants were obtained for further experiments.

Protein concentrations were measured by the Bradford

protein estimation method (Bio-Rad standard protocol)

and lysates containing 120 µg of protein were diluted into

325 µL rehydration buffer (7 M urea, 2 M thiourea, 4%

CHAPS, 0.2% 3–10 bio-Lytes and 65mMDTT) and loaded

on aReadyStrip (IPGnonlinear pH3–10, 17 cm strip –Bio-

Rad). After 12 h of active rehydration at 50 volts (V), iso-

electric focusing was started at 500 V for 1 h, followed by

ramping at 1000 V for 1 h and 5000 V for 2 h. The final

focusing was conducted at 8000 V, reaching a total of

60,000 V hours (PROTEAN IEF CELL, Bio-Rad). Then,

the strips were equilibrated 2 times for 20 min in buffer

containing 6 M urea, 2% SDS, 30% glycerine, and 0.375 M

Trisph, pH 8.8, supplemented with 2%DTT in the first and

with 2.5% Iodoacetamide (IAA) in the second equilibration

step. SDS-PAGE was performed overnight at 4°C with

homogeneous 12% polyacrylamide gel using a PROTEAN

II XL Vertical Electrophoresis Cell (Bio-Rad).
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2D gels were stained with silver stain and gel images

were scanned at 300 dpi with canon LiDe 110 scanner.

Protein spot abundances from 48 liver proteome gel

images (3, 9, 14 month-old, wild type and PrPC knockout

from both sexes) were analysed using the Delta2D soft-

ware (v. 3.6) (DECODON). The differences in spot abun-

dance analysed by Delta2D software were statistically

evaluated using unpaired Student’s t-test. Mean and stan-

dard deviation were calculated from four sets of experi-

ments. A protein spot was considered as differentially

regulated when its densitometric analyses showed at

least 1.5-fold change in abundance and when the

p-value was <0.05 in unpaired Student’s t-test.

4.3. Mass spectrometry

The protein spots from three gel replicate with pooled

samples from all groups were used for mass spectro-

metry identification analysis. Gel plugs containing pro-

teins were manually excised from silver-stained gels

and subjected to in-gel digestion. Ramljak et al. [36]

give the detailed protocol of this procedure. In-gel

digested peptides were chromatographically separated

(Reversed-Phase-C18 nanoflow chromatography, using

a 15-min linear gradient on an Easy nLC-1000 nano-

flow chromatography system (Thermo Fisher Scientific,

Dreieich, Germany)) and analysed by Q Exactive

hybrid quadrupole/orbitrap mass spectrometry system

operated under Excalibur v2.4 software (Thermo Fisher

Scientific). For database searching, tandem mass spec-

tra were extracted using Raw2MSM v1.17 software

(Max Planck Institute for Biochemistry, Martinsried,

Germany). All MS/MS samples were analysed using

Mascot (Matrix Science, London, UK; version 2.4.1)

set up to search the UniProt/SwissProt database

(release 02/14 filtered for Mus musculus, 16,665 entries)

with mass tolerances of 5 ppm for precursors and

0.020 Da for fragments, respectively. The searching

criteria were set with one missed cleavage by trypsin

allowed and protein modifications set to methionine

oxidation and carbamidomethylcysteine when appro-

priate. The proteome datasets obtained by mass spec-

trometry identification was further analysed by

Inguniety pathway analysis (Details are provided in

supporting information).

4.4. Gel-free proteomics

To further validate the results obtained from 2DE, we

further selected samples of old age of PrPC knockout

mice and wild type to perform gel-free proteomics analy-

sis. We prepared the samples similar to as prepared for

2DE and sent for proteomics analysis at Proteomics

Facility, CECAD, Köln. Proteins were considered regu-

lated with a p-value less than 0.5 with a minimum fold

change of 1.5

4.5. Analysis of fat content

Liver tissues from the mice were lysed in PBS and

supernatants were obtained after centrifugation at

14,000 rpm for 20 min. Triglycerides concentrations

from the tissue lysates were measured in milligram

per decilitre (Centre facility, Department of clinical

chemistry, UMG, Göttingen). The kit was used for

determining the triglyceride concentration (REF:

7D74-21, http://www.ilexmedical.com/files/PDF/

Triglyceride_ARC_CHEM.pdf.). The liver tissue sec-

tions (5 µm thickness, by Leica cryostat 3050) glass

slides were further stained with Sudan III and H and

E stains, followed by microscopy with the bright field.

4.6. Western blotting

Liver samples were homogenized and lysed with the same

protocol and procedure as for 2D gel electrophoresis. An

amount of 75 µg of the liver samples were separated on

12% SDS-PAGE gels and transferred to PVDF mem-

branes. The membranes were blocked with 5% skimmed

milk in phosphate buffer saline with 0.05% Tween 20

(PBST) for 1 h at room temperature. Subsequently, mem-

branes were incubated overnight at 4°C with the following

primary antibodies: rabbit anti-Bcl2 (1:1000, Cell signal-

ling), mouse anti-Bax (1:1000, Cell Signalling), mouse

anti-Beta-actin (1:2000, Abcam). Thereafter, membranes

were washed with PBST and incubated for 1 h at room

temperature with corresponding horseradish peroxidase-

conjugated secondary antibodies: goat anti-mouse

(1:7500 Abcam), goat anti-rabbit (1:10,000, Jackson

Immunoresearch). The immunoreactivity was detected

after immersing the membranes in enhanced chemilumi-

nescence (ECL) solution and the signal was detected using

Chemi DOC XRS+ (BIO-RAD).

4.7. Quantitative real-time PCR (qPCR)

Sample preparation and total RNA extraction from liver

tissue were carried out as per instructions from

a commercial kit (mirVana isolation kit Ambio, Austin,

TX). The retrotranscriptase reaction of the RNA samples

was carried out with the High Capacity cDNA Archive kit

(Applied Biosystems, US) following the protocol provided

by the manufacturer and using the Gene Amp® 9700 PCR

System thermocycler (Applied Biosystems, USA). Roche

LightCycler 480 detector instrument was used for PCR

amplification and detection. Parallel amplification
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reactions for each sample were performed using the 20

× TaqMan Gene Expression Assays (Applied Biosystems)

and 2 × TaqMan Universal PCR Master Mix (Applied

Biosystems). Different steps were as follows: denaturation-

activation cycle (50°C for 2 min, 95°C for 10 min) followed

by 40 cycles of denaturation-annealing-extension (95°C, 15

s; 60°C for 1 min). mRNA levels were calculated using the

LightCycler 480 software. Data analysis was done by ΔΔCt

(cycle threshold) method to determine the gene expression

values as fold changes between PrPC knockout and wild

type groups, which were normalized by the relative expres-

sion of a housekeeping gene (HPRT). Commercial gene

expression assays (Life technologies) comprise those for

HRPT (Mm00446968_m1), PPARα (Mm00440939_m1),

ACC (Mm01304257_m1), FAS (Mm00662319_m1) and

tgfb1 (Mm01178820_m1).

4.8. Cell culture

Lamp1-RFP -, pmRFP-LC3, and EGPN1 plasmids were

purchased from Addgene (provided by the lab of Dr. Ira

Milosevic, ENI, Goettingen, Germany). PrPC gene was

amplified from pCIneoPRNP vector [37] and cloned into

EGFP-N1 for the current study. Lamp1 was cloned into

pmRFP vector. AM12 cells were transfected with plasmid

DNA expressing cloned genes (EGFP-N1 -PrPC-EGFP,

pmRFP-LC3 and pmRFP-Lamp1). After 15-h post-

transfection cells were treated with fatty acids (FAT) and

BSA controls for 8 h. Treatments were prepared according

to the method which is reported [38]. For visualization of

FAT globules, cells were fixed and stained with oil red

staining followed by light microscopy. For imaging of

mRFP-LC3 and mRFP-Lamp1 markers, cells were fixed

and observed directly under a confocal fluorescencemicro-

scope. 6 to 7 cells per image were used for quantitative

analysis by image j.

4.9. Statistical analysis

All statistical analysis were performed using unpaired

Sudent's t test *P < 0.05, **P < 0.01 and ***P < 0.001

and graphs were prepared with Prism-GraphPad soft-

ware. Error bars in the graphs represents standard error

of mean (SEM).

Abbreviations

PrPC Cellular prion protein
PrPSc Prion protein Scrapie
TSE Transmissible spongiform encephalopathies
2DE Two-dimensional gel electrophoresis
IPA Ingenuity pathway analysis
NAFLD Non-alcoholic fatty liver disease
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