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Frontotemporal dementia (FTD) defines a genetically and patho-
logically heterogeneous group of neurodegenerative disorders with
predominant degeneration of the frontal and/or temporal lobes, in
which the main neuropathological hallmarks are represented by tau,
TAR DNA-binding protein 43 (TDP-43), or fused in sarcoma (FUS)
inclusions.>2 Clinically, it is characterized by progressive deterioration
in behavior, personality, and/or language, often with parkinsonism
and psychiatric features. Different phenotypes have been classically
defined on the basis of presenting clinical symptoms: the behavioral
variant of FTD (bvFTD), which is associated with early behavioral and
personality changes;® the nonfluent or agrammatic variant of primary
progressive aphasia (nfvPPA), with progressive deficits in speech,
grammar, and word output; and the semantic variant of PPA (svPPA), a
progressive disorder of semantic knowledge and naming.* A significant
proportion of patients have associated extrapyramidal symptoms,”
which may form part of either a progressive supranuclear palsy (PSP)
or corticobasal syndrome (CBS),® and there is considerable clinical
overlap with motor neuron disease (MND).”

The presymptomatic stages of FTD are still poorly defined and likely
encompass a long accrual of progressive biological (preclinical) fol-
lowed by clinical (prodromal) changes, antedating the onset of demen-
tia. The heterogeneity of clinical presentations and the different neu-
ropathological phenotypes have prevented a prior clear description
of either preclinical or prodromal FTD. Recent advances in therapeu-
tic approaches, at least in monogenic disease, make proper defini-
tion of these presymptomatic stages more urgent. As postulated for
Alzheimer’s disease (AD), the ability to intervene early may offer a
chance to delay or even prevent neurodegeneration. In AD, the liter-
ature has suggested the conceptual framework of a preclinical biologi-
cally active process that precedes the onset of a prodromal or mild cog-
nitive impairment (MCI) phase, which is then followed by dementia.?"?
The heterogeneous presentation of FTD suggests that a wider set of
clinical features might present in the prodromal phase compared to AD.
Nonetheless, a similar conceptual framework to MCI could be trans-
lated to the FTD field. In this view, we may define a preclinical FTD
stage in those subjects with an ongoing neuropathological process but
without clinical abnormalities, and a prodromal stage in those subjects
with the onset and progression of subtle clinical symptoms.

therapeutic approaches, at least in monogenic disease, demand a proper definition of
these predementia stages. It has become clear that a consensus lexicon is needed to
comprehensively describe the stages that anticipate dementia. The goal of the present
work is to review existing literature on the preclinical and prodromal phases of FTD,
providing recommendations to address the unmet questions, therefore laying out a

strategy for operationalizing and better characterizing these presymptomatic disease

definition, frontotemporal dementia, frontotemporal lobar degeneration, mild cognitive and/or
behavioral and/or motor impairment, mild cognitive impairment, preclinical, presymptomatic,

A privileged point of view for studying the preclinical and prodromal
phases of FTD is provided by its genetic forms. Indeed, familial aggre-
gation has been reported in a significant proportion of people with FTD
(up to 40% of cases), with mutations in the microtubule-associated pro-
tein tau (MAPT) and progranulin (GRN) gene, or a pathogenic expan-
sion in the chromosome 9 open reading frame 72 (C9orf72) as the most
common cause of monogenic disease.’® Mutations in MAPT lead to
abnormal tau accumulation, while GRN and C9orf72 pathogenic vari-
ations are associated with TDP-43 deposition.!! The study of family
members bearing a pathogenic mutation has allowed the naturalistic
observation of the shift from preclinical and prodromal status to overt
disease. There is a wide variation in the age at onset, both within muta-
tion class and within families with the same mutation at least in GRN
and C9orf72 mutations,’? and possible disease modifiers have been
recently reported, even though penetrance is high at age 75.1°

Moreover, several studies have faced the challenge of detect-
ing a clinical, biological, or imaging signature preceding the onset
of dementia. A major contribution in this field has been pro-
vided by the international consortia devoted to the extensive eval-
uation of presymptomatic subjects carrying pathogenic mutations.
The ongoing European- and Canadian-based Genetic Frontotempo-
ral dementia Initiative (GENFI, www.genfi.org), the US-based Advanc-
ing Research & Treatment for Frontotemporal Lobar Degenera-
tion/Longitudinal Evaluation of Familial Frontotemporal Dementia
Subjects (ARTFL/LEFFTDS), and the Australian Dominantly Inherited
Non-Alzheimer Dementias (DINAD) studies, have recruited cross-
sectional and longitudinal data with the aim to identify early alterations
in at-risk subjects before the expected onset of disease.?2 14716 |n addi-
tion, the recently established consortia in Latin America (Research
Dementia Latin America [ReDLat]) and New Zealand (Genetic FTD
Study [FTDGeNZ]) will be able to further contribute to the description
of the natural history of the disease.2’~20 These studies collaborate
together under the auspices of the FTD Prevention Initiative (FPI).12

It is therefore important for observational studies and clinical tri-
als to determine specific parameters and measures of preclinical and
prodromal FTD, to share a common lexicon when identifying patients
in the earliest phases of disease. However, several outstanding issues

still need proper analysis and scrutiny. To this end, the goal of the
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BOX 1 Unmet questions in preclinical and prodromal
frontotemporal dementia

1. How do we define the onset of preclinical disease?
2. How do we define further stages of preclinical disease?
3. Is there a “no disease” phase in genetic FTD preceding the

onset of preclinical disease?
4, How do we define onset of prodromal disease?

How may we assess mild cognitive and/or behavioral and/or
motor impairment (MCBMI) due to FTD?

6. How do we include the prodromal neuropsychiatric features

(particularly of C9orf72) within this framework?

7. How do we include mild features of parkinsonism or motor
neuron disease within this scheme?

8. How do we define phenoconversion?

9. What modifies stage and progression of disease?

present work is to review the existing literature on the preclinical and
prodromal phases of FTD, discussing and proving recommendations to
the nine pressing questions that need a proper definition (see Box 1).
This provides a starting point for operationalizing and better char-
acterizing preclinical and prodromal disease stages of FTD. These
recommendations should provide guidance for clinical and research
applications, particularly at a time when therapeutic clinical trials are
focusing on prodromal and preclinical stages of disease, promoting and
harmonizing large-scale multicenter collaborative studies, and increas-

ing funding from national and international agencies.

1 [ HOW DO WE DEFINE THE ONSET OF
PRECLINICAL DISEASE?

The onset of a preclinical disease stage may be theoretically defined
by the occurrence of first signs of protein misfolding, presumably ini-
tially without either neuronal dysfunction or neurodegeneration, and
with no clinical FTD-related symptoms. One of the key questions in the
current literature is therefore how we define this switch from a “no dis-
ease” stage to a “preclinical stage” with available markers (see Figure 1).

Conceptually, while the disease process may be initiated through
misfolded proteins forming neurotoxic oligomers, the first identifiable
hallmark of a preclinical disease stage is the abnormal accumulation
of pathogenic protein aggregates within cells, including (1) hyperphos-
phorylated tau, (2) TDP-43 immunoreactive inclusions, (3) FET family
proteins (consisting of FUS, Ewing’s sarcoma protein [EWS], and TATA-
binding protein associated factor 2N [TAF15]), (4) dipeptide repeat
proteins (DPR), or (5) still-to-be-defined proteins in those with fron-
totemporal lobar degeneration-ubiquitin proteasome system (FTLD-
UPS) pathology.21

Reliable in vivo biomarkers able to predict the two main pro-
teinopathies, namely tau or TDP-43, are not yet available. No TDP-43
positron emission tomography (PET) tracer has been investigated as of
yet, and tau PET imaging studies have led to variable results, with the
main limitation in the primary tauopathies being the non-specific/off-

target binding and variable affinity for different tau species.?223 Sim-
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ilarly, fluid biomarkers of tau and TDP-43 in cerebrospinal fluid (CSF)
or blood have not shown specificity for FTLD pathology. While blood
phosphorylated tau (p-tauqg4 and p-tau,q7) assays have recently been
shown to be useful to identify AD, they do not identify primary
tauopathies including FTLD.24-27 Markers of blood and CSF TDP-43
measurements have been developed but are not specific for TDP-43
pathology.282? Phosphorylated TDP-43 markers and CSF TDP-43real-
time quaking-induced conversion reaction (RT-QuIC) may improve
specificity,3%31 but these results await confirmation. TDP-43 aggre-
gates may be found even in a subset of AD patients, or in other
neurodegenerative disorders or in some aged people, thus TDP-43
biomarkers may be not completely specific.3%33

Markers for the FET proteins have also not yet been developed.
Recent work has identified the presence of a CSF measure that is
specific to Corf72 expansion carriers. One of the key pathophysi-
ological mechanisms in C%orf72-related disease is the accumulation
of sense and antisense transcripts of the expanded repeats. These
RNA transcripts serve as templates for the synthesis of DPRs through
repeat associated non-ATG (RAN) translation. So far, only one of these,
the glycine-proline-repeating protein or poly(GP), has been shown
to be measurable in CSF,473¢ being increased in C9orf72 expansion
carriers in both the presymptomatic and symptomatic phase, and
normal in controls. This suggests it could be useful as a preclinical
biomarker in genetic FTD.%”~3? Importantly, reports of autopsy stud-
ies in C9orf72 expansion carriers have also described widespread DPR
protein pathology prior to the formation of TDP-43 inclusions and neu-

ronal loss,*0-42

suggesting that at least for C9orf72 expansion carriers,
the onset of the preclinical stage is defined by the presence of DPR pro-
teins rather than TDP-43 pathology.

There is also a need for more studies examining the extent of neu-
ropathological findings consistent with FTLD in healthy older people.

Recommendation: The preclinical phase of FTD should theoreti-
cally extend from the earliest signs of protein misfolding to the onset
of the first clinical symptom of FTD. Based on current knowledge, the
onset of a preclinical stage cannot be reliably identified with avail-
able biomarkers at this time except potentially for those with C%orf72
expansions. We recommend that ongoing research aims to identify
both PET tracers and fluid biomarkers that can sensitively and specifi-

cally show the presence of tau, TDP-43, and FET pathology.

2 | HOW DO WE DEFINE FURTHER STAGES
OF PRECLINICAL DISEASE?

The preclinical disease stage may be characterized by when protein
accumulation and misfolding is initiated, but later preclinical stages can
also be defined. Accumulation of toxic proteins leads to neuronal dys-
function with multiple cellular mechanisms being affected, including
the function of mitochondria and stress granules, autophagy, and tran-
scription. The outcome of this is neuronal loss, that is, neurodegenera-
tion. Both dysfunction and loss of neurons occur prior to the onset of
clinical symptoms (see Figure 1).

18F-_fluorodeoxyglucose (FDG)-PET detects changes in glucose
metabolism in the brain with hypometabolism representing neuronal
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FIGURE 1

Disease stages in frontotemporal dementia (FTD). Natural history of FTD and monogenic FTD subtypes. C9orf72, chromosome 9

open reading frame 72; DPR, dipeptide repeat proteins; GRN, progranulin; MAPT, microtubule-associated protein tau; ND, no disease; TDP-43,

TAR DNA-binding protein 43

dysfunction. Studies in AD suggest that FDG-PET may be abnormal
prior to neuronal loss measured as atrophy on magnetic resonance
imaging (MRI).*3-4 FDG-PET is also abnormal presymptomatically
in genetic FTD,*/~>1 and similar to AD, a few studies have now been
performed suggesting that changes occur before structural MRI
abnormalities.

Nonetheless, MRI represents one of the most powerful tools to
study in vivo neurodegenerative disorders, with a wide range of
possible approaches to explore incipient neurodegeneration.’?>3 The
majority of imaging studies in preclinical FTD have used volumetric
T1-weighted MRI to investigate changes in gray matter structure and
to measure brain volume, the rate of brain atrophy, and the volumes of
specific brain regions of interest.>*-¢% In monogenic FTD, volumetric
MRI analysis shows significant brain atrophy, first detectable in the
insula, at least 10 years before expected symptom onset.* Diffusion-
weighted MRI detects white matter damage including axonal loss. In
genetic FTD, changes to diffusivity have been found in white matter
tracts many years before symptom onset.? It needs to be further
established if and how these subtle changes in gray and white matter
found in T1 and diffusion imaging, respectively, may be used as a
marker of early neurodegeneration in preclinical stages at the single
subject level.

More recent studies have identified a possible fluid biomarker of
neurodegeneration, albeit not specific for FTD. Neurofilament light
chain (NfL) protein concentrations both in CSF and in blood reflect
axonal degeneration and have been shown during the symptomatic
period of FTD to be reflective of disease intensity and progression.
In the presymptomatic period, analysis seems to suggest that levels
change not long prior to symptom onset, increasing by 3- to 4-fold dur-
ing conversion.®26* While longitudinal NfL measurements could be
used to identify mutation carriers approaching symptom onset,®> NfL
needs to be further studied on a single subject basis, and in particular,

studies showing whether it is sensitive enough to detect neurodegen-
eration prior to early symptoms (i.e., prior to a prodromal stage).
Recommendation: Neuronal dysfunction can be measured in
advance of neuronal loss with FDG-PET imaging but has been poorly
studied in presymptomatic FTD thus far. Further studies are impor-
tant to establish the earliest time at which dysfunction can be detected
prior to structural MRI abnormalities, including investigation of newer
measures of impaired neuronal function such as novel PET ligands, neu-
rophysiological and magnetoencephalographic markers, and CSF mea-
sures of synaptic dysfunction. The onset of neuronal loss may be identi-
fiable by MRI (especially with the advent of ultra-high-field 7T MRI) or
fluid biomarkers such as NfL, but it remains unclear which is the most
sensitive (early) or specific marker of neurodegeneration in FTD and
what cut-offs or thresholds are to be applied, particularly at the single

subject level.

3 | ISTHERE A “NO DISEASE” PHASE IN GENETIC
FTD PRECEDING THE ONSET OF PRECLINICAL
DISEASE?

The conceptual timeline of FTD natural history typically includes a
healthy stage, with “no disease,” followed by preclinical and prodro-
mal disease to overt dementia (see Figure 1). In monogenic FTD sub-
types, some biomarkers appear to be altered from birth and many are
abnormal even in young adulthood. This raises the question whether
there is a neurodevelopmental dimension to FTD, and the existence of
astage thatis without disease, or without neuropathological abnormal-
ities. By analogy with another genetic dementia, Huntington’s disease,
there may even be fetal neurodevelopmental abnormalities.®®
Pathogenic loss-of-function mutations in GRN lead to haploinsuffi-
ciency, with blood and CSF levels of progranulin reduced to < 50% of
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normal levels.%”=72 Low serum, plasma, or CSF progranulin levels have
high accuracy in detecting pathogenic GRN mutations,’2-7> with low
levels observed from the earliest time period in GRN mutation carriers,
likely antedating TDP-43 neuropathology. At present, studies have not
been performed in children (< 18 years) to understand whether levels
are low from birth, but the assumption is that they are, given the known
pathophysiology.”3-7>

As mentioned above, C9orf72 expansion carriers have widespread
DPR protein pathology early in life.*%-42 While similarly to GRN muta-
tion carriers studies of fluid biomarkers show abnormal levels (here
of raised poly[GP] concentrations) from at least the fourth decade of
life,37:3%.76.77 and no studies have been performed in children, there is
a less clear assumption of abnormal levels from birth and studies in a
pediatric cohort would be highly informative.

Recommendation: Based on current knowledge it is not clear if a
“no disease” stage exists after normal childhood development, for some
forms of genetic FTD. For people with GRN mutations, there may well
be a phase during which a biological disruption is ensuing, but which
is not accompanied by an abnormal accumulation of specific patho-
logic proteins. For people with C9orf72 expansions, the accumulation
of DPRs appears to occur at least in young adulthood, but how early is
unknown. Considering also the higher rate of developmental disorders
in offspring of patients with FTD,”8-81 this has suggested the hypothe-
sis of some forms of genetic FTD being neurodevelopmental disorders,
in which the boundary with “no disease” is even more indistinct. Studies
in pediatric at-risk genetic FTD cohorts, while ethically more complex,
will be required to answer these questions more fully.

4 | HOW DO WE DEFINE ONSET OF
PRODROMAL DISEASE?

Prodromal FTD may be defined as the presence of subtle cognitive
and/or behavioral changes (see Figure 1). Based on studies from large
genetic cohorts, the cognitive prodromal phase may start with grad-
ual and progressive executive dysfunction, occurring in isolation or
associated with other cognitive changes, such as impaired social cog-
nition or language disturbances. These may be accompanied by behav-
ioral symptoms, such as apathy, disinhibition, loss of empathy, compul-
sive behavior, and change in appetite or subtle motor deficits,14¢:82-90
which are observed by the patient, informant, or clinician, and repre-
sent a clear change from the person’s usual behavior (see Box 2).
Unlike in AD, for which the concept of MCl was developed to define

91-93 o detailed characterization of prodromal

the prodromal stages,
FTD has been reported. The direct application of the term MCI to
FTD is fraught with difficulties given the complex clinical presenta-
tion of FTD, which can be heralded by different phenotypes. Attempts
to define MCl-like or prodromal stages in FTD have been undertaken
with mixed results. Initial criteria for mild behavioral impairment (MBI)
excluded serious memory complaints, ignoring cognitive functioning,
despite its apparent importance for the early and accurate detection
of FTD.?4?> The term frontotemporal-MCI (FT-MCI) was later pro-

posed, with criteria including also behavioral symptoms but not requir-
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BOX 2 Proposed recommendation for clinical features of prodromal
FTD

Gradual and progressive cognitive and/or behavioral and/or
motor changes compared to prior functioning and reported
by patient or informant, with preservation of independence
in functional abilities of daily living, occurring along with
one or more of the following features:

Objective evidence of a dysexecutive syndrome, occurring
in isolation or associated with other cognitive changes,
such as impaired social cognition, as measured by tests
with established specificity for FTD

Language deficit, as measured by tests with established
specificity for FTD

Behavioral changes: apathy, disinhibition, loss of empathy,
compulsive behavior, and change in appetite

Signs and symptoms of parkinsonism or motor neuron
disease

ing the onset to be insidious and progressive, creating potential con-
fusion with delirium, mania, and other conditions.?® The phonological
similarity in naming with Petersen MCI criteria could also generate
confusion.’” Finally, provisional MBI criteria have been recently pro-
posed, excluding patients younger than 50 years and not including cog-
nitive disturbances.’® Thus, a unifying characterization of prodromal
FTD is currently lacking.

Recommendation: The onset of prodromal FTD is characterized
by gradual and progressive cognitive and behavioral symptoms, which
may be observed by the patient, informant, or clinician, as representing
a clear change compared to prior functioning (see Box 2). Given that
the onset of prodromal FTD can present with any of behavioral, cogni-
tive, motor or language change, we suggest the label of mild cognitive
and/or behavioral and/or motor impairment (MCBMI) to capture the
complexity of the clinical phenotype under a single unifying character-
ization (see next section).

5 | HOW MAY WE ASSESS MCBMI DUE TO FTD?

As with many other neurodegenerative conditions, behavioral and cog-
nitive changes may be present in FTD years before the onset of mani-
fest dementia. These changes clearly describe the switch from preclin-
ical to prodromal disease stage, and a proper description of the first
symptoms may further characterize MCBMI due to FTD. Up to now, the
most meticulous description of prodromal clinical abnormalities has
been performed in at-risk subjects carrying FTD-related pathogenic
mutations.”?

Results from the GENFI study have clearly shown that differences
between mutation carriers and non-carriers in neuropsychological
measures are apparent about 5 years before the expected onset of
dementia, particularly in tests of naming (Boston Naming Test) and
executive function (Trail Making Test Part B, Digit Span backward, and

Digit Symbol Task), but not in immediate recall and verbal fluency.*
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Previous studies performed in smaller cohorts of presymptomatic
mutation carriers obtained somewhat similar findings.¢%.89.100-112

The wide heterogeneity of clinical presentation and disease pro-
gression has so far hindered a clear-cut identification of the core neu-
ropsychological battery tests to adopt for defining MCBMI, both in
genetic and in non-monogenic FTD, and for tracking the shift from pre-
clinical to prodromal stages. Moreover, for a disease in which behav-
ioral disturbances, including social misconduct, represent the major-
ity of initial symptoms,113 there is an urgent need to find appropriate
standardized tools to detect subtle personality changes preceding the
onset of disease.

The assessment of aminimum data set, exportable in different coun-
tries, is crucial to define the same outcome measure for clinical trials
devoted to delaying or preventing the onset of disease. In this view, a
study by the ARTFL/LEFFTDS consortium has shown that the Execu-
tive Abilities: Measures and Instruments for Neurobehavioral Evalua-
tion and Research (EXAMINER), a computerized battery developed to
quantify many facets of executive functions, is a sensitive measure of
cognitive changes in presymptomatic FTD.8* Nonetheless, explicit cri-
teria for the use of objective neuropsychological testing are currently
lacking and should be defined to harmonize evaluations.

The Clinical Dementia Rating (CDR) plus National Alzheimer’s Coor-
dinating Center (NACC) FTLD rating scale (previously called the FTLD-
CDR),1* may be a promising measure to identify MCBMI, taking into
consideration not only cognitive functions but also language impair-
ment and behavioral and social functioning. Patients with MCI (includ-
ing mild language impairment) and/or MBI, with relatively preserved
functional independence, will have a global score of 0.5. Patients
who appear clinically to have a dementia, irrespective of the partic-
ular FTD phenotype, will have a global score of >1.112116 Recent
studies have confirmed the high sensitivity of this scale in identi-
fying patients in the early phases of disease, with very good inter-

rater reliability,1:84.90.117-120

although the low specificity may limit
its use as a screening tool.117:118 Nevertheless, the CDR plus NACC
FTLD mostly relies on a co-participant/informant report and may
lack objectivity. It also does not include measures of neuropsychiatric
disturbance.

Recommendation: A provisional definition of MCBMI could rely on
the CDR plus NACC FTLD score of 0.5; however, more objective neu-
ropsychological and behavioral measures should be established. Fur-
thermore, any scale aimed at detecting prodromal FTD should incor-

porate the neuropsychiatric symptoms seen in FTD (see below).

6 | HOW DO WE INCLUDE THE PRODROMAL
NEUROPSYCHIATRIC FEATURES (PARTICULARLY
OF C9orf72) WITHIN THIS FRAMEWORK?

A growing body of evidence describes neuropsychiatric symptoms as
early markers of decline along the neurodegenerative spectrum.!?!
This is of particular interest in prodromal FTD, in which behavioral
symptoms represent the core feature of the disease. What is emerg-
ing is that, alongside behavioral symptoms already described in cur-

rent clinical criteria for FTD, such as disinhibition, apathy, loss of
empathy, perseverative or compulsive behavior, and hyperorality, other
neuropsychiatric symptoms are frequently reported. These manifes-
tations, which are still not defined as FTD core symptoms, should be
sought during evaluation and should be considered possible present-
ing symptoms in the prodromal stages.’?? In particular, anxiety and
depression as well as hallucinations and delusions may be present in
people with FTD, the latter highly expressed in C9orf72 expansion car-
riers compared to the other FTD subtypes.'23 As mentioned above,
such features are not captured well by current FTD scales such as the
CDR plus NACC FTLD.

More complex, and relevant to the discussion above about the
potential neurodevelopmental aspects of C%orf72-related FTD, is
the presence of apparently lifelong personality traits in people with
FTD, including autistic or schizotypy traits, features which may have
changed little over time, but must be distinguished from behavioral
changes, which evolve and progress over time and that might represent
prodromal FTD. The former may end up being scored in symptom rat-
ing scales leading to the apparent presence of prodromal symptoms but
in reality are not actually changes from a “baseline.” These features are
important to identify in the earliest FTD stages, allowing a better sepa-
ration of FTD cases from phenocopies or other mimics.

Recommendation: Further evaluation of the frequency and pheno-
type of prodromal neuropsychiatric symptoms (particularly in C9orf72
expansion carriers) is required, with a focus on longstanding autistic
and schizotypy traits as well as more overt neuropsychiatric symptoms.
Neuropsychiatric evaluation tools will have to consider past psychi-
atric or personality profiles to reliably identify new emerging prodro-

mal symptoms.

7 | HOW DO WE INCLUDE MILD FEATURES OF
PARKINSONISM OR MOTOR NEURON DISEASE
WITHIN THIS SCHEME?

A significant percentage of patients with FTD have associated
extrapyramidal symptoms, which can be nonspecific, not meeting
criteria for a particular disorder, or may fit the criteria for either
PSP (Richardson syndrome) or CBS.>612124-131 | poth sporadic
and genetic FTD, movement disorders can sometimes be the ini-
tial presentation.'32133 There is also considerable clinical overlap
with MND.” Considering that all these diseases are included under
the frontotemporal lobar degeneration umbrella term and that most
pathogenic mutations may lead to one of these clinical syndromes,
initial manifestations of parkinsonism or MND should be identified
promptly in the early stages of disease, on par with cognitive and
behavioral symptoms. At present, there are no movement disor-
der scales specific for FTD, although motor behavior may be clin-
ically identified and quantifiable in the prodromal phase by scales
designed for other diseases (e.g., the Unified Parkinson’s Disease
Rating Scale [UPDRS]; Progressive Supranuclear Palsy Rating Scale
[PSPRS]; the Amyotrophic Lateral Sclerosis Functional Rating Scale
[ALSFRS]).65.90.117,118,134
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Recommendation: Motor symptoms are a common feature in FTD,
and it may be argued that the onset of isolated movement disorders in
the absence of cognitive symptoms could also be defined as a prodro-
mal phase of FTD. We propose a unified approach, potentially including
motor features in the prodromal FTD construct, that is, MCBMI. Fur-
ther studies assessing isolated initial motor symptoms at the onset of

sporadic FTD are required.

8 | HOW DO WE DEFINE PHENOCONVERSION?

Applying the definition of “dementia,” namely the presence of cog-
nitive deficits that are significant enough to interfere with instru-
mental activities of daily living (IADLs), is still challenging in FTD. In
early FTD disease stages, patients may present with preservation of
IADLs,133.135.136 4t |east as listed for assessment of other disorders,
thus not satisfying the diagnosis of dementia, despite the presence
of significant behavioral disturbances, executive deficits, or language
impairment. Instead of measuring the impact on IADLs, which are
somewhat loosely defined in clinical practice and that are useful indi-
cators to track changes from a biological process to a clinical condi-
tion in AD, a broader neuropsychiatric approach may be more helpful
to define conversionto FTD. In psychiatry, the presence of a mental dis-
order is defined as a condition that causes significant distress or impair-
ment of personal functioning in social, occupational, or family activities,
and must not be merely an expectable response to common stressors
and losses.137:138

It is worth noting that the National Institute on Aging-Alzheimer’s
Association criteria specifically state that a diagnosis of dementia is
appropriate in the setting of interference with the ability to function
at work or at usual activities, and that the change represents a decline
from prior functioning, with changes in personality or behavior plus one
other more classic cognitive domains.3?

As such, conversion to dementia could be defined by symptoms that
lead to one or more of the following consequences: (1) the appearance
of interference with IADLs, including IADLs relevant to the types of
changes induced by FTD; (2) impairment of social/occupational abilities
compared to prior functioning, despite preserved autonomy (e.g., nor-
mal independence but loss of relationships due to personality changes,
inability to hold a job, inadequacy to parent children, language distur-
bances); (3) a global CDR plus NACC FTLD score > 1; (4) fulfillment of
consensus criteria for bvFTD or PPA.

The capability to translate abnormal behavior into different social
and cultural contexts is yet to be achieved, and transcultural studies
defining what is considered socially correct are still lacking. To this
end, cooperative and multinational studies are warranted. Further-
more, important implications to consider include extreme behaviors
that lead to legal issues such as sexual deviation (paraphilia) or eco-
nomic difficulties that occur before the detection of a neurodegener-
ative condition. To this end, co-operative and multinational studies are
needed.

Recommendation: The current concept of dementia relies on

impairment of IADLs, but this may not be sufficient in defining FTD,
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which may comprise impairment of social and occupational functioning
adversely impacting a normal lifestyle. Integrating the psychiatric defi-
nition of a mental disorder along with the definition of dementia could
be an attractive alternative to define the symptomatic phases of FTD

and may capture a wider range of conversion.

9 | WHAT MODIFIES STAGE AND PROGRESSION
OF DISEASE?

The risk of progression and natural history of preclinical and prodro-
mal FTD may depend on modulating factors, for which the magni-
tude and interaction have yet to be determined. It has been postulated
that certain lifetime experiences, including education, leisure activities,
and occupational attainment, may be proxies of cognitive reserve and
may modulate brain resistance and resilience.24%141 |n prodromal FTD,
it has been shown that higher educational achievements are associ-
ated with greater gray matter volumes, suggesting that subjects with
higher education are able to better counteract the detrimental effects
of a pathogenetic mutation.’® Bilingualism, another emerging aspect
of cognitive reserve that has been shown to have an impact also in
AD,142-144 has been found to delay the onset of dementia in bvFTD
but not in PPA.1#> Longitudinal studies have shown that increased edu-
cation, but also active lifestyles, may also facilitate both brain reserve
and brain maintenance in the prodromal stages of genetic FTD,14¢:147
suggesting that cognitive reserve may confer clinical resilience, even in
autosomal dominant FTD.

Along with modifiable modulators, even non-modifiable genetic fac-
tors have been identified and associated with age at disease onset
in FTD. The most established genetic factor, at least in TDP-43
proteinopathies, is the transmembrane protein 106B (TMEM106B)
gene.18 |t has been suggested that the TMEM106B rs1990622 poly-
morphism might modulate progranulin plasma levels, thus affecting
age at symptom onset in GRN mutation carriers.24?1°0 Accordingly,
subjects with prodromal FTD due to GRN mutations and bearing
the TMEM106B TT genotype showed greater functional brain dam-
age than those with CT/CC TMEM106B genotypes.'3131 In prodromal
FTD-TDP-43 due to C9orf72 expansion, the relationship is less clear,
and it has been suggested that TMEM106B might be able to affect dis-
ease pathology, but with an opposite association.13152153 Thjs effect
may be an example of the general phenomenon of epistasis, in which a
genetic variant is beneficial on some genetic backgrounds but deleteri-
ous in others.1°2154 |n the same view, other genetic modifiers, such as
apolipoprotein E genotype or MAPT haplotypes, should be considered.

Recommendation: Increased cognitive reserve, comprising edu-
cation, bilingualism, and active lifestyle, are protective factors for
FTD progression, in preclinical, prodromal, and dementia phases. The
TMEM106B TT polymorphism may increase the risk of progression to
prodromal FTD in GRN carriers. Identification of disease modifiers is
key to correctly ranking the risk of disease progression, to stage pro-
dromal FTD and forecast duration of the MCBMI stage, and to select
subjects, reducing heterogeneity and increasing statistical power of

analysis in clinical trials.1>>
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10 | CONCLUSIONS AND PERSPECTIVES

Developing the framework of preclinical disease stages as well as
MCBMI-FTD continues to pose a challenge, and two aspects should
be considered for future studies. On one hand, we should first care-
fully define the criteria of MCBMI, which may be conceptualized as a
“risk state.” MCBMI may represent the prodromal state of FTD, and in
some cases, it may refer to a neuropsychiatric condition different from
FTD, especially in late-onset cases in which different neuropathologies
including AD may coexist, or to a non-progressive or reversible stage.
We need a proper definition of clinical features of MCBMI-FTD beyond
the label of “mild FTD symptoms”; and to this, reliable biomarkers able
to characterize the preclinical and prodromal stages are still clearly
needed, as a definition solely based on clinical profile will have low
specificity for sporadic cases, particularly in a psychiatric setting. Con-
sidering both clinical symptoms and supportive markers, in the near
future we may suggest a proper classification of the prodromal stages
of FTD to be used in clinical practice and in pharmacological and non-
pharmacological trials.

There are some issues that should be considered regarding MCBMI-
FTD. FTD is a relatively rare disorder’>® and with a stronger genetic
trait than AD.'2 For these reasons, targeting MCBMI-FTD needs fur-
ther remarks. It is plausible to speculate that markers of preclinical or
prodromal FTD in genetic cases at risk of developing disease may be
different from what we may observe in overt dementia. A debate is still
open on definitions of outcomes in relatively small samples of subjects,
with the proposal to identify new personalized endpoints.

The overall considerable proportion of subjects at risk of develop-
ing disease due to monogenic mutations, even though still to be estab-

lished by multinational epidemiological studies,156:157

and the possi-
ble differences with non-monogenic MCBMI-FTD, raise several ques-
tions. First, monogenic disease may help to build up the model of
progression from the preclinical to the symptomatic stages. Whether
this framework may be applied even in non-monogenic disease, in
which the pre-test probability that behavioral or cognitive symptoms
will lead to FTD is much lower, needs to be further addressed. Ini-
tial findings suggest that clinical presentations (including cognitive,
behavioral, and motor) are very similar between genetic and sporadic
FTD.158.159

Second, in MCBMI-FTD due to pathogenetic mutations we do not
need diagnostic markers, but require prognostic markers, while in spo-
radic MCBMI-FTD we need both.

Most importantly, we should consider genetic MCBMI-FTD and spo-
radic MCBMI-FTD as distinct entities regarding treatment approaches.
Pathological mutations, that is, GRN, MAPT, or C9orf72, result from spe-
cific pathogenetic mechanisms and thus have specific targets of treat-
ment. Conversely, in those cases with unknown pathogenetic muta-
tions, targets for disease-modifying treatments should be centered
on the underlying proteinopathy, that is, tau or TDP-43, or nonphar-
macological interventions targeting neurotransmitters or connectivity
impairment.”#1¢0 Conversely, genetic and sporadic MCBMI-FTD can
be considered comparable in symptomatic clinical trials and included

regardless of the genetic or neuropathological background.

Finally, as with the symptomatic FTD stage, MCBMI-FTD also
requires markers of phenotype prediction and markers of proximity to
disease onset.

Several issues remain unanswered, including: how do we account for
FTD phenocopies; what are the ethical issues in making an earlier diag-
nosis, informing subjects about biomarkers when it is still uncertain if it
will progress to clinical FTD?

All the above considerations represent the roadmap of the recently
established GENFI FTD Staging Working Group, whose main objec-
tives will be to answer exhaustively the outstanding issues reported in
the present proposal, to identify biomarkers in preclinical and prodro-
mal FTD, and to plan larger collaborative international studies to test
the utility and validity of this proposed new approach.

Our ability to carefully characterize the preclinical and prodromal
stages of FTD will help in early disease detection, in enabling patient

stratification, and in tailoring therapeutic selection for each patient.
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