000155824 001__ 155824
000155824 005__ 20250317152901.0
000155824 0247_ $$2doi$$a10.1177/1545968320981956
000155824 0247_ $$2pmid$$apmid:33410387
000155824 0247_ $$2ISSN$$a0888-4390
000155824 0247_ $$2ISSN$$a1545-9683
000155824 0247_ $$2ISSN$$a1552-6844
000155824 0247_ $$2altmetric$$aaltmetric:97304978
000155824 037__ $$aDZNE-2021-00984
000155824 041__ $$aEnglish
000155824 082__ $$a610
000155824 1001_ $$aOphey, Anja$$b0
000155824 245__ $$aPredicting Working Memory Training Responsiveness in Parkinson's Disease: Both 'System Hardware' and Room for Improvement Are Needed.
000155824 260__ $$aThousand Oaks, Calif.$$bSage$$c2021
000155824 3367_ $$2DRIVER$$aarticle
000155824 3367_ $$2DataCite$$aOutput Types/Journal article
000155824 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1742221704_21436
000155824 3367_ $$2BibTeX$$aARTICLE
000155824 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155824 3367_ $$00$$2EndNote$$aJournal Article
000155824 520__ $$aBackground. Patients with Parkinson's disease (PD) are highly vulnerable to develop cognitive dysfunctions, and the mitigating potential of early cognitive training (CT) is increasingly recognized. Predictors of CT responsiveness, which could help to tailor interventions individually, have rarely been studied in PD. This study aimed to examine individual characteristics of patients with PD associated with responsiveness to targeted working memory training (WMT). Methods. Data of 75 patients with PD (age: 63.99 ± 9.74 years, 93% Hoehn & Yahr stage 2) without cognitive dysfunctions from a randomized controlled trial were analyzed using structural equation modeling. Latent change score models with and without covariates were estimated and compared between the WMT group (n = 37), who participated in a 5-week adaptive WMT, and a waiting list control group (n = 38). Results. Latent change score models yielded adequate model fit (χ2-test p > .05, SRMR ≤ .08, CFI ≥ .95). For the near-transfer working memory composite, lower baseline performance, younger age, higher education, and higher fluid intelligence were found to significantly predict higher latent change scores in the WMT group, but not in the control group. For the far-transfer executive function composite, higher self-efficacy expectancy tended to significantly predict larger latent change scores. Conclusions. The identified associations between individual characteristics and WMT responsiveness indicate that there has to be room for improvement (e.g., lower baseline performance) and also sufficient 'hardware' (e.g., younger age, higher intelligence) to benefit in training-related cognitive plasticity. Our findings are discussed within the compensation versus magnification account. They need to be replicated by methodological high-quality research applying advanced statistical methods with larger samples.
000155824 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000155824 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000155824 650_7 $$2Other$$aParkinson’s disease
000155824 650_7 $$2Other$$acognitive training
000155824 650_7 $$2Other$$aprecision medicine
000155824 650_7 $$2Other$$apredictors of training responsiveness
000155824 650_7 $$2Other$$astructural equation modeling
000155824 650_7 $$2Other$$aworking memory
000155824 650_2 $$2MeSH$$aAge Factors
000155824 650_2 $$2MeSH$$aAged
000155824 650_2 $$2MeSH$$aCognitive Dysfunction: etiology
000155824 650_2 $$2MeSH$$aCognitive Dysfunction: physiopathology
000155824 650_2 $$2MeSH$$aCognitive Dysfunction: rehabilitation
000155824 650_2 $$2MeSH$$aCognitive Remediation
000155824 650_2 $$2MeSH$$aFemale
000155824 650_2 $$2MeSH$$aHumans
000155824 650_2 $$2MeSH$$aIntelligence: physiology
000155824 650_2 $$2MeSH$$aMale
000155824 650_2 $$2MeSH$$aMemory, Short-Term: physiology
000155824 650_2 $$2MeSH$$aMiddle Aged
000155824 650_2 $$2MeSH$$aNeuronal Plasticity: physiology
000155824 650_2 $$2MeSH$$aOutcome Assessment, Health Care
000155824 650_2 $$2MeSH$$aParkinson Disease: complications
000155824 650_2 $$2MeSH$$aParkinson Disease: physiopathology
000155824 650_2 $$2MeSH$$aParkinson Disease: rehabilitation
000155824 650_2 $$2MeSH$$aPrecision Medicine
000155824 650_2 $$2MeSH$$aPrognosis
000155824 650_2 $$2MeSH$$aPsychomotor Performance: physiology
000155824 650_2 $$2MeSH$$aSingle-Blind Method
000155824 650_2 $$2MeSH$$aTherapy, Computer-Assisted
000155824 7001_ $$aRehberg, Sarah$$b1
000155824 7001_ $$00000-0002-0092-5164$$aGiehl, Kathrin$$b2
000155824 7001_ $$00000-0001-7564-6701$$aEggers, Carsten$$b3
000155824 7001_ $$aReker, Paul$$b4
000155824 7001_ $$0P:(DE-2719)2812285$$aEimeren, Thilo$$b5$$udzne
000155824 7001_ $$aKalbe, Elke$$b6
000155824 773__ $$0PERI:(DE-600)2100545-X$$a10.1177/1545968320981956$$gVol. 35, no. 2, p. 117 - 130$$n2$$p117 - 130$$tNeurorehabilitation and neural repair$$v35$$x1552-6844$$y2021
000155824 8564_ $$uhttps://pub.dzne.de/record/155824/files/DZNE-2021-00984_Restricted.pdf
000155824 8564_ $$uhttps://pub.dzne.de/record/155824/files/DZNE-2021-00984_Restricted.pdf?subformat=pdfa$$xpdfa
000155824 909CO $$ooai:pub.dzne.de:155824$$pVDB
000155824 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812285$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000155824 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000155824 9141_ $$y2021
000155824 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000155824 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000155824 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-09$$wger
000155824 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000155824 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000155824 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000155824 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000155824 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROREHAB NEURAL RE : 2021$$d2022-11-09
000155824 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-09
000155824 9201_ $$0I:(DE-2719)1011101$$kPatient Studies (Bonn)$$lPatient Studies (Bonn)$$x0
000155824 980__ $$ajournal
000155824 980__ $$aVDB
000155824 980__ $$aI:(DE-2719)1011101
000155824 980__ $$aUNRESTRICTED