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Abstract

With molecular treatments coming into reach for spinocerebellar
ataxia type 3 (SCA3), easily accessible, cross-species validated
biomarkers for human and preclinical trials are warranted, partic-
ularly for the preataxic disease stage. We assessed serum levels of
neurofilament light (NfL) and phosphorylated neurofilament heavy
(pNfH) in ataxic and preataxic subjects of two independent multi-
centric SCA3 cohorts and in a SCA3 knock-in mouse model. Ataxic
SCA3 subjects showed increased levels of both NfL and pNfH. In
preataxic subjects, NfL levels increased with proximity to the indi-
vidual expected onset of ataxia, with significant NfL elevations

already 7.5 years before onset. Cross-sectional NfL levels corre-
lated with both disease severity and longitudinal disease progres-
sion. Blood NfL and pNfH increases in human SCA3 were each
paralleled by similar changes in SCA3 knock-in mice, here also
starting already at the presymptomatic stage, closely following
ataxin-3 aggregation and preceding Purkinje cell loss in the brain.
Blood neurofilaments, particularly NfL, might thus provide easily
accessible, cross-species validated biomarkers in both ataxic and
preataxic SCA3, associated with earliest neuropathological
changes, and serve as progression, proximity-to-onset and, poten-
tially, treatment-response markers in both human and preclinical
SCA3 trials.
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Introduction

Spinocerebellar ataxia type 3 (SCA3), also known as Machado–

Joseph disease, is the most common dominantly inherited form of

degenerative ataxia, caused by an expanded CAG repeat in the

ATXN3 gene and marked by irreversible decline in motor function

already in mid-life (Costa Mdo & Paulson, 2012; Rub et al, 2013).

Advances in the understanding of the toxic gain-of-function mecha-

nisms underlying SCA3 neurodegeneration have opened a window

for targeted molecular therapies (Paulson et al, 2017; Ramani et al,

2017). Particularly, interventions with antisense oligonucleotides

(ASOs) targeting mutated ATXN3 show promising results in mitigat-

ing the molecular, pathological and behavioural disease-associated

changes in a SCA3 mouse model (McLoughlin et al, 2018). ASO

treatments might allow preventing the neurodegenerative process

even before the occurrence of clinical symptoms (Finkel et al, 2017;

Winter et al, 2019). However, to pave the way for upcoming trials of

these promising therapies, easily accessible, objective and sensitive

outcome parameters are urgently needed to track disease progression

in both the preataxic and ataxic stage of SCA3 disease. Such parame-

ters require validation in large human SCA3 cohorts with standard-

ised phenotyping and in SCA3 mouse models, as mouse models

allow comprehensive neuropathological validation and preclinical

treatment trials, even already during the presymptomatic stage.

In this cross-species biomarker study, we propose serum concen-

trations of neurofilament light (NfL) and phosphorylated neurofila-

ment heavy (pNfH) as easily accessible, objective and sensitive

blood biomarkers of disease severity in SCA3. Neurofilaments (Nfs)

are neuron-specific cytoskeletal proteins, with constant low-amount

release from neurons in an age-related manner (Disanto et al, 2017;

Gaetani et al, 2019; Khalil et al, 2020) and rapid increase in

response to axonal damage irrespective of the underlying cause (e.g.

traumatic, vascular, inflammatory, degenerative injury). It is yet

unknown whether Nf elevations relate to passive release from

damaged axons and/or upregulated protein production and secre-

tion reflecting attempted axonal regeneration (Paterson et al, 2019).

With novel ultra-sensitive single-molecule array (Simoa) assays, Nfs

are now reliably quantifiable in peripheral blood (Wilke et al, 2016;

Khalil et al, 2018). In fact, while the correlation between Nf levels

in the extracellular compartment of the brain and the cerebrospinal

fluid (CSF) is yet unknown, a close correlation between Nf levels in

the CSF and the peripheral blood has been established for several

neurodegenerative diseases (Bacioglu et al, 2016; Wilke et al, 2016,

2019; Khalil et al, 2018; Gaetani et al, 2019), including also SCA3

(Li et al, 2019). Hereby, Nf levels in blood are roughly 2.5% of the

levels in the CSF (Disanto et al, 2017).

Our previous work in a mixed cohort of repeat-expansion

spinocerebellar ataxias (SCAs) indicated that blood concentrations

of NfL in multisystemic repeat SCAs are increased at the ataxic

disease stage (Wilke et al, 2018), and this also been reported specifi-

cally for SCA3 (Li et al, 2019). However, all these previous studies

were confined to single-centre, single-assay and human-only assess-

ments without any neuropathology associations, as well as to cross-

sectional data. Moreover, they were all restricted to NfL only, while

pNfH might also allow capturing neuronal disintegration and partic-

ularly axonal damage in neurodegenerative disease, possibly captur-

ing differential features of the neurodegenerative process compared

to NfL (Khalil et al, 2018; Wilke et al, 2019).

We here hypothesised that both serum Nfs might serve as blood

biomarkers of disease severity in both human SCA3 and mouse

models, expecting increased concentrations at both the ataxic and

preataxic stage, with increases in preataxic subjects occurring partic-

ularly in proximity to the onset of ataxia. We measured serum

concentrations of both Nfs in cross-sectional samples of ataxic and

preataxic SCA3 subjects and controls in two independent multicen-

tric cohorts, using two independent ultra-sensitive single-molecule

array (Simoa) approaches for each of both Nfs, and correlated Nf

levels with measures of disease severity. We expected the blood Nf

increases in human SCA3 to be paralleled by blood Nf increases in

SCA3 animal models, also starting already in the presymptomatic

stage and at the earliest stages of SCA3 neurodegeneration. We

therefore assessed plasma NfL and pNfH also in a SCA3 knock-in

mouse model (preprint: Haas et al, 2020; Martier et al, 2019) across

presymptomatic and symptomatic disease stages, correlating plasma

concentrations of both Nfs with the temporal course of phenotypic

and neuropathological disease features, including brain ataxin-3

protein levels and aggregation.

Results

Serum NfL levels are increased at the ataxic stage of SCA3

In cohort #1 (Fig 1A), serum concentrations of NfL were signifi-

cantly higher in ataxic SCA3 subjects (34.8 pg/ml (28.3–47.0),

median and IQR) than in controls (8.6 pg/ml [5.7–11.7]; U = 151,

z = 10.1, P < 0.001, r = 0.82). In cohort #2 (Fig 1B), NfL levels were

also significantly higher in ataxic SCA3 subjects (85.5 pg/ml [70.2–

100.2]) than in controls (19.4 pg/ml [15.1–25.4]; U = 16, z = 6.98,

P < 0.001, r = 0.81). This confirmed the NfL increase in a second,

independent cohort with an independent immunoassay. NfL levels

differentiated between ataxic SCA3 subjects and controls with high

accuracy (cohort #1: AUC = 0.97 (0.95–1.00), P < 0.001, optimal

cut-off: 20.0 pg/ml, 98.7% sensitivity, 92.2% specificity; cohort #2:

AUC = 0.99 (0.97–1.00), P < 0.001, optimal cut-off: 50.9 pg/ml,

92.6% sensitivity, 100% specificity). If corrected for age, the NfL

increase in ataxic SCA3 subjects remained highly significant in both

cohort #1 (F(1,147) = 406.54, P < 0.001; based on a linear model

with the factors group, age and their interaction, R2 = 0.82; Fig 1C)

and cohort #2 (F(1,70) = 169.49, P < 0.001, R2 = 0.79; Fig 1D).

Serum NfL levels are increased at the preataxic stage of SCA3

In cohort #1 (Fig 1A), NfL levels of preataxic SCA3 subjects

(29.1 pg/ml [15.9–43.7]) were significantly higher than in controls

(U = 72, z = 3.55, P < 0.001, r = 0.39) and did not differ signifi-

cantly from those of ataxic SCA3 subjects (U = 204, z = 1.48,
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Figure 1. Serum NfL and pNfH concentrations in the preataxic and ataxic stage of SCA3.

A–D Serum NfL concentrations of preataxic (green) and ataxic (red) SCA3 subjects and controls (blue) were measured in two independent cohorts, each with a different
Simoa approach: cohort #1, recruited by the ESMI consortium (A, C), and cohort #2, recruited by the EuroSCA/RiSCA consortium (B, D). Boxes show the ranges
between lower and upper quartiles, the central bands show the medians, and the whiskers show data within 1.5∙IQR of the median, with dots representing
outliers. Groups were compared with Mann–Whitney U-tests (***P < 0.001, **P < 0.01, ns P ≥ 0.05, two-tailed, Bonferroni-corrected; see Appendix Table S3 for
detailed statistics). In the scatter plots, the individual NfL values were plotted as a function of subjects’ age. The dashed grey lines visualise the optimal cut-offs for
differentiating ataxic SCA3 subjects from controls in each cohort (cohort #1: 20.0 pg/ml, 98.7% sensitivity, 92.2% specificity; cohort #2: 50.9 pg/ml, 92.6% sensitivity,
100% specificity; cut-offs were derived by maximising Youden’s index irrespective of age). Note the logarithmic scale of the y-axes.

E, F Serum pNfH levels of preataxic and ataxic SCA3 subjects and controls were also measured in both cohorts, each with a different Simoa approach (two-tailed
Mann–Whitney U-tests, Bonferroni-corrected; see Appendix Table S3 for detailed statistics).

Source data are available online for this figure.
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P = 0.143, r = 0.16, Bonferroni-corrected for multiple comparisons,

respectively). In cohort #2 (Fig 1B), NfL levels of preataxic SCA3

subjects (47.3 pg/ml [25.5–78.0]) were also significantly increased

(U = 88, z = 4.18, P < 0.001, r = 0.53), yet significantly lower than

in ataxic SCA3 subjects (U = 74, z = 3.16, P = 0.001, r = 0.49,

Bonferroni-corrected). Within preataxic subjects, 75% (cohort #1)

and 43% (cohort #2) of NfL levels were above the optimal cut-off

separating ataxic subjects from controls. The NfL increase in prea-

taxic SCA3 subjects remained highly significant if corrected for age,

both in cohort #1 (F(1,81) = 99.27, P < 0.001; based on a linear

model with the factors group, age and their interaction, R2 = 0.68,

Fig 1C) and cohort #2 (F(1,58) = 59.82, P < 0.001, R2 = 0.56,

Fig 1D).

Serum NfL levels reflect disease severity

Neurofilament light levels of ataxic SCA3 subjects significantly

correlated with disease severity (r = 0.43, P < 0.001), as captured

by the SARA score (Fig 2A). The association between NfL and

disease severity remained highly significant if corrected for age

(r = 0.41, P < 0.001), disease duration (r = 0.41, P < 0.001) and

CAG repeat length (r = 0.47, P < 0.001) as possible confounders, as

assessed by partial correlations.

Serum NfL levels may reflect longitudinal disease progression

In a subset of ataxic SCA3 subjects (n = 35, all from cohort #2),

prospective longitudinal SARA scores were available to estimate

intraindividual disease progression, as quantified by the annual

change of the SARA score. Subjects’ cross-sectional NfL levels

significantly correlated with the annual change of the SARA score

(r = 0.34, P = 0.045), suggesting that serum NfL may also reflect

longitudinal disease progression. This positive association was con-

firmed with a similar effect size (r = 0.29) also when adjusting for

baseline SARA score, showing a statistical trend in this relatively

small subcohort (P = 0.100, 2-sided test). Accordingly, subjects with

high disease progression (annual SARA score increase ≥ 0.71

points/year, n = 18, subset defined by median split) had signifi-

cantly higher serum levels of NfL than subjects with low disease

progression (n = 17; P = 0.018, r = 0.40; Fig 2B).

Association of NfL levels with repeat length and age

We analysed the association of NfL levels with age and CAG repeat

length in SCA3 mutation carriers with a linear model, using the

pooled data of both preataxic and ataxic subjects. The highly signifi-

cant predictors of the NfL level were age (F(1,113) = 40.54,

P < 0.001), its square (F(1,113) = 7.91, P = 0.006) and repeat length

(F(1,113) = 22.01, P < 0.001; total explained variance: R2 = 0.37;

Fig 2C). The model demonstrated that, for a given age, each

increase in the CAG repeat count was associated with higher NfL

levels. For a given CAG repeat count, the NfL level increased with

age, with the steepness of the slope declining with increasing age.

Thus, the NfL increase in SCA3 reached a plateau in older age. The

sustained increase of NfL levels through the ataxic stage was

reflected by the absence of correlation of NfL levels with disease

duration (Fig EV1). In controls, the relation between log-trans-

formed NfL levels and age was linear, indicating that any analyses

comparing NfL levels between carriers and controls would need to

consider the physiological NfL age-related increase in controls.

NfL levels increase with proximity to the estimated onset, with
significant increases 7.5 years before ataxia onset

Neurofilament light levels of preataxic subjects increased signifi-

cantly with proximity to the individually predicted onset of ataxia,

as revealed by a linear regression using the pooled data of both

cohorts (F(1,21) = 39.68, P < 0.001, R2 = 0.64; slope: 2.89 [1.94–

3.85], P < 0.001; Fig 3A). To compare preataxic SCA3 subjects with

controls at the same age, we expressed the measured NfL level of

SCA3 subjects as NfL z-score in relation to the age-dependent NfL

distribution in controls (Fig 3B), and analysed the NfL z-score as a

function of the time to the estimated onset of ataxia (Fig 3C). The

NfL z-score significantly increased with preataxic subjects approach-

ing the expected onset of ataxia (F(1,21) = 30.78, P < 0.001,

R2 = 0.58; slope: 0.32 [0.20–0.44], P < 0.001; Fig 3C), without over-

lap of the 95% confidence interval of controls (i.e. if z-score > 1.96)

already 7.5 years before the expected onset (Fig 3C).

Using serum NfL to predict time to estimated onset of ataxia

The estimated time to onset might be predicted from individual NfL

measurements (for z-scores in the range of 1–5) using the regression

depicted in Fig 3C. Moreover, the NfL z-score might allow delineat-

ing a preconversion stage, i.e. stratifying individual preataxic carri-

ers close to expected symptom onset. The NfL z-score differentiated

subjects at the late preataxic stage (i.e. carriers within 10 years of

expected onset) from subjects at the early preataxic stage (i.e. more

than 10 years before the expected onset) with high accuracy

(AUC = 0.89 [0.76–1.00] [95% CI], P = 0.002). Specifically, a cut-off

for the NfL z-score at 3.2 differentiated early from late preataxic

subjects with 85% sensitivity and 90% specificity.

Increased phosphorylated neurofilament heavy (pNfH) levels in
the ataxic disease stage of SCA3

In cohort #1 (Fig 1E), SCA3 subjects at the ataxic stage had signifi-

cantly higher serum pNfH concentrations (110.2 pg/ml [42.9–

277.9]) than controls (22.8 pg/ml [13.9–59.1]; U = 1,064, z = 6.72,

P < 0.001, r = 0.55, Bonferroni-corrected), while pNfH concentra-

tions in preataxic SCA3 subjects (33.9 pg/ml [18.0–184.8]) were not

significantly increased compared to controls (U = 201, z = 1.61,

P = 0.109, r = 0.17). Likewise, in cohort #2 (Fig 1F), serum pNfH

levels were significantly higher in ataxic SCA3 subjects (23.2 pg/ml

[3.2–71.2]) than in controls (3.2 pg/ml [3.2–10.4]; U = 260,

z = 4.57, P < 0.001, r = 0.53), while pNfH concentrations in prea-

taxic SCA3 subjects (4.5 pg/ml [3.2–34.6]) were not significantly

increased (U = 250, z = 1.63, P = 0.103, r = 0.21). These findings

from two independent cohorts and assays validate pNfH increases

in the ataxic stage of SCA3. Such increases might not necessarily be

observed at the preataxic stage of SCA3. However, in both cohorts,

pNfH levels at the preataxic stage were not significantly lower than

in the ataxic stage of SCA3. While levels of NfL and pNfH were

moderately correlated in controls (cohort #1: ϱ = 0.28, P = 0.013,

cohort #2: ϱ = 0.39, P = 0.006), this correlation was only partially

maintained in SCA3 mutation carriers (cohort #1, ϱ = 0.13,
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Figure 2. Associations of NfL levels with disease severity, disease progression, age and CAG repeat length in SCA3.

A Serum NfL levels of ataxic SCA3 subjects significantly correlated with disease severity, as quantified by the Scale for the Rating and Assessment of Ataxia (SARA) score
(r = 0.43, P < 0.001, Pearson’s correlation, two-tailed test).

B The cross-sectional NfL levels also reflected longitudinal disease progression, as quantified by the annual SARA score change (available for 35 subjects). Boxes show
the ranges between lower and upper quartiles, the central bands show the medians, and the whiskers show data within 1.5∙IQR of the median, with dots
representing outliers. Subjects with high disease progression (annual SARA score increase ≥ 0.71 points/year, n = 18, median split) had significantly higher serum
levels of NfL than subjects with low disease progression (n = 17; P = 0.018, r = 0.40, Mann–Whitney U-test, two-tailed; see Appendix Table S3 for detailed statistics).

C We modelled serum NfL levels (log-transformed) in SCA3 carriers (n = 123) with the predictors age and ATXN3 CAG repeat length, their squares and all possible
interactions (for details, see Results and Materials and Methods). The highly significant predictors (age, its square and repeat length, and the intercept, all P < 0.001,
explained variance: R2 = 0.37) were used to generate the diagram. For a given age, each increase in CAG repeat count was associated with higher NfL concentrations.
The steepness of the slopes declined with increasing age. In controls (black, n = 125), the relation between NfL level (log-transformed) and age was linear.

Source data are available online for this figure.
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Figure 3. Association between serum NfL and time from expected onset in preataxic SCA3.

A Serum NfL levels in preataxic SCA3 subjects (cross-sectional data) were plotted over the time from the individually estimated ataxia onset. NfL levels increased
significantly with proximity to the estimated onset (F(1,21) = 39.68, P < 0.001, R2 = 0.64). For benchmarking the levels of preataxic subjects, the blue dashed line
visualises the optimal cut-off for differentiating ataxic SCA3 subjects from controls in the pooled cohort (20.3 pg/ml, 99.0% sensitivity, 95.2% specificity).

B To determine the time at which NfL levels become significantly increased in the preataxic stage of SCA3, NfL levels of preataxic carriers need to be related to NfL
levels of controls at the same age, as NfL levels physiologically increase with age. For each preataxic subject, the difference between the measured NfL value (green
dot) and the NfL value predicted for control subjects of the same age (solid blue line) was visualised by the length of the vertical green line. Standardisation of this
difference relative to the NfL distribution in controls (95% CI of the data: dashed blue line) yielded the individual NfL z-score, which was plotted over each subject’s
estimated time to onset in the next panel.

C In preataxic SCA3 subjects, NfL z-scores increased significantly (F(1,21) = 30.78, P < 0.001, R2 = 0.58) with subjects approaching the expected age of onset. NfL levels
of preataxic subjects were significantly increased compared to controls (i.e. z-score > 1.96) 7.5 years before the expected onset, indicated by the non-overlapping 95%
confidence intervals of SCA3 subjects (black solid line) and controls (blue dashed line).

Source data are available online for this figure.
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P = 0.240, cohort #2: ϱ = 0.33, P = 0.034), suggesting that pNfH

might reflect a partly different feature/process in SCA3 than NfL.

Intraindividual Nf stability and sample size estimation for
intervention trials using Nf levels as outcome parameter

Short-term longitudinal assessment of Nf levels over 6 weeks

(n = 21) demonstrated high intraindividual stability for both NfL

and pNfH in SCA3, as evidenced by very high intraclass correlation

coefficients (ICCs; NfL: 0.983 [0.960–0.993] [95% CI], pNfH: 0.995

[0.987–0.998]; Fig 4A and B). Sample size estimates for hypothetical

intervention trials using the reduction of Nf levels as outcome

parameter indicate, e.g., that � 15 subjects per arm would suffice to

detect therapeutic effects with effect sizes as low as 20% (see Fig 4C

also for visualisation of a range of other possible treatment

effect sizes).

Human neuropathology

Neuropathologic examination of SCA3 subject ID27925 (cohort #2)

with an NfL level of 116 pg/ml (93. percentile within the ataxic

subjects of cohort #2) and a pNfH level of 23.2 pg/ml (52. percen-

tile) at age 48.5 years (i.e. 12 months before death) did not show

major degeneration of corticospinal tract, primary motor cortex and

Purkinje cell layer, but marked degeneration of spinocerebellar

tract, dentate nucleus and brainstem (Appendix Table S1). Similarly,

while only rare polyQ pathology was found in the primary motor

cortex and Purkinje cell layer, frequent polyQ pathology was present

in the dentate nucleus, brainstem, basal ganglia and anterior horn.

These findings, which correspond to and further corroborate previ-

ous SCA3 neuropathology case series (Paulson, 2012; Paulson et al,

2017; Koeppen, 2018), preliminarily indicate that not the corti-

cospinal tract, motor cortex and cerebellar cortex, but rather affec-

tion of the spinocerebellar tract and brainstem, might underlie the

Nf increase in SCA3.

Plasma neurofilament levels in a SCA3 mouse model are
increased in proximity to phenotypic onset

To elucidate the temporal cascade of Nf concentrations in SCA3, we

analysed blood concentrations of Nfs in a 304Q SCA3 knock-in

mouse model with a phenotypic onset at around 8 months of age,

sampling animals at age 2 months (= early presymptomatic),

6 months (= late presymptomatic), 12 months (= early symp-

tomatic) and > 18 months (= late symptomatic disease stage).

While plasma concentrations of NfL were not yet increased at

2 months, they significantly increased already at age 6 months

(P < 0.001) and 12 months (P < 0.001, Bonferroni-corrected) in

heterozygous mutants compared to wild-type animals, with this

effect levelling out in late symptomatic mice at age > 18 months

(Fig 5A). Analogously, plasma concentrations of pNfH were signifi-

cantly increased at 6 months (P < 0.01) and 12 months (P < 0.001)

in heterozygous mutants compared to wild-type animals, but not at

2 months and > 18 months, supporting an increase in Nf blood

concentrations in proximity to the phenotypic onset (Fig 5B).

Exploratory analysis of Nf plasma levels in homozygous mutants

confirmed the temporal cascade observed in heterozygous animals

(Fig EV2). Tissue concentrations of NfL and pNfH in the cerebellum

and frontal lobe did not differ between mutant and wild-type

animals at the presymptomatic and symptomatic disease stage,

preliminarily suggesting that the differences observed in the blood

concentrations might relate not to changes of the amount of Nfs

A B C

Figure 4. Within-subject stability of Nf levels and sample size estimates for clinical trials.

A, B Longitudinal intraindividual stability of NfL (A) and pNfH (B) serum levels over 6 weeks, assessed in both ataxic (red) and preataxic (green) SCA3 and control (blue)
subjects (n = 21). Data of the same individuals are linked by lines. ICC, intraclass correlation coefficient (estimate and 95% CI).

C Sample size estimations were performed for future intervention trials using the reduction of Nf levels towards control levels as outcome measure. The estimated
number of subjects per study arm is plotted over the assumed therapeutic effect for lowering the Nf level in SCA3 subjects to levels observed in healthy controls
(NfL: dashed line, pNfH: dotted line).

Source data are available online for this figure.
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A

B

C D

E F

Figure 5. Neurofilament plasma levels and brain tissue levels of soluble and aggregated ataxin-3 in the 304Q SCA3 mouse model.

A, B Plasma concentrations of NfL (A) and pNfH (B) were measured in the 304Q knock-in SCA3 mouse model. Heterozygous animals become symptomatic at
� 8 months of age.

C–F Tissue levels of soluble and aggregated mutant ataxin-3 were measured in cerebellum (C, E) and frontal lobe (D, F). Exploratory analyses in homozygous animals
confirmed the ataxin-3 increases observed in heterozygous animals (Fig EV4).

Data information: Heterozygous and wild-type animals were compared by two-tailed unpaired t-tests, adjusted for unequal variances (***P < 0.001, **P < 0.01,
*P < 0.05, ns P ≥ 0.05, Bonferroni-corrected; see Appendix Table S3 for detailed statistics). Dots show individual measurements, bars indicate mean � SD (calculated for
log-transformed values).
Source data are available online for this figure.
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within the brain tissue, but rather to the release of Nfs from the

brain tissue with neurodegenerative decay (Fig EV3). Brain Nf

concentrations were hereby higher in the cerebellum than in the

frontal lobe, suggesting higher share of axonal tissue in the cerebel-

lum, and thus adding further support that axonal damage markers

—such as Nfs—might be promising markers for degenerative cere-

bellar disease.

Both NfL and pNfH increases in SCA3 relative to wild-type mice

started earlier (age: 6 months, both males and females; Fig EV2)

than the weight phenotype (age: 7 months, males; age: 12 months,

females; Appendix Fig S1) and the motor phenotype (age:

18 months, both males and females; Appendix Fig S2), highlighting

their value as proximity blood biomarkers for the preconversion

stage also in mice. While Nf levels increased later than both aggre-

gated and soluble cerebellar mutant ataxin-3 (age: 2 months; Fig 5C

and E), ataxin-3 levels did not change throughout the disease course

and in particular not with proximity to conversion (Fig 5C and E;

for ataxin-3 tissue levels in homozygous mice, see Fig EV4). This

indicates that, in contrast to Nfs, ataxin-3 levels might serve not as

preconversion markers, but possibly rather as target-engagement

markers. Taken together, our biomarkers and phenotype parameters

allow mapping a preliminary multimodal chart of disease evolution

in the 304Q SCA3 mouse model from the early preataxic to the late

ataxic stages of SCA3 disease (Fig 6).

Temporal sequence of associated murine neuropathology

To elucidate the brain pathology changes temporally associated with

the onset of the plasma Nf increase, we investigated the temporal

sequence of neuropathology changes in SCA3 mice. Ataxin-3 aggre-

gation started at months 2–3 and was clearly present at month 6 in

regions typically affected by SCA3, particularly the cerebellum, pons

and frontal cortex (Fig 7A), thus partly preceding, partly paralleling

the onset of the plasma Nf increase. Purkinje cell (PC) loss started

at months 2–3, but did not become significant before 12 months of

age (Fig 7B, Appendix Fig S3), thus partly paralleling, but largely

succeeding the onset of the Nf increase. Interestingly, at the onset of

the Nf increase in blood (i.e. month 6), structural changes in PCs

were microscopically more prominent than absolute PC loss

(Appendix Fig S3), which might suggest that incipient structural

alteration, and not only PC cell death, might contribute to Nf release

in SCA3. These PC alterations were accompanied by structural

Figure 6. Biomarker cascade of NfL, pNfH, cerebellar aggregated and soluble ataxin-3 and phenotype in 304Q knock-in SCA3 mice.

The figure shows the degree to which each variable differs between heterozygous SCA3 mice and wild-type controls for a given age. For each variable, we quantified the
deviation of heterozygous mice from controls of the same age by calculating the effect size r of the group comparison (independent t-tests). An effect size of 0 indicates that
the value in heterozygousmice is not different from controls, while an effect size of 1 would indicate strong abnormality. Note that the drop in the effect size of Nf levels from
12 to 18 months thus does not imply a putative reduction of Nf levels, but rather the loss of the effect in mutants relative to controls, as controls show strong age-related Nf
increases at 18 months of age. Negative effect size values were set to 0.
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A

B

Figure 7. Ataxin-3 immunohistochemistry and histological assessment of Purkinje cells in the 304Q SCA3 mouse model.

A We assessed samples of cerebellar cortex, deep cerebellar nuclei, frontal cortex, pons and pyramidal tract by immunohistochemistry with ataxin-3 staining,
comparing heterozygous 304Q SCA3 mice at 2, 6, 12 and 18 months of age with wild-type animals at 18 months.

B We histologically assessed the number and integrity of Purkinje cells in the cerebellar cortex by NfL, pNfH, Nissl and calbindin staining, comparing heterozygous
304Q SCA3 mice at 2, 6, 12 and 18 months of age with wild-type animals.

Data information: GL, granular layer; ML, molecular layer, PC, Purkinje cells, scale bars: 20 lm.
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disturbance of the NfL and pNfH network in the cerebellar cortex

(Fig 7B). No marked overall atrophy of the deep cerebellar nuclei,

pons, frontal cortex and pyramidal tract was observed (Fig EV5,

Appendix Fig S4). Taken together, this indicates that Nf increases in

blood occur with strong effect sizes already at the earliest stages of

SCA3 disease, shortly following onset of ataxin-3 aggregation and

coinciding with PC structural alterations even prior to PC loss, and

are not secondary to marked overall atrophy of pertinent SCA3 brain

regions.

Discussion

To pave the way for upcoming treatment trials, easily accessible

surrogate biomarkers are highly warranted in SCA3 for both human

and preclinical trials. In this comprehensive cross-species study—

leveraging two independent large multicentric human cohorts and a

knock-in mouse model, each covering both presymptomatic and

symptomatic SCA3 disease stages and including both blood and

neuropathology assessments—we demonstrate that (i) NfL levels

are increased not only at the ataxic, but also in the preataxic stage

of SCA3 in both humans and mice, increasing with repeat length

and age and with proximity to expected disease onset in humans;

that (ii) pNfH levels are increased at the ataxic stage of human

SCA3 and at both the preataxic and ataxic stage of murine SCA3;

and that (iii) these peripheral blood changes in both NfL and pNfH

closely follow ataxin-3 aggregations and coincide with early PC

structural alterations in the brain even prior to marked PC cell loss.

The observed increases in human NfL and pNfH serum levels in

SCA3 seem to present a highly robust finding as they were each con-

firmed in two independent cohorts with two different Simoa assays.

NfL levels differentiated SCA3 subjects from controls with high

accuracy, with effect sizes comparable to state-of-the-art magnetic

resonance spectroscopy methods (Adanyeguh et al, 2015; Joers

et al, 2018). These Nf increases in SCA3 might not be primarily of

help as a diagnostic biomarker, as Nfs are increased in many

neurodegenerative and non-neurodegenerative conditions, including

several multisystemic ataxias (Wilke et al, 2018). This is, however,

not primarily needed for SCA3, as assessment of the ATXN3 repeat

expansion or the mutant protein meets this biomarker purpose.

Rather, for preparing upcoming treatment trials, the biomarker

value of NfL levels might lie in their potential as disease severity,

progression and stratification biomarker, or—in terms of the

Biomarker Qualification Program of the Food and Drug Administra-

tion (FDA)—in their potential as monitoring, prognostic, response

and/or safety biomarker for SCA3 drug development. We here

demonstrate that NfL levels indeed correlate not only with cross-

sectional disease severity, but also with the longitudinal annual

change of the SARA score within individuals. These significant asso-

ciations, though moderate in effect size, indicate that NfL blood

levels might serve as easily accessible fluid biomarkers of disease

severity in SCA3. Given that NfL levels distinguish fast vs slow

disease progressors, they might also aid as stratification markers of

SCA3 patients in upcoming treatment trials according to categories

of disease progression. As NfL levels thus reflect disease severity

and disease progression rates, but not clinical disease duration

(Fig EV1), they seem to capture the functional stage and ongoing

neuronal decay of SCA3 disease, rather than the mere calendrical

estimate of duration of the disease. Increased NfL levels therefore

might be related to spinocerebellar tract (and possibly brainstem)

degeneration in SCA3, rather than, e.g., corticospinal tract degenera-

tion (as, e.g., in ALS (Menke et al, 2015; Skillback et al, 2014)),

as suggested by our human neuropathological findings. The

neuropathological association observed in our study corroborates,

but at the same time specifies previous relatively broad volumetric

MRI findings suggesting an association of NfL levels with cerebellar

volumes and brainstem volumes (Li et al, 2019). Our single-subject

neuropathology finding, however, requires validation in larger SCA3

cohorts with combined neuropathology and Nf assessment.

Neurofilament light levels appear to be strongly influenced, inter

alia, by CAG repeat length and age, as both factors were found to

present independent significant predictors of individual NfL levels.

For a given age, each increase in the CAG repeat count was associ-

ated with higher NfL levels. This association between NfL levels

and CAG repeat length suggests a dose–response relationship for

SCA3 neurodegeneration and, together with analogous findings in

Huntington’s disease (Byrne et al, 2017), more generally for polyg-

lutamine disorders. For a given CAG repeat length, NfL levels

increased with age, with the steepness of the slope decreasing with

increasing age; i.e., the NfL increase in SCA3 reached a plateau in

old age.

In both human cohorts, NfL levels were already increased at the

preataxic stage of the disease, hereby, the individual estimated time

to onset might even be predicted from individual NfL levels. The

NfL increase preceded the conversion to the ataxic stage by

7.5 years, with levels further increasing with proximity to the indi-

vidually predicted onset of ataxia. NfL levels might thus allow to

capture the onset of degenerative neuronal loss and the subclinical

progression in the preataxic stage, possibly even on a single-subject

level. They might moreover aid to stratify a window of opportunity

in which future disease-modifying therapies might be most effective.

If future longitudinal assessments of converters confirm this NfL

increase with proximity to ataxia onset (i.e. NfL as proximity/

preconversion stratification biomarker), NfL might aid the selection

of preataxic candidate subjects for therapeutic intervention, as inva-

sive treatments (like ASOs) should likely be applied neither unnec-

essarily early nor too late in preataxic SCA3 subjects.

Short-term longitudinal assessment of Nf levels demonstrated

both NfL and pNfH blood levels to be highly stable within subjects,

suggesting that intraindividual biological variation is likely a mini-

mal source of noise in observation and intervention trials using Nf

blood levels as outcome measure. Our sample size estimations for

future treatment trials aiming to lower Nf blood levels in SCA3

showed that already � 15 subjects per arm would suffice to detect

therapeutic effects, even for therapeutic effect sizes as low as 20%.

This number is considerably below the cohort sizes which would

likely be required for clinical endpoints, e.g. SARA score (Jacobi

et al, 2015). Nf levels might thus provide a means for reducing trial

sample size similar to or even more than the most change-sensitive

MRI parameters (Reetz et al, 2013; Adanyeguh et al, 2018).

Serum levels of pNfH in both cohorts were increased at the ataxic

stage of human SCA3, but—unlike NfL levels—not the preataxic

stage. Given the higher sensitivity of NfL to capture changes already

at the preataxic stage of human SCA3, our findings prioritise the use

of NfL over pNfH in future SCA3 treatment trials. However, given

their clear increase and high intraindividual stability, both markers
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might still be further explored as combined fluid biomarkers in

future longitudinal SCA3 trials, as they might show differential

responses and dynamics to disease-modifying treatments or capture

different features underlying multifaceted neurodegeneration, as

suggested for other neurodegenerative diseases (Poesen & Van

Damme, 2018; De Vivo et al, 2019; Winter et al, 2019).

Increases of NfL and pNfH blood levels in our two human SCA3

cohorts were paralleled by corresponding increases in our SCA3

mouse model, validating their value as neuronal damage biomarker

in SCA3 across species. In mice, not only NfL, but also pNfH,

showed increases before the onset of the phenotype, namely at age

6 months, thus validating the preataxic increase of Nf blood levels

observed in human SCA3. Moreover, again mirroring the findings

from human SCA3, these increases were sustained in SCA3 mice

during the further disease course (i.e. at age 12 months), before the

effects were then levelled out by the age-related increases in Nfs in

elderly wild-type mice (i.e. at age > 18 months). Taking together

our human and murine results, the temporal dynamics of Nfs in

SCA3 might hence be non-linear, with a boost of Nfs (in particular

NfL) in proximity to phenotype conversion, and stabilisation of

increased levels afterwards. Similar models of Nf dynamics have

been proposed for other neurodegenerative diseases such as amyo-

trophic lateral sclerosis (ALS) (Weydt et al, 2016) or frontotemporal

dementia (FTD) (van der Ende et al, 2019). Hence, Nf levels (in

particular NfL) might be particularly sensitive to neuronal decay in

the early disease stage of SCA3, where biomarkers for tracking

disease intensity would be most needed given the absence of

change-sensitive clinical parameters.

The SCA3 mouse model also allowed us to assess the associated

histological and immunohistochemical change at the time of the Nf

increase. The peripheral blood Nf increases occur already at the

earliest stages of SCA3 disease, shortly following onset of SCA3

brain hallmarks (ataxin-3 aggregation) and coinciding with incipi-

ent SCA3 neurodegeneration (PC structural alterations) even prior

to PC cell loss. This finding again highlights the power of

peripheral Nfs to coincide with early central nervous SCA3

neurodegenerative processes.

Going beyond mere immunohistochemistry and histology, the

mouse model also allowed us to more specifically relate the

biomarker cascade of peripheral Nf levels to central ataxin-3 levels.

Both soluble and aggregated mutant ataxin-3 increases in the cere-

bellum were detectable earlier than Nf increases (Fig 5C and E), in

line with the notion that they occur further upstream in SCA3 patho-

genesis compared to the axonal damage reflected by Nf levels. Inter-

estingly, in the frontal lobe aggregated mutant ataxin-3 seemed to

increase later than blood Nf levels (Fig 5D and F), again corroborat-

ing the notion that the Nf increase in blood does not lag behind

largely after ataxin-3 aggregation in some brain areas. In contrast to

Nfs, however, ataxin-3 levels did not rise further during the late

presymptomatic and early symptomatic stage in SCA3 mice. This

indicates that while mutant ataxin-3 levels might serve as target-

engagement biomarker, they are of limited value as biomarker of

disease severity or progression (in contrast to Nfs), at least in this

SCA3 mouse model. Nfs and mutant ataxin-3 might thus be used as

complementary composite biomarkers with differential utility in

future preclinical SCA3 mouse treatment trials.

Taken together, our study thus not only confirms, but rather

largely extends recent studies indicating an NfL increase in human

SCA3 (Wilke et al, 2018; Li et al, 2019), as these studies were non-

multicentric, single-assay, human- and NfL-only studies, lacking the

comparative assessment of several molecular biomarkers, the rela-

tive biomarker cascade mapping and any neuropathology associa-

tions. Specifically, our study extends previous research in multiple

ways, namely by: demonstrating the association of NfL levels with

longitudinal disease progression; providing short-term longitudinal

Nf measurements as the basis for sample size estimations for future

treatment trials; cross-validating two different Nf assays; delineating

in preataxic SCA3 the increase of NfL levels with temporal proximity

to the expected disease onset, thus allowing to define a preconver-

sion stage; revealing NfL and pNfH increases also in murine SCA3,

thus preparing the translational path for Nfs as outcome measures

in preclinical studies; relating the Nf changes to other molecular

biomarkers (such as ataxin-3), thus placing Nfs into a larger

biomarker cascade landscape; and relating peripheral Nf changes to

central human and murine SCA3 brain pathology, thus providing

first preliminary insights into the early SCA3 brain degeneration

processes associated with the blood Nf increase.

Our study has several limitations. First, longitudinal assessment of

Nf levels covering not only a short-term interval (as in our study),

but also longer intervals is warranted to confirm our cross-sectional

Nf findings. Such long-term intraindividual temporal dynamics of Nfs

might be even more sensitive to early stages of degeneration and

better suited to capture individual disease progression, as indicated

by longitudinal Nf studies of genetic FTD and Alzheimer’s disease

(van der Ende et al, 2019; Preische et al, 2019). Second, association

of Nf levels with larger neuropathological and/or MRI datasets is

warranted to determine the regions of the central nervous system,

which mainly drive the Nf increases, and to disentangle the differen-

tial dynamics and systems contributing to NfL vs pNfH increases.

Yet, our study has identified the first set of fluid biomarker candidates

for both human and preclinical treatment trials in SCA3.

Materials and Methods

Human cohorts

Serum Nf concentrations were assessed in cross-sectional samples

from two independent multicentric international SCA3 cohorts.

Cohort #1 was recruited by the ESMI consortium (European

Spinocerebellar Ataxia Type 3/Machado-Joseph Disease Initiative,

recruitment period: 2016–2018), comprising 83 SCA3 subjects and 77

healthy controls. Cohort #2 comprised 41 SCA3 subjects and 48

healthy controls from the EuroSCA (European integrated project on

spinocerebellar ataxias) and RiSCA (prospective study of individuals

at risk for spinocerebellar ataxia) cohorts (recruitment period: 2008–

2016, clinicaltrials.gov: NCT01037777) (Jacobi et al, 2013, 2015). The

recruitment of these studies included subjects with genetically con-

firmed SCA3 (ATXN3 repeat length ≥ 53; for determination of CAG

repeat length, see Appendix Supplementary Methods), their first-

degree relatives (i.e. siblings and children) and unrelated neurologi-

cally healthy controls. Based on their score on the Scale for the

Assessment and Rating of Ataxia (SARA) (Schmitz-Hubsch et al,

2006), SCA3 mutation carriers were classified as either ataxic (SARA

score ≥ 3, cohort #1: 75 subjects, cohort #2: 27 subjects) or preataxic

(SARA score < 3, cohort #1: 8 subjects, cohort #2: 14 subjects).
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Controls comprised mutation-negative first-degree relatives of SCA3

carriers and unrelated healthy individuals, all without symptoms or

signs of neurodegenerative disease. Sample size calculation was

based on a piloting study indicating that 15 ataxic SCA3 subjects and

15 controls would suffice to detect significant differences of NfL

serum levels between groups (assuming a = 0.01, b = 0.01, equal

group size, use of two-tailed non-parametric test) (Wilke et al, 2018).

However, we here included all available SCA3 subjects in each cohort

to assess associations of Nf levels with clinical and genetic variables.

For 35 SCA3 subjects in cohort #2, longitudinal SARA scores were

available. To assess intraindividual analyte stability, we additionally

collected short-term longitudinal blood samples in a subset of

subjects from cohort #2 who were available at a second visit 6 weeks

after the baseline visit (n = 21 subjects: seven ataxic, six preataxic

and eight control subjects; sampling interval: 42 days [34–49],

median [IQR]). Demographic, clinical and genetic characteristics of

both cohorts are detailed in Table 1. All subjects provided written

informed consent prior to participation according to the Declaration

of Helsinki. The study was approved by the local ethics committees

of the University of Tübingen and the other study sites.

Genotyping of SCA3 subjects

The repeat length of the expanded and normal alleles was deter-

mined by PCR-based fragment length analysis from 100 to 250 ng

genomic DNA (CEQ8000 capillary sequencer, Beckman Coulter).

CAG repeat length was determined in a centralised manner for

cohort #1.

Human serum and neuropathology

Blood samples were centrifuged (4,000 g, 10 min, room tempera-

ture). Serum was frozen at �80°C within 60 min after collection,

shipped and analysed without any previous thaw–freeze cycle.

Post-mortem brain and spinal cord tissue of the SCA3 subject

ID27925 was assessed for degeneration and polyQ aggregates

(Appendix Table S1).

Mouse model, murine plasma and neuropathology

We used the 304Q SCA3 knock-in mouse model containing a 304

trinucleotide repeat expansion in the murine ATXN3 homolog,

which was generated on the background of C5BL/6N mice (Charles

River) by zinc finger technology (Carbery et al, 2010), as described

in detail elsewhere (preprint: Haas et al, 2020; Martier et al, 2019).

In short, this method resulted in a double-strand break within the

murine (CAACAGCAG)2 region and the introduction of a specific

expansion of the CAACAGCAG region accomplished by homologous

recombination using a donor vector with (CAACAGCAG)48 repeats,

flanked by 800 bp up- and downstream of ATXN3 (for a more

detailed description of the mouse model, see preprint: Haas et al

(2020)). More repeats than contained in the donor vector were

introduced, resulting in the expression of 304 glutamines in the

ataxin-3 protein under control of all endogenous regulatory

elements. The length of the expansion was chosen to trigger a more

pronounced behavioural phenotype than observed in other knock-in

SCA3 models, where the polyQ expansion length is in the range of

SCA3 patients, but which display only mild or no phenotypes

(Ramani et al, 2015, 2017; Switonski et al, 2015). We used an inter-

rupted CAG repeat (interruptions of the CAG repeat by CAA, i.e.

(CAGCAGCAA)n) as (i) this allowed to ensure meiotic stability of

the repeat length across generations (i.e. to keep the repeat length

stable) (Frontali et al, 1999), and as (ii) an interrupted repeat is also

found in the murine ataxin-3 locus. We genotyped animals

(n = 147) by PCR, using DNA extracted from ear biopsies with the

High Pure PCR Template Preparation Kit (Roche).

Table 1. Demographic, clinical and genetic characteristics of the human SCA3 cohorts.

Cohort #1 (ESMI) Ataxic SCA3 Preataxic SCA3 Controls

Sample size (female) 75 (56.0%) 8 (87.5%) 77 (41.6%)

Age (years) 52.3 (45.7–61.0) 33.7 (30.1–36.9) 43.5 (31.4–58.9)

Reported age of onset (years) 40.0 (33.0–46.5) NA NA

Disease duration based on reported age of onset (years) 11.0 (7.2–15.1) NA NA

SARA score 13.0 (10.0–21.5) 1.0 (0.5–2.0) NA

Repeat count (long allele) 70 (67–71) 70 (67–71) NA

Predicted time to onset (years) NA 9.1 (7.7–13.4) NA

Cohort #2 (EuroSCA/RiSCA) Ataxic SCA3 Preataxic SCA3 Controls

Sample size (female) 27 (48.1%) 14 (42.9%) 48 (52.1%)

Age (years) 50.9 (46.3–55.0) 36.7 (28.2–45.5) 40.7 (31.2–50.0)

Reported age of onset (years) 40.0 (35.3–46.0) NA NA

Disease duration based on reported age of onset (years) 10.9 (6.1–16.9) NA NA

SARA score 11.5 (6.5–15.0) 1.0 (0.5–1.5) NA

Repeat count (long allele) 69 (66–70) 69 (65–70) NA

Predicted time to onset (years) NA 9.8 (8.8–14.3) NA

Data are reported as median and interquartile range.
NA, not applicable.
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The study comprised 147 animals (56 heterozygous, 37 homozy-

gous and 54 wild-type) with balanced sex within the genotypic

groups. For the primary analysis, we aimed to sample ≥ 10 animals

per genotype (heterozygous/wild-type) and age group (2/6/12/

18 months), based on effect sizes observed in human studies (Wilke

et al, 2018) and in previous murine studies (Bacioglu et al, 2016);

no animals were excluded from the analyses. Within each genotype,

animals were randomly allocated to an age group (2, 6, 12 or

18 months of age). Animals were dissected following CO2 introduc-

tion. Blood was obtained by heart puncture with heparinised

syringes, collected in 1.3 ml lithium heparin tubes and centrifuged

(3,000 g, 20 min, 4°C) to obtain plasma. Samples were then

aliquoted (70 ll) and stored at �80°C until use. Cerebellum and

frontal lobe tissue were homogenised in Precellys CK14 tubes on the

Precellys 24 homogeniser (VWR) at 10% (w/v) in homogenisation

buffer (50 mM Tris [pH 8.0], 150 mM NaCl, 5 mM EDTA, contain-

ing proteinase inhibitor [cOmplete Protease Inhibitor Cocktail,

Roche]). Cerebellar samples were further treated with ultrasonic

waves for better homogenisation. The homogenised brain tissue

was centrifuged at 25,000 g, 4°C, for 60 min. The supernatant was

aliquoted and diluted 1:10,000 in sample diluent. We quantified

tissue levels of soluble mutant ataxin-3 by time-resolved Förster

resonance energy transfer immunoassay (TR-FRET) (Nguyen et al,

2013) and aggregated mutant ataxin-3 by filter retardation assay

(Weber et al, 2017; Weishäupl et al, 2019), as detailed below.

Murine histology and immunohistochemistry

The mice sampled for these analyses were transcardially perfused

with cold PBS and 4% paraformaldehyde (PFA). Brains were post-

fixed in 4% PFA overnight at 4°C before paraffin embedding. Seven-

micrometer sagittal sections were cut with the Leica RM2155 micro-

tome (Leica, Germany). Before staining, sections were rehydrated in

xylene and a graded alcohol series with the Leica Autostainer XL.

For immunohistochemistry, microwave treatment with 10 mM

sodium citrate and 10 mM citric acid for 15 min and threefold wash-

ing with phosphate-buffered saline (PBS) were performed. Endoge-

nous peroxidase was blocked by 1.6% peroxidase (Sigma-Aldrich,

Germany). After washing with PBS, sections were blocked in 5%

normal goat serum (NGS; Vector Laboratories, USA) in PBS supple-

mented with 0.3% Triton X-100 (Carl Roth, Germany) at room

temperature for 45 min. After washing with PBS, sections were

incubated with primary antibodies: mouse anti-ataxin-3 (clone 1H9,

1:500, MerckMillipore, Germany), mouse anti-calbindin (D28-K,

1:1,000, Swant, Switzerland), mouse anti-neurofilament L (NfL,

clone NFL3, 1:500), and mouse anti-neurofilament H and phospho-

rylated anti-neurofilament H (clone SMI31, 1:1,000, both from Biole-

gend, USA), diluted in PBS containing 15% NGS overnight at 4°C in

a humid chamber. After washing with PBS, biotinylated secondary

antibody (goat anti-mouse, 1:200, Vector Laboratories, Burlingame,

USA) was incubated on the sections for 1 h at room temperature.

Afterwards, sections were incubated with avidin–biotin complex

(ABC; Vector Laboratories, USA) for 1 h at room temperature. After

washing, the substrate 3,30-Diaminobenzidin (DAB, Sigma-Aldrich,

Munich, Germany) was added to the sections and the reaction was

stopped in distilled water. After dehydrating, the sections were

mounted with CV Ultra Mounting Media (Leica, Germany). For

cresyl violet (Nissl) staining, rehydrated sections were incubated in

0.1% Cresyl Violet Stain Solution (ab246816, Abcam, UK) for 5 min

at room temperature. Afterwards, sections were shortly rinsed in

distilled water to reduce background noise and dehydrated in alco-

hol and xylene before mounting with CV Ultra Mounting Media.

Imaging of the sections was performed using the Axioplan2 imag-

ing microscope with an AxioCam HR colour digital camera and the

AxioVision SE64 Rel. 4.9 software (Zeiss, Germany). All quan-

tifications of cell number were performed in 2 mice per genotype

and age and 4 different sections (= cerebellar loops) per mouse,

with the examiner being blinded to genotype and age. Size of deep

cerebellar nuclei was quantified from cresyl violet-stained sections

using AxioVision SE64 Rel. 4.9 software. Cell number of pontine

nuclei and frontal cortex was assessed on the basis of cresyl violet

staining of 3 visual fields at 20× magnification using ImageJ (im-

agej.nih.gov). Briefly, colour images were converted to 16-bit grey-

scale and threshold was adjusted to highlight all structures. To

count cells automatically, the function “analyse particles” in ImageJ

was used. Purkinje cells (PCs) were quantified and classified manu-

ally into the categories “altered” (= shrinkage of PC soma), “lost”

(= no visible PC soma) and “intact” based on NfL and Nissl-stained

cerebellar sections.

Phenotypic assessment of mice

Given the strong abnormal weight phenotype of our SCA3 mouse

model, indicating severe underlying disease processes already early

in the disease course, weight was determined longitudinally in all

animals every 2 weeks. Additionally, in an independent cohort of

304Q SCA3 mice (n = 45), evolution of coordination and balance

was assessed by quantitative gait analysis using the Catwalk 8.1 gait

analysis system (Noldus). Animals were tested every 6 months

starting with 6 months of age, 12–15 mice per genotype were anal-

ysed per time point. Each mouse had to complete five runs with a

minimal run duration of 0.5 s and maximum of 10 s. Speed varia-

tion had to be below 60%. Run performance and footprint analysis

were performed with Catwalk X software (Noldus).

The experiments were conducted in accordance with the veteri-

nary office regulations of Baden–Wuerttemberg, Germany (Regier-

ungspräsidium Tübingen: HG3/13, HG2/18), the German Animal

Welfare Act and the guidelines of the Federation of European Labo-

ratory Animal Science Associations, based on European Union legis-

lation (directive 2010/63/EU). Animals were housed under standard

conditions in groups (≤ 5 per cage) and maintained within a 12-h

light–dark cycle. Access to food and water was given ad libitum.

Neurofilament quantification

Neurofilament concentrations were measured in duplicates by ultra-

sensitive single-molecule array (Simoa) technique on the Simoa HD-

1 Analyzer (Quanterix, Lexington, Massachusetts). In cohort #1, we

used the NF-light Advantage Kit for NfL (Kuhle et al, 2016) and the

pNF-heavy Discovery Kit for pNfH quantification (Wilke et al,

2019), according to the manufacturer’s instructions (Quanterix). In

cohort #2, we quantified Nf concentrations using an independent

homebrew NfL-pNfH duplex assay, as detailed below. Given the

minute volumes that suffice for measuring both analytes by the NfL-

pNfH duplex assay (70 ll per sample), we also used this duplex

assay for quantifying Nf concentrations in murine plasma and
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murine brain lysates from cerebellum and frontal lobe. All samples

were measured in duplicates (dilution for serum/plasma: 1:4, for

lysates: 1:2,000). Technicians were blinded to the genotypic and

phenotypic status of the samples. Validation with 47 independent

serum samples (13 SCA3 subjects, 34 controls) confirmed excellent

agreement between the Quanterix and the homebrew NfL assays

(R = 0.99). This allowed transformation of the NfL homebrew

measurements to the scale of the Quanterix measurements by linear

regression (see Appendix Table S2 for assay characteristics and vali-

dation). For pNfH, analogous validation also showed good, yet

lower, agreement between the Quanterix and the homebrew pNfH

assays (R = 0.88).

Homebrew NfL-pNfH duplex Simoa assay

Neurofilament light and pNfH levels in cohort #2 were measured by

an in-house multiplex Simoa assay. For NfL, the monoclonal anti-

body (mAB) 47:3 was used as capture antibody and mAB 2:1 as

detector antibody (UmanDiagnostics, Umeå, Sweden). pNfH was

captured by mouse mAB anti-human pNfH (Iron Horse Diagnostics,

USA) and detected by chicken polyclonal anti-human pNfH antibod-

ies (Iron Horse Diagnostics). Each capture antibody was separately

coupled to dye-encoded paramagnetic beads using a procedure

previously described (Disanto et al, 2017). Bovine-lyophilised NfL

was obtained from UmanDiagnostics and purified pNfH from Iron

Horse. Calibrators ranged for NfL from 0 to 2,000 pg/ml, and for

pNfH from 0 to 400 pg/ml (calibrator diluent: tris base saline [TBS];

0.1% Tween-20; 1% milk powder; 300 lg/ml Heteroblock [Omega

Biologicals Inc., Bozeman, USA]). Batch prepared calibrators were

stored at �80°C. Calibrators (neat) and samples (serum/plasma 1:4

dilution, lysates 1:2,000 dilution; sample diluent: TBS, 0.1% Tween-

20, 1% milk powder, 400 lg/ml Heteroblock [Omega Biologicals])

were measured in duplicates. Reagents were prepared as follows: NfL

and pNfH beads were diluted to 1 × 104 beads/ll each, and detector

antibodies for NfL and pNfH were adjusted to 0.1 and 0.05 lg/ml,

respectively (bead and detector diluent: TBS; 0.1% Tween-20; 1%

milk powder; 300 lg/ml Heteroblock [Omega Biologicals]). Paral-

lelism of the assay for serum, plasma and brain lysates was con-

firmed by serial dilution experiments in native samples.

Quantification of soluble ataxin-3

Soluble mutant ataxin-3 measurements via time-resolved Förster

resonance energy transfer immunoassay (TR-FRET) were performed

using a combination of an anti-ataxin-3 antibody (clone 1H9,

MAB5360, Merck) labelled with Tb (donor) fluorophore and an

anti-polyQ antibody (clone 1C2, MAB1574, Merck) labelled with d2

(acceptor) fluorophore (labelling by Cisbio). Briefly, homogenised

cerebellar and frontal lobe samples for Nf measurements were

diluted in homogenisation buffer (50 mM Tris, 150 mM NaCl,

5 mM EDTA, cOmplete Protease Inhibitor Cocktail) to a final

concentration of 1 lg/ll total protein amount. Next, 5 ll of diluted
sample was incubated with 1 ll of the TR-FRET antibody mix (1 ng

1H9-Tb + 3 ng MW1-d2 in 50 mM NaH2PO4, 400 mM NaF, 0.1%

BSA, 0.05% Tween-20) in a low-volume white ProxiPlate 384 TC

Plus plate (PerkinElmer) at 4°C for 22 h. Signals were detected at

620 nm and 665 nm using an EnVision Multimode Plate Reader

with a TRF-laser unit (PerkinElmer).

Quantification of aggregated ataxin-3

For the filter retardation assay, 12.5 lg of protein homogenate was

diluted in Dulbecco’s phosphate-buffered saline (DPBS; Gibco)

containing 2% sodium dodecyl sulphate (SDS) and 50 mM 1,4-

dithiothreitol (DTT) and heat-denatured for 5 min at 95°C. Samples

were filtered through Amersham Protran Premium 0.45-lm nitrocel-

lulose membranes (GE Healthcare) by using a Minifold II Slot-Blot

System (Schleicher & Schuell). Before loading the samples, the

membrane was equilibrated with DPBS containing 0.1% SDS and

rinsed afterwards twice with DPBS. The membranes were blocked

in tris-buffered saline (TBS; 1 M Tris, 5 M NaCl) containing 5%

skimmed milk powder (Sigma-Aldrich) for 1 h, followed by primary

antibody (mouse anti-ataxin-3, 1:2,500, clone 1H9, MAB5360,

Merck Millipore) incubation overnight at 4°C, and secondary anti-

body (IRDye 800CW goat anti-mouse IgG (H+L) 1:1,000, 926-32210,

LI-COR) incubation for 1.5 h at room temperature. Detection and

quantification of the fluorescent signal was performed using the

ODYSSEY Server software version 4.1 (LI-COR Bioscience).

Statistical analysis

Group effects
We used non-parametric procedures to analyse group effects on Nf

levels (Mann–Whitney U-tests, two-sided, Bonferroni-corrected for

multiple comparisons). To correct the group effects for age-

dependent increases of Nf levels (log-transformed) within each

cohort, we used linear models with the factors group, age and their

interaction. The optimal cut-offs for differentiating ataxic SCA3

subjects from controls by their Nf levels were determined according

to Youden’s procedure, with the cut-off allowing to benchmark Nf

levels in preataxic SCA3 subjects.

Associations between disease severity and disease progression
In ataxic subjects, we assessed the association between Nf levels

(log-transformed) and disease severity, as captured by the SARA

score, with Pearson’s correlations (two-sided test). We used partial

correlations with the covariates age, disease duration and CAG

count to adjust the association between Nfs and disease severity for

potential confounders. Prospective longitudinal SARA scores were

available for a subset of patients (n = 35; all from cohort #2;

number of longitudinal visits per subject: 2–4) allowing us to deter-

mine intraindividual disease progression as the annual change of

SARA scores (determined by intraindividual linear regression coeffi-

cients, using all available SARA scores).

Association of NfL levels with age and repeat length
We analysed the association of NfL levels with age and CAG repeat

length in SCA3 carriers with a linear model, using the pooled NfL

data of both cohorts after transforming NfL levels of cohort #2

(which were measured by homebrew Simoa) to the scale of the

Quanterix Simoa used for cohort #1. Specifically, we modelled NfL

levels (log-transformed) in all SCA3 carriers (n = 123) with the

predictors age and ATXN3 CAG repeat length, their squares and all

possible interactions, analogous to previous analyses in Hunting-

ton’s disease (Byrne et al, 2017). We centred age at 50 years (i.e.

mean age of carriers) and CAG repeat length at 68 (i.e. mean CAG

repeat length of carriers), as in analogous previous analyses (Byrne

ª 2020 The Authors EMBO Molecular Medicine 12: e11803 | 2020 15 of 19

Carlo Wilke et al EMBO Molecular Medicine

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on February 20, 2024 from

 IP 193.175.154.19.



et al, 2017). We excluded one outlier (NfL > 700 pg/ml) to fulfil

model assumptions.

Association of NfL with time to onset in preataxic SCA3
We analysed NfL levels as a function of time to estimated onset of

ataxia in preataxic SCA3 by linear regression. For each preataxic

SCA3 subject, we individually calculated the time to the estimated

onset of ataxia based on CAG repeat count and the age at the time

of assessment, as established previously (Tezenas du Montcel et al,

2014). Hereby, the estimate based on the repeat size is adjusted for

the age which the individual has actually reached without develop-

ing ataxia; i.e., the older the preataxic subject at the time of assess-

ment, the higher the predicted age at onset. To determine the point

of time at which NfL levels become significantly increased in the

preataxic stage of SCA3, NfL levels of preataxic carriers needed to

be related to the NfL levels of controls at the same age, as NfL levels

physiologically increase with age in controls (Wilke et al, 2016).

Hence, we calculated the z-score of each SCA3 subject in relation to

the NfL distribution in controls at the same age (for a visualisation,

see Fig 3B). For this, the difference between the measured NfL level

and the NfL level estimated for controls at the same age was stan-

dardised relative to the NfL distribution in controls at this age. NfL

in controls was modelled by linear regression on the level of log-

transformed data.

Intraindividual stability of Nf levels
We assessed intraindividual stability of Nf levels by calculating the

intraclass correlation coefficient (ICC) of each analyte (model speci-

fication: two-way mixed, single-measures, absolute agreement),

using our 6-week longitudinal Nf data (log-transformed) from a

subset of subjects (n = 21) of cohort #2 where such 6-week interval

sample was available.

Sample size estimation for future treatment trials
We performed sample size estimations for future intervention trials,

which use the reduction of Nf levels towards levels observed in

healthy controls as outcome measure (Byrne et al, 2018). We esti-

mated the sample size per study arm, which would be required to

detect a given control-adjusted relative reduction of Nf levels (10–

70%) in the treatment arm, assuming that null mean change over

time occurred in the placebo arm of the trial. To this end, we based

the assumed intersubject variability in the hypothetical trial on the

measured intrasubject variability in the change of analyte levels

(from baseline to 6 weeks) in our SCA3 subjects (Fig 4). The esti-

mation further assumed equal numbers of subjects in both study

arms, a = 0.01, b = 0.01, two-tailed independent t-tests, and the use

of log-transformed analyte levels. It was performed with GPower 3.1

software (Kiel, Germany).

Murine data
We compared biomarker levels (NfL, pNfH, aggregated ataxin-3,

soluble ataxin-3) and phenotypic data between heterozygous and

wild-type animals within the same age group (i.e. animals sacrificed

at 2, 6, 12 or > 18 months), using independent t-tests (two-sided,

Bonferroni-corrected for multiple comparisons given that two

analytes were measured from each sample). Analogously, data were

compared between homozygous mutants and wild-type animals.

Throughout the manuscript, if the assumption of normality was

violated (assessed by inspection and Shapiro–Wilk test), we used

log-transformed data for the statistical analysis after ensuring that

the transformed data were normally distributed. If normality was

violated also after transformation, non-parametric tests were

applied. For parametric tests, corrections were applied if variance

differed between the groups that were compared (t-tests adjusted for

unequal variances). We analysed the data with SPSS (IBM,

version 24). We reported the effect size r of the statistical tests

wherever possible.

Data availability

All source data of this study are available in the supplementary

material of the article.

Expanded View for this article is available online.
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The paper explained

Problem
Spinocerebellar ataxia type 3 (SCA3), the most frequent autosomal-
dominant ataxia worldwide, is a prototypic neurodegenerative repeat-
expansion disorder. As targeted molecular treatments for SCA3 (e.g.
antisense oligonucleotides) are coming into reach, easily accessible
peripheral biomarkers are warranted, both for human and for preclini-
cal trials. Such biomarkers are particularly important at the presymp-
tomatic disease stage, where disease-modifying therapies might be
most effective, and require cross-validation in animal models, as well
as cross-validation with associated central nervous system changes.

Results
In two independent multicentric human SCA3 cohorts, blood levels of
neurofilament light (NfL) and phosphorylated neurofilament heavy
(pNfH) were each increased at the symptomatic disease stage. NfL
levels were increased also at the presymptomatic stage. NfL elevations
were present already 7.5 years before the individual expected symptom
onset, with levels increasing further in proximity to the conversion from
the presymptomatic to the symptomatic disease stage. NfL levels
reflected both subjects’ clinical disease severity and disease progression.
The neurofilament increases in our human cohorts were paralleled by
neurofilament increases in a SCA3 knock-in mouse model, here also
starting already at the presymptomatic stage, closely following the
onset of ataxin-3 aggregation and preceding significant Purkinje cell
loss in the brain. These results allowed mapping a larger biomarker
cascade of SCA3 disease, capturing differential changes in NfL, pNfH,
ataxin-3 and behavioural biomarker trajectories across disease stages.

Impact
Blood levels of neurofilaments, particularly NfL, might provide easily
accessible peripheral biomarkers of neuronal damage in SCA3, vali-
dated both at the presymptomatic and at symptomatic disease stage
in humans and mice and associated with brain pathology changes
already at the earliest disease stages. NfL levels might serve as
progression, proximity-to-onset and, potentially, treatment-response
biomarkers for both human and preclinical trials.
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2German Center for Neurodegenerative Diseases (DZNE), Univer-
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