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Abstract

Purpose In the last decade, the research community has focused on defining reliable biomarkers for the early detection of

Alzheimer’s disease (AD) pathology. In 2017, the Geneva AD Biomarker Roadmap Initiative adapted a framework for the

systematic validation of oncological biomarkers to cerebrospinal fluid (CSF) AD biomarkers—encompassing the 42 amino-acid

isoform of amyloid-β (Aβ42), phosphorylated-tau (P-tau), and Total-tau (T-tau)—with the aim to accelerate their development

and clinical implementation. The aim of this work is to update the current validation status of CSF AD biomarkers based on the

Biomarker Roadmap methodology.

Methods A panel of experts in AD biomarkers convened in November 2019 at a 2-day workshop in Geneva. The level of

maturity (fully achieved, partly achieved, preliminary evidence, not achieved, unsuccessful) of CSFAD biomarkers was assessed

based on the Biomarker Roadmap methodology before the meeting and presented and discussed during the workshop.

Results By comparison to the previous 2017 Geneva Roadmapmeeting, the primary advances in CSF AD biomarkers have been

in the area of a unified protocol for CSF sampling, handling and storage, the introduction of certified reference methods and

materials for Aβ42, and the introduction of fully automated assays. Additional advances have occurred in the form of defining

thresholds for biomarker positivity and assessing the impact of covariates on their discriminatory ability.

Conclusions Though much has been achieved for phases one through three, much work remains in phases four (real world

performance) and five (assessment of impact/cost). To a large degree, this will depend on the availability of disease-modifying

treatments for AD, given these will make accurate and generally available diagnostic tools key to initiate therapy.
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Introductions

In 2017, a methodological framework for the systematic as-

sessment of biomarker validation was imported from oncolo-

gy [1] and adapted to Alzheimer’s disease (AD) [2]. Within

this “Biomarker Roadmap” initiative, the validation status of

well-consolidated biomarkers at that time [3] was assessed in

the context of their use in clinical practice in patients present-

ing to memory clinics with mild cognitive impairment (MCI).

Biomarkers included episodic memory [4], medial temporal

atrophy [5], [18F]fluoro-deoxyglucose ([18F]FDG) positron

emission tomography (PET) [6], Amyloid PET [7], 123I-

ioflupane brain single photon emission tomography, and
123I-MIBG cardiac scintigraphy [8]. Cerebrospinal fluid

(CSF)-based biomarkers for AD—low levels of the 42-

amino acid form of Aβ (Aβ42) and elevated levels of phos-

phorylated and total tau (P-tau and T-tau, respectively)—were

also reviewed (here collectively referred to as “CSF AD bio-

markers”) [9].

According to the previous review on CSF AD biomarkers

[9], based on the evidence until 2015, these measures showed
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partial achievement of analytical and clinical validity, with

large prospective real-world studies ongoing at that time.

Since then, the field of CSF biomarkers has evolved signifi-

cantly, especially through the introduction and extensive de-

ployment of certified reference methods and materials for

Aβ42 and fully automated assays. The aim of this work is to

update the current validation status of CSF AD biomarkers

based on the Biomarker Roadmap methodology.

Methods

Target

This literature review investigates the validation status of CSF

Aβ42, P-tau and T-tau as AD biomarkers, in accordance with

the 2020 update (Boccardi et al., in this issue) of the

Biomarker Roadmap [2, 3]. The target population consists of

patients with MCI referring to memory clinics due to cogni-

tive complaints, attributed to possible sporadic and not famil-

ial dementing neurodegenerative disorders. Validation studies

of CSF biomarkers were eligible for this review when includ-

ing AD neuropathology, in vivo detection of Aβ deposition,

or development of incidentalADdementia after at least 2 years

of follow-up as reference standard for the biomarker-based

diagnosis. Thus, eligible studies included both prospective

longitudinal and cross-sectional studies.

Glossary

Alzheimer’s disease

By AD, we mean the presence of extracellular Aβ plaques and

aggregates of hyper-phosphorylated tau in neurofibrillary tan-

gles. These features—which typically are associated with a pat-

tern of mediotemporal and temporoparietal neurodegeneration—

define AD independently of the clinical expression of cognitive

symptoms [10].

Alzheimer’s disease dementia

AD dementia denotes an acquired and progressive deteriora-

tion in memory and other cognitive functions severe enough

to lead to functional impairment in activities in everyday life,

according to previous criteria as defined by the National

Institute of Neurological and Communicative Disorders and

Stroke and the Alzheimer’s disease and Related Disorders

Association (NINCDS-ADRDA) criteria [11]. Notably, be-

cause of the imperfect accuracy of purely clinical criteria, a

percentage of AD dementia cases will have non-AD patholo-

gy, or mixed AD and other types of pathology [12–14].

Mild cognitive impairment

This refers to individuals without, or with subtle, functional

disability (i.e., no dementia), but with an acquired objective

cognitive impairment. Representing a clinical syndrome, it

encompasses cases progressing to AD (about 40–60%) or

non-AD dementia (about 10%-30%; [15–17]) as well cases

who are stable during several years (about 30–50%). MCI

cases positive for AD biomarkers can be defined as prodromal

AD based on research diagnostic criteria [18, 19]. The diag-

nosis of AD at the MCI stage represents the focus of the

present review.

Non-Alzheimer’s disease neurodegenerative disorder

This term refers to all neurodegenerative disorders considered

in the context of differential diagnosis, including progressive

supranuclear palsy, corticobasal degeneration, non-fluent pri-

mary progressive aphasia, Parkinson’s disease with dementia

and subcortical vascular dementia.

The term is considered independent of the clinical manifes-

tations of these diseases.

Conceptual framework

As described above, the conceptual framework for this review

stems from the field of oncology [1], and has been described

in detail by Boccardi et al. [2] and updated in 2020 (Boccardi

et al, in this issue). Here, we summarize the application of this

methodological framework to the use of CSF AD biomarkers

for diagnostic purposes in routine clinical settings.

Specifically, all aims are qualified as “fully achieved,” “partly

achieved,” “preliminary evidence,” or “not achieved” based

on the available evidence.

Phase 1

This phase includes preclinical exploratory studies on the ra-

tionale for using CSF Aβ42, P-tau, and T-tau for diagnostic

purposes in AD and was already fully achieved in 2017. As a

result, this phase will not be covered in the present work.

Phase 2

Phase 2 studies investigate the diagnostic accuracy of CSF

ADbiomarkers to distinguish patients with AD dementia from

cognitively unimpaired (CU) controls and subjects with non-

AD dementia disorders. Phase 2 studies are meant to define

the clinical assay to allow reliable assessment and identify the

effect of confounders on the threshold for positivity in both

patients and controls (e.g., age, gender, apolipoprotein ε4

(APOE ε4) status, education or comorbidities). As the primary

(discriminative accuracy between subjects with and without



the disease) and second secondary aims (relationship between

CSF measures and neuropathology) were deemed to be fully

achieved in 2017, these have been omitted from the present

work.

Phase 3

Phase 3 studies assess the ability of CSF AD biomarkers to

detect AD pathology early on in the disease course (namely

MCI for this specific effort) in well-controlled experimental

samples. Phase 3 studies aim to define criteria for positivity, to

compare the diagnostic performance with other biomarkers,

and to assess the diagnostic value of combinations of bio-

markers with a view to defining biomarker-based algorithms.

As the primary aim of phase 3 (capacity of the biomarker to

detect AD in subjects with MCI, using conversion to AD-

dementia as the standard of truth—SOT) was assessed as fully

achieved it 2017, it will not be covered in the present work.

Phase 4

Phase 4 studies assess the performance of CSF AD bio-

markers in representative patient cohorts from memory

clinics. The biomarker itself is used to support a clinical diag-

nosis in patients withMCI who are subsequently treated based

on this CSF-supported diagnosis. They are meant to quantify

the benefit of CSF-based early detection, as well as their prac-

tical feasibility and associated protocol compliance.

Preliminary evidence about costs is an additional aim, in view

of dedicated studies in Phase 5.

Phase 5

Phase 5 studies evaluate the impact of diagnosis based on CSF

biomarkers on society (e.g., cost-effectiveness relative to clin-

ically meaningful outcomes).

Evidence assessment

The fulfillment of each validation step from Phase 2 through 5

was assessed consistent with the approach used in the earlier

2017 Biomarker Roadmap (Boccardi et al., 2018). As such,

primary and secondary aims for each phase were rated as

follows: fully achieved, partly achieve, preliminary evidence,

not achieved, or unsuccessful, as defined below. To facilitate

the assessment and make it transparent to the readers, the data

used to define the degree of fulfilment for each aim are report-

ed and summarized in tables accessible online (see Online

Resource at https://nextcloud.dzne.de/index.php/s/

so3ACxTH9n3yzdq). Adapted from a previous effort

specific to AD and related disorders (Boccardi et al., 2018),

these tables can facilitate formal evidence assessment [20, 21].

Fully achieved

Available scientific evidence successfully replicated in prop-

erly powered and well-designed studies.

Methodologically sound and well-powered studies have

provided convincing evidence that has been replicated.

Partly achieved

The available evidence is not sufficiently replicated, or sam-

ples are not adequately powered, or studies have major meth-

odological limitations.

Preliminary evidence

Only preliminary evidence is available.

Not achieved

Studies are not yet performed at the time of the review.

Unsuccessful

Available scientific evidence shows a failure for the biomarker

in achieving the aim. Findings in the subsequent roadmap

phases should be interpreted with caution.

Search for and selection of papers

Phase- and aim-specific PubMed search strings are provided

in Online Resource 1.

Results

Figure 1 provides an overview of the current state of CSF AD

biomarkers, as per our methodological framework [1].

Phase 2: Clinical assay development for AD pathology

The overarching aim of phase 2 studies is to characterize the

ability of CSF AD biomarkers to separate patients with AD

dementia from both CU controls and subjects with non-AD

dementia disorders.

Phase 2: Secondary aim 1

The first secondary aim of phase 2 addresses optimization of

the operating procedures and assessment of the reproducibility

of the assay within and between laboratories. The secondary

aim 1 of phase 2 is now fully achieved for CSF Aβ42, for

which certified reference methods and materials for assay



standardization are in place [22]. Similar work is ongoing but

has not yet been completed for CSF tau biomarkers.

Concentrations of CSF AD biomarkers can be affected by

operator-influenced preanalytical variables [23, 24], including

sampling materials and methodology as well as handling and

storage procedures [23, 25–32]. The consensus within the

field is that together with appropriate use criteria [33], certified

reference methods and materials [22], and high precision mea-

surements [34], the standardization of these factors will reduce

variability and increase the diagnostic accuracy of these mea-

sures; this, in turn, will facilitate widespread use of CSF AD

biomarkers in both clinical research and routine clinical prac-

tice [27, 35]. Recent work addressing the influence of pre-

analytical factors on both CSF Aβ42 and Aβ40 has provided

an initial protocol covering temperature and storage time, cen-

trifugation, sample mixing, and blood contamination [35].

The most commonly used technique to measure CSF AD

biomarkers has been the enzyme-linked immunosorbent assay

(ELISA) using commercial assays [36–38]. Though reproduc-

ibility has been shown to be achievable for these measures

when running analyses according to strict standard operating

procedures in a single accredited laboratory [39], variability

has been reported across studies [40, 41] due to preanalytical

(i.e., specimen collection, shipment/storage), analytical (i.e.,

procedures between laboratories) and assay-related (i.e., im-

munoassay manufacturing procedures) factors [42]. Though a

quality control (QC) program was launched by the

Alzheimer’s Association in 2009 in an attempt to address this,

including the introduction of standard operating procedures

for the ELISA methods [43], between laboratory

measurement variability for CSF AD biomarkers has been

consistently reported as between 15 and 25% [44]. This per-

sistent variability has hampered the introduction of universal

biomarker cut-off values and made clear the need for more

precise automated techniques.

The first publication describing the full validation and an-

alytical performance of such an automated approach was in

2016 [45]. Using a fully automated electrochemiluminescence

immunoassay (Cobas Elecsys®) for CSF Aβ42, Bittner and

colleagues reported repeatability coefficients of variation

(CV) for human CSF pools of 1.0 to 1.6% and intermediate

CVs of 1.9 to 4.0%. Moreover, the assay showed very low

variability between lots due to its standardisation against can-

didate reference materials for which the absolute concentra-

tion of Aβ42 was measured using a now formally certified

reference method [46]. The Elecsys® assay has now been a

part of the Alzheimer’s Association QC program since 2014,

with mean CVs being as low as 4% as compared to ~15% for

ELISA methods [47]. Novel assays on the Elecsys® instru-

ment for P-tau and T-tau have also recently been described

[26, 48, 49] and have so far performed well in the Alzheimer’s

Association QC program [44]. Similar automated platforms

for AD biomarkers have since been launched, including those

from Euroimmun [50], and Fujirebio (LUMIPULSE®)

[51–54], and have shown superior performance in the QC

program [44]. The certified reference materials for Aβ42 have

now been fully implemented and will allow for full standard-

ization of all commercially available CSF Aβ42 methods

[22]. Work to develop certified reference methods and mate-

rials for T-tau and P-tau is ongoing, under the auspices of the
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Fig. 1 A flowchart illustrating the development of CSF biomarkers for AD in the framework of Pepe et al. (2001) [1]. Abbreviations: AD, Alzheimer’s

disease; CSF, cerebrospinal fluid; HC, healthy controls; MCI, mild cognitive impairment



International Federation of Clinical Chemistry and Laboratory

Medicine and the Global Biomarker Standardization

Consortium.

Phase 2: Secondary aim 3

To assess covariates (such as gender, age, etc.) associated with

biomarker status or level in control subjects. If there is an

effect on the biomarker, define thresholds for positivity in

each concerned subpopulation. The secondary aim 3 of phase

2 remains partially achieved.

The effect of demographic factors, such as age, sex and

APOE ε4 status, on CSF AD biomarkers in CU individuals

has been the focus of several studies. In one such study, T-tau

but not Aβ42, has been shown to correlate positively with age

in CU individuals [55]. In a related study, P-tau and T-tau, but

not Aβ42 were also found to positively correlate with age in

CU individuals [56]; as a result, specificities and negative

predictive values in controls were found to decrease for CSF

tau measures with advancing age, likely as a result of an in-

crease in the prevalence of Aβ positivity. Here, however,

while the authors stressed the importance of careful character-

ization of control cohorts when including elderly CU individ-

uals, they did not suggest the use of age-adjusted cutoffs for

tau. Additional studies, however, have found age to be posi-

tively associated with T-tau only [57] or both tau (P-tau and T-

tau) and Aβ42 [58, 59], though only weakly for Aβ42.

The APOE ε4 allele has been shown to be strongly linked

to reduced levels of CSF Aβ42 in controls [59–63]. However,

CSF levels of Aβ42 are not associated with APOE ε4 when

accounting for cortical Aβ pathology (as indexed by Amyloid

PET), indicating a link between CSF Aβ42 and cortical Aβ

levels that is APOE ε4-independent, i.e., low CSF Aβ42 re-

flects brain amyloidosis independently of APOE genotype

[64, 65]. As a result, it has been suggested that CSF Aβ42

cutoffs should not be adjusted for APOE genotype [64].

Interestingly, APOE ε4 has also been shown to interact with

age and gender [66], such that in ε4 non-carriers, CSF Aβ42

levels followed a monotonic trajectory over time for women,

with men showing an increase up to midlife followed by a

levelling off. Among APOE ε4 carriers, males showed a mod-

est decline in CSF Aβ42 over time, while women showed a

sharper decline in Aβ42, starting at around age 50 and coin-

ciding with the onset of menopause. APOE ε4 has also shown

a stronger association to CSF P-tau and T-tau levels in Aβ-

positive women compared to Aβ-positive men [67]; this find-

ing, combined with APOE ε4 not being differentially associ-

ated with neurofibrillary tangles at post-mortem, suggests that

in the presence of Aβ pathology, APOE may regulate the risk

for neurodegeneration in a sex-specific fashion [68, 69]. Age-

and gender-specific cutoffs have not been proposed for CSF

Aβ42, however.

Phase 2: Secondary aim 4

To assess covariates (e.g., gender, age, etc.) associated with

biomarker status or level in diseased subjects. The secondary

aim 4 of phase 2 remains partially achieved.

Older age, female sex, and APOE ε4 carriership are asso-

ciated with AD [70]; as such, CSF AD-related biomarkers are

more common in these groups. In patients with MCI, APOE

ε4 is associated with both reduced Aβ42 [64, 71] and in-

creased tau levels [60, 71, 72]. In APOE ε4 carriers, age is

associatedwith lower Aβ42 and higher P-tau levels [73] while

female APOE ε4 carriers show a more AD-like CSF profile

compared to men [74, 75]. Levels of CSF Aβ42 had also been

found to be significantly lower in APOE ε4 non-carriers and

carriers with one ε4 allele who were aged 65 and over. Age-

dependent increases were not observed for P-tau or T-tau;

however [76]; Mofrad et al. [77] found that in female APOE

ε4 carriers, higher levels of CSF P-tau and T-tau were seen at

the SCD and MCI stage; these differences were not seen,

however, when looking at those with AD dementia. Among

female MCI patients who were APOE ε4 non-carriers, higher

P-tau and T-tau levels were seen in MCI and AD dementia,

but not in SCD. No sex differences in Aβ42 concentrations

were found between females and males for any disease stage

or APOE genotype. Higher levels of CSF Aβ42, P-tau and T-

tau have also been reported in Aβ-positive MCI who are

APOE ε4-negative, as compared to Aβ-positive MCI who

are APOE ε4-positive [78]. Despite these differences, howev-

er, there is as yet no evidence showing that CSF AD bio-

markers are less predictive of AD pathology in any of these

groups.

Phase 3: Longitudinal repository studies

The general aim of phase 3 studies is to define the ability of

the biomarker to detect the disease in its early phase. For this

initiative, we have chosen to focus onMCI. This phase is now

largely fully achieved.

Phase 3: Primary aim 2

To define criteria for a positive biomarker test in preparation

for phase 4. The phase 3 primary aim 2 is now fully achieved

for CSF Aβ42, and partially achieved for P-tau and T-tau.

A variety of statistical approaches have been proposed to

dichotomize continuous CSF AD biomarkers as normal or

abnormal [79]. Common approaches include the maximiza-

tion of accuracy for clinically diagnosed AD dementia or

choosing a cut-point that yields a predefined level of sensitiv-

ity or specificity [80, 81]. In clinical chemistry, biomarker cut-

offs are commonly defined as the 95% confidence interval in

people without disease. Complicating these approaches, how-

ever, is the fact that pathological brain changes can be seen



prior to CSF AD biomarkers having become clearly abnormal

[82] and clinically silent AD pathology in CU individuals

[56]; these scenarios can lower the sensitivity and specificity

of CSF AD biomarkers, respectively, at the MCI stage.

Another approach, Gaussian mixture modelling, involves the

use of an expectation maximization algorithm cluster individ-

uals according to their probability of belonging to a given

group (e.g., normal and abnormal CSF Aβ42) [83]. While

suitable for CSF Aβ42 due its bimodal distribution this ap-

proach is less well suited to CSF taumeasures due their having

a more unimodal distribution. Autopsy-confirmed AD demen-

tia cases [84] and Amyloid PET [85] have also been used to

define cutoffs; both approaches, however, are not bias free

(e.g., delay between CSF sampling and death, lack of CSF

sample-tissue matchings from healthy controls; for PET; dif-

ferences in how the data is acquired and processed and how

Aβ positivity thresholds are calculated [7].

Thus far, three studies have examined cutoffs for CSF

Aβ42 and ratios with tau measurements derived using fully

automated Elecsys® immunoassays [26, 86, 87]. In the study

by Hansson et al. [26], cut-offs of 1100 pg/mL (Aβ42), 0.022

(P-tau/Aβ42) and 0.260 (T-tau/Aβ42) were established based

on concordance between CSF biomarkers and Amyloid PET

in BioFINDER. When applying these predefined cutoffs to

ADNI, a high concordance was observed between CSF and

Amyloid PET classifications (overall percent agreement 89–

90%; AUC 96%). Using three approaches to generate cut-

offs—comparison to AlzBio3, mixture modeling and concor-

dance with Amyloid PET—Shaw et al. [86] likewise arrived

at 1100 pg/mL as a cut-off for Elecsys® Aβ42; similar cut-

offs to those reported by Hanson et al. were also found for P-

tau/Aβ42 (0.023) and T-tau/Aβ42 ratios (0.289). Similar cut-

offs (based on Youden index for separating participants based

on Aβ-status using Amyloid PET) were also reported by

Schindler et al. [87, 88] (CSF Aβ42, 1098 pg/mL; P-tau/

Aβ42, 0.0198; T-tau/Aβ42, 0.211). In addition, the

LUMIPULSE® assay, that provides a quantitative result for

an analyte within 35min, demonstrates an Aβ42/Aβ40 cut-

off of 0.068 for an AD diagnoses but is also validated against

Amyloid PET [89]. These methods are now being standard-

ized to each other in terms of the absolute CSF Aβ42 concen-

tration they deliver [22].

Phase 3: Secondary aim 1

The secondary aim 1 of phase 3 is to explore the impact of

covariates on the discriminatory abilities of the biomarker at

the MCI stage. This aim is now fully achieved.

Though the specificities of individual CSF AD biomarkers

have been found to decrease with age [90, 91], the specificity

of the three markers combined (for separating stable MCI

from prodromal AD) has been shown to remain essentially

stable with increasing age [56]. As such, while the authors

stressed the importance of careful cut-off selection, they con-

cluded that age-adjusted cutoffs were not necessary. In a fur-

ther study, motivated by findings that the diagnostic ability of

Aβ42 could be adversely affected by the APOE ε4 allele [9,

60], Lautner et al. examined the association between APOE

genotypes and levels of CSF Aβ42, T-tau and P-tau in MCI

cases that were followed longitudinally for at least 2 years

[64]. The authors found that while APOE ε4 was associated

with lower levels of CSFAβ42, the diagnostic performance of

the biomarker was independent on APOE genotype. On this

basis, they concluded that the CSF Aβ42 cut-offs should not

be adjusted according to APOE genotype.

Phase 3: Secondary aim 2

To compare the different biomarkers available in order to

select the most promising ones. The second secondary aim

of phase 3 is fully achieved.

A decrease in Aβ42 and shorter Aβ isoforms (i.e., Aβ40

and Aβ38) can be seen in non-AD dementia disorders char-

acterized by subcortical changes (e.g., frontotemporal demen-

tia, vascular dementia and dementia with Lewy bodies)

[92–95], likely due a decline in overall Aβ production levels

[96] and/or neuronal activity levels [97, 98]. The use

Aβ42/Aβ40 or Aβ42/Aβ38 ratios has been shown to in-

crease accuracy compared to Aβ42 alone for distinguishing

AD (true Aβ42-positive) from such conditions, where false

positives can arise if only using Aβ42 [95, 99].

Generally, T-tau is increased in patients with MCI who

progress to AD dementia within a time frame of 5 years

[100]. While the accuracy of P-tau is, by comparison, some-

what lower, with respect to the detection of prodromal AD, it

remains an important marker as high CSF P-tau levels are

generally not found in non-AD neurodegenerative disorders

[101]. Several studies, however, have shown that the combi-

nation of T-tau or P-tau with Aβ42 increases the predictive

power for AD at theMCI stage [100, 102–108]. As the ratio of

Aβ42 to T-tau can be artificially increased via increases in T-

tau levels only, however, (e.g., due acute brain disorders such

as trauma or stroke) it has been recommended that CSF AD

biomarkers are to be interpreted as independent measures [9].

When applying the Aβ (A), tau (T) and neurodegeneration

(N) (A/T/N) classification system using CSF AD biomarkers

to extended follow-up data (up to 10 years), while the highest

proportion of progression fromMCI to AD dementia was seen

in patients who were A+T+N+, progression was also common

in patients showing A-T+N+ and A-T-N- [109].

Several studies that have compared CSF AD biomarkers

with amyloid and Tau PET. Concordance between CSF Aβ42

and amyloid PET has been shown to be high (~90%) [110,

111]; the finding that discordance is mainly seen in the form of

isolated CSF Aβ-positivity is likely due to CSF Aβ42 being a

more sensitive marker of early Aβ pathology [112]. Similar



findings have been described for CSF tau [36, 113–122], in-

cluding recent longitudinal work showing that CSF P-tau

clearly increases before Tau PET positivity [123]. Overall,

these studies suggest that CSF Aβ42 and P-tau reflect the

intensity of the AD process (stage markers) with amyloid

and Tau PET, by contrast, reflecting how the density and

distribution of AD pathology [124, 125] (i.e., how far the

disease has progressed; stage marker) [114]. Only one study

has to date [126], however, has examined the association be-

tween AD biomarkers and Tau PET using novel tau tracers

now entering the field [127]; this study showed that while Tau

PET using [18F]RO948 outperformed CSF AD biomarkers

(Aβ42/Aβ40 and Aβ42/P-tau) for separating AD dementia

from non-AD disorders, the reverse was seen when differen-

tiating Aβ-positive MCI from non-AD disorders [126].

Thoughmultiple phosphorylation sites exist on the tau pro-

tein [128], the most commonly used assays for P-tau use an-

tibodies targeting phosphorylation at threonine 181 (P-

tau181) or 231 (P-tau231) [38, 129]. Though P-tau181 and

231 are strongly correlated and exhibit similar diagnostic per-

formance [130], P-tau231 may have greater sensitivity for

NFTs as it been shown to detect tau pathology in layer II of

the entorhinal cortex, an area considered to be the earliest site

affected by tangles in AD [131]. Increasing evidence indicates

the presence of tau fragments spanning both the mid-domain

and various terminal regions [132, 133]. Though one such

fragment, a C-terminally truncated ending at amino acid 368

(called Tau 368) was shown to be less altered in AD (includ-

ing in Aβ-positive CU) another study however showed that

the tau-368/T-tau ratio correlated with Tau PET [123]. This

may reflect the deposition of Tau 368 into tangles and leaving

less to be secreted to the CSF as compared to T-tau [134]. This

would be in analogy with the lowering of the Aβ42/40 ratio in

patients with brain amyloidosis. In a recent study [135], tau

phosphorylated at threonine 217 (P-tau217) was shown to

better correlate with [18F]flortaucipir, as compared to P-

tau181, and to more accurately identify Tau PET-positive in-

dividuals. P-tau217 also better correlated with Amyloid PET

and CSF Aβ42 and better differentiated AD dementia from

non-AD disorders. Mass spectrometry-based measurements

of the different tau phospho-forms corroborate these findings

[136].

Phase 3: Secondary aim 3

Develop algorithms for the biomarker-based diagnosis of

MCI in preparation of Phase-4. The third secondary aim of

phase 3 is now fully achieved.

Several studies have explored whether the detection of pro-

dromal AD can be improved by combining CSF AD bio-

markers with cognitive tests and neuroimaging. CSF findings

combined with MRI-based atrophy ratings have been shown

to result in higher predictive power as compared to individual

biomarkers [137, 138], with similar findings in studies that

have grouped CSF with [18F]fluorodeoxyglucose

([18F]FDG) PET [139–141], and with MRI and [18F]FDG

PET [142–144]. Other work has shown that while the

Alzheimer’s Disease Assessment Score with 13 items showed

the highest effect size for differentiating stable MCI from

those who progressed to AD dementia [145], risk stratification

was improved by the addition of CSF P-tau. In another study,

combining hippocampal volume, Functional Activities

Questionnaire (FAQ) scores, and a summary measure for

memory with APOE e4 status and CSF T-tau/Aβ42 ratio best

predicted conversion to AD dementia fromMCI over a 4-year

period [146]. Similar findings were also reported by Jang et al.

[147]. Other studies have reported improved predictive per-

formance for identifying incipient AD by combining CSF AD

biomarkers with neuropsychological measures [148, 149].

Two studies by van Maurik et al. addressed individualized

biomarker-based risk predictions of dementia in MCI patients

[150, 151]. In a first proof-of-principal study [151], prognostic

models providing probabilities of progression to AD dementia

over the course of 1 year or 3 years were constructed based on

a single-center cohort. The model combining MRI volumetric

measures (hippocampal and whole-brain) and CSF (Aβ42

and T-tau) was found to provide the best prognostic value.

In a follow-up multicentric study to establish the generaliz-

ability of this approach, van Maurik et al. [150] tested four

separate prognostic models—including age, sex, CSF Aβ42,

T-tau and MMSE, as well as a model combining A/T/N bio-

markers using CSF Aβ42, P-tau181 and hippocampal vol-

ume. Though all models performed well, the highest perfor-

mance was seen using the A/T/N based model.

Phase 3: Secondary aim 4

The secondary aim 4 of phase 3 is to determine a biomarker

testing interval for phase 4 if repeated testing is of interest.

Overall, there is no evidence supporting that repeated CSF

measurements are needed when it comes to prediction of

AD dementia in MCI, as the levels of the CSF AD biomarkers

seem to be stable at this stage of the disease. This aim is fully

achieved.

Several cross-sectional and longitudinal studies have ad-

dressed the dynamics of CSF AD biomarkers. Using data

from the Dominantly Inherited Alzheimer Network, changes

in CSF Aβ42 have been shown to start at least 15 years prior

to expected symptom onset, with tau levels increasing 10 to 15

years before expected symptom onset (calculated as age of the

participant minus parent’s age at symptom onset) [152, 153].

Despite differences in autosomal dominant and sporadic

forms of AD—with the autosomal dominant variant associat-

ed with overproduction of Aβ42 in contrast to under clearance

in the sporadic form [154, 155]—these findings are consistent

with studies in the much more common sporadic form of AD



[156–160]. The study by Fagan et al. [153], however, pointed

to potential reductions in CSF tau once subjects had passed

their age of expected symptom onset. Additional studies in

sporadic AD have reported supportive findings [161, 162].

Possibly, this may reflect a deceleration in neuronal injury or

variations in the number of neurons being affected at a given

disease stage [153].

At the MCI stage of AD, longitudinal findings over the

course of a nearly 10-year period have shown that CSF levels

of Aβ42 were decreased 5 to 10 years prior to progression to

AD dementia, whereas T-tau and P-tau appeared to be later

markers as baseline levels were significantly higher in those

who converted within the first 5 years, as compared to those

who converted between five and years [100]. Though longi-

tudinal studies with serial sampling over extended periods are

lacking, longitudinal findings over shorter intervals (e.g.,

4 years, with CSF sampled at three time points) have shown

relative stability of CSF AD biomarkers [156, 163]. These

studies also provided support for the hypothesis that tau fol-

lows Aβ pathology due the observation that low baseline

Aβ42 values were associated with longitudinal increases in

P-tau, but not the opposite. In line with this, Mattsson et al.

recently showed that increases in CSF P-tau181 and P-tau217

appear to follow shortly after Amyloid PET [123].

Phase 4: Prospective diagnostic studies

The general aim of phase 4 studies is to quantify the biomarker

accuracy in patients diagnosed and treated based on bio-

markers and perform preliminary assessment of usefulness

in preparation of phase 5. Studies at this stage involve testing

people and lead to diagnosis and treatment. Only preliminary

evidence is available for the phase 4 aims.

Phase 4: Primary aim

To determine the operating characteristic of the biomarker in a

representative population by determining the true and false

positive referral rates leading toward diagnosis and treatment.

The primary aim of phase 4 is to determine the operating

characteristics of the biomarker-based test in a real-world pop-

ulation by determining the detection and false referral rates.

There is preliminary evidence for the phase 4 primary aim;

longitudinal studies, however, are required for this aim to be

fully achieved.

As described in the “Phase 3: Primary aim 2” section, a high

(~90%) level of concordance has been reported between CSF

Aβ42 and Amyloid PET [110]. In a study by Palmqvist et al.,

CSF Aβ42 and amyloid imaging using [18F]flutemetamol PET

were compared in patients with MCI from the Swedish

BioFINDER study [39]. CSF Aβ42, measured using consecu-

tive samples as part of routine clinical practice by board-certified

laboratory technicians at an accredited laboratory, showed high

accuracy for determining cortical Aβ levels in MCI patients, as

measured using [18F]flutemetamol PET, with 92% of patients

identically classified. Similarly, in a study by Hansson et al.,

CSF T-tau/Aβ42 and P-tau/Aβ42 ratios showed a high level

of agreement with Amyloid PET based classifications in

BioFINDER (90% agreement and an AUC of 94%) and ADNI

(89% agreement and an AUC of 96%) [26]. Remarkably, the

ratios combing T-tau and P-tau with Aβ42 were shown to be as

accurate as SUVR values in predicting Amyloid PET visual

reads [26].

In the few studies that have addressed concordance be-

tween CSF tau and Tau PET [113, 122], overall concordance

rates have varied between approximately 50% and 70% [113].

The overall lower concordance between tau biomarkers—as

compared to Aβ [110]—may relate to Aβ biomarkers assum-

ing a more bimodal distribution, as compared to tau measures

[113]. The discrepant concordance findings between studies

likely relate to differences in the cohorts studied (in terms of

age, CSF tau levels and MMSE, for instance), interval be-

tween CSF sampling and PET, the use of different Tau PET

tracers, and differences in the control subjects used to define

Tau PET cut-points [122].

Phase 4: Secondary aim 1

To detect the predictive features of the biomarker, considering

the potential benefits due to early detection. The first second-

ary aim of phase 4 secondary is partially achieved.

Early diagnosis of AD carries a number of advantages for

patients and caregivers. These include optimized medical

management, future planning, participation in clinical trials,

risk reduction, and reduced overall care expenditures by

delaying the transition to nursing home care [164–166].

There are also ethical concerns related to disclosing a diagno-

sis of AD at the MCI stage [166–168], mainly tied to the fact

that there are as yet no treatments able to stop or modify the

course of the disease. Despite this, CSF AD biomarkers are

increasingly used in clinical practice in the evaluation of MCI

patients, with a survey of European Alzheimer's Disease

Consortium centers [169] showing that CSF AD biomarkers

were reported to be used by 22% of responders, with 79% of

respondents stating that they were very to extremely comfort-

able giving a diagnosis of MCI due to AD when all three

markers were abnormal.

Studies examining the impact of CSF AD biomarkers

on diagnosis and diagnostic confidence have shown these

measures to be of value. Kester et al. [170] showed that

knowledge of CSF profiles in a non-academic memory

clinic changed the diagnosis in 10% of the cases and

increased diagnostic confidence in one third of cases. In

a follow-up study, CSF AD biomarkers were found be to

be diagnostically helpful to clinicians in 75% of cases and

led to a change in diagnosis in more than 50% of MCI



patients [171]. In a study that examined all patients visit-

ing a tertiary center for cognitive screening during a 1-

year period [172], the use of CSF AD biomarkers led to a

change in diagnosis in 7% of patients and a 5% increase

in diagnostic confidence; CSF findings were also shown

to affect clinical management (e.g., additional investiga-

tions, greater follow-up, and clinical trial selection) in

23% of patients. Similar findings were also recently de-

scribed by Cognat et al. [173]. Other findings from a

s t udy t h a t f o cu s ed on t h e c l i n i c a l u t i l i t y o f

[18F]flutemetamol in a tertiary memory clinic setting

[174], however, showed that the primary reason (57% of

patients) for referral for Amyloid PET in MCI patients

was a clinical suspicion of AD in the context of unclear

or negative CSF findings. Furthermore, the addition of

CSF Aβ42, P-tau and T-tau to demographic information,

neuropsychological testing, and medial temporal lobe at-

rophy was found to improve the accuracy of the prognosis

for progression to dementia over a 5-year period in MCI

patients [175].

The clinical value of CSF AD biomarkers can also be

assessed indirectly. Findings from a recent a large-scale (>

16000 patients) multicentric US study (Imaging Dementia—

Evidence for Amyloid Scanning; IDEAS) [176] showed that

knowledge of Amyloid PET status was associated with sig-

nificant changes in diagnosis and patient management, includ-

ing the use of drugs approved for the symptomatic treatment

of AD, other relevant drugs addressing dementia risk factors,

counseling (e.g., monitoring of medications, driving and

home safety), and future planning (medical/financial decision

making, advanced directives). Given the high concordance

between CSF Aβ42/40 or Aβ42/P-tau (>90%) has with

Amyloid PET [26], the clear benefits of testing for amyloid

status shown by this study should also be relevant for CSF AD

biomarkers.

Phase 4: Secondary aim 2

To assess the practical feasibility of implementing the

biomarker-based diagnostic procedure and compliance of

test-positive subjects with work-up recommendations. There

is now preliminary evidence for the second secondary aim of

phase 4.

Though assessing the practical feasibility of diagnostic pro-

grams and compliance of test-positive subjects with work-up

and treatment recommendations may be of limited value in the

absence of disease modifying treatments for AD, several stud-

ies indicate that the clinical use of CSF AD biomarkers is

feasible. The Swedish Dementia Registry [177, 178]—a na-

tional quality registry on dementia disorders used by the ma-

jority (93%) of memory clinics in Sweden—has collected

CSF AD biomarker data on a majority of patients [93, 179]

and survey-based data also shows that CSF AD biomarkers

are frequently used within European countries [180].

However, despite the low risk of complications [181–186],

studies show that lumbar punctures (LPs) are often negatively

viewed by older individuals in North America [187].

Phase 4: Secondary aim 3

The secondary aim 3 of phase 4 is to make preliminary assess-

ments of the effects of biomarker testing on costs and burden

associated with the disease. The third secondary aim of phase

4 is not achieved.

Several studies have addressed the potential economic

impact of CSF AD biomarkers. Using a simulation model,

Handels et al. [175] found that the use of CSF AD bio-

markers in MCI patients resulted in an average gain in

quality-adjusted life years of 0.046 and carried an average

per patient cost of €432; this translated into an incremen-

tal cost-effectiveness ratio of €9,416. Other studies

assessing the incremental cost-effectiveness of CSF AD

biomarkers in a hypothetical scenario in which disease-

modifying treatments are available also support CSF mea-

sures being cost-effective [188]. Similar findings have al-

so been reported when looking at symptomatic treatments

[189]. The prevalence of AD in a given population has

also been shown to affect estimates of cost-effectiveness

for CSF. Lee et al. [190] found that the diagnostic use of

CSF AD biomarkers is only likely to be cost-saving if the

prevalence of AD is greater than 15% following clinical

assessment and standard MRI-based neuroimaging.

Few studies have assessed whether the use of CSF AD

biomarkers results in lower mortality in AD. In a study by

Bruandet et al. [191], it was found that in a cohort of cogni-

tively impaired patients (AD, AD with cerebrovascular dis-

ease, and vascular dementia), survival was tied to the interval

between initial symptoms and the first healthcare visit. As

such, earlier diagnosis may reduce mortality. In patients with

MCI due to AD, however, it is not known whether the use of

CSF AD biomarkers in routine clinical practice would reduce

mortality.

Phase 4: Secondary aim 4

The secondary aim 4 of phase 4 is to monitor disease occur-

ring clinically but not detected by the biomarker testing pro-

tocol. The fourth secondary aim of phase 4 secondary is not

achieved.

Approximately 5 to 8% of patients with AD according to

both clinical and neuropathological criteria do not have a CSF

profile consistent with AD [84, 192, 193]. As a result, the use

of dichotomized CSF AD biomarkers to establish a diagnosis

of AD would result in some false negatives. The extent of this

problem, however, would also relate to the method used to set

cut-offs defining what constitutes an abnormal value [189].



Phase 5: Disease-control studies

Studies aiming to quantify the impact of CSF AD biomarker-

based diagnosis in terms of reductions in disease-related mor-

bidity/mortality, disability as well as the costs of biomarker

testing in relation to patient costs (i.e., per life saved or

quality-adjusted life year). This phase also aims to address

patient compliance with screening and workup across varied

settings and to compare different treatment approaches to

biomarker-positive subjects and their effects on mortality

and costs.

The primary aim of phase 5 is to test the capacity of a

biomarker-based diagnosis to reduce the burden of AD.

Secondary aims include examining patient compliance across

different settings and comparing different protocols and asso-

ciated benefits. As there are as yet no disease-modifying treat-

ments for AD, phase 5 studies have not been performed; phase

5 is therefore not achieved.

Discussion

In the present review, we aimed to update the previous work

on validation status of CSF AD biomarkers [9], using a bio-

marker validation framework developed for oncology bio-

markers [1]. Though the most important achievements, by

comparison to the previous review on this topic, are the de-

velopment and implementation of certified reference methods

and materials for CSF Aβ42, the increasing use of fully auto-

mated assays for CSF AD biomarkers and a unified protocol

for how CSF samples are to be handled (phase 2, secondary

aim 1), advances in the level of evidence were also found for

phases 3 (primary aim 2; secondary aims 1 to 3) and 4 (sec-

ondary aim 2).

In comparison to the previous Roadmap meeting, the first

secondary aim of phase 2—dealing with the optimization of

operating procedures and assay reproducibility—is now fully

achieved.As outlined by Janelidze et al. [35], there now exists

a protocol for the handling of CSF AD biomarkers. Together

with the appropriate use criteria for LPs [33], this protocol

could serve as the basis for a universal preanalytical protocol

for CSF AD biomarkers, one that could be incorporated into

routine AD diagnosis and future clinical trials [27]. The

Alzheimer’s Associations is now leading its consensus-

based approval by relevant stakeholders. The use of novel

automated platforms will help provide CSF AD biomarker

measurements that are both highly precise and stable; this,

combined with CRMs, will facilitate the introduction of uni-

form cut-offs that can be applied across centers and laborato-

ries, a key requirement for the routine use CSFAD biomarkers

in memory clinics and in clinical trials with candidate disease-

modifying drugs. The availability of CSF results that are both

highly precise and stable across sample batches will also

facilitate the pooling of CSF AD biomarker results across

research centers, allowing for studies addressing the patho-

genesis and progression of AD and related neurodegenerative

disorders. Though a mass spectrometry-based method of

quantification for T-tau has been developed [194], an impor-

tant and as yet unmet prerequisite for the wider use of T-tau

and P-tau measurements is the current lack of CRMs for assay

standardization [47]. Advances similar to those for Aβ42 (i.e.,

the development and implementation of certified reference

materials and methods) [22, 195] will hopefully soon follow

for tau [196].

In comparison to the previous Roadmap meeting, the

second primary aim of phase 3—addressing the definition

of criteria for biomarker positivity—is now fully achieved

for CSF Aβ42 and partially achieved for P-tau and T-tau

due the current lack of CRMs. Using the fully automated

Elecsys® immunoassays, studies indicate a cut-off of

1100 pg/mL for CSF Aβ42 [26, 86, 87] and approximate-

ly 0.02 for P-tau/Aβ42 and 0.14 for T-tau/Aβ42 [26, 87,

88]. A cut-off of 0.068 has also been shown for

Aβ42/Aβ40 using the LUMIPULSE® assay though addi-

tional studies are required to address ratios using Aβ42

and tau. With respect to the first secondary aim, which

explores the impact of covariates on CSF AD biomarkers

at the MCI stage, in agreement with findings from studies

addressing the effects of age and APOE [9, 56, 60, 64, 90,

91], the Alzheimer’s Biomarkers Standardization

Initiative concluded that there was no need to set different

cutoffs for AD CSF biomarkers based on either of these

variables [197], a position also articulated in the recent

recommendations for the diagnostic use of these measures

in the clinical work up of patients with MCI [198].

In addition to the primary and secondary aims of phase

3, secondary aims two and three are also now fully

achieved. With respect to the second secondary aim,

which aims to compare biomarkers, ratios combining

Aβ42 with Aβ40, P-tau or T-tau have greater diagnostic

utility compared to the use of individual CSF AD bio-

markers. The superior performance of these ratios may

be due to several reasons. Aβ42 in ratio with Aβ40 ap-

pears to compensate for between laboratory variations in

the way CSF is processed [27, 199] and also for interin-

dividual differences in Aβ production levels [200, 201].

The superiority of Aβ42 in ratio with either P-tau or T-tau

may be due to the combination of two different patholog-

ical processes into one measure [26]. In addition, these

ratios may account for natural differences in the produc-

tion, secretion, and breakdown of CSF proteins [202]. By

comparison to PET, CSF tau measures can be described

primarily as markers of disease state, with Tau PET serv-

ing as a marker of disease stage. This position is support-

ed by a recent study that used stable isotope labeling

kinetics to monitor the half-life and turnover rate of tau



in the human CNS [203] and by recent in vivo findings

[123, 126]. Findings supportive of this model (i.e., that

CSF and PET capture different aspects of AD pathology)

have also been reported for Aβ-biomarkers [111, 112].

Lastly, based on studies addressing the third secondary

aim, which aims to developed algorithms to combine

CSF AD biomarkers with other measures, multicentric

data supports the combined use of CSF AD biomarkers

to predict progression from MCI to AD dementia at the

individual patient level [150]. Though the findings of this

study have yet to be prospectively evaluated, it is con-

ceivable that the models developed as part of this study

could be used in clinical practice [204].

For phase 4, preliminary evidence now supports the wide-

spread use (feasibility) of CSF AD biomarkers. This achieve-

ment rating, however, is based on European studies. In North

America, many older adults have a negative perception of LPs

[187] despite very limited supportive evidence [181–186].

Moreover, while it has been shown that a majority of older

Americans are willing to undergo a LP for medical reasons if

useful information pertaining to their health can be gained

[205], enthusiasm for an LP solely for research purposes

was limited. Though this finding contradicts the commonly

held belief that North Americans are unwilling to undergo

LPs, the authors found no modifiable factors that could im-

prove the perception of LPs among those who view the pro-

cedure negatively [205]. Some of the perceived difficulties in

performing LPs in North America, however, may relate to

clinician bias, care delivery models and low reimbursement

rates for LPs [206, 207]. Further studies are required to ex-

plore these issues.

Several limitations apply to this review. First, although our

approach adhered to a sound methodology, rating degree of

achievement for each aim should be based on a more thorough

assessment of evidence, including examining various possible

sources of bias (e.g., GRADE guidelines) [20]. Our online

material is meant to help this development as a next step

forward in a systematic assessment of the validation of AD

biomarkers. Third, in reviewing phase 3 studies, clinical diag-

nosis, as opposed to post-mortem diagnosis, was used as the

SOT. Lastly, though the focus of this review was the perfor-

mance of CSF AD biomarkers in MCI patients, the definition

of MCI was not homogeneous across studies.

Conclusions

We herein addressed the validation maturity of CSF Aβ42, P-

tau, and T-tau for the diagnosis of AD at the MCI stage.

Thoughmuch has been achieved for phases one through three,

much work remains to complete phases four and five, dealing

with the performance of CSF AD biomarkers in representative

memory clinic cohorts and health care outcomes. To a large

degree, this will depend on the availability of treatments ca-

pable of modifying or stopping the course of AD.
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