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Abstract

Nutritional influences have been discussed as potential modulators of Parkinson’s disease (PD) pathology through various epidemi-
ological and physiological studies. In animal models, a high-fat diet (HFD) with greater intake of lipid-derived calories leads to
accelerated disease onset and progression. The underlying molecular mechanisms of HFD-induced aggravated pathology, however,
remain largely unclear. In this study, we aimed to further illuminate the effects of a fat-enriched diet in PD by examining the brainstem
and hippocampal transcriptome of alpha-synuclein transgenic mice exposed to a life-long HFD. Investigating individual transcript
isoforms, differential gene expression and co-expression clusters, we observed that transcriptional differences between wild-type
(WT) and transgenic animals intensified in both regions under HFD. Both brainstem and hippocampus displayed strikingly similar
transcriptomic perturbation patterns. Interestingly, expression differences resulted mainly from responses in WT animals to HFD,
while these genes remained largely unchanged or were even slightly oppositely regulated by diet in transgenic animals. Genes and
co-expressed gene groups exhibiting this dysregulation were linked to metabolic and mitochondrial pathways. Our findings propose
the failure of metabolic adaptions as the potential explanation for accelerated disease unfolding under exposure to HFD. From the
identified clusters of co-expressed genes, several candidates lend themselves to further functional investigations.

Introduction
Parkinson’s disease (PD) is a complex neurodegenerative disease
with the demise of dopaminergic neurons in the substantia nigra
leading to dopamine depletion, which, in turn, causes the charac-
teristic clinical phenotype with progressive motility impairment
with resting tremor and postural instability (1). While rare famil-
ial forms of the disease exist, the preponderance of PD cases
occurs seemingly sporadic. Familial as well as sporadic forms
share misfolded amyloid fibrils of alpha-synuclein (αSYN) that
are accumulated in Lewy bodies, the pathological hallmark of the
disease (2).

For αSYN, encoded by the SNCA locus, rare point mutations (3–
7) and genomic multiplications have been identified in familial
cases (8). In addition, several single nucleotide polymorphisms in
SNCA have been associated with sporadic cases in genome-wide
association as well as candidate gene studies (9–15).

Besides genetic contributions and age as key risk factor, an
array of environmental factors and lifestyle choices seem to mod-
ulate the risk for PD (16). Diet is one of these factors that may—
positively and negatively—impact the onset and progression of
the disease (17). In humans, epidemiological studies suggest a
higher risk for PD among individuals with greater intake of total
animal fat (18–21), whereas other studies find no significant asso-
ciations (19,22–24). These controversial results are also addressed

in a recent meta-analysis that suggests high total energy intake
rather than total fat intake being relevant for an increased risk of
PD (25).

In animal models, the commonly used high-energy diets are
so-called HFDs (26) with lipid-derived calories from saturated
fat (lard), more unsaturated fat as well as increased levels of
sucrose. It is important to note that an HFD is known to induce
insulin resistance and to mimic diabetes mellitus type 2 in
animal models, which, in humans, is associated with a more
aggressive PD phenotype (27–29). Studies in toxin-induced PD
models show HFD to exacerbate PD progression by exhibiting
increased dopamine depletion in the substantia nigra, striatum and
nigrostriatal pathway and an aggravation of vascular pathology
(30–33). Furthermore, in a genetic mouse model expressing the
human mutant h[A30P]αSYN (34), long-term HFD accelerates the
onset of the locomotor phenotype, accompanied by earlier alpha-
synucleinopathy and astrogliosis (35).

While several hypotheses have been proposed as to how HFD
and/or diabetic conditions aggravate PD pathology, including
increased oxidative stress, mitochondrial dysfunction and
neuroinflammation (reviewed in (36)), the molecular and cellular
mechanisms underlying these effects remain to be elucidated. To
better understand associated pathways, we here investigated the
brainstem and hippocampal transcriptome of αSYN transgenic
mice (TG) exposed to a life-long HFD.
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Figure 1. Diet-dependent gene expression changes in brainstem and hippocampus of WT and TG mice. (A) Schematic diagram showing the experimental
design and groups of WT and TG mice fed either an SD or a HFD from weaning till 12 months of age. From six animals per group, RNA was isolated
from hippocampus and brainstem and subjected to RNA-sequencing. (B) Expression levels of human SNCA in nRPKM shown for brainstem (left) and
hippocampus (right) as individual data points for each animal with the mean ± standard error of mean (SEM) per experimental group. (C) Expression
levels of murine Snca for brainstem (left) and hippocampus (right) per animal as individual nRPKM data points with the mean ± SEM. (D) Number of DEGs
for the main contrasts in brainstem between experimental groups in a 2 × 2 factorial design. Gene expression was modeled as a function of genotype,
diet and their interaction. Union of DEGs indicated at the center. (E) Analogous to (D) with DEG counts for hippocampus.

Results
HFD-dependent differential expression in
brainstem and hippocampus
Analogous to the experimental paradigm used in our previous
study (35), h[A30P]αSYN (TG) as well as wild-type (WT) mice were
fed either a standard chow diet (SD, 3.8% total fat, 3.1 kcal/g) or
an HFD (22.8% total fat, 4.6 kcal/g) from weaning till 12 months
of age (Fig. 1A). As in our previous study, at 12 months of age,
mice on HFD weighed about 50 g (48 – 61 g) in contrast to 35 g
(33 – 41 g) on a standard diet (SD). For both diets, there was
no difference in weight between TG and WT mice. Afterwards,
RNA from brainstem and hippocampus was collected from six
animals per group and subjected to RNA-sequencing (RNA-seq).
After alignment and stringent quality control, the principal com-
ponent analysis showed no outliers in any of the experimental
groups (Supplementary Material, Fig. S1). We further computa-
tionally estimated the cell-type composition across samples in
order to assess such confounding effects underlying differential
expression. Cell type-specific expression profiles based on single-
cell reference data (37,38), however, suggested great homogeneity
and showed no significant compositional shifts between samples
or groups (Supplementary Material, Figs S2 and S3).

After establishing this ground truth in the data, we exam-
ined in the first step the expression of endogenous and human
SNCA. In TG mice, human SNCA showed a prominent and sim-
ilar expression of about 700 normalized Reads Per Kilobase per
Million (nRPKM) in both brain regions (Fig. 1C). Endogenous Snca

expression remained largely unaffected by the transgene, but
showed about 10-fold higher levels in hippocampus compared to
brainstem (Fig. 1C). Hence, the relative overexpression was much
stronger in brainstem, potentially contributing to the pronounced
pathology observed in the region (34).

In a next step, expression changes along all primary contrasts
were determined resulting in 264 differentially expressed genes
(DEGs) for brainstem and 609 for hippocampus (Fig. 1D and E).
Besides SNCA, few genes showed diet-independent differen-
tial expression in TG mice, among them Auh and Gabra2
in brainstem as well as Cntn3 and Zfp932 in hippocampus
(Supplementary Material, Fig. S4). In contrast, the much larger
fraction of DFGs was identified in both brain regions when
mice were fed the HFD (Fig. 1D and E), suggesting interactions
between genotype and diet. As partially captured directly through
the interaction term of the statistical model for genes like
Ppp1r14a and Grip2 in brainstem and hippocampus, respectively,
these interactions seemingly encompassed lacking or even
opposite responses in TGHFD animals compared to WTHFD

(Supplementary Material, Fig. S4E and F).

Differential expression results mainly from
genotype–diet interactions
In order to put expression changes into perspective, we visually
examined the profiles of differential genes from each contrast
across the groups (Supplementary Material, Fig. S5). As also
apparent from the union of these DEGs, there were two
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dominating expression patterns that partitioned into clusters
C1 and C2 (Fig. 2A and D). Interestingly, this applied to both brain
regions in striking similarity. In cluster C1, genes showed lower
expression in the WTHFD group but higher in TG animals, largely
irrespective of the diet (Fig. 2B and E). Nearly mirror-imaged,
genes in cluster C2 showed higher expression in WTHFD mice
but lower expression in TG mice, again largely irrespective of
diet, a pattern already alluded through genes identified earlier
(Supplementary Material, Fig. S4E and F).

In brainstem, C1 and C2 genes were most significantly enriched
for calcium signaling pathway and mitochondrion, respectively
(Fig. 2C), whereas C1 and C2 genes in hippocampus were
overrepresented for transmitter-gated ion channel activity and
nervous system development, respectively (Fig. 2F).

Transcriptome perturbations through
genotype–diet interactions encompass shifts in
transcript isoform composition
In order to explore whether dysregulation in TG animals also
extended to other aspects of the transcriptome, we next investi-
gated alternative splicing. Detecting alternatively spliced parts in
transcripts still is inherently difficult from RNA-seq data because
reads are typically much shorter than the transcripts themselves.
While a greater sequencing depth, larger sample size and suitable
statistical methods allow mitigating this obstacle, available tools
still vary considerably in accuracy and robustness of results (39).
Since here, the hippocampal samples were sequenced deeper, we
restricted the splicing analyses to this brain region and applied
two complementary tools to identify robust effects.

In line with the gene count for differential expression, the
largest number of differential splicing events identified by
both tools was observed comparing TGHFD with WTHFD animals
(Supplementary Material, Fig. S6A). Among them was Nab2,
a gene for which HFD led to increased usage of exon 6 (of
seven) in WT but not in TG animals (Fig. 3A, Supplementary
Material, Fig. S6B). An increased usage of exon 6 agreed with a
shift toward higher expression of the longer transcript isoform
ENSMUST00000026469 over the shorter ENSMUST00000099157
in WTHFD animals (Fig. 3B). Intriguingly, the shift in transcript
composition without entailing a significant gene-level expression
change was also observed in brainstem (Supplementary Material,
Fig. S6C).

These results indicated that in both brainstem and hippocam-
pus, interactions between genotype and diet gave rise to highly
similar dysregulation patterns on a gene as well as transcript
level.

Co-expression analyses point at a shared
regulatory network in brainstem and
hippocampus
The similarity of perturbances in both brain regions under HFD
in WT and TG animals—from individual transcript isoforms to
general expression patterns—led us to assume that underlying
regulatory principles might be shared between brainstem and
hippocampus. Co-expression analyses lend themselves to such
investigations as they identify expression similarities between
genes beyond comparing DEGs with little information regarding
expression relations between them. In co-expression analyses,
groups of genes with similar expression patterns across condi-
tions are derived that likely function in the same pathways or
regulate the same biological processes, the so-called guilt-by-
association principle (40).

Here, we used weighted gene correlation network analysis
(WGCNA) (41) to explore co-expression towards identifying gene
modules and hub genes underlying the dysregulated expression in
TGHFD mice. As we examined different brain regions and dietary
conditions, we opted for a consensus analysis that allows deriving
co-expression modules across data sets. Following this approach,
the consensus network partitioned the expression space into 32
modules (Supplementary Material, Fig. S7). Of those, 12 correlated
significantly with the genotype in at least one brain region for
either diet (Fig. 4A). Consistent with results from the differential
analysis, the correlation was typically stronger under HFD and
very similar overall between the brain regions (Fig. 4A). By consid-
ering the DEG ratio in the modules, M1 and M21 stood out from the
rest as they captured the strongest expression changes (Fig. 4B).
Although 1093 genes in module M1 were enriched for metabolic
processes, 126 genes in M21 pointed toward mitochondrial path-
ways (Fig. 4C).

Following the reasoning of WGCNA that higher ranked genes
and their relations within the modules are biologically more
meaningful (42), we focused on the top 20% of genes in M1 and
M21 that were differentially expressed. From the resulting 150
genes, more than one-third were linked to the SNCA interac-
tome (Fig. 5A), indicating that the filtering steps led to relevant
αSYN-related biology. Intriguingly, for all these genes, WT mice
responded to HFD, whereas TG animals showed no or even oppo-
site regulation (Fig. 5B). This failure of adaptation to HFD apparent
in different brain regions might explain the previously described
accelerated pathology in TG mice under long-term HFD (35).

Discussion
As shown in our previous study, mice expressing human mutant
αSYN (TG) as a model for PD have increased neuroinflammation
as well as a significantly accelerated onset of neurodegeneration
and terminal phenotype under a lifelong HFD (35). Towards a bet-
ter molecular understanding of the interactions between genetic
predisposition and diet, we here profiled the transcriptome in
brainstem and hippocampus of this mouse model. Intriguingly, we
observed a transcriptional adaptation of WT animals in response
to an HFD that was largely missing in TG animals. Thereby, both
brain regions exhibited great similarity in transcriptomic pertur-
bations, ranging from individual transcript isoforms, to common
differential genes and overall patterns of expression. Differen-
tial as well as co-expression analyses highlighted dysregulated
genes that are involved in metabolic processes and mitochondria-
related pathways.

The enrichment of perturbed genes for metabolic pathways
agrees with epidemiological and physiological studies in PD
research (43–45). Besides dietary effects that possibly modu-
late disease risk and influence development, disturbances in
metabolic processes are also observed in the course of the disease
(46).

With respect to mitochondria, our results agree with numerous
findings in animal models as well as patients that suggest a
pivotal role of mitochondrial dysfunction in PD pathophysiology
(47). The central role of mitochondria-related processes was rec-
ognized early on as PD patients show a decreased activity of the
mitochondria electron transport chain, primarily complex I. This
dysfunction is thought to lead not only to increased generation
of mitochondrial-derived reactive oxygen species and subsequent
oxidative damage but also to the energy failure because of the
inability of neurons to compensate the lack of ATP generation.
Such bioenergetic perturbations are thought to be central in
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Figure 2. Genotype–diet interactions led to highly similar gene expression patterns in brainstem and hippocampus. (A) Heatmap of hierarchically
clustered expression profiles (log2 expression change relative to WTSD) of 262 DEGs (union of brainstem DEGs indicated in Fig. 1E) across all experimental
groups. Number of DEGs in clusters C1 and C2 indicated on the right. (B) Average expression profile and standard deviation of C1 and C2 across
experimental groups in brainstem. (C) Enriched pathways (Gene Ontology, KEGG, Reactome) among C1 (left) and C2 (right) genes. Five most significant
terms, their adjusted P-values and DEG count are shown. KG: KEGG; BP: biological process, CC: cellular component, MF: molecular function (D–F)
analogues to (A–C) for hippocampus.
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Figure 3. Genotype–diet dependent perturbations extend to transcript isoform usage. (A) Sashimi plot illustrating the transcript isoform structure and
expression of Nab2 toward the 3′ end. Depicted are per-group read coverage and read count spanning junctions around exon 6. Coordinates of affected
transcript isoforms at the bottom. MISO-estimated per cent spliced-in (PSI/�) values with 95% confidence intervals to the right. (B) Transcript isoform-
specific expression levels of Nab2 in hippocampal samples. Plotted are the mean TPM per group obtained with Salmon.

neurodegeneration as they are linked directly to important home-
ostatic processes in dopaminergic cells such as neurotransmitter
release, axonal vesical transport, protein quality control and cell
metabolism (46).

Our study points at a decrease of mitochondrial gene expres-
sion in the context of PD that is well reflected on protein level.
Focus has, for example, been put on defective mitochondrial
protein import showing reduced protein levels of the mitochon-
drial translocases TIM23 and TOM20 as well as nuclear-encoded
mitochondrial proteins such as NDUFS3 and COX IV in post-
mortem substantia nigra samples of PD patients (48). In this context.
αSYN seems to play a crucial role as the aberrant αSYN–TOM20
interaction in nigrostriatal dopaminergic neurons is associated
with such loss of imported mitochondrial proteins (49), thereby
confirming decreased protein levels in the human disease.

Besides the relation between mitochondrial (dys-)function and
PD, there are also links between mitochondria and HFD. Typically,
HFDs are known for a negative impact on mitochondrial biogene-
sis, dynamics and function that, ultimately, lead to glucose intol-
erance and insulin resistance (50). However, feeding on HFD has
also been shown to increase protein levels of mitochondrial genes
in muscle tissue despite inducing glucose intolerance and insulin
resistance (51). A number of earlier studies provide further evi-
dence that HFD has beneficial effects on mitochondria (52–55) and
promotes their biogenesis with increased protein levels of several
mitochondrial genes as well as their oxidative capacity of fatty
acids in skeletal muscle (56). Hence, some of the observed expres-
sion changes in WTHFD might reflect adaptations of the metabolic
regulatory network in the cell to cope with altered fatty acid levels.

In particular, we observed increased expression of several mito-
chondrial genes in WTHFD animals such as Ndufa2, Cox6a1, Uqcrq.
These genes were slightly decreased in TGSD mice already and, in
contrast to WT animals, showed no increase in TG animals under
HFD.

Besides genes directly involved in mitochondrial function,
others previously linked to SNCA also showed failed adaptation
in TGHFD mice including Stub1, Uchl1, Atp13a2/Park9 and Mif .

Interestingly, increase of these proteins is typically considered
protective in the context of PD. Hence, lower expression of these
genes as observed in TGHFD animals might contribute to the
detrimental phenotype of these mice (35).

Stub1 encodes an E3 ubiquitin-protein ligase, also known as
CHIP in human, which targets misfolded chaperone substrates
toward proteasomal degradation. A beneficial role of CHIP in the
pathogenesis of several neurological diseases has been shown
(57). CHIP co-localizes with αSYN in Lewy bodies and inclusions,
and its overexpression reduces αSYN aggregation and increases
its degradation via proteasomal as well as lysosomal degradation
pathways (58). Moreover, CHIP preferentially binds and degrades
toxic oligomeric forms of αSYN (59) and ubiquitinates αSYN itself
(60).

Uchl1, also known as PARK5 in human, encodes a ubiquitin-
protein hydrolase that plays an important role in maintaining a
stable pool of monoubiquitin for ubiquitination reactions. Muta-
tions of the gene are associated with PD and its protein is found
in Lewy bodies (61,62). It has been proposed that modulation of
UCHL1 activity may serve as a therapeutic tool to enhance the
autophagy pathway and induce clearance of aggregated αSYN
(63). Here, failure of TG mice to increase Uchl1 expression under
HFD agrees with the worse phenotype (35).

A similar hypothesis can be proposed for Atp13a2 or PARK9 in
human, which regulates the autophagy–lysosome pathway and
plays a role in lipid homeostasis. ATP13A2 promotes the secretion
of exosomes as well as secretion of αSYN via exosomes (64,65) and
its overexpression suppresses toxicity of αSYN.

Lastly, Mif , encoding the macrophage migration inhibitory fac-
tor, is a pluripotent pro-inflammatory cytokine. MIF reduces apop-
tosis and induces autophagy in an in vitro model of PD and,
thereby, might mediate neuroprotective effects in PD (66).

For these example genes, the expression increase in WTHFD

animals potentially helps to cope with challenges imposed on the
cell through higher energy levels. It is known that a HFD results in
neurochemical adaptations including altered neurotransmission
and bioenergetics in the hippocampus of rodents (67). The failure
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Figure 4. Co-expression analysis identifies gene modules with significant diet-dependent genotype correlations that are highly similar across
brain regions. (A) Diet-dependent genotype correlations for brainstem and hippocampus with corresponding P-values for all significant modules.
Cells are color-coded according to the correlation between a module’s expression and the TG genotype. Numbers in cells indicate the nominal
P-value that is marked with an asterisk when still significant after FDR 0.05 correction. Module colors to the left as per WGCNA partitioning
(Supplementary Material, Fig. S7) and their gene count on the right. (B) Significant co-expression modules plotted according to their relative DEG content
with respect to TGHFD/WTHFD in hippocampus (x-axis) and brainstem (y-axis). Median module expression change color-coded per brain region with the
diameter reflecting the total gene count. (C) Enriched pathways (Gene Ontology, KEGG, Reactome) for genes in modules M1 (left) and M21 (right). Five
most significant terms, their adjusted P-values and DEG counts are shown. BP: biological process; RC: Reactome.

to adaptation in TGHFD mice might be a key principle that explains
the aggravated phenotype.

Some of the highlighted genes such as Stub1 and Uchl1 are
linked to ubiquitination and autophagy mechanisms and point
at a crucial relationship between these mechanisms as well
as metabolic- or mitochondria-related pathways. The quality
of mitochondria regulating numerous metabolic pathways is
known to be strictly monitored to maintain cell homeostasis (68).
Impaired mitochondrial quality is readily identified to eliminate
damaged mitochondria, a process relying on the orchestrated
crosstalk between ubiquitin signaling and autophagy. The loss of
mitochondrial quality control systems is known to be associated
with many types of neurodegenerative diseases including PD (68).

In PD, progressive accumulation of dysfunctional mitochondria
ultimately impairs cellular metabolism and causes neuronal
death. As there is increasing evidence that energy metabolism
plays a fundamental role in the pathomechanism of neurodegen-
erative diseases (69–73), it is recently becoming a potential target
for preventing and treating PD (72). However, the notion of PD as a
disease initiated by dysfunctions of energy metabolism just barely
started (72). Our approach highlights the failure of adaptations to
metabolic challenges in the context of PD and points at candidate
genes that might be addressed therapeutically.

However, although these candidate genes seem plausible and
the transcriptomic analyses pointed at affected pathways in the
αSYN interactome, they do not allow identifying an entry point for
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Figure 5. Interaction network of differentially expressed hub genes around Snca. (A) Network of Snca and 57 differentially expressed as well as highly
ranked (top 20%) co-expressed genes from modules M1 and M21. Genes color-coded according to their type/function. Line width indicating number of
curated interactions between each gene pair. Information derived from IPA. (B) Expression changes (as log2 fold changes per group relative to WTSD) for
57 alphabetically sorted network genes in (A) for hippocampus and brainstem.

the perturbations or deriving further causalities between genes.
Such functional aspects need to be addressed by future studies.
We are, however, convinced our results provide a basis to select
targets for such investigations.

Taken together, our work shows that a long-term HFD leads
to gene expression adaptations of several genes linked to mito-
chondrial and metabolic biology in the brain of WT mice. In
αSYN TG animals, in contrast, there is a widespread failure of
these diet-induced transcriptional adaptations, indicating that

the previously observed aggravation of phenotype might be based
on a failed response of related genes.

Materials and Methods
Animals and diets
TG of C57BL/6 background expressing human mutant h[A30P]αSYN
under the control of the CNS neuron-specific Thy1 promotor
(34,74) were maintained as a homozygous colony. WT controls
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were derived from the same transgenic outcross with C57BL/6
mice and maintained as a parallel colony. Only male mice were
used in the study. For grouping the mice into either a standard or
HFD, we used randomization within blocks representing litters.
Thereby, we sought to mitigate any litter bias due to genetic
effects that might confound differential expression analyses
later on. From the age of 5 weeks onward till 12 months of age,
homozygous (Thy1)-h[A30P]AS and WT mice were either kept on
standard chow diet (SD, n = 56) (3.8% total fat, 3.1 kcal/g, ssniff
R/M H Extrudat; ssniff Spezialitäten GmbH, Soest, Germany)
or HFD (22.8% total fat, 4.6 kcal/g, TD.06415 Adjusted Calories
Diet 45/Fat; Teklad Custom Research Diets, Harlan Laboratories,
Boxmeer, The Netherlands). Groups of three to four male mice
were housed in standard cages (365 × 207 × 140 mm, Typ II long)
with normal light/dark cycle (12 h light/12 h dark) and free access
to food and water. To avoid gene expression changes during
the preparation process, WT and TG mice were sacrificed with
cervical dislocation followed by head decapitation within 2 min
from disturbing the home cage. Brain regions were immediately
dissected on ice and snap frozen in liquid nitrogen. All animal
procedures were approved by local government authorities
for animal research (file references N13/16) according to the
guidelines for laboratory animal care.

RNA isolation and sequencing
To focus on the same regions as before when describing the
pathology in the animal model (35), the entire brainstem more
precisely the medulla (oblongata and spinalis) posterior to approxi-
mately bregma −8 based on a coronal view was prepared (https://
mouse.brain-map.org/experiment/thumbnails/100048576?image_
type=atlas). For the hippocampus, the entire structure including
all subfields was dissected. Total RNA and DNA from brainstem
and hippocampus (n = 6 animals for each of the four experimental
groups per brain region) were simultaneously extracted using
the AllPrep DNA/RNA Mini Kit (Qiagen) using the manufacturer’s
protocol. Quality was assessed with an Agilent 2100 Bioanalyzer.
Samples with high RNA integrity number (>8) were selected
for library construction; one WTSD sample in brainstem failed
this criterion and was not included. Using the TruSeq RNA
Sample Prep Kit (Illumina), poly(A)-selected single-end sequencing
libraries (75 bp read length) were generated according to the
manufacturer’s instructions. To normalize the volume and
amount of each brain regions per animal, 500 ng of the total
RNA per sample was used. All libraries were sequenced on an
Illumina HiSeq 2500 platform at a depth of 10–15 million reads
each. Library preparation and sequencing were performed by the
same individual using a design to minimize the batch effects.

To meet blinding strategies throughout the experimental pro-
cedure, the experimenters for brain dissection, RNA isolation,
library preparation and sequencing were unaware of the animal’s
group during experimentation.

Quality control, alignment and expression
analysis
Read quality of RNA-seq data was assessed using FastQC (v0.11.9)
(75) to identify sequencing cycles with low average quality, adap-
tor contamination or repetitive sequences from PCR amplifica-
tion. Reads were aligned using STAR (v2.7.9a) (76) allowing gapped
alignments to account for splicing against a custom-built genome
composed of the Ensembl Mus musculus genome v104 and the
human SNCA transgene. Normalized read counts for all genes
were obtained using DESeq2 (v1.32.0) (77). Transcripts covered
with <50 reads were excluded from the analysis leaving 13 309

genes in brainstem and 13 251 in hippocampus for determining
differential expression in each of the primary contrasts between
experimental groups.

The 2 × 2 factorial design of the experiment was captured in
a generalized linear model in DESeq2 modeling expression as a
function of genotype, diet and their interaction. Surrogate variable
analysis (sva, v3.40.0) was used to minimize unwanted varia-
tion between samples (78). Given that differences in transcript
abundances in brain tissue are often small in magnitude and
in vivo RNA-seq data are deemed to be more variable (79), we
set |log2 fold-change | ≥ 0.3 and adjusted P-value ≤ 0.05 to deter-
mine DFGs.

Gene-level abundances were derived from DESeq2 as normal-
ized read counts and used for calculating the log2-transformed
expression changes underlying expression heatmaps and k-
means clustering with ratios computed relative to the mean
expression in WTSD. Thy1 and human SNCA were excluded here
because of their unique and strongly biased profiles.

The sizeFactor-normalized counts provided by DESeq2 also cal-
culated nRPKMs total reads as a measure of relative gene expres-
sion as motivated before (80). Transcript-level expression was
determined using Salmon (v1.5.2, parameters: numGibbsSamples
20, seqBias, gcBias, validateMappings) (81). Transcripts per mil-
lion (TPM) values obtained with Salmon were scaled (scaleInfReps)
using the tximeta (v1.10.0) R package (82). In addition, JunctionSeq
(v1.21.0, default parameters) (39) was used to identify alternative
splicing events underlying transcript-level changes.

To identify alternative splicing events (alternative 5′ and 3′

splice site, retained intron, skipped exon, mutually exclusive
exon), MISO (v0.5.4) was used for merged hippocampal samples
and filtered for events with –num-total 200 –num-inc 10 –num-
exc 10 –num-sum-inc-exc 20 –delta-psi 0.2 –bayes-factor 10
(83,84).

Gprofiler2 (v.0.2.1) (85) with PFDR ≤ 0.05 was used to determine
functional enrichments among gene sets against Gene Ontology,
KEGG and Reactome. Thy1 and human SNCA were excluded when
determining enrichments.

Interactions among genes were derived from curated data in
Ingenuity Pathway Analysis (IPA, v01–20-04, Qiagen) and visualized
in Cytoscape (86).

Co-expression analysis
Four sets were formed, each containing the expression data from
hippocampal or brainstem samples exposed to SD or HFD, respec-
tively. WGCNA (41) was used to establish a consensus network
in order to identify gene co-expression across all four data sets.
WGCNA was based on pairwise correlation between all gene
pairs in each data set. As the correlation method, biweight mid-
correlation (87) was used with maxPOutliers = 0.1, thereby min-
imizing the influence of potential outliers. Correlations were
transformed in a signed hybrid similarity matrix where negative
and zero correlations equal to zero, whereas positive correla-
tions remain unchanged. To generate the network adjacency, the
similarity matrix was raised to the power β = 8, the minimum
value that approximated a scale-free topology in all data sets,
thus suppressing low correlations. For a measure of intercon-
nectedness, adjacency was transformed into a topological overlap
measure (TOM) that is informed by the adjacency of every gene
pair plus the connection strength they share with the neighboring
genes. Before calculating the consensus TOM (cTOM), the indi-
vidual TOMs were calibrated using a 0.95-single quantile scaling.
TOMs were raised to a power such that the 95th percentile of all
other data sets equaled the same quantile of the reference set
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(hippocampus under SD). Thus, potential bias deriving from differ-
ent statistical properties were mitigated best. cTOM was created
by selecting the component-wise 0th quantile of the individual
TOMs, meaning that for each gene pair, the minimum TOM value
across all sets was given as input. A hierarchical clustering of a
TOM-based dissimilarity measure (1-cTOM) was used to define
modules by applying the Dynamic Tree Cut algorithm (88). Each
of these modules was summarized by its eigengene, providing
a single value for a module’s expression profile. Based on the
eigengene correlation matrix, final modules were derived by iter-
atively clustering eigengenes based on dissimilarity (given by
one minus the respective correlation) and cutting the resulting
dendrogram at height 0.1, causing all modules with eigengene
correlation ≥ 0.9 to be merged. Finally, module eigengenes were
correlated with a dichotomous genotype trait to identify mod-
ules affected by transgenic effects. A joint Bayesian-frequentistic
algorithm combining the Bayes factor (BF) (89) and significance
of a correlation was used to identify modules associated with the
disease status. Modules with an eigengene-trait correlation with
PFDR ≤ 0.05 | BF ≥ 3 were considered significantly associated with
genotype status.
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