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Fastandreliable detection of patients with severe and heterogeneousillnessesis a
major goal of precision medicine'?. Patients with leukaemia can be identified using
machine learning on the basis of their blood transcriptomes®. However, there is an
increasing divide between what is technically possible and what is allowed, because of
privacy legislation**. Here, to facilitate the integration of any medical data from any
dataowner worldwide without violating privacy laws, we introduce Swarm
Learning—a decentralized machine-learning approach that unites edge computing,
blockchain-based peer-to-peer networking and coordination while maintaining
confidentiality without the need for a central coordinator, thereby going beyond
federated learning. Toillustrate the feasibility of using Swarm Learning to develop
disease classifiers using distributed data, we chose four use cases of heterogeneous
diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than
16,400 blood transcriptomes derived from 127 clinical studies with non-uniform
distributions of cases and controls and substantial study biases, as well as more than
95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those
developed atindividual sites. In addition, Swarm Learning completely fulfils local
confidentiality regulations by design. We believe that this approach will notably
accelerate the introduction of precision medicine.

Identification of patients with life-threatening diseases, such as leu-
kaemias, tuberculosis or COVID-19%7, is an important goal of preci-
sion medicine’. The measurement of molecular phenotypes using
‘omics’ technologies' and the application of artificial intelligence (Al)
approaches*® will lead to the use of large-scale data for diagnostic
purposes. Yet, there is an increasing divide between what is techni-
cally possible and what is allowed because of privacy legislation®*°.
Particularly inaglobal crisis®’, reliable, fast, secure, confidentiality- and
privacy-preserving Al solutions can facilitate answering important
questions in the fight against such threats' . Al-based concepts range
from drug target prediction™ to diagnostic software'>'. At the same

time, we need to considerimportant standards relating to data privacy
and protection, such as Convention 108+ of the Council of Europe".
Al-based solutions rely intrinsically on appropriate algorithms's,
buteven more so on large training datasets®. As medicine is inherently
decentral, the volume of local datais ofteninsufficient to train reliable
classifiers®®?, As a consequence, centralization of data is one model
that has been used to address the local limitations*. While beneficial
from an Al perspective, centralized solutions have inherent disad-
vantages, including increased data traffic and concerns about data
ownership, confidentiality, privacy, security and the creation of data
monopolies that favour data aggregators”. Consequently, solutions

Alist of affiliations appears at the end of the paper.
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Fig.1|Conceptof SwarmLearning. a, lllustration of the concept of local
learning with data and computation at different, disconnected locations.

b, Principle of cloud-based machine learning. ¢, Federated learning, with data
being kept with the data contributor and computing performed at the site of
local datastorage and availability, but parameter settings orchestrated by a
central parameter server.d, Principle of SLwithout the need for acentral
custodian. e, Schematic of the Swarm network, consisting of Swarm edge
nodes thatexchange parameters for learning, which isimplemented using
blockchaintechnology. Private dataare used at each node together with the
model provided by the Swarm network. f-1, Descriptions of the transcriptome

to the challenges of central Almodels must be effective, accurate and
efficient; must preserve confidentiality, privacy and ethics; and must
besecure and fault-tolerant by design®?*. Federated Al addresses some
of these aspects'®®. Dataare kept locally and local confidentiality issues
are addressed®, but model parameters are still handled by central
custodians, which concentrates power. Furthermore, such star-shaped
architectures decrease fault tolerance.

We hypothesized that completely decentralized Al solutions would
overcome current shortcomings, and accommodate inherently decen-
tral datastructures and data privacy and security regulations in medi-
cine. The solution (1) keeps large medical data locally with the data
owner; (2) requires no exchange of raw data, thereby also reducing
datatraffic; (3) provides high-level datasecurity; (4) guarantees secure,
transparent and fair onboarding of decentral members of the network
without the need for a central custodian; (5) allows parameter merging
with equal rights for all members; and (6) protects machine learning
models from attacks. Here, we introduce Swarm Learning (SL), which
combines decentralized hardware infrastructures, distributed machine
learning based on standardized Al engines with a permissioned block-
chain to securely onboard members, to dynamically elect the leader
among members, and to merge model parameters. Computation is
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datasetsused.f,g, Datasets A1(f;n=2,500) and A2 (g; n=8,348):two
microarray-based transcriptome datasets of PBMCs. h, Dataset A3:1,181
RNA-seq-based transcriptomes of PBMCs. i, Dataset B:1,999 RNA-seq-based
wholebloodtranscriptomes. j, Dataset E: 2,400 RNA-seq-based whole blood
and granulocyte transcriptomes. k, Dataset D: 2,143 RNA-seq-based whole
blood transcriptomes. |, Dataset C: 95,831 X-ray images. CML, chronic myeloid
leukaemia; CLL, chronic lymphocytic leukaemia; Inf., infections; Diab., typell
diabetes; MDS, myelodysplastic syndrome; MS, multiple sclerosis; JIA, juvenile
idiopathic arthritis; TB, tuberculosis; HIV, humanimmunodeficiency virus;
AID, autoimmune disease.

orchestrated by an SL library (SLL) and an iterative Al learning proce-
dure that uses decentral data (Supplementary Information).

Concept of Swarm Learning

Conceptually, if sufficient dataand computer infrastructure are avail-
able locally, machine learning can be performed locally (Fig. 1a). In
cloud computing, data are moved centrally so that machine learning
can be carried out by centralized computing (Fig. 1b), which can sub-
stantially increase the amount of dataavailable for training and thereby
improve machine learning results', but poses disadvantages such as
data duplication and increased data traffic as well as challenges for
data privacy and security?. Federated computing approaches® have
been developed, wherein dedicated parameter servers are responsible
for aggregating and distributing local learning (Fig. 1c); however, a
remainder of a central structure is kept.

Asanalternative, we introduce SL, which dispenses with adedicated
server (Fig. 1d), shares the parameters via the Swarm network and
builds the modelsindependently on private dataat theindividual sites
(short‘nodes’ called Swarm edge nodes) (Fig. 1e). SL provides security
measures to support data sovereignty, security, and confidentiality
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Fig.2|SwarmLearningto predict leukaemias from PBMCdata. a, Overview
ofthe experimental setup. Data consisting of biological replicates are splitinto
non-overlapping training and test sets. Training data are siloed in Swarm edge
nodes1-3andtesting node Tis used asindependent test set.SLisachieved by
integrating nodes1-3for training following the procedures describedinthe
Supplementary Information. Red and blue barsillustrate the scenario-specific
distribution of cases and controls among the nodes; percentages depict the
percentage of samples from the full dataset. b, Scenario using dataset A2 with
unevendistributions of cases and controls and of samples sizes among nodes.
¢, Scenariowith uneven numbers of cases and controls at the different training
nodesbutsimilar numbers of samples ateach node.d, Scenario withsamples
fromindependentstudies from A2 sampled to different nodes, resultingin
varying numbers of cases and controls per node. e, Scenario inwhich each
node obtained samples from different transcriptomic technologies (nodes1-3:
datasets A1-A3). The test node obtained samples from each dataset A1-A3.
b-e, Box plots show accuracy of 100 permutations performed for the 3 training
nodesindividually and for SL. All samples are biological replicates. Centredot,
mean; box limits, Istand 3rd quartiles; whiskers, minimum and maximum
values. Accuracy is defined for theindependent fourth node used for testing
only. Statistical differences between results derived by SL and all individual
nodesincluding all permutations performed were calculated using one-sided
Wilcoxonsigned-rank test with continuity correction; *P<0.05, exact Pvalues
listed in Supplementary Table 5.

(Extended Data Fig. 1a) realized by private permissioned blockchain
technology (Extended DataFig. 1b). Each participantis well defined and
only pre-authorized participants can execute transactions. Onboarding
of newnodesis dynamic, withappropriate authorization measures to

recognize network participants. A new node enrolls via a blockchain
smart contract, obtains the model, and performs local model training
until defined conditions for synchronization are met (Extended Data
Fig.1c). Next, model parameters are exchanged viaaSwarmapplication
programming interface (API) and merged to create an updated model
with updated parameter settings before starting anew training round
(Supplementary Information).

Ateachnode, SLisdivided into middleware and an application layer.
The application environment contains the machine learning platform,
the blockchain, and the SLL (including a containerized Swarm APl to
execute SL in heterogeneous hardware infrastructures), whereas the
application layer contains the models (Extended Data Fig. 1d, Sup-
plementary Information); for example, analysis of blood transcrip-
tome data from patients with leukaemia, tuberculosis and COVID-19
(Fig.1f-k) or radiograms (Fig.11). We selected both heterogeneous and
life-threatening diseases to exemplify the immediate medical value
of SL.

Swarm Learning predicts leukaemias

First, we used peripheral blood mononuclear cell (PBMC) transcrip-
tomes from more than12,000 individuals (Fig. 1f-h) in three datasets
(A1-A3, comprising two types of microarray and RNA sequencing
(RNA-seq))?. If not otherwise stated, we used sequential deep neural
networks with default settings?. For each real-world scenario, sam-
ples were split into non-overlapping training datasets and a global
test dataset® that was used for testing the models built at individual
nodes and by SL (Fig. 2a). Within training data, samples were ‘siloed’
ateach of the Swarm nodes in different distributions, thereby mimick-
ingclinically relevant scenarios (Supplementary Table 1). As cases, we
used samples fromindividuals with acute myeloid leukaemia (AML); all
other samples were termed ‘controls’. Each node within this simulation
could stand for a medical centre, a network of hospitals, a country or
any otherindependent organization that generates such medical data
with local privacy requirements.

First, we distributed cases and controls unevenly at and between
nodes (dataset A2) (Fig. 2b, Extended Data Fig. 2a, Supplementary
Information), and found that SL outperformed each of the nodes
(Fig. 2b). The central model performed only slightly better than SLin
thisscenario (Extended Data Fig. 2b). We obtained very similar results
using datasets Al and A3, which strongly supports the idea that the
improvement in performance of SL is independent of data collection
(clinical studies) or the technologies (microarray or RNA-seq) used for
data generation (Extended Data Fig. 2c-e).

Wetested five additional scenarios on datasets A1-A3: (1) using evenly
distributed samples at the test nodes with case/control ratios similar
to those in the first scenario (Fig. 2¢, Extended Data Fig. 2f-j, Supple-
mentary Information); (2) using evenly distributed samples, but siloing
samples from particular clinical studies to dedicated training nodes
and varying case/control ratios between nodes (Fig. 2d, Extended Data
Fig.3a-h, Supplementary Information); (3) increasing sample size for
eachtraining node (Extended DataFig. 4a-f, Supplementary Informa-
tion); (4) siloing samples generated with different technologies at dedi-
cated training nodes (Fig. 2e, Extended Data Fig. 4g-i, Supplementary
Information); and (5) using different RNA-seq protocols (Extended
Data Fig. 4j-k, Supplementary Table 7, Supplementary Information).
Inallthese scenarios, SL outperformed individual nodes and was either
close to or equivalent to the central models.

Werepeated several of the scenarios with samples from patients with
acute lymphoblastic leukaemia (ALL) as cases, extended the predic-
tion to a multi-class problem across four major types of leukaemia,
extended the number of nodes to 32, tested onboarding of nodes at a
later time point (Extended Data Fig. 5a-j) and replaced the deep neural
network with LASSO (Extended DataFig. 6a-c), and the results echoed
the above findings (Supplementary Information).
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Fig.3|Swarm Learning toidentify patients with TB or lung pathologies.
a-c,Scenarios for the prediction of TB with experimental setup asin Fig. 2a.

a, Scenariowith even number of casesateach node; 10 permutations.

b, Scenario similar toabut with six training nodes; 10 permutations. ¢, Scenario
inwhichthe training nodes have evenly distributed numbers of cases and
controlsateachtraining node, but node 2 has fewer samples; 50 permutations.
d, Scenario for multilabel prediction of dataset C with uneven distribution of
diseases at nodes; 10 permutations. a-d, Box plots show accuracy of all

Swarm Learning to identify tuberculosis

We built a second use case to identify patients with tuberculosis (TB)
from blood transcriptomes®** (Fig. 1i, Supplementary Information).
First, we used all TB samples (latent and active) as cases and distributed
TB cases and controls evenly among the nodes (Extended Data Fig. 7a).
SL outperformed individual nodes and performed slightly better than
a central model under these conditions (Extended Data Fig. 7b, Sup-
plementary Information). Next, we predicted active TB only. Latently
infected TB cases were treated as controls (Extended Data Fig. 7a) and
cases and controls were kept even, but the number of training samples
was reduced (Fig.3a). Under these more challenging conditions, overall
performance dropped, but SL still performed better than any of the
individual nodes. Whenwe further reduced training sample numbers by
50%, SLstill outperformed the nodes, but all statistical readouts at nodes
andSLshowed lower performance; however, SL was stillequivalenttoa
centralmodel (Extended Data Fig. 7c, Supplementary Information), con-
sistent with general observations that Al performsbetter whentraining
dataareincreased”. Dividing up the training data at three nodes into six
smaller nodes reduced the performance of eachindividualnode, whereas
the SLresults did not deteriorate (Fig. 3b, Supplementary Information).

As TBhasendemic characteristics, we used TB to simulate potential
outbreak scenarios to identify the benefits and potential limitations of
SLand determine how to address them (Fig. 3¢, Extended Data Fig. 7d-f,
Supplementary Information). The first scenario reflects a situation
in which three independent regions (simulated by the nodes) would
already have sufficient but different numbers of disease cases (Fig. 3¢,
Supplementary Information). In this scenario, the results for SL were
almost comparable to those in Fig. 3a, whereas the results for node
2 (which had the smallest numbers of cases and controls) dropped
noticeably. Reducing prevalence at the test node caused the node
resultsto deteriorate, but the performance of SL was almost unaffected
(Extended DataFig. 7d, Supplementary Information).
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permutations for the training nodes individually and for SL. Allsamples are
biological replicates. Centre dot, mean; box limits, 1stand 3rd quartiles;
whiskers, minimum and maximum values. Accuracy is defined for the
independent fourthnode used for testing only. Statistical differences between
results derived by SL and allindividual nodes including all permutations
performed were calculated with one-sided Wilcoxon signed rank test with
continuity correction; *P<0.05, exact Pvalues listed in Supplementary Table 5.

We decreased case numbers at node 1 further, which reduced test
performance for this node (Extended Data Fig. 7e), without substan-
tially impairing SL performance. When we lowered prevalence at the
testnode, all performance parameters, including the F1score (a meas-
ure of accuracy), were more resistant for SL than for individual nodes
(Extended Data Fig. 7f-j).

We built a third use case for SL that addressed a multi-class predic-
tion problem using a large publicly available dataset of chest X-rays®
(Figs.1l,3d, Supplementary Information, Methods). SL outperformed
eachnodeinpredictingall radiological findings included (atelectasis,
effusion, infiltration and no finding), which suggests that SL is also
applicable to non-transcriptomic data spaces.

Identification of COVID-19

Inthe fourthuse case, we addressed whether SL could be used to detect
individuals with COVID-19 (Fig. 1k, Supplementary Table 6). Although
COVID-19isusually detected by using PCR-based assays to detect viral
RNA®, assessing the specific host response in addition to disease pre-
diction might be beneficial in situations for which the pathogen is
unknown, specific pathogen tests are not yet possible, existing tests
might produce false negative results, and blood transcriptomics can
contribute to the understanding of the host’simmune response®* 3¢,
Inafirst proof-of-principle study, we simulated an outbreak situation
node with evenly distributed cases and controls at training nodes and
test nodes (Extended Data Fig. 8a, b); this showed very high statistical
performance parameters for SLand allnodes. Lowering the prevalence
at test nodes reduced performance (Extended Data Fig. 8c), but F1
scores deteriorated only when we reduced prevalence further (1:44
ratio) (Extended Data Fig. 8d); even under these conditions, SL per-
formed best. When we reduced cases at training nodes, all performance
measures remained very high at the test node for SL and individual
nodes (Extended Data Fig. 8e-j). When we tested outbreak scenarios
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pendent test node (Fig. 4a), nodes 2 and 3 showed decreased perfor-
mance; SL outperformed these nodes (Fig. 4b, Extended Data Fig. 8k,
1) and was equivalent to the central model (Extended Data Fig. 8m).
The model showed no sign of overfitting (Extended Data Fig. 8n) and
comparable results were obtained when we increased the number of
training nodes (Extended Data Fig. 9a-d).

We recruited further medical centres in Europe that differed in
controls and distributions of age, sex, and disease severity (Supple-
mentary Information), which yielded eight individual centre-specific
sub-datasets (E1-8; Extended Data Fig. 9e).

In the first setting, centres E1-E6 teamed up and joined the Swarm
network with 80% of their local data; 20% of each centre’s dataset was
distributed to a test node” (Fig. 4c) and the model was also tested on
two external datasets, one with convalescent COVID-19 cases (E7) and
oneofgranulocyte-enriched COVID-19 samples (E8).SL outperformed
all nodes in terms of area under the curve (AUC) for the prediction of
the global test datasets (Fig. 4d, Extended Data Fig. 9f, Supplementary
Information). Whenlooking at performance on testing samples split by
centre of origin, it became clear thatindividual centre nodes could not
have predicted samples from other centres (Extended Data Fig. 9g). By
contrast, SL predicted samples from these nodes successfully. This was
similarly true whenwe reduced the scenario, using E1,E2, and E3 as train-
ing nodes and E4 asanindependent test node (Extended Data Fig. 9h).

In addition, SL can cope with biases such as sex distribution, age or
co-infection bias (Extended Data Fig.10a-c, Supplementary Informa-
tion) and SL outperformed individual nodes when distinguishing mild
from severe COVID-19 (Extended Data Fig.10d, e). Collectively, we
provide evidence that blood transcriptomes from COVID-19 patients
represent a promising feature space for applying SL.

With increasing efforts to enforce data privacy and security>®® and to
reduce data traffic and duplication, a decentralized data model will
become the preferred choice for handling, storing, managing, and ana-
lysing any kind of large medical dataset". Particularlyinoncology, success
hasbeenreported in machine-learning-based tumour detection**, sub-
typing®, and outcome prediction®, but progress is hindered by the lim-
ited size of datasets', with current privacy regulations**° making it less
appealingto develop centralized Al systems. SL, asadecentralized learn-
ingsystem, replaces the current paradigm of centralized datasharingin
cross-institutional medical research. SL’s blockchain technology gives
robust measures against dishonest participants or adversaries attempting
to undermine a Swarm network. SL provides confidentiality-preserving
machinelearning by design and caninherit new developmentsin differ-
ential privacy algorithms*, functional encryption®, or encrypted transfer
learning approaches* (Supplementary Information).

Global collaboration and data sharing are important quests® and
both are inherent characteristics of SL, with the further advantage
that data sharing is not even required and can be transformed into
knowledge sharing, thereby enabling global collaboration with com-
plete data confidentiality, particularly if using medical data. Indeed,
statements by lawmakers have emphasized that privacy rules apply
fully during a pandemic®. Particularly in such crises, Al systems need
to comply with ethical principles and respect human rights™. Systems
such as SL—allowing fair, transparent, and highly regulated shared data
analytics while preserving data privacy—are to be favoured. SL should
be explored for image-based diagnosis of COVID-19 from patternsin
X-rayimages or CT scans™*, structured health records?, or data from
wearables for disease tracking™. Collectively, SL and transcriptomics
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(orother medical data) are a very promising approach to democratize
the use of Alamong the many stakeholdersin the domain of medicine,
while at the same time resulting inimproved data confidentiality, pri-
vacy, and data protection, and a decrease in data traffic.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
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Methods

Pre-processing

PBMC transcriptome dataset (dataset A). We used a previously pub-
lished dataset compiled for predicting AML in blood transcriptomes
derived from PBMCs (Supplementary Information)>. In brief, all raw
datafiles were downloaded from GEO (https://www.ncbi.nlm.nih.gov/
geo/) and the RNA-seq data were preprocessed using the kallisto v0.43.1
aligner against the human reference genome gencode v27 (GRCh38.
p10). For normalization, we considered all platforms independently,
meaning that normalization was performed separately for the sam-
plesin datasets Al, A2 and A3. Microarray data (datasets Aland A2)
were normalized using the robust multichip average (RMA) expression
measures, asimplemented inthe R package affy v.1.60.0. The RNA-seq
data(dataset A3) were normalized using the R package DESeq2 (v1.22.2)
with standard parameters. To keep the datasets comparable, datawere
filtered for genes annotated in all three datasets, which resulted in
12,708 genes. No filtering of low-expressed genes was performed. All
scripts used in this study for pre-processing are provided as a docker
container on Docker Hub (v 0.1, https://hub.docker.com/r/schultzelab/
aml_classifier).

Whole-blood-derived transcriptome datasets (datasets B, D and
E). As alignment of whole blood transcriptome data can be performed
in many ways, we re-aligned all downloaded and collected datasets
(Supplementary Information; these were 30.6 terabytes in size and com-
prised a total of 63.4 terabases) to the human reference genome gen-
codev33(GRCh38.p13) and quantified transcript counts using STAR, an
ultrafast universal RNA-seq aligner (v.2.7.3a). For all samplesin datasets
B, D, andE, raw counts were imported using DESeq (v.1.22.2, DESeqData
SetFromMatrix function) and size factors for normalization were cal-
culated using the DESeq function with standard parameters. This was
done separately for datasets B, D, and E. As some of the samples were
prepared with poly-A selection to enrich for protein-coding mRNAs, we
filtered the complete dataset for protein-coding genes to ensure greater
comparability across library preparation protocols. Furthermore, we
excluded all ribosomal protein-coding genes, as well as mitochondrial
genes and genes coding for haemoglobins, which resulted in 18,135
transcripts as the feature space in dataset B, 19,358 in dataset D and
19,399 in dataset E. Furthermore, transcripts with overall expression
<100 were excluded from further analysis. Other than that, nofiltering
oftranscripts was performed. Before using the datain machinelearn-
ing, we performed a rank transformation to normality on datasets B,
D andE. Inbrief, transcript expression values were transformed from
RNA-seq countsto their ranks. This was done transcript-wise, meaning
thatall transcript expression values per sample were given arank based
onordering them from lowest to highest value. The rankings were then
turned into quantiles and transformed using the inverse cumulative
distribution function of the normal distribution. This leads to all tran-
scripts following the exact same distribution (thatis, astandard normal
with a mean of 0 and a standard deviation of 1across all samples). All
scripts used in this study for pre-processing are provided on Github
(https://github.com/schultzelab/swarm_learning) and normalized and
rank-transformed count matrices used for predictions are provided via
FASTGenomics at https://beta.fastgenomics.org/p/swarm-learning.

X-ray dataset (dataset C). The National Institutes of Health (NIH)
chest X-Ray dataset (Supplementary Information) was downloaded
from https://www.kaggle.com/nih-chest-xrays/data®. To preproc-
ess the data, we used Keras (v.2.3.1) real-time data augmentation and
generation APIs (keras.preprocessing.image.ImageDataGenerator
and flow_from_dataframe). The following pre-processing arguments
were used: height or width shift range (about 5%), random rotation
range (about 5°), random zoomrange (about 0.15), sample-wise centre
and standard normalization. In addition, all images were resized to

128 x 128 pixels from their original size 0f 1,024 x 1,024 pixels and 32
images per batch were used for model training.

The Swarm Learning framework

SL builds on two proven technologies, distributed machine learning
and blockchain (Supplementary Information). The SLL is aframework
to enable decentralized training of machine learning models without
sharing the data. It is designed to make it possible for a set of nodes—
each node possessing some training data locally—to train acommon
machine learning model collaboratively without sharing the training
data. This can be achieved by individual nodes sharing parameters
(weights) derived from training the model on the local data. This allows
local measures at the nodes to maintain the confidentiality and pri-
vacy of the raw data. Notably, in contrast to many existing federated
learning models, a central parameter server is omitted in SL. Detailed
descriptions of the SLL, the architecture principles, the SL process,
implementation, and the environment can be found in the Supple-
mentary Information.

Hardware architecture used for simulations

For all simulations provided in this project we used two HPE Apollo
6500 Gen10servers, each withfourIntel(R) Xeon(R) CPUE5-2698 v4 @
2.20 GHz,a3.2-terabyte hard disk drive, 256 GB RAM, eight Tesla P100
GPUs, a1-GB network interface card for LAN access and an InfiniBand
FDR for high speed interconnection and networked storage access.
The Swarm network is created with a minimum of 3 up to a maximum
of 32 training nodes, and each node is a docker container with access
to GPUresources. Multiple experiments were runin parallel using this
configuration.

Overall, we performed 16,694 analyses including 26 scenarios for
AML, four scenarios for ALL, 13 scenarios for TB, one scenario for detec-
tion of atelectasis, effusion, and/or infiltration in chest X-rays, and 18
scenarios for COVID-19 (Supplementary Information). We performed
5-100 permutations per scenario and each permutation took approxi-
mately 30 min, which resulted in a total of 8,347 computer hours.

Computation and algorithms
Neural network algorithm. We leveraged a deep neural network with
asequential architecture as implemented in Keras (v 2.3.1)%. Keras is
an open source software library that provides a Python interface to
neural networks. The Keras APl was developed with a focus on fast
experimentation and is standard for deep learning researchers. The
model, which was already available in Keras for R from the previous
study?, has been translated from R to Python to make it compatible
withtheSLL (Supplementary Information). In brief, the neural network
consists of one input layer, eight hidden layers and one output layer.
Theinput layer is densely connected and consists of 256 nodes, arec-
tified linear unit activation function and a dropout rate of 40%. From
the first to the eighth hidden layer, nodes are reduced from 1,024 to
64 nodes, and all layers contain arectified linear unit activation func-
tion, a kernel regularization with an L2 regularization factor of 0.005
and adropout rate of 30%. The output layer is densely connected and
consists of one node and a sigmoid activation function. The model is
configured for training with Adam optimization and to compute the
binary cross-entropy loss between true labels and predicted labels.
Themodelis used for training both theindividualnodes and SL. The
modelistrained over 100 epochs, with varying batch sizes. Batch sizes
of 8,16,32, 64 and 128 are used, depending on the number of training
samples. The full code for the model is provided on Github (https://
github.com/schultzelab/swarm_learning/)

Least absolute shrinkage and selection operator (LASSO).SLis not re-
stricted to any particular classification algorithm. We therefore adapted
thell-penalized logistic regression® to be used with the SLL in the form
of aKeras single dense layer with linear activation. The regularization



parameter lambdawas set to 0.01. The full code for the modelis provided
on Github (https://github.com/schultzelab/swarm_learning/)

Parameter tuning. For most scenarios, default settings were used
without parameter tuning. For some of the scenarios we tuned model
hyperparameters. For some scenarios we also tuned SL parameters to
get better performance (for example, higher sensitivity) (Supplemen-
tary Table 8). For example, for AML (Fig. 2e, f, Extended DataFig. 2), the
dropout rate was reduced to 10% to get better performance. For AML
(Fig.2b), thedropoutrate was reduced to10% and the epochsincreased
to300toget better performance. We also used the adaptive_rv param-
eter in the SL API to adjust the merge frequency dynamically on the
basis of model convergence, to improve the training time. For TB and
COVID-19, the test dropout rate was reduced to 10% for all scenarios. For
the TBscenarios (Extended DataFig. 7, g), the node_weightage param-
eter of the SL callback APl was used to give more weight to nodes that
had more case samples. Supplementary Table 8 provides a complete
overview of all tuning parameters used.

Parameter merging. Different functions are available for parameter
merging as a configuration of the Swarm API, which are then applied
by the leader at every synchronization interval. The parameters can
be merged as average, weighted average, minimum, maximum, or
median functions.

Inthis Article, we used the weighted average, which is defined as

_ Lia (W xP)
Pv==" 5 o,

nx Y- Wy
inwhich P,,is merged parameters, P,is parameters from the kthnode,
W,is the weight of the kth node, and nis the number of nodes partici-
pating in the merge process.

Unless stated otherwise, we used a simple average without weights to
merge the parameter for neural networks and for the LASSO algorithm.

Quantification and statistical analysis

We evaluated binary classification model performance with sensitivity,
specificity, accuracy, F1score, and AUC metrics, which were determined
for every test run. The 95% confidence intervals of all performance
metrics were estimated using bootstrapping. For AML and ALL, 100
permutations per scenario were run for each scenario. For TB, the per-
formance metrics were collected by running 10 to 50 permutations. For
the X-ray images, 10 permutations were performed. For COVID-19 the
performance metrics were collected by running 10 to 20 permutations
for each scenario. All metrics are listed in Supplementary Tables 3, 4.

Differencesin performance metrics were tested using the one-sided
Wilcoxon signed rank test with continuity correction. All test results
are provided in Supplementary Table 5.

To run the experiments, we used Python version 3.6.9 with Keras
version 2.3.1and TensorFlow version 2.2.0-rc2. We used scikit-learn
library version 0.23.1to calculate values for the metrics. Summary
statistics and hypothesis tests were calculated using R version 3.5.2.
Calculation of each metric was done as follows:

Sensitivity = TP
Y= TP+EN
. TN
Specificity = TN+ FP
Accuracy = — P+ TN
Y= TP+FP+TN+FN
2TP
Flscore = FP+EN+2TP

where TPistrue positive, FPis false positive, TN is true negative and FN
is false negative. The area under the ROC curve was calculated using
the R package ROCR version 1.0-11.

No statistical methods were used to predetermine sample size. The
experiments were not randomized, but permutations were performed.
Investigators were not blinded to allocation during experiments and
outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Processed data from datasets A1-A3 can be accessed from GEO via the
superseries GSE122517 or the individual subseries GSE122505 (dataset
Al), GSE122511 (dataset A2) and GSE122515 (dataset A3). Dataset B con-
sists of the following series, which can be accessed at GEO: GSE101705,
GSE107104, GSE112087, GSE128078, GSE66573, GSE79362, GSE84076,
and GSE89403. Furthermore, it contains the data from the Rhineland
Study. The Rhineland Study dataset falls under current General Data
Protection Regulations (GDPR). Access to these data can be provided
to scientists in accordance with the Rhineland Study’s Data Use and
Access Policy. Requests toaccess the Rhineland Study’s dataset should
be directed to RS-DUAC@dzne.de. New samples generated for data-
sets D and E have been deposited at the European Genome-Phenome
Archive (EGA), whichis hosted by the EBland the CRG, under accession
number EGAS00001004502. The healthy RNA-seq dataincluded from
Saarbriicken are available on application from PPMI through the LONI
dataarchive at https://www.ppmi-info.org/data. Samples received from
other publicrepositories arelisted in Supplementary Table 2. Dataset
C (NIH chest X-ray dataset) is available on Kaggle (https://www.kaggle.
com/nih-chest-xrays/data). Normalized log-transformed and rank
transformed expressions as used for the predictions are available via
FASTGenomics at https://beta.fastgenomics.org/p/swarm-learning.

Code availability

The code for preprocessing and for predictions canbe found at GitHub
(https://github.com/schultzelab/swarm_learning). The Swarm Learn-
ing software can be downloaded from https://myenterpriselicense.
hpe.com/.
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Extended DataFig.4|Scenario corresponding toFig.2ein datasets Aland
A3 andscenariousing different datageneration methodsineachtraining
node. Mainsettings and representation of schemaand datavisualization are
asinFig.2a.a, Scenariowithevendistribution of cases and controlsateach
trainingnode and the test node, but different numbers of samples at each node
and overallincreasein numbers of samples. b, ¢, Test accuracy for evaluation of
dataset A2 over 100 permutations. d, Comparison of central model with
SLover100 permutations. e, Testaccuracy for evaluation of dataset Alover

99 permutations. f, Testaccuracy for evaluation of dataset A3 over 100
permutations. g, Scenariowhere datasets A1, A2,and A3 are assigned toasingle
training node each. h, Evaluation of test accuracy over 100 permutations.

i, Comparisonofthetestaccuracy of centralmodeland SL over 98

permutations. j, Scenario similar to g but where the nodes use datasets from
different RNA-seq protocols. k, Evaluation of results for accuracy, AUC,
sensitivity, and specificity over five permutations. d-f;, i, k, Box plots show
predictive performance over all permutations performed for the three training
nodesindividually as well as the results obtained by SL. All samples are
biological replicates. Centre dot, mean; box limits, 1stand 3rd quartiles;
whiskers, minimum and maximum values. Performance measures are defined
for theindependent fourth node used for testing only. Statistical differences
betweenresults derived by SL and allindividual nodes including all
permutations performed were calculated with one-sided Wilcoxon signed rank
test with continuity correction; *P<0.05, exact Pvalueslisted in
Supplementary Table 5.
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Extended DataFig. 5|Scenariofor ALLin dataset 2 and multi-class
prediction and expansion of SL. Main settings are identical to what is
describedinFig.2a.Here casesare samples derived from patients with ALL,
while all other samples are controls (including AML). a, Scenario for the
detectionof ALLindataset A2. The trainingsets are evenly distributed among
thenodeswithvarying prevalenceatthetestingnode. Datafromindependent
clinical studies are samplesto eachnode, as described for AML in Fig.2d.

b, Evaluation of scenarioinafor testaccuracy over 100 permutations witha
prevalenceratio of 1:1. ¢, Evaluation using a test dataset with prevalence ratio of
10:100 over 100 permutations. d, Evaluation using a test dataset with
prevalenceratio of 5:100 over 100 permutations. e, Evaluation using a test
dataset with prevalenceratio of1:100. f, Scenario for multi-class prediction of
different typesof leukaemiain dataset A2. Eachnode has adifferent
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swarm Node  Cases:Controls
Node 1 1:99
Node 2 5:95
Node 3 10:90
Node 4 30:70
Node 5 50:50
Node 6 70:30

prevalence. g, Testaccuracy for the different types of leukaemia over 20
permutations. h, Scenario that simulates 32 small Swarm nodes. i, Evaluation of
testaccuracy for the32 nodes and the Swarm over 10 permutations.
j,Development of accuracy over training epochs with addition of new nodes.
b-e, g, i, Box plotsshow performance of all permutations performed for the
training nodesindividually aswell as the results obtained by SL. Allsamples are
biologicalreplicates. Centre dot, mean; box limits, 1stand 3rd quartiles;
whiskers, minimum and maximum values. Performance measures are

defined for theindependent test node used for testing only. Statistical
differences betweenresults derived by SLand allindividual nodes including all
permutations performed were calculated with one-sided Wilcoxon signed rank
test with continuity correction; *P<0.05, exact Pvalueslisted in
Supplementary Table 5.
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modelforaccuracy, sensitivity, specificityand F1score over 100 permutations.  testingonly. Statistical differences betweenresults derived by SLand all

box limits, 1stand 3rd quartiles; whiskers, minimum and maximum values.

¢, Evaluation of aNeural Network model for accuracy, sensitivity, specificity individual nodes including all permutations performed were calculated with
and Flscoreover100 permutations. b, ¢, Box plots show performance of all one-sided Wilcoxon signed rank test with continuity correction; *P<0.05,
permutations performed for the training nodes individually as well as the exact Pvalueslisted in Supplementary Table 5.

results obtained by SL. Allsamples are biological replicates. Centre dot, mean;
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Extended DataFig.7|Scenarios for detecting all TB versus controls and for
detectingactive TBwithlow prevalence at training nodes. Main settings are
asinFig.2a.a, Differentgroup settings used with assignment of latent TB to
controlor case. b, Left, evaluation of ascenario where active and latent TB are
cases. Thedataareevenly distributed among the training nodes. Right, test
accuracy, sensitivity and specificity for nodes, Swarm and a central model over
10 permutations. ¢, Left, scenario similar to bbut with latent TB as control.
Right, test accuracy, sensitivity and specificity for nodes, Swarmand a central
model over 10 permutations. d, Left, scenariowithreduced prevalence at the
test node. Right, testaccuracy, sensitivity and specificity fornodes and Swarm
over 10 permutations. e, Scenario with even distribution of cases and controls
ateachtrainingnode, wherenode1hasavery small training set. The test
datasetis evenly distributed. Right, test accuracy, sensitivity and specificity
over 50 permutations. f, Left, scenario similar to ebut with uneven distribution
inthe test node. Right, test accuracy, sensitivity and specificity over 50

permutations. g, Scenario with each training node having a different
prevalence. Three prevalence scenarios were used in the test dataset.

h, Accuracy, sensitivity, specificity and F1score over five permutations for
testingset Tlasshowning.i, Asinhbutwith prevalence changedto1:3
cases:controlsinthetrainingset.j, Asinhbutwith prevalence changed to1:10
cases:controlsinthe training set. b-f, h—j, Box plots show performance of all
permutations performed for the training nodes individually as well as the
results obtained by SL. All samples are biological replicates. Centre dot, mean;
box limits, 1stand 3rd quartiles; whiskers, minimum and maximum values.
Performance measures are defined for theindependent fourth node used for
testing only. Statistical differences between results derived by SL and all
individual nodesincluding all permutations performed were calculated with
one-sided Wilcoxon signed rank test with continuity correction; *P<0.05,
exact Pvalueslisted in Supplementary Table 5.



c Accuracy Sensitivity Speclfcnty F1 score

Dataset D, n=2381, 3 nodes b Aocuracy (Sensltivity, Speaifictty Fiscore d Accuracy ~ Sensitivity Specifigity  F1 score
Training Testing 1.0 1.0 1.0 .
(different ‘t‘i‘@? ? @ T ? ??iﬂ ? ? T T ? ???T f ? T
prevalences) 0.9 Lt i 0.9? 0.9 R
1:44 08|. = 0.8 0.8 L é
o
11 225 8% o7 0.7 0.7 i
- 4%
0.6
@2%\ i 0.6 0.6
] ED Fig. 8b 05 05 05
3 @ 04 04 04
2"/ 0.3 0.3 03
0 4%, 6%, 80%
2% 0.2 0.2 0.2 i1
0.1 0.1 0.1
11:25 0 o 0
6% 123 123[123 123| 123 123]123 123 123 123] 123] 123
‘ a nodes nodes nodes nodes nodes nodes nodes nodes nodes nodes nodes nodes
ED Fig. 8d swarm swarm swarm swarm swarm swarm swarm swarm swarm swarm SWi
ED Fig. 8¢
Dataset D, n=538, 3 nodes Accuracy Sensmvny Specifi cny F1 score 9 Accuracy Sensmvny Specnf cny F1 score
Training Testing E = —] — i
(different 1.0 ? [ § 33 § § 1.0 ] & e T t T T
prevalences) 09 T é ? ? 1 ? T T 0.9 i? T § § ? ? T
37 22:25 08 08
d eary 1 07 07
node | : . |
% ED Fig. 8f 06 06
3 @ 05 05
1 8% 2 04 04
outbreak 17%, 26 0.3 0.3
node 18% J 02 0.2
later node 11:25 g :
/ 284 0.1 O:t
i 0.0
‘ O3 T123 123 123| 123 1231 123|
ED Fig. 8g nodes nodes nodes nodes nodes nodes nodes nodes
swarm swarm swarm swarm swarm swarm swarm swarm
h i i m
Dataset D, n=698, 3 nodes Accuracy  Sensitivity  Specificity ~ F1 score Accuracy ~ Sensitivity ~ Specificity ~ F1 score Performance of central models
Training Testing . Fig. 4b EDFig. 8k  ED Fig. 8!
(different % 3 E 4% ¢ 1.0 £ 1,00 ™ +
prevalences) ngti %I‘I ? ¥ ?t?ty %II : T ¥ o ‘i-?—! ?
- 09|+ + . =2 e
37:50 08 08 0,95{ R |'R l
o
24% . N | |
ED Fig. 8i 06 06 09/ | |
3 0.5 05 a
o 1:9 o 0
oubreak 3 24%, 32% 03 03
node o 0.2
later node 37:75 02 0.80
32% 0.1 01 N -
0.0 SN e d e S He
/ ‘ S S - TZ3 | 0.0 Bl 123 | 2 | 1 &“ki’}@;é\z;oi“@zé‘@\€§\Z;°é§\§®o§;é§\z;°é
i g nodes nodes nodes nodes nodes nodes nodes nodes VPR PR vefeR
ED Fig. 8] swarm swarm swarm swarm swarm swarm swarm swarm
k Accuracy Sensitivity Specificity F1 score I Accuracy Sensitivity Specificity F1 score n
i i e s - e = 125 —
104 & P @ by 10 ? & P & s [ Training loss
[ I é ? d: T I 10.0 M Vvalidation loss
09| e 09] e !
* .
0.8 08 3 75
g
0.7 0.7 @
o 50
0.6 0.6 =
0.5 0.5 25
0.4 0.4
0.0
0.3 0.3 4 0 50 100
- Epoch
0.2 0.2
- -8
0.1 0.1
0.0 0.0
1 2 3 1 2 3 1.2 3 1 2 3 d 2 3 12 3 1.2 3 4 2 3

nodes swarm nodes swarm nodes swarm nodes swarm

Extended DataFig. 8|See next page for caption.

nodes swarm nodes swarm nodes swarm nodes swarm



Article

Extended DataFig. 8 | Baseline scenario for detecting patients with
COVID-19 and scenario with reduced prevalence at training nodes. Main
settings are as in Fig. 2a.a, Scenario for detecting COVID-19 with even training
setdistributionamongnodes1-3. Threetesting sets with different prevalences
were simulated. b, Accuracy, sensitivity, specificity and F1score over 50
permutations for scenarioinawith a22:25 case:control ratio.c, Asinb for an
11:25ratio.d, Asinbforal:44ratio. e, Scenario with the same sample size at
eachtrainingnode, but prevalence decreasing fromnodeltonode3.Thereare
two test datasets (f, g). f, Evaluation of scenarioin e with 22:25 ratio at the test
node over 50 permutations. g, Evaluation of scenarioinewith reduced
prevalence over 50 permutations. h, Scenario similar to ebut with asteeper
decreasein prevalence betweennodes1and3.i, Evaluationof scenarioinhwith
aratioof37:50 at the test node over 50 permutations. j, Evaluation of scenario
inhwithareduced prevalence compared toiover 50 permutations.k, Scenario

asinFig.4ausingal:Sratiofor casesand controlsinthe test dataset evaluated
over 50 permutations.l, Scenario asin Fig.4ausingal:10ratiointhe test
dataset tosimulate detectionin regions with new infections, evaluated over
50 permutations. m, Performance of central models for k, 1 and Fig. 4b.

n, Loss function of training and validation loss over 100 training epochs.
b-d,f,g,i-m,Boxplots show performance of all permutations performed for
the training nodes individually as well as the results obtained by SL. All samples
arebiological replicates. Centre dot, mean; box limits, 1stand 3rd quartiles;
whiskers, minimum and maximum values. Performance measures are defined
for theindependent fourth node used for testing only. Statistical differences
betweenresults derived by SL and allindividual nodes including all
permutations performed were calculated with one-sided Wilcoxon signed rank
test with continuity correction; *P<0.05, exact Pvalueslisted in
Supplementary Table 5.
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Extended DataFig.9|Scenario withreduced prevalencein training and
test datasets and multi-centre scenario at afour-node setting. Main
settingsasinFig.2a.a, Scenariowith prevalences from10%at node1to 3% at
node4.Thereare three test datasets (b-d) with decreasing prevalence and
increasing total sample size. b, Evaluation of scenarioinawith111:100 ratio
over 50 permutations. ¢, Evaluation of scenarioinawith1:4 ratioandincreased
sample number of the test dataset over 50 permutations. d, Evaluation of
scenarioinawith1:10 prevalence and increased sample number of the test
datasetover 50 permutations. e, Dataset properties for the participating cities
E1-E8, indicating case:control ratioand demographic properties. f, AUC,
accuracy, sensitivity, specificity and F1score over 20 permutations for
scenariothat uses E1-E6 as training nodes and E7 as external test node.

g, Evaluation of amulti-city scenario where amedical centre (in each row)

servesasatestnode. The AUC for each training node and the SLis shown for
20 permutations. h, Multi-city scenario. Only three nodes (E1-E3) are used for
training and the external test node E4 uses data from a different sequencing
facility. AUC, accuracy, sensitivity and specificity as well as the confusion
matrix for one prediction.b-d, f, g, Box plots show performance of all
permutations performed for the training nodes individually as well as the
results obtained by SL. Allsamples are biological replicates. Centre dot, mean;
box limits, 1stand 3rd quartiles; whiskers, minimum and maximum values.
Performance measures are defined for theindependent fourth node used for
testing only. Statistical differences between results derived by SLand all
individual nodes including all permutations performed were calculated with
one-sided Wilcoxonsigned rank test with continuity correction; *P<0.0S5,
exact Pvalueslistedin Supplementary Table 5.
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Extended DataFig.10 | Scenarios for testing different factors and scenario COVID-19 are cases, mild cases of COVID-19 and healthy donors are controls.
for testing disease severity. Mainsettingsasin Fig.2a.a, Top, scenario to test e, Left,scenario to testinfluence of disease severity with three training nodes.
influence of sex with three training nodes. Training node 1 has only male cases, Training node 1has 20% mild or healthy and 80% severe cases, node 3 has 40%
node2 has only female cases. Training node 3 and the test node have a50%/50%  mild or healthy and 60% severe cases. Training node 2 and the test node have

split. Bottom, accuracy, sensitivity, specificity and F1score for each training 30% mild or healthy and 70% severe cases. Right, accuracy, sensitivity,
node and the Swarmin 10 permutations. b, Top, scenario to testinfluence of specificity and F1score foreach training node and the Swarm for 10
agewith three training nodes. Training node 1only has cases younger than permutations. a-c, e, Box plots show performance all permutations performed

65years,node 2 only has cases older than 65 years. Training node 3 and the test for the training nodes individually as well as the results obtained by SL. All
node have a50%/50% split of cases above and below 65 years. Bottom, accuracy, samples arebiological replicates. Centre dot, mean; box limits, 1stand 3rd

sensitivity, specificity and F1score for each training node and the Swarmin 10 quartiles; whiskers, minimum and maximum values. Performance measures
permutations.c, Top, scenario to testinfluence of co-infections with three aredefined for theindependent fourth node used for testing only. Statistical
training nodes. Training node 1 has only cases with co-infections, node 2 has no differences betweenresults derived by SL and allindividual nodesincludingall
cases with co-infections. Training node 3 and the test node have a 50%/50% permutations performed were calculated with one-sided Wilcoxon signed rank
split. Bottom, accuracy, sensitivity, specificity and F1score for each training test with continuity correction; *P<0.05, exact Pvalues listed in

node and the Swarmin 10 permutations.d, Prediction setting. Severe cases of Supplementary Table 5.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
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o]

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

{| A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

O 0O XO OO0

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OO0 X X OXK X

X X X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Dataset A: All raw data files were downloaded from GEO and the RNA-seq data was preprocessed using the kallisto aligner v.0.43.1 against the
human reference genome gencode v27 (GRCh38.p10). For normalization, we considered all platforms independently, meaning that
normalization was performed separately for the samples in Dataset A1, A2 and A3, respectively. Microarray data (Datasets Al and A2) was
normalized using the robust multichip average (RMA) expression measures, as implemented in the R package affy (version 1.60.0). RNA-seq
data (Dataset A3) was normalized with the R package DESeq2 (version 1.22.2) using standard parameters. In order to keep the datasets
comparable, data was filtered for genes annotated in all three datasets, which resulted in 12,708 genes. No filtering of low-expressed genes
was performed. All scripts used in this study for pre-processing are provided as a docker container on Docker Hub (version 0.1, https://
hub.docker.com/r/schultzelab /aml_classifier) and GitHub (https://github.com/schultzelab/swarm_learning).

Dataset B,D,E: All raw data file were downloaded from GEO or collected at the partner hospitals and aligned to the human reference genome
gencode v33 (GRCh38.p13) and quantified transcript counts using STAR v 2.7.3a. For all samples in Datasets B and D,E, raw counts were
imported using the R package DESeq2 (version 1.22.2, DESeqDataSetFromMatrix function) and size factors for normalization were calculated
using the DESeq function using standard parameters.

Dataset C: The NIH Chest X-Ray dataset was downloaded from https://www.kaggle.com/nih-chest-xrays/data. In order to preprocess the data,
we used Python (version 3.6.9) and Keras (version 2.3.1) real-time data augmentation and generation APIs
(keras.preprocessing.image.ImageDataGenerator and flow_from_dataframe). The following pre-processing arguments were used: height or
width shift range (~ 5%), random rotation range (~ 5 degree), random zoom range (~ 0.15), sample-wise center and standard normalization.
Additionally, all images are resized to (128 * 128) from their original size of (1024 * 1024).

Data analysis All models for the experiments have been implemented using Python (version 3.6.9), Keras (version 2.3.1), Tensorflow (2.2.0-rc2) and scikit-
learn (version 0.23.1). The LASSO algorithm has been implemented using Keras (version 2.3.1). All code is available on GitHub (https://
github.com/schultzelab/swarm_learning).

Measurements of sensitivity, specificity, accuracy and F1 score of each permutation run was read into a table in Excel (Microsoft Excel for
Microsoft 365 MSO: Version: 2008 13127.21348 (16.0.13127_21336 64-bit)) using Power Query (Microsoft Excel for Microsoft 365 MSO:
Version: 2008 13127.21348 (16.0.13127_21336 64-bit)) and used for visualization for the different scenarios in Power Bl [Version:




2.81.5831.821 64-bit (Mai 2020)] with Box and Whisker chart by MAQ Software (https://appsource.microsoft.com/en-us/product/power-bi-
visuals/WA104381351, version 3.2.1).

AUC, positive predictive value, all confidence intervals and statistical tests were calculated using R (version 3.5.2) and the R packages MKmisc
(version 1.6) and ROCR (version 1.0.7).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Processed data can be accessed via the SuperSeries GSE122517 or via the individual SubSeries GSE122505 (dataset A1), GSE122511 (dataset A2) and GSE122515
(dataset A3). Dataset B consists of the following series which can be accessed at GEO: GSE101705, GSE107104, GSE112087, GSE128078, GSE66573, GSE79362,
GSE84076, and GSE89403. Furthermore, it contains the Rhineland study. This dataset is not publicly available because of data protection regulations. Access to data
can be provided to scientists in accordance with the Rhineland Study’s Data Use and Access Policy. Requests for further information or to access the Rhineland
Study’s dataset should be directed to RS-DUAC@dzne.de. Dataset D and E contain dataset B and additional samples for COVID-19. These datasets are made
available at the European Genome-Phenome Archive (EGA) under accession number EGAS00001004502 , which is hosted by the EBI and the CRG. The healthy RNA-
seq data included from Saarbricken is available from PPMI through the LONI data archive, https://www.ppmi-info.org/data. The NIH CC Chest X-Ray (Dataset C) can
be downloaded from https://www.kaggle.com/nih-chest-xrays/data. Normalized log transformed expression matrices of datasets A1, A2, A3, B, D and E as used for
the predictions are made available via FASTGenomics at https://beta.fastgenomics.org/p/swarm-learning.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For the 12029 samples from data set A (AML), we followed work of Warnat-Herresthal et al, 2020, (doi: 10.1016/j.isci.2019.100780). Dataset
B (Tb, 1999 samples) is a collection of all available PAX-based high-quality Th datasets and controls on GEO. For COVID-19 in dataset D, the
collection of 134 samples and 9 controls was driven by availability of consenting patients. For dataset E, the collection of 2400 samples was
driven by availability of consenting patients. Dataset C has been compiled and published by the NIH CC and contains 112120 X-ray images. It is
one of the largest community data sets and has been used in many studies.

Data exclusions  We used a minimum of five million aligned reads per samples to exclude low-quality samples from the Covid samples. This number is
recommended as a minimum for bulk RNA sequencing, as e.g. stated by lllumina (https://support.illumina.com/bulletins/2017/04/

considerations-for-rna-seg-read-length-and-coverage-.html)

Replication The swarm learning approach has been successfully replicated in five data sets (A,B,C,D,E) with multiple permutations.

Randomization  The allocation into experimental group was determined by disease/condition and no other covariates were used. An additional experiment
tested the impact of age, sex and COVID-19 diseases severity.

Blinding Blinding was not applicable, since we collected pre-existing data sets. Additionally to guarantee independent sampling, we performed random
permutations of training and test data sets.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

n/a | Involved in the study
|:| ChlIP-seq
|:| Flow cytometry

Palaeontology and archaeology |:| MRI-based neuroimaging

n/a | Involved in the study

XI|[ ] Antibodies

X|[] Eukaryotic cell lines

X |

g |:| Animals and other organisms
|:| Human research participants
|Z |:| Clinical data

X |:| Dual use research of concern

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

The Rhineland Study participants stem from an ongoing community-based cohort study in which all inhabitants of two
geographically defined areas in the city of Bonn, Germany aged 30—100 years are being invited to participate. Persons living
in these areas are predominantly German with Caucasian ethnicity. Participation in the study is possible by invitation only.
The only exclusion criterion is insufficient German language skills to give informed consent.

The COVID-19 samples are described in Supplementary Table 6.

The Rhineland Study is an ongoing community-based cohort study in which all inhabitants of two geographically defined
areas in the city of Bonn, Germany, aged 30 years and above are being invited to participate. Persons living in these areas are
predominantly German from Caucasian descent. Participation in the study is possible by invitation only. The only exclusion
criterion is insufficient command of the German language to give informed consent. Therefore, given that participation in the
Rhineland Study does not depend on any health-related outcome (e.g. the presence or absence of any particular lifestyle,
disease or therapy), the potential risk of any selection bias impacting our results is, in all likelihood, very low.

COVID-19 samples were collected based on availability. For all COVID-19 patients, the study was carried out in accordance
with the applicable rules concerning the review of research ethics committees and informed consent. All patients or legal
representatives were informed about the study details and could decline to participate. COVID-19 was diagnosed by a
positive SARS-CoV-2 RT-PCR test in nasopharyngeal or throat swabs and/or by typical chest CT-scan finding.

Approval to undertake the Rhineland Study was obtained from the ethics committee of the University of Bonn, Medical
Faculty. Collection of Covid19 samples was overseen by the research ethics committees at Radboud University Medical
Centre in Nijmegen, the Netherlands (local ethics committee CMO Arnhem-Nijmegen, registration no. 2016-2923), and the
Sotiria Athens General Hospital (Ethics Committee of Sotiria Athens General Hospital, IRB 23/12.08.2019) or the ATTIKON
University General Hospital ((Ethics Committee of ATTIKON University General Hospital, IRB 26.02.2019) in Athens, Greece as
well as the respective committees at the other sites: Kiel, Germany (COVIDOM, Ethics Committee of the University of Kiel, IRB
D466/20), Saarbriicken, Germany (CORSAAR, Ethics Committee Medical Association of the Saarland, IRB 62/20, IRB
20200597), Munich, Germany (Ethics Committee of the LMU Munich, IRB 286/2020B01), Tiibingen Germany (DeCOI Host
Genomes, Ethics Committee of the Medical Faculty of the University of Tiibingen, IRB 286/2020B01), Aachen, Germany
(COVAS, Ethics Committee of the Medical Faculty of the Technical University Aachen, IRB 20-085), Cologne, Germany (Ethics
Committee of the University of Cologne, IRB 20-1187_1) and Bonn, Germany (Ethics Committee of the Medical Faculty of the
University of Bonn, IRB 073/19, 134/20). Dataset C is IRB approved (personal communication by Dr. Summers Senior
Investigator, Clinical Image Processing Service, NIH CC).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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