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Abstract

Introduction: We tested whether changes in functional networks predict cognitive
decline and conversion from the presymptomatic prodrome to symptomatic disease
in familial frontotemporal dementia (FTD).

Methods: For hypothesis generation, 36 participants with behavioral variant FTD
(bvFTD) and 34 controls were recruited from one site. For hypothesis testing, we
studied 198 symptomatic FTD mutation carriers, 341 presymptomatic mutation
carriers, and 329 family members without mutations. We compared functional net-
work dynamics between groups, with clinical severity and with longitudinal clinical
progression.

Results: We identified a characteristic pattern of dynamic network changes in FTD,
which correlated with neuropsychological impairment. Among presymptomatic muta-
tion carriers, this pattern of network dynamics was found to a greater extent in those
who subsequently converted to the symptomatic phase. Baseline network dynamic
changes predicted future cognitive decline in symptomatic participants and older
presymptomatic participants.

Discussion: Dynamic network abnormalities in FTD predict cognitive decline and

symptomatic conversion.
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1 | INTRODUCTION

Neuropathological and structural changes accumulate over many years
prior to the onset of symptoms in neurodegenerative diseases.’?
Understanding the timing and consequence of such changes for clin-
ical syndromes is key to accounting for heterogeneity in progression
and risk-stratifying asymptomatic individuals for preventative clinical
trials. We have previously shown that functional network integrity
is important in maintaining cognitive performance in individuals at
risk of dementia,>* with the corollary that loss of network integrity
may herald symptom onset and predict cognitive decline. Genetic
frontotemporal dementia (FTD) provides an opportunity to charac-
terize functional networks throughout the course of the disease.
Approximately one-third of patients with FTD have a family history
in keeping with an autosomal dominant inheritance.” Mutations in
three genes account for the majority of these cases: chromosome 9
open reading frame 72 (C9orf72), granulin (GRN), and microtubule-
associated protein tau (MAPT).>¢ The resulting phenotypes are het-
erogeneous, with behavioral variant FTD (bvFTD) the most common
clinical presentation.®

The coordination of neural activity across distributed spatial and
temporal scales is dynamic.”"? Such connectivity underpins cogni-
tion in health and is affected in psychiatric and neurodegenerative
diseases.’%-12 While canonical approaches to functional connectivity
have averaged over the scan acquisition time, time-varying fluctu-
ations in connectivity can also be captured by functional magnetic
resonance imaging (fMRI).13-1° |n the clinical syndromes of FTD, there
are deficits in inhibitory and excitatory neurotransmitters required for
network integration and segregation® which we propose contribute
to changes in temporal dynamics in the disease. Subtle changes in
time-varying functional connectivity occur in presymptomatic muta-
tion carriers,” although their longitudinal significance and evolution
into the symptomatic phase have not been studied.

We examined resting state brain dynamics in presymptomatic
and symptomatic carriers of pathogenic mutation carriers in the
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disease progression, frontotemporal dementia, functional magnetic resonance imaging (fMRI),
network dynamics, presymptomatic

1. We investigated brain network predictors of dementia symptom onset
2. Frontotemporal dementia results in characteristic dynamic network patterns
3. Alterations in network dynamics are associated with neuropsychological impair-

4. Network dynamic changes predict symptomatic conversion in presymptomatic

5. Network dynamic changes are associated with longitudinal cognitive decline

Genetic Frontotemporal Initiative (GENFI) using fMRI to determine
whether disruption to network dynamics predicts cognitive decline.
We used hidden Markov modelling as a highly articulated data-
driven approach to model the blood-oxygen-level-dependent signal
of fMRI, an approach which posits the existence of a finite number
of hidden states that describe the sequential evolution of observed
data.1>18

We investigated brain state dynamics using hidden Markov models
(HMMs) with a two-stage approach to ensure replication and refine
analytic choices. Hypothesis generation used a cohort of patients
with mainly sporadic bvFTD and control participants recruited at the
Cambridge Centre for FTD. We repeated the methodology in the
GENFI, following preregistration of our cross-sectional analysis plan
(https://osf.io/ké64gh/wiki/home/), with the following hypotheses: (1)
brain state dynamics differ between symptomatic mutation carriers
and cognitively normal non-mutation carriers; (2) changes in network
dynamics correlate with both neuropsychological deficits and carer
assessed measures of impairment; (3) presymptomatic mutation car-
riers (versus non-mutation carriers) have abnormal network dynamics
as a function of proximity to onset as denoted by age; and (4) altered
network dynamics predict conversion from the presymptomatic to
symptomatic phase and subsequent cognitive decline in gene mutation

carriers.

2 | MATERIALS AND METHODS
2.1 | Participants

We used datasets from 36 participants with bvFTD and 34 healthy con-
trols recruited at the Cambridge University Centre for Frontotemporal
Dementia for hypothesis generation. Clinical assessment included the
Addenbrooke’s Cognitive Examination-Revised,'? Mini-Mental State
Examination (MMSE),2° Frontal Assessment Battery,! and Cambridge
Behavioral Inventory-Revised (CBI-R).22
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RESEARCH IN CONTEXT

1. Systematic Review: We reviewed published literature
using traditional resources. Neuropathological and struc-
tural changes occur in dementia many years prior to the
onset of symptoms. Assessing the onset of the symp-
tomatic phase in those at high risk of dementia is clinically
challenging, and neural correlates of conversion from the
presymptomatic prodrome to symptomatic disease are
not well characterized.

2. Interpretation: Our results show that changes in the pro-
portion of time spent in key brain networks in presymp-
tomatic carriers of frontotemporal dementia mutations
occur in the late presymptomatic phase. They are associ-
ated with conversion to symptomatic disease and subse-
quent cognitive decline.

3. Future Directions: Dynamic brain network changes are
a promising tool for stratification and prognostication in
presymptomatic dementia, with implications for predict-
ing outcome and risk-stratifying asymptomatic individu-

als for preventative clinical trials

The GENFI includes participants from 25 research sites across
Europe and Canada. Participants were included if they were over 18
and had a known pathogenic mutation in MAPT, C9ORF72, GRN, or
TBK1, or were a first degree relative of a mutation carrier. A total of
198 symptomatic mutation carriers, 341 asymptomatic mutation car-
riers, and 329 family members with usable fMRI (datafreeze 5) were
included in this study. Clinicians classified mutation carriers as either
symptomatic or presymptomatic, with participants deemed symp-
tomatic if symptoms were present, were progressive in nature, and
consistent with a diagnosis of an FTD-related degenerative disorder.

GENFI participants underwent a standardized assessment with clin-
ical history, physical examination, neuropsychological assessment, and
informant-based questionnaires.! Severity of behavioral symptoms
was assessed using the CBI-R. Neuropsychological tests included the
Trail Making Tests, Digit Symbol Test, Backwards Digit Span, Letter
and Category Fluency, a short version of the Boston Naming Test,23
and the MMSE. Assessments were repeated yearly or biannually, with
longitudinal data up to 7 years post baseline visit.

2.2 | Image acquisition and preprocessing

Image acquisition for the two cohorts and fMRI preprocessing have
been published previously®#24 and are described in detail in the Sup-
plementary Materials. Given the potential sensitivity of estimates of
network dynamics to motion,2>2¢ we excluded participants above pre-
viously defined thresholds for three data quality indices?* (maximum

spike percentage,?” maximum framewise displacement,2> maximum

spatial standard deviation of successive volume difference?®). We
excluded nine participants with bvFTD and 2 healthy controls from the
Cambridge cohort, and 103 scans from 89 participants in the GENFI
(20 non-carriers, 21 presymptomatic mutation carriers, 48 symp-
tomatic participants). We performed an additional analysis excluding
participants exceeding a mean framewise displacement threshold but

included in the primary analysis (Supplementary Materials).

2.3 | Hidden Markov models (HMMs)

We assessed network dynamics in both cohorts using HMMs.2? These
models treat time series data as being generated from a finite num-
ber of unknown states. Each time point is therefore classified as being
in a single state, although the assumption of state mutual exclusivity
is adjusted through soft probabilistic inference. While the states and
probability of transitioning between them are defined at the group
level, a state time course can be estimated per participant.

We performed an independent component analysis (ICA) using
MELODIC (fMRIB Software Library [FSL]) from preprocessed fMRI
of all participants to allow comparison between cohorts. We chose
a model order of 30 as a balance between excessive network
fragmentation®® and predetermining HMM outputs. Six component
maps were identified as artefact. Participant specific time courses for
each component were generated by regression of the component maps
into each subject’s preprocessed fMRI. From standardized per partici-
pant non-artefactual component time courses a multivariate Gaussian
HMM?> with six brain states was inferred for each cohort using the
HMM-MAR toolbox (https://github.com/OHBA-analysis/HMM-MAR).
All states shared a common covariance matrix.3! Model order was
specified in registration prior to analyzing the GENFI dataset; it has
previously been shown that robust behavioral inferences can be made
through a six-state model.32 We repeated the analysis with ICA
dimensionality determined automatically by MELODIC.

The temporal dynamics of HMM states can be characterized
through a small set of metrics, namely switching rate (the frequency
with which state transitions occur), fractional occupancy (the propor-
tion of time a state is active), and the transition matrix consisting of
transition probabilities (the chance of between-state transitions) and
persistence probabilities (the chance of remaining in the same state).
Mean activation maps were generated by weighting component maps
by the mean of the state Gaussian distribution. For illustrative pur-
poses we compared these maps with templates maps of canonical static
functional networks,® and performed an additional analysis of resting
state connectivity to determine where connectivity changes occur in
the GENFI cohort (see Supplementary Materials).

2.4 | Statistical analyses
All statistical analyses were performed in R,3* with the exception of

permutation testing using FSL's PALM (“Permutation Analysis of Lin-
ear Models”).3> P-values throughout were corrected across relevant
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tests for afalse discovery rate of 5%, except permutation testing where
family-wise error correction to 5% was performed across all tests and

contrasts.

2.4.1 | Descriptive statistics

We compared continuous variables between groups using independent
sample t tests and categorical variables with the chi-square test.

2.4.2 | Cambridge cohort

We compared fractional occupancy and switching rates between
groups using a one-way analysis of covariance, with age and sex as
covariates. For each participant we extracted matrices of the 36 transi-
tion and persistence probabilities. Given the interdependence of these
probabilities, we assessed for group differences in a permutation test
(5000 permutations) using FSL's PALM. Age and sex were included as

covariates of no interest.

24.3 | GENFI

In the GENFI data, cross-sectional analysis was performed using par-
ticipants’ latest scan that passed motion thresholding, maximizing
per-participant volume number. Differences in fractional occupancy
rates and switching rates were assessed using mixed-effects linear
models with diagnostic group as the main effect, age and sex as
dependent variables, and scan site as a random intercept using the
Ime4 package.3¢ Significance values were calculated using the Satter-
waithe estimate of effective degrees of freedom. Switching rates were
adjusted to account for small differences in repetition time. Group dif-
ferences in transition/persistence probabilities were calculated as per
the Cambridge cohort.

For contrasts with clinical scores and longitudinal analysis we per-
formed a principal component analysis on state fractional occupancies
using the alfa.pca (alpha = 1) function from the Compositional pack-
age in R,%’ followed by varimax rotation. We selected the number of

components for analysis using MacArthur’s "broken-stick" criterion.38

2.4.4 | Network dynamics by age

In previous GENFI studies, mean family age at symptom onset has
been used to estimate years until symptom onset, but only in MAPT
mutations does this explain a significant proportion of variability in age
of onset.3? Given that component scores did not differ by mutation
type, we explored component scores by age as a marker of proxim-
ity to onset (comparing to family members without mutations, over a
similar age range). We compared component scores and state occu-
pancies between non-carriers and presymptomatic mutation carriers
as a function of age, assessing the group by age (linear or quadratic)

interaction.

THE JOURNAL OF THE ALZHEIMER’S ASSOCIATION

2.4.5 | Presymptomatic mutation carriers and
neuropsychological correlates

We compared component scores in presymptomatic mutation car-
riers with pre-registered neuropsychological tests (Backwards Digit
Span, Digit Symbol, Trail Making Test) as a function of age within a
mixed-effects linear model.

2.4.6 | Converters

Mutation carriers who were assessed during longitudinal follow-up
as moving from the presymptomatic to symptomatic phase were
classified as converters. We compared component scores, state occu-
pancies, and neuropsychological scores between converters and non-
converting presymptomatic mutation carriers at their latest presymp-
tomatic scan in mixed-effects linear models with group as the
main effect, age and sex as covariates, and scan site as a random

variable.

2.4.7 | Longitudinal cognitive data in symptomatic
patients

A mixed linear model was used to calculate patient specific yearly
rates of change in clinical and neurocognitive scores (MMSE, CBI-R,
Backwards Digit Span, Digit Symbol, Trail Making Test B[TMTB]). Neu-
rocognitive assessment was the dependent variable in the model, with
years from baseline assessment as an independent variable and with
estimation of intercept and slope (neurocognitive assessment ~ time +
(time | ID)). These models were calculated using all participants.

To assess whether baseline component scores predict neurocogni-
tive decline, individual estimates of disease progression (slope) were
taken to a second model as a dependent variable, with baseline compo-
nent scores as an independent variable and baseline age, sex, and site

as covariates of no interest.

2.4.8 | Longitudinal cognition in presymptomatic
mutation carriers

We repeated the two-step model for presymptomatic mutation car-
riers, additionally assessing the interaction between baseline compo-
nent scores and age given that proximity to symptom onset increases
the probability that small fluctuations in neurocognitive assessment

are important.

3 | RESULTS
3.1 | Descriptive statistics

Demographic and clinical characteristics for the two cohorts for partic-

ipants with a sub-motion threshold scan are included in Tables 1 and 2.
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TABLE 1 Demographic and clinical characteristics for the participants recruited at the Cambridge Centre for Frontotemporal Dementia and

Related Disorders

Control (n = 32)

Age 67.2(8.5)
Sex (M/F) 14/18
ACE-R

FAB

CBI-R

FTD (n=27) Statistic (t/x?)
64.3(7.3) t(57)=1.4,P=.16
17/11 x=15,P=.23
65(20)

9.3(44)

74.3(22.3)

Scores are mean (SD). ACE-R, Addenbrookes Cognitive Examination-Revised; CBI-R, Cambridge Behavioral Inventory-Revised; FAB, Frontal Assessment

Battery.

TABLE 2 Demographic and clinical characteristics for the GENFI participants

NC PSC Symp
n=309 n=320 n=150
Age (y) 48(13) 45(12) 63(8.2)
Gender (F/M) 179/130 197/123 67/83
Mutation (n) C90rf72109  C9orf72119  C9orf7271
GRN 133 GRN 141 GRN 53
MAPT 60 MAPT 58 MAPT 26
TBK17 TBK12
MMSE 29 (1) 29 (1) 21(7)
CBI-R Total 5(7) 6(9) 62(32)
Trail Making Test 67 (37) 67 (40) 211(92)
B
Digit Symbol 58(14) 58(14) 25(14)
Backwards Digit 4.8(1.2) 4.8(1.2) 3.1(1.5)
Span score
Boston Naming 28(2) 28 (3) 19(8)
Letter Fluency 41(13) 41(13) 17 (12)
Category Fluency 23 (6) 24 (6) 11 (6)

Scores are mean (SD). P values minimum threshold of <.0001.

NC vs. Symp NC vs. PSC
Stat (x2/t) P d Stat (x2/t) P d
t=-15 <.0001 1.3 t=25 01 0.2
X=7 0.008 X=09 0.35
X=5 06 X=0.3 .9
t=13 <.0001 19 t=-01 .92 0
t=-21 <.0001 -3 t=-15 1 -0.13
t=-16 <.0001 -24 t=0.13 .99 0
t=22 <.0001 23 t=0 1 0
t=13 <.0001 14 t=-054 6 -0.04
t=13 <.0001 18 t=084 4 0.07
t=18 <.0001 19 t=084 4 0.07
t=20 <.0001 22 t=-15 14 -0.12

CBI-R, Cambridge Behavioral Inventory-Revised; MMSE, Mini-Mental State Examination; NC, non-carrier; PSC, presymptomatic mutation carrier; Symp,

symptomatic.

In the Cambridge cohort no significant differences were observed in
age or sex. In GENFI, symptomatic participants were older than asymp-
tomatic participants and showed marked deficits in neuropsychological
and informant-based assessment of severity.

3.2 | Network dynamics in FTD

For the Cambridge data, we used temporally concatenated participant
time series from ICA components to fit an HMM with six brain states
(Figure S1A, with labeling in Figure S2 to indicate the most closely
matching canonical static network for positive and negative activa-
tions). Participants with FTD had increased fractional occupancy of

state 2, whose positive activations constituted the salience network

(F=7.8,P=.043). Switching rates between states were reduced in FTD
(Figure S1; F=6.5,P=.014).

For the GENFI data, we used temporally concatenated participant
component timeseries to fit an HMM with six brain states (Figure 1A-C
and S2). Comparing symptomatic participants with mutation non-
carriers, we found that participants with FTD had increased fractional
occupancy of the state overlapping with the salience network (state 2,
F = 32, corrected P = 2 x 10~7) and of state 4 overlapping with the
default mode network (F = 8, P = .008). Participants with FTD spent
less time than non-carriers in two states with inversed activation pat-
terns: state 3 with positive activations in sub-cortical regions (F = 17,
P=1x10"%),and state 5 with positive activations in motor and sensory
(somatic, visual, and auditory) regions (F = 15, corrected P = 2 x 107%).
In this cohort switching rates did not differ in FTD (F = 3.1, P =.08).
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Network dynamics in the Genetic Frontotemporal Initiative. (A) Mean activation maps for the six modelled states. (B) Fractional

occupancy by state, with increased occupancy in states 2 and 4, and decreased occupancy in states 3 and 5. (C) Altered transition and persistence
probabilities in frontotemporal dementia (FTD) using a permutation test. Blue lines represent significantly decreased transitions in FTD, and red
lines significantly increased transitions. The figures show the absolute percentage increase or decrease in probability in FTD

We performed a principal component analysis with varimax rotation
on state occupancies for each cohort. In the GENFI cohort one com-
ponent was selected, which explained 68% of the variance (Figure 2A).
Higher component scores were associated with greater time in states
2, 4, and 6, and decreased time in states 3 and 5. Component scores
were increased in symptomatic participants (F = 21, P = 4 x 1077).
There was a weak trend between component scores and motion
assessment indices in symptomatic participants (maximum framewise
displacement Pearson’s R=0.047,P =.57; maximum DVARS R=0.042,
P = .61; maximum spike percentage R = 0.1 P = .1). Comparable
components were derived for the Cambridge cohort (Supplementary
Materials).

We found no difference in component scores by mutation or clinical
phenotype (Supplementary Materials). Component scores were asso-
ciated with carer-based assessments and neuropsychological scores in
symptomatic and presymptomatic mutation carriers (Supplementary

Materials and Figure S4).

3.3 | Network dynamics in mutation carriers

We investigated temporal dynamics across all mutation carriers. We
hypothesized that fractional occupancy would show a non-linear rela-
tionship with age, as a proxy marker of proximity to symptom onset.
We therefore included a quadratic term for age using orthogonalized
polynomials. Model comparison found that inclusion of a quadratic age
term to a linear model significantly improved fit for state 2, but not for
component scores or other states (Table S2 and Figure 2D).

Within a mixed model including age as a quadratic term and with
sex and site as covariates of no interest, state 2 occupancy showed
an uncorrected difference between non-carriers and presymptomatic
mutation carriers as a function of age (interaction F = 3.8, uncorrected
P =.022, Figure 2E), results that were not replicated in a purely linear
model (F = 1.7, uncorrected P =.19). No differences were observed for
other states or components scores.

3.4 | Network dynamics predict symptomatic
conversion

Fourteen presymptomatic carriers became symptomatic during follow-
up. We compared these converters at their latest presymptomatic visit
with imaging with other presymptomatic carriers. Converters had sig-
nificantly worse performance on neuropsychological assessment at
this visit (Backwards Digit Span F= 5.7, P =.017; Backwards Digit Span
score F = 6.9, P = .009; Trail Making Test BF = 28, P = 2 x 1077). We
found that component scores and state 2 occupancy were increased in

converters (Figure 2B,C).

3.5 | Network dynamics predict cognitive decline

We assessed whether higher baseline component scores in symp-
tomatic patients were associated with subsequent neurocognitive
decline using pre-registered assessments (TMTB, Digit Symbol, Back-
wards Digit Span) and measures of global cognitive and behavioral
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FIGURE 2 Changes in network dynamics occurring in the late presymptomatic phase. (A) Component loadings from a principal component
analysis (PCA) on state occupancies. (B) Component scores showing a significant increase in converters (at their latest presymptomatic scan) in
contrast to those who have not converted to the symptomatic phase during longitudinal follow-up. (C) Fractional occupancy by state, showing an
increase for converters in state 2 (salience) occupancy. (D) State 2 occupancy in all carriers. (E) State 2 occupancy in presymptomatic mutation
carriers (PSC) showing evidence of a non-linear relationship with age, in contrast to non-carriers (NC). GENFI, Genetic Frontotemporal Initiative;

HMM, hidden Markov model

decline (CBI-R, MMSE). Patients at floor scores for assessments were
removed prior to deriving linear mixed models (TMTB n = 20, Back-
wards Digit Span n = 2, Digit Symbol n = 2). Linear mixed models on
longitudinal clinical and neurocognitive scores indicated an effect of
time for all measures in symptomatic participants (Table S3).

Correcting for age at baseline scan, sex, and site, baseline compo-
nent scores were related to the annual rate of clinical progression
for MMSE (Figure 3A, Std Beta = —0.43, P = .001). The associations
with Backwards Digit Span (Std Beta = —0.26, uncorrected P = .021,
P =.054) and TMTB (Std Beta = 0.35, uncorrected P = .035, P = .059)
were not significant after correction for multiple comparisons. No sig-
nificant relationship was found with Digit Symbol (Std Beta = —0.21,
P = .089) or carer-rated severity using the CBI-R (Std Beta = 0.16
P = .18). We found a significant difference in slope between symp-
tomatic mutation carriers and non-carriers for MMSE, TMTB, and
CBI-R (group x baseline component score interaction: MMSE Std
Beta = —0.66, P = 2 x 10~10; Backwards Digit Span Std Beta = —0.23
P =.11; Digit Symbol Std Beta = —0.12 P =.18; TMTB Std Beta = 0.58
P=5x107%; CBI-R Std Beta=0.12 P = .041).

We proceeded to investigate whether baseline network dynamics
predicted cognitive and clinical decline in presymptomatic mutation
carriers, hypothesizing that the relationship between annualized rate
of change in neurocognitive measure and component scores would
depend on age as a marker of proximity to symptom onset.

We found that age significantly modified the relationship between
annualized rate of clinical progression and baseline component scores
for TMTB (interaction Std Beta = 0.21 P = .002), and MMSE (interac-
tion Std Beta = —0.14 P = .048). For the TMTB, a significant three-way
interaction (group x age x component score) implied that baseline
component score increased the rate of clinical deterioration in older
presymptomatic mutation carriers, relative to non-carriers or younger
carriers (Table 3). We did not find any significant relationships with
Digit Symbol, Backwards Digit Span, or CBI-R.

Given the difference in state 2 occupancies both in converters
and between non-carriers and presymptomatic mutation carriers,
together with the known role of the salience network in FTD, we
also investigated the relationship between baseline state 2 occupancy
and longitudinal cognitive decline. We found baseline salience state
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FIGURE 3 Cognitive decline in symptomatic participants. (A) Baseline component scores predict subsequent cognitive decline in symptomatic
participants in the Mini-Mental State Examination (MMSE), with an uncorrected association with Digit Span and Trail Making Test B (TMTB).

Annualized rates of change in cognitive scores are derived from a mixed linear effect model, and taken to a second model to compare with

component scores while partialing out covariates. (B) Baseline state 2 occupancy predicts subsequent cognitive decline in symptomatic patients in
arange of clinical and neuropsychological tests. CBI-R, Cambridge Behavioral Inventory-Revised

TABLE 3 Two-step prediction models for presymptomatic mutation carriers

Slope ~ comp + cov

Slope ~ comp*age + cov

Slope ~ comp*age*group + cov

Model Std Beta t
TMTB -0.13 -10
Digit Span 0.02 0.37
Digit Symbol -0.02 -0.31
MMSE -0.05 -0.76
CBI-R 0.03 0.50

[

.75
.75
.75
.75
.75

Std Beta t P Std Beta
0.22 3.9 .0006 0.43
0.09 15 17 0.12

-0.02 -0.45 .66 -0.12
-0.14 -24 .048 -0.19
0.11 1.7 .15 0.20

t
5.1
1.3

-1.6
-21
20

p

2x10°
.19
.15
.072
.072

comp, fractional occupancy component; CBI-R, Cambridge Behavioral Inventory-Revised; MMSE, Mini-Mental State Examination; TMTB, Trail Making

Test B.
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occupancy predicted cognitive decline in symptomatic carriers in all
measures except CBI-R, and for the TMTB, MMSE, and CBI-R in
older presymptomatic mutation carriers (Figure 3B and supplementary

materials).

4 | DISCUSSION

This study demonstrates that the temporal dynamics of large-scale
brain networks are disrupted by sporadic and familial FTD, with char-
acteristic changes in both the symptomatic and late presymptomatic
phases of disease. There is an increase in salience and default mode
network occupancy, and a decrease in proportion of time spent in
the primary cortices and subcortical regions: a change which corre-
lates with clinical and neuropsychological markers of disease severity.
Changes in temporal dynamics occur near to disease onset and predict
the onset and deterioration of the clinical syndrome as evidenced by
(1) the increased component scores of those who subsequently con-
verted to the symptomatic phase during follow-up, and (2) increased
rates of cognitive and clinical decline in both symptomatic and older
presymptomatic participants with higher component scores.

Functional networks provide an intermediate phenotype to inves-
tigate the compensatory changes that account for the dissocia-
tion between neuropathological progression and maintained cogni-
tive performance in presymptomatic neurodegeneration,*® with cou-
pling between functional connectivity and cognition increasing close
to disease onset.**1 Changes in time-varying connectivity predict
behavioral traits beyond static functional connectivity or structure
alone, 131 suggesting that investigating network dynamics informs our
understanding of the transition from the presymptomatic to symp-
tomatic phase of neurodegenerative disease. Here we found that while
the dynamic repertoire is unchanged through much of the presymp-
tomatic period, the onset of change indicates future symptomatic
decline. This suggests that network dynamics can potentially be used
both to guide prognosis and as an intermediate marker of success for
interventions in presymptomatic mutation carriers, adding to existing
clinical, blood, and other imaging biomarkers.*2

Given that the salience network is selectively targeted in
bvFTD, with atrophy of network hubs and reduced functional
connectivity,*>*° the finding of increased salience network occu-
pancy in FTD in both cohorts is perhaps unexpected. The salience
network is integral to accessing other large-scale networks, including
executive®® and default mode networks.*” Neuropathological dis-
ruption to salience network connectivity may undermine its ability to
coordinate network switching, perturbing global network dynamics,
resulting in increased time spent in a state with positive activations
in the default mode network and increased time within the salience
network itself. Assessment of between-group differences in transition
probabilities provides a potential explanation for these changes. We
found a reduced frequency of transition from the salience state to
the subcortical (primarily thalamic) state. Subcortical atrophy is well
recognized in FTD, notably in the thalamus, and occurs in both sporadic
and genetic FTD,*4? including in the presymptomatic phase.l Our

findings could suggest that subcortical network integrity influences
cortical salience network dynamics, echoing previous work describing
the role of thalamic degeneration in disrupting salience network
connectivity in genetic FTD.*8

There are limitations to our study, despite the advantages of cross-
sectional replication and longitudinal follow-up in the GENFI data. The
HMM provides a data-driven explanation of the data without biologi-
cal assumptions,© with resulting constraints to its explanatory power.
It is possible that a time-varying connectivity approach with additional
biologically informed constraints could provide further group differ-
entiation and refined longitudinal predictions. Our approach was not
optimized to find differences in brain state dynamics between mutation
types or by phenotype. Alternative methodological choices may reveal
such differences, according to different a priori numbers of states,
focusing on different large-scale networks and modelling subsets of
patients. In the GENFI cohort the study design necessarily results in a
significant age difference between non-carriers and symptomatic par-
ticipants. That similar patterns of state occupancies were observed in
the Cambridge cohort suggests that our results are not primarily driven
by age differences.

We conclude that network dynamics are a critical link between
neuropathology and symptomatology, heralding symptom onset and
correlating with key measures of clinical severity. Network dynamics
are a promising tool for stratification and prognostication in FTD.
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