000162790 001__ 162790
000162790 005__ 20240227115126.0
000162790 0247_ $$2pmc$$apmc:PMC9021061
000162790 0247_ $$2doi$$a10.1007/s00415-021-10854-6
000162790 0247_ $$2pmid$$apmid:34676447
000162790 0247_ $$2ISSN$$a0012-1037
000162790 0247_ $$2ISSN$$a0340-5354
000162790 0247_ $$2ISSN$$a0939-1517
000162790 0247_ $$2ISSN$$a1432-1459
000162790 0247_ $$2ISSN$$a1619-800X
000162790 0247_ $$2ISSN$$a0367-004x
000162790 0247_ $$2ISSN$$a0367-004X
000162790 037__ $$aDZNE-2021-01445
000162790 041__ $$aEnglish
000162790 082__ $$a610
000162790 1001_ $$aRosenbohm, Angela$$b0
000162790 245__ $$aInvolvement of cortico-efferent tracts in flail arm syndrome: a tract-of-interest-based DTI study.
000162790 260__ $$aBerlin$$bSpringer$$c2022
000162790 3367_ $$2DRIVER$$aarticle
000162790 3367_ $$2DataCite$$aOutput Types/Journal article
000162790 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1709023922_12961
000162790 3367_ $$2BibTeX$$aARTICLE
000162790 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000162790 3367_ $$00$$2EndNote$$aJournal Article
000162790 500__ $$aISSN 1432-1459 not unique: **2 hits**. (CC BY)
000162790 520__ $$aFlail arm syndrome is a restricted phenotype of motor neuron disease that is characterized by progressive, predominantly proximal weakness and atrophy of the upper limbs.The study was designed to investigate specific white matter alterations in diffusion tensor imaging (DTI) data from flail arm syndrome patients using a hypothesis-guided tract-of-interest-based approach to identify in vivo microstructural changes according to a neuropathologically defined amyotrophic lateral sclerosis (ALS)-related pathology of the cortico-efferent tracts.DTI-based white matter mapping was performed both by an unbiased voxel-wise statistical comparison and by a hypothesis-guided tract-wise analysis of fractional anisotropy (FA) maps according to the neuropathological ALS-propagation pattern for 43 flail arm syndrome patients vs 43 'classical' ALS patients vs 40 matched controls.The analysis of white matter integrity demonstrated regional FA reductions for the flail arm syndrome group predominantly along the CST. In the tract-specific analysis according to the proposed sequential cerebral pathology pattern of ALS, the flail arm syndrome patients showed significant alterations of the specific tract systems that were identical to 'classical' ALS if compared to controls.The DTI study including the tract-of-interest-based analysis showed a microstructural involvement pattern in the brains of flail arm syndrome patients, supporting the hypothesis that flail arm syndrome is a phenotypical variant of ALS.
000162790 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000162790 542__ $$2Crossref$$i2021-10-21$$uhttps://creativecommons.org/licenses/by/4.0
000162790 542__ $$2Crossref$$i2021-10-21$$uhttps://creativecommons.org/licenses/by/4.0
000162790 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000162790 650_7 $$2Other$$aAmyotrophic lateral sclerosis
000162790 650_7 $$2Other$$aDiffusion tensor imaging
000162790 650_7 $$2Other$$aFlail arm syndrome
000162790 650_7 $$2Other$$aMagnetic resonance imaging
000162790 650_7 $$2Other$$aMotor neuron disease
000162790 650_2 $$2MeSH$$aAmyotrophic Lateral Sclerosis: complications
000162790 650_2 $$2MeSH$$aAmyotrophic Lateral Sclerosis: diagnostic imaging
000162790 650_2 $$2MeSH$$aAmyotrophic Lateral Sclerosis: pathology
000162790 650_2 $$2MeSH$$aAnisotropy
000162790 650_2 $$2MeSH$$aArm: diagnostic imaging
000162790 650_2 $$2MeSH$$aArm: pathology
000162790 650_2 $$2MeSH$$aBrain Mapping
000162790 650_2 $$2MeSH$$aDiffusion Tensor Imaging: methods
000162790 650_2 $$2MeSH$$aDisease Progression
000162790 650_2 $$2MeSH$$aHumans
000162790 650_2 $$2MeSH$$aImage Processing, Computer-Assisted: methods
000162790 650_2 $$2MeSH$$aPyramidal Tracts
000162790 650_2 $$2MeSH$$aVascular Diseases
000162790 7001_ $$aDel Tredici, Kelly$$b1
000162790 7001_ $$aBraak, Heiko$$b2
000162790 7001_ $$aHuppertz, Hans-Jürgen$$b3
000162790 7001_ $$0P:(DE-2719)2812633$$aLudolph, Albert$$b4
000162790 7001_ $$aMüller, Hans-Peter$$b5
000162790 7001_ $$0P:(DE-2719)9001967$$aKassubek, Jan$$b6$$eLast author$$udzne
000162790 77318 $$2Crossref$$3journal-article$$a10.1007/s00415-021-10854-6$$bSpringer Science and Business Media LLC$$d2021-10-21$$n5$$p2619-2626$$tJournal of Neurology$$v269$$x0340-5354$$y2021
000162790 773__ $$0PERI:(DE-600)1421299-7$$a10.1007/s00415-021-10854-6$$n5$$p2619-2626$$tJournal of neurology$$v269$$x0340-5354$$y2022
000162790 8564_ $$uhttps://pub.dzne.de/record/162790/files/DZNE-2021-01445.pdf$$yOpenAccess
000162790 8564_ $$uhttps://pub.dzne.de/record/162790/files/DZNE-2021-01445.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000162790 909CO $$ooai:pub.dzne.de:162790$$pVDB$$popen_access$$popenaire$$pdnbdelivery$$pdriver
000162790 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812633$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000162790 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001967$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000162790 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000162790 9141_ $$y2022
000162790 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000162790 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12
000162790 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000162790 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000162790 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROL : 2021$$d2022-11-12
000162790 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000162790 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-12
000162790 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000162790 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000162790 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NEUROL : 2021$$d2022-11-12
000162790 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000162790 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger
000162790 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000162790 9201_ $$0I:(DE-2719)5000077$$kClinical Study Center Ulm$$lClinical Study Center Ulm$$x0
000162790 980__ $$ajournal
000162790 980__ $$aVDB
000162790 980__ $$aUNRESTRICTED
000162790 980__ $$aI:(DE-2719)5000077
000162790 9801_ $$aFullTexts
000162790 999C5 $$1H Braak$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrneurol.2013.221$$p708 -$$tNat Rev Neurol$$uBraak H, Brettschneider J, Ludolph AC et al (2013) Amyotrophic lateral sclerosis—a model of corticofugal axonal spread. Nat Rev Neurol 9:708–714$$v9$$y2013
000162790 999C5 $$1H Braak$$2Crossref$$9-- missing cx lookup --$$a10.1055/s-0043-111375$$pE136 -$$tNeurol Int Open$$uBraak H, Neumann M, Ludolph AC et al (2017) Does sporadic amyotrophic lateral sclerosis spread via axonal connectivities? Neurol Int Open 1:E136–E141$$v1$$y2017
000162790 999C5 $$1MR Turner$$2Crossref$$9-- missing cx lookup --$$a10.1136/jnnp-2019-322541$$p373 -$$tJ Neurol Neurosurg Psychiatry$$uTurner MR, Barohn RJ, Corcia P et al (2020) Primary lateral sclerosis: consensus diagnostic criteria. J Neurol Neurosurg Psychiatry 91:373–377$$v91$$y2020
000162790 999C5 $$1A Hannaford$$2Crossref$$9-- missing cx lookup --$$a10.1002/ana.26045$$p979 -$$tAnn Neurol$$uHannaford A, Pavey N, van den Bos M et al (2021) Diagnostic utility of Gold Coast Criteria in amyotrophic lateral sclerosis. Ann Neurol 89:979–986$$v89$$y2021
000162790 999C5 $$1A Ludolph$$2Crossref$$uLudolph A, Drory V, Hardiman O et al (2015) A revision of the El Escorial criteria—2015. Amyotroph Lateral Scler Frontotemporal Degener 29:1–2$$y2015
000162790 999C5 $$1MT Hu$$2Crossref$$9-- missing cx lookup --$$a10.1136/jnnp.65.6.950$$p950 -$$tJ Neurol Neurosurg Psychiatry$$uHu MT, Ellis CM, Al-Chalabi A et al (1998) Flail arm syndrome: a distinctive variant of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 65:950–951$$v65$$y1998
000162790 999C5 $$2Crossref$$uVulpian A (1886) Cours de pathologie expérimentale. Maladies du système nerveux (Moëlle épinière). Leçons professées à la Faculté de Médecine. (23 ème Lecon; Affections systématiques de la substance grise de la moëlle épinière (Suite). Atrophie musculaire progressive myélopathique.) vol 2. Paris: Octave Doin, pp 412–491
000162790 999C5 $$1LC Wijesekera$$2Crossref$$9-- missing cx lookup --$$a10.1212/01.wnl.0000345041.83406.a2$$p1087 -$$tNeurology$$uWijesekera LC, Mathers S, Talman P et al (2009) Natural history and clinical features of the flail arm and flail leg ALS variants. Neurology 72:1087–1094$$v72$$y2009
000162790 999C5 $$1A Hübers$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-015-7993-z$$p390 -$$tJ Neurol$$uHübers A, Hildebrandt V, Petri S et al (2016) Clinical features and differential diagnosis of flail arm syndrome. J Neurol 263:390–395$$v263$$y2016
000162790 999C5 $$1P Schito$$2Crossref$$9-- missing cx lookup --$$a10.1136/jnnp-2020-323542$$p1001 -$$tJ Neurol Neurosurg Psychiatry$$uSchito P, Ceccardi G, Calvo A et al (2020) Clinical features and outcomes of the flail arm and flail leg and pure lower motor neuron MND variants: a multicentre Italian study. J Neurol Neurosurg Psychiatry 91:1001–1003$$v91$$y2020
000162790 999C5 $$1A Chiò$$2Crossref$$9-- missing cx lookup --$$a10.1016/S1474-4422(14)70167-X$$p1228 -$$tLancet Neurol$$uChiò A, Pagani M, Agosta F et al (2014) Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes. Lancet Neurol 13:1228–1240$$v13$$y2014
000162790 999C5 $$1F Agosta$$2Crossref$$9-- missing cx lookup --$$a10.1080/14737175.2018.1463160$$p395 -$$tExpert Rev Neurother$$uAgosta F, Spinelli EG, Filippi M (2018) Neuroimaging in amyotrophic lateral sclerosis: current and emerging uses. Expert Rev Neurother 18:395–406$$v18$$y2018
000162790 999C5 $$1J Kassubek$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/awu090$$p1733 -$$tBrain$$uKassubek J, Müller HP, Del Tredici K et al (2014) Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns of TDP-43 pathology. Brain 137:1733–1740$$v137$$y2014
000162790 999C5 $$1J Kassubek$$2Crossref$$9-- missing cx lookup --$$a10.1136/jnnp-2017-316365$$p374 -$$tJ Neurol Neurosurg Psychiatry$$uKassubek J, Müller HP, Del Tredici K et al (2018) Imaging the pathoanatomy of amyotrophic lateral sclerosis in vivo: targeting a propagation-based biological marker. J Neurol Neurosurg Psychiatry 89:374–381$$v89$$y2018
000162790 999C5 $$1A Rosenbohm$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-016-8281-2$$p2430 -$$tJ Neurol$$uRosenbohm A, Müller HP, Hübers A et al (2016) Corticoefferent pathways in pure lower motor neuron disease: a diffusion tensor imaging study. J Neurol 263:2430–2437$$v263$$y2016
000162790 999C5 $$1HP Müller$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nicl.2017.10.008$$p145 -$$tNeuroimage Clin$$uMüller HP, Agosta F, Riva N et al (2018A) Fast progressive lower motor neuron disease is an ALS variant: a two-centre tract of interest-based MRI data analysis. Neuroimage Clin 17:145–152$$v17$$y2018
000162790 999C5 $$1HP Müller$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nicl.2018.03.018$$p762 -$$tNeuroimage Clin$$uMüller HP, Gorges M, Kassubek R et al (2018B) Identical patterns of cortico-efferent tract involvement in primary lateral sclerosis and amyotrophic lateral sclerosis: a tract of interest-based MRI study. Neuroimage Clin 18:762–769$$v18$$y2018
000162790 999C5 $$1HP Müller$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nicl.2018.10.005$$p1062 -$$tNeuroimage Clin$$uMüller HP, Agosta F, Gorges M et al (2018C) Cortico-efferent tract involvement in primary lateral sclerosis and amyotrophic lateral sclerosis: a two-centre tract of interest-based DTI analysis. Neuroimage Clin 20:1062–1069$$v20$$y2018
000162790 999C5 $$1HP Müller$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nicl.2019.101979$$p101979 -$$tNeuroimage Clin$$uMüller HP, Gorges M, Del Tredici K et al (2019) The same cortico-efferent tract involvement in progressive bulbar palsy and in “classical” ALS: a tract of interest-based MRI study. Neuroimage Clin 24:101979$$v24$$y2019
000162790 999C5 $$1J Kassubek$$2Crossref$$9-- missing cx lookup --$$a10.1080/14737175.2020.1715798$$p237 -$$tExpert Rev Neurother$$uKassubek J, Müller HP (2020) Advanced neuroimaging approaches in amyotrophic lateral sclerosis: refining the clinical diagnosis. Expert Rev Neurother 20:237–249$$v20$$y2020
000162790 999C5 $$1JM Cedarbaum$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0022-510X(99)00210-5$$p13 -$$tJ Neurol Sci$$uCedarbaum JM, Stambler N, Malta E et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 169:13–21$$v169$$y1999
000162790 999C5 $$1HP Müller$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-9155/52/6/N01$$pN99 -$$tPhys Med Biol$$uMüller HP, Unrath A, Ludolph AC et al (2007a) Preservation of diffusion tensor properties during spatial normalisation by use of tensor imaging and fibre tracking on a normal brain database. Phys Med Biol 52:N99–N109$$v52$$y2007
000162790 999C5 $$1HP Müller$$2Crossref$$9-- missing cx lookup --$$a10.1136/jnnp-2015-311952$$p570 -$$tJ Neurol Neurosurg Psychiatry$$uMüller HP, Turner MR, Grosskreutz J et al (2016) A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 87:570–579$$v87$$y2016
000162790 999C5 $$1D Le Bihan$$2Crossref$$9-- missing cx lookup --$$a10.1002/jmri.1076$$p534 -$$tJ Magn Reson Imaging$$uLe Bihan D, Mangin JF, Poupon C et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546$$v13$$y2001
000162790 999C5 $$1PJ Winklewski$$2Crossref$$9-- missing cx lookup --$$a10.3389/fneur.2018.00092$$p92 -$$tFront Neurol$$uWinklewski PJ, Sabisz A, Naumczyk P et al (2018) Understanding the physiopathology behind axial and radial diffusivity changes-what do we know? Front Neurol 9:92$$v9$$y2018
000162790 999C5 $$1SK Song$$2Crossref$$9-- missing cx lookup --$$a10.1006/nimg.2002.1267$$p1429 -$$tNeuroimage$$uSong SK, Sun SW, Ramsbottom MJ et al (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17:1429–1436$$v17$$y2002
000162790 999C5 $$1Y Wang$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/awv046$$p1223 -$$tBrain$$uWang Y, Sun P, Wang Q et al (2015) Differentiation and quantification of inflammation, demyelination and axon injury or loss in multiple sclerosis. Brain 138:1223–1238$$v138$$y2015
000162790 999C5 $$1A Kunimatsu$$2Crossref$$9-- missing cx lookup --$$a10.2463/mrms.3.11$$p11 -$$tMagn Reson Med Sci$$uKunimatsu A, Aoki S, Masutani Y et al (2004) The optimal trackability threshold of fractional anisotropy for diffusion tensor tractography of the corticospinal tract. Magn Reson Med Sci 3:11–17$$v3$$y2004
000162790 999C5 $$1CR Genovese$$2Crossref$$9-- missing cx lookup --$$a10.1006/nimg.2001.1037$$p870 -$$tNeuroimage$$uGenovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878$$v15$$y2002
000162790 999C5 $$1AC Ludolph$$2Crossref$$9-- missing cx lookup --$$a10.1111/ene.12706$$p753 -$$tEur J Neurol$$uLudolph AC, Brettschneider J (2015) TDP-43 in amyotrophic lateral sclerosis—is it a prion disease? Eur J Neurol 22:753–761$$v22$$y2015
000162790 999C5 $$1HP Müller$$2Crossref$$9-- missing cx lookup --$$a10.1186/1475-925X-6-42$$p42 -$$tBiomed Eng Online$$uMüller HP, Unrath A, Sperfeld AD et al (2007b) Diffusion tensor imaging and tractwise fractional anisotropy statistics: quantitative analysis in white matter pathology. Biomed Eng Online 6:42$$v6$$y2007
000162790 999C5 $$1H-J Huppertz$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuroimage.2009.10.066$$p2216 -$$tNeuroimage$$uHuppertz H-J, Kröll-Seger J, Klöppel S et al (2010) Intra- and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures. Neuroimage 49:2216–2224$$v49$$y2010
000162790 999C5 $$1H-J Huppertz$$2Crossref$$9-- missing cx lookup --$$a10.1002/mds.26715$$p1506 -$$tMov Disord$$uHuppertz H-J, Möller L, Südmeyer M et al (2016) Differentiation of neurodegenerative parkinsonian syndromes by volumetric magnetic resonance imaging analysis and support vector machine classification. Mov Disord 31:1506–1517$$v31$$y2016
000162790 999C5 $$1LC Wijesekera$$2Crossref$$9-- missing cx lookup --$$a10.1186/1750-1172-4-3$$p3 -$$tOrphanet J Rare Dis$$uWijesekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3$$v4$$y2009
000162790 999C5 $$1M Gorges$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-018-33830-z$$p15389 -$$tSci Rep$$uGorges M, Del Tredici K, Dreyhaupt J et al (2018) Corticoefferent pathology distribution in amyotrophic lateral sclerosis: in vivo evidence from a meta-analysis of diffusion tensor imaging data. Sci Rep 8:15389$$v8$$y2018
000162790 999C5 $$1PG Ince$$2Crossref$$9-- missing cx lookup --$$a10.1212/01.WNL.0000058901.75728.4E$$p1252 -$$tNeurology$$uInce PG, Evans J, Knopp M et al (2003) Corticospinal tract degeneration in the progressive muscular atrophy variant of ALS. Neurology 60:1252–1258$$v60$$y2003
000162790 999C5 $$1M Cosottini$$2Crossref$$9-- missing cx lookup --$$a10.1148/radiol.2371041506$$p258 -$$tRadiology$$uCosottini M, Giannelli M, Siciliano G et al (2005) Diffusion-tensor MR imaging of corticospinal tract in amyotrophic lateral sclerosis and progressive muscular atrophy. Radiology 237:258–264$$v237$$y2005
000162790 999C5 $$1S Kalra$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0000000000010235$$pe943 -$$tNeurology$$uKalra S, Müller HP, Ishaque A et al (2020) A prospective harmonized multicenter DTI study of cerebral white matter degeneration in ALS. Neurology 95:e943–e952$$v95$$y2020
000162790 999C5 $$1F Agosta$$2Crossref$$9-- missing cx lookup --$$a10.3109/21678421.2014.964258$$p1 -$$tAmyotroph Lateral Scler Frontotemporal Degener$$uAgosta F, Al-Chalabi A, Filippi M et al (2015) The El Escorial criteria: strengths and weaknesses. Amyotroph Lateral Scler Frontotemporal Degener 16:1–7$$v16$$y2015