001     162790
005     20240227115126.0
024 7 _ |a pmc:PMC9021061
|2 pmc
024 7 _ |a 10.1007/s00415-021-10854-6
|2 doi
024 7 _ |a pmid:34676447
|2 pmid
024 7 _ |a 0012-1037
|2 ISSN
024 7 _ |a 0340-5354
|2 ISSN
024 7 _ |a 0939-1517
|2 ISSN
024 7 _ |a 1432-1459
|2 ISSN
024 7 _ |a 1619-800X
|2 ISSN
024 7 _ |a 0367-004x
|2 ISSN
024 7 _ |a 0367-004X
|2 ISSN
037 _ _ |a DZNE-2021-01445
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rosenbohm, Angela
|b 0
245 _ _ |a Involvement of cortico-efferent tracts in flail arm syndrome: a tract-of-interest-based DTI study.
260 _ _ |a Berlin
|c 2022
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1709023922_12961
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ISSN 1432-1459 not unique: **2 hits**. (CC BY)
520 _ _ |a Flail arm syndrome is a restricted phenotype of motor neuron disease that is characterized by progressive, predominantly proximal weakness and atrophy of the upper limbs.The study was designed to investigate specific white matter alterations in diffusion tensor imaging (DTI) data from flail arm syndrome patients using a hypothesis-guided tract-of-interest-based approach to identify in vivo microstructural changes according to a neuropathologically defined amyotrophic lateral sclerosis (ALS)-related pathology of the cortico-efferent tracts.DTI-based white matter mapping was performed both by an unbiased voxel-wise statistical comparison and by a hypothesis-guided tract-wise analysis of fractional anisotropy (FA) maps according to the neuropathological ALS-propagation pattern for 43 flail arm syndrome patients vs 43 'classical' ALS patients vs 40 matched controls.The analysis of white matter integrity demonstrated regional FA reductions for the flail arm syndrome group predominantly along the CST. In the tract-specific analysis according to the proposed sequential cerebral pathology pattern of ALS, the flail arm syndrome patients showed significant alterations of the specific tract systems that were identical to 'classical' ALS if compared to controls.The DTI study including the tract-of-interest-based analysis showed a microstructural involvement pattern in the brains of flail arm syndrome patients, supporting the hypothesis that flail arm syndrome is a phenotypical variant of ALS.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
542 _ _ |i 2021-10-21
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2021-10-21
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Amyotrophic lateral sclerosis
|2 Other
650 _ 7 |a Diffusion tensor imaging
|2 Other
650 _ 7 |a Flail arm syndrome
|2 Other
650 _ 7 |a Magnetic resonance imaging
|2 Other
650 _ 7 |a Motor neuron disease
|2 Other
650 _ 2 |a Amyotrophic Lateral Sclerosis: complications
|2 MeSH
650 _ 2 |a Amyotrophic Lateral Sclerosis: diagnostic imaging
|2 MeSH
650 _ 2 |a Amyotrophic Lateral Sclerosis: pathology
|2 MeSH
650 _ 2 |a Anisotropy
|2 MeSH
650 _ 2 |a Arm: diagnostic imaging
|2 MeSH
650 _ 2 |a Arm: pathology
|2 MeSH
650 _ 2 |a Brain Mapping
|2 MeSH
650 _ 2 |a Diffusion Tensor Imaging: methods
|2 MeSH
650 _ 2 |a Disease Progression
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Image Processing, Computer-Assisted: methods
|2 MeSH
650 _ 2 |a Pyramidal Tracts
|2 MeSH
650 _ 2 |a Vascular Diseases
|2 MeSH
700 1 _ |a Del Tredici, Kelly
|b 1
700 1 _ |a Braak, Heiko
|b 2
700 1 _ |a Huppertz, Hans-Jürgen
|b 3
700 1 _ |a Ludolph, Albert
|0 P:(DE-2719)2812633
|b 4
700 1 _ |a Müller, Hans-Peter
|b 5
700 1 _ |a Kassubek, Jan
|0 P:(DE-2719)9001967
|b 6
|e Last author
|u dzne
773 1 8 |a 10.1007/s00415-021-10854-6
|b Springer Science and Business Media LLC
|d 2021-10-21
|n 5
|p 2619-2626
|3 journal-article
|2 Crossref
|t Journal of Neurology
|v 269
|y 2021
|x 0340-5354
773 _ _ |a 10.1007/s00415-021-10854-6
|0 PERI:(DE-600)1421299-7
|n 5
|p 2619-2626
|t Journal of neurology
|v 269
|y 2022
|x 0340-5354
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/162790/files/DZNE-2021-01445.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/162790/files/DZNE-2021-01445.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:162790
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2812633
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9001967
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROL : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROL : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
920 1 _ |0 I:(DE-2719)5000077
|k Clinical Study Center Ulm
|l Clinical Study Center Ulm
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000077
980 1 _ |a FullTexts
999 C 5 |a 10.1038/nrneurol.2013.221
|9 -- missing cx lookup --
|1 H Braak
|p 708 -
|2 Crossref
|u Braak H, Brettschneider J, Ludolph AC et al (2013) Amyotrophic lateral sclerosis—a model of corticofugal axonal spread. Nat Rev Neurol 9:708–714
|t Nat Rev Neurol
|v 9
|y 2013
999 C 5 |a 10.1055/s-0043-111375
|9 -- missing cx lookup --
|1 H Braak
|p E136 -
|2 Crossref
|u Braak H, Neumann M, Ludolph AC et al (2017) Does sporadic amyotrophic lateral sclerosis spread via axonal connectivities? Neurol Int Open 1:E136–E141
|t Neurol Int Open
|v 1
|y 2017
999 C 5 |a 10.1136/jnnp-2019-322541
|9 -- missing cx lookup --
|1 MR Turner
|p 373 -
|2 Crossref
|u Turner MR, Barohn RJ, Corcia P et al (2020) Primary lateral sclerosis: consensus diagnostic criteria. J Neurol Neurosurg Psychiatry 91:373–377
|t J Neurol Neurosurg Psychiatry
|v 91
|y 2020
999 C 5 |a 10.1002/ana.26045
|9 -- missing cx lookup --
|1 A Hannaford
|p 979 -
|2 Crossref
|u Hannaford A, Pavey N, van den Bos M et al (2021) Diagnostic utility of Gold Coast Criteria in amyotrophic lateral sclerosis. Ann Neurol 89:979–986
|t Ann Neurol
|v 89
|y 2021
999 C 5 |1 A Ludolph
|y 2015
|2 Crossref
|u Ludolph A, Drory V, Hardiman O et al (2015) A revision of the El Escorial criteria—2015. Amyotroph Lateral Scler Frontotemporal Degener 29:1–2
999 C 5 |a 10.1136/jnnp.65.6.950
|9 -- missing cx lookup --
|1 MT Hu
|p 950 -
|2 Crossref
|u Hu MT, Ellis CM, Al-Chalabi A et al (1998) Flail arm syndrome: a distinctive variant of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 65:950–951
|t J Neurol Neurosurg Psychiatry
|v 65
|y 1998
999 C 5 |2 Crossref
|u Vulpian A (1886) Cours de pathologie expérimentale. Maladies du système nerveux (Moëlle épinière). Leçons professées à la Faculté de Médecine. (23 ème Lecon; Affections systématiques de la substance grise de la moëlle épinière (Suite). Atrophie musculaire progressive myélopathique.) vol 2. Paris: Octave Doin, pp 412–491
999 C 5 |a 10.1212/01.wnl.0000345041.83406.a2
|9 -- missing cx lookup --
|1 LC Wijesekera
|p 1087 -
|2 Crossref
|u Wijesekera LC, Mathers S, Talman P et al (2009) Natural history and clinical features of the flail arm and flail leg ALS variants. Neurology 72:1087–1094
|t Neurology
|v 72
|y 2009
999 C 5 |a 10.1007/s00415-015-7993-z
|9 -- missing cx lookup --
|1 A Hübers
|p 390 -
|2 Crossref
|u Hübers A, Hildebrandt V, Petri S et al (2016) Clinical features and differential diagnosis of flail arm syndrome. J Neurol 263:390–395
|t J Neurol
|v 263
|y 2016
999 C 5 |a 10.1136/jnnp-2020-323542
|9 -- missing cx lookup --
|1 P Schito
|p 1001 -
|2 Crossref
|u Schito P, Ceccardi G, Calvo A et al (2020) Clinical features and outcomes of the flail arm and flail leg and pure lower motor neuron MND variants: a multicentre Italian study. J Neurol Neurosurg Psychiatry 91:1001–1003
|t J Neurol Neurosurg Psychiatry
|v 91
|y 2020
999 C 5 |a 10.1016/S1474-4422(14)70167-X
|9 -- missing cx lookup --
|1 A Chiò
|p 1228 -
|2 Crossref
|u Chiò A, Pagani M, Agosta F et al (2014) Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes. Lancet Neurol 13:1228–1240
|t Lancet Neurol
|v 13
|y 2014
999 C 5 |a 10.1080/14737175.2018.1463160
|9 -- missing cx lookup --
|1 F Agosta
|p 395 -
|2 Crossref
|u Agosta F, Spinelli EG, Filippi M (2018) Neuroimaging in amyotrophic lateral sclerosis: current and emerging uses. Expert Rev Neurother 18:395–406
|t Expert Rev Neurother
|v 18
|y 2018
999 C 5 |a 10.1093/brain/awu090
|9 -- missing cx lookup --
|1 J Kassubek
|p 1733 -
|2 Crossref
|u Kassubek J, Müller HP, Del Tredici K et al (2014) Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns of TDP-43 pathology. Brain 137:1733–1740
|t Brain
|v 137
|y 2014
999 C 5 |a 10.1136/jnnp-2017-316365
|9 -- missing cx lookup --
|1 J Kassubek
|p 374 -
|2 Crossref
|u Kassubek J, Müller HP, Del Tredici K et al (2018) Imaging the pathoanatomy of amyotrophic lateral sclerosis in vivo: targeting a propagation-based biological marker. J Neurol Neurosurg Psychiatry 89:374–381
|t J Neurol Neurosurg Psychiatry
|v 89
|y 2018
999 C 5 |a 10.1007/s00415-016-8281-2
|9 -- missing cx lookup --
|1 A Rosenbohm
|p 2430 -
|2 Crossref
|u Rosenbohm A, Müller HP, Hübers A et al (2016) Corticoefferent pathways in pure lower motor neuron disease: a diffusion tensor imaging study. J Neurol 263:2430–2437
|t J Neurol
|v 263
|y 2016
999 C 5 |a 10.1016/j.nicl.2017.10.008
|9 -- missing cx lookup --
|1 HP Müller
|p 145 -
|2 Crossref
|u Müller HP, Agosta F, Riva N et al (2018A) Fast progressive lower motor neuron disease is an ALS variant: a two-centre tract of interest-based MRI data analysis. Neuroimage Clin 17:145–152
|t Neuroimage Clin
|v 17
|y 2018
999 C 5 |a 10.1016/j.nicl.2018.03.018
|9 -- missing cx lookup --
|1 HP Müller
|p 762 -
|2 Crossref
|u Müller HP, Gorges M, Kassubek R et al (2018B) Identical patterns of cortico-efferent tract involvement in primary lateral sclerosis and amyotrophic lateral sclerosis: a tract of interest-based MRI study. Neuroimage Clin 18:762–769
|t Neuroimage Clin
|v 18
|y 2018
999 C 5 |a 10.1016/j.nicl.2018.10.005
|9 -- missing cx lookup --
|1 HP Müller
|p 1062 -
|2 Crossref
|u Müller HP, Agosta F, Gorges M et al (2018C) Cortico-efferent tract involvement in primary lateral sclerosis and amyotrophic lateral sclerosis: a two-centre tract of interest-based DTI analysis. Neuroimage Clin 20:1062–1069
|t Neuroimage Clin
|v 20
|y 2018
999 C 5 |a 10.1016/j.nicl.2019.101979
|9 -- missing cx lookup --
|1 HP Müller
|p 101979 -
|2 Crossref
|u Müller HP, Gorges M, Del Tredici K et al (2019) The same cortico-efferent tract involvement in progressive bulbar palsy and in “classical” ALS: a tract of interest-based MRI study. Neuroimage Clin 24:101979
|t Neuroimage Clin
|v 24
|y 2019
999 C 5 |a 10.1080/14737175.2020.1715798
|9 -- missing cx lookup --
|1 J Kassubek
|p 237 -
|2 Crossref
|u Kassubek J, Müller HP (2020) Advanced neuroimaging approaches in amyotrophic lateral sclerosis: refining the clinical diagnosis. Expert Rev Neurother 20:237–249
|t Expert Rev Neurother
|v 20
|y 2020
999 C 5 |a 10.1016/S0022-510X(99)00210-5
|9 -- missing cx lookup --
|1 JM Cedarbaum
|p 13 -
|2 Crossref
|u Cedarbaum JM, Stambler N, Malta E et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 169:13–21
|t J Neurol Sci
|v 169
|y 1999
999 C 5 |a 10.1088/0031-9155/52/6/N01
|9 -- missing cx lookup --
|1 HP Müller
|p N99 -
|2 Crossref
|u Müller HP, Unrath A, Ludolph AC et al (2007a) Preservation of diffusion tensor properties during spatial normalisation by use of tensor imaging and fibre tracking on a normal brain database. Phys Med Biol 52:N99–N109
|t Phys Med Biol
|v 52
|y 2007
999 C 5 |a 10.1136/jnnp-2015-311952
|9 -- missing cx lookup --
|1 HP Müller
|p 570 -
|2 Crossref
|u Müller HP, Turner MR, Grosskreutz J et al (2016) A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 87:570–579
|t J Neurol Neurosurg Psychiatry
|v 87
|y 2016
999 C 5 |a 10.1002/jmri.1076
|9 -- missing cx lookup --
|1 D Le Bihan
|p 534 -
|2 Crossref
|u Le Bihan D, Mangin JF, Poupon C et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546
|t J Magn Reson Imaging
|v 13
|y 2001
999 C 5 |a 10.3389/fneur.2018.00092
|9 -- missing cx lookup --
|1 PJ Winklewski
|p 92 -
|2 Crossref
|u Winklewski PJ, Sabisz A, Naumczyk P et al (2018) Understanding the physiopathology behind axial and radial diffusivity changes-what do we know? Front Neurol 9:92
|t Front Neurol
|v 9
|y 2018
999 C 5 |a 10.1006/nimg.2002.1267
|9 -- missing cx lookup --
|1 SK Song
|p 1429 -
|2 Crossref
|u Song SK, Sun SW, Ramsbottom MJ et al (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17:1429–1436
|t Neuroimage
|v 17
|y 2002
999 C 5 |a 10.1093/brain/awv046
|9 -- missing cx lookup --
|1 Y Wang
|p 1223 -
|2 Crossref
|u Wang Y, Sun P, Wang Q et al (2015) Differentiation and quantification of inflammation, demyelination and axon injury or loss in multiple sclerosis. Brain 138:1223–1238
|t Brain
|v 138
|y 2015
999 C 5 |a 10.2463/mrms.3.11
|9 -- missing cx lookup --
|1 A Kunimatsu
|p 11 -
|2 Crossref
|u Kunimatsu A, Aoki S, Masutani Y et al (2004) The optimal trackability threshold of fractional anisotropy for diffusion tensor tractography of the corticospinal tract. Magn Reson Med Sci 3:11–17
|t Magn Reson Med Sci
|v 3
|y 2004
999 C 5 |a 10.1006/nimg.2001.1037
|9 -- missing cx lookup --
|1 CR Genovese
|p 870 -
|2 Crossref
|u Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878
|t Neuroimage
|v 15
|y 2002
999 C 5 |a 10.1111/ene.12706
|9 -- missing cx lookup --
|1 AC Ludolph
|p 753 -
|2 Crossref
|u Ludolph AC, Brettschneider J (2015) TDP-43 in amyotrophic lateral sclerosis—is it a prion disease? Eur J Neurol 22:753–761
|t Eur J Neurol
|v 22
|y 2015
999 C 5 |a 10.1186/1475-925X-6-42
|9 -- missing cx lookup --
|1 HP Müller
|p 42 -
|2 Crossref
|u Müller HP, Unrath A, Sperfeld AD et al (2007b) Diffusion tensor imaging and tractwise fractional anisotropy statistics: quantitative analysis in white matter pathology. Biomed Eng Online 6:42
|t Biomed Eng Online
|v 6
|y 2007
999 C 5 |a 10.1016/j.neuroimage.2009.10.066
|9 -- missing cx lookup --
|1 H-J Huppertz
|p 2216 -
|2 Crossref
|u Huppertz H-J, Kröll-Seger J, Klöppel S et al (2010) Intra- and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures. Neuroimage 49:2216–2224
|t Neuroimage
|v 49
|y 2010
999 C 5 |a 10.1002/mds.26715
|9 -- missing cx lookup --
|1 H-J Huppertz
|p 1506 -
|2 Crossref
|u Huppertz H-J, Möller L, Südmeyer M et al (2016) Differentiation of neurodegenerative parkinsonian syndromes by volumetric magnetic resonance imaging analysis and support vector machine classification. Mov Disord 31:1506–1517
|t Mov Disord
|v 31
|y 2016
999 C 5 |a 10.1186/1750-1172-4-3
|9 -- missing cx lookup --
|1 LC Wijesekera
|p 3 -
|2 Crossref
|u Wijesekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3
|t Orphanet J Rare Dis
|v 4
|y 2009
999 C 5 |a 10.1038/s41598-018-33830-z
|9 -- missing cx lookup --
|1 M Gorges
|p 15389 -
|2 Crossref
|u Gorges M, Del Tredici K, Dreyhaupt J et al (2018) Corticoefferent pathology distribution in amyotrophic lateral sclerosis: in vivo evidence from a meta-analysis of diffusion tensor imaging data. Sci Rep 8:15389
|t Sci Rep
|v 8
|y 2018
999 C 5 |a 10.1212/01.WNL.0000058901.75728.4E
|9 -- missing cx lookup --
|1 PG Ince
|p 1252 -
|2 Crossref
|u Ince PG, Evans J, Knopp M et al (2003) Corticospinal tract degeneration in the progressive muscular atrophy variant of ALS. Neurology 60:1252–1258
|t Neurology
|v 60
|y 2003
999 C 5 |a 10.1148/radiol.2371041506
|9 -- missing cx lookup --
|1 M Cosottini
|p 258 -
|2 Crossref
|u Cosottini M, Giannelli M, Siciliano G et al (2005) Diffusion-tensor MR imaging of corticospinal tract in amyotrophic lateral sclerosis and progressive muscular atrophy. Radiology 237:258–264
|t Radiology
|v 237
|y 2005
999 C 5 |a 10.1212/WNL.0000000000010235
|9 -- missing cx lookup --
|1 S Kalra
|p e943 -
|2 Crossref
|u Kalra S, Müller HP, Ishaque A et al (2020) A prospective harmonized multicenter DTI study of cerebral white matter degeneration in ALS. Neurology 95:e943–e952
|t Neurology
|v 95
|y 2020
999 C 5 |a 10.3109/21678421.2014.964258
|9 -- missing cx lookup --
|1 F Agosta
|p 1 -
|2 Crossref
|u Agosta F, Al-Chalabi A, Filippi M et al (2015) The El Escorial criteria: strengths and weaknesses. Amyotroph Lateral Scler Frontotemporal Degener 16:1–7
|t Amyotroph Lateral Scler Frontotemporal Degener
|v 16
|y 2015


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21