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Abstract Individuals with a similar chronological 

age can exhibit marked differences in cardiovascular 

risk profiles, but it is unknown whether this variation is 

related to different rates of biological aging. Therefore, 

we investigated the relation between nine domains of 

cardiovascular function and four epigenetic age acceleration 

estimators (i.e., AgeAccel.Horvath, AgeAccel.Hannum, 

AgeAccelPheno, and AgeAccelGrim), derived from DNA 

methylation profiles. Among 4194 participants (mean age 

54.2 years (range 30.0–95.0)) from the Rhineland Study, an 

ongoing population-based cohort study in Bonn, Germany, 

epigenetic age acceleration increased by 0.19–1.84  years 

per standard deviation (SD) increase in cardiovascular risk 

across multiple domains, including measures of kidney 

function, adiposity, and a composite cardiovascular risk 

score. Measures of inflammation and glucose homeostasis 

were associated with AgeAccel.Hannum, AgeAccelPheno, 

and AgeAccelGrim, but not with AgeAccel.Horvath. 

Moreover, effect sizes were larger for AgeAccelPheno 

and AgeAccelGrim than for AgeAccel.Horvath and 

AgeAccel.Hannum. Similarly, epigenetic age acceleration 

increased by 0.15–0.81 years per SD increase in markers 

of vascular function (blood pressure, arterial stiffness, 

and hemodynamic measures), whereas better endothelial 

function was only associated with lower AgeAccelGrim. 

Most effects on epigenetic age acceleration were 

independent, which suggests they independently contribute 

to different rates of biological aging.

Keywords Biological age · Epigenetic age 

acceleration · Cardiovascular aging

Introduction

Cardiovascular diseases (CVDs) are the leading 

causes of morbidity and mortality worldwide [1, 

2]. However, substantial inter-individual variation 

in cardiovascular aging and associated morbidity 

remains in individuals with the same chronological 
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age, pointing towards markedly different rates of bio-

logical aging [3–7]. Nevertheless, the extent to which 

different cardiovascular factors contribute to biologi-

cal aging is still unclear. Elucidation of the relation 

between inter-individual differences in cardiovascular 

factors and the rate of biological aging is crucial for 

the development of more sensitive and specific sur-

rogate biomarkers of CVDs, which could facilitate 

the development of preventive and therapeutic strat-

egies for CVDs based on promoting healthy aging 

approaches.

DNA methylation is a major form of epigenetic 

modulation that is critically involved in the regula-

tion of gene expression. With increasing age, the 

methylation status of numerous DNA cytosine-

phosphate-guanine [8] sites differentially changes 

across the genome, reflecting the effects of cumu-

lative exposure to major risk factors involved in 

the pathogenesis of age-related conditions [9–11]. 

Indeed, several studies have shown that classical 

cardiovascular risk factors causally affect methyla-

tion status [12–18]. Large scale epigenomic analyses 

have shown that body mass index drives differential 

methylation status in the blood, adipose tissue, and 

liver, as well as changes in methylation over time 

[13, 14, 16, 18]. Inter-individual variation in blood 

lipids, as well as hyperglycemia, could induce dif-

ferential methylation changes in blood cells, human 

endothelial cells and skeletal muscle [12, 15, 17]. In 

addition, data from in vitro studies suggest that blood 

flow induced methylation modifications are related 

to endothelial and vascular functions, which may 

lead to atherosclerosis and cardiovascular diseases 

[19, 20]. The latter is also supported by a recent 

population-based epigenetic study, which showed a 

bidirectional association between blood pressure and 

DNA methylation [21]. However, the association of 

quantitative markers of vascular function, including 

age-related changes in arterial stiffness, endothelial 

function, and hemodynamics, with DNA methylation 

remains largely unknown.

DNA methylation profiles have been used to esti-

mate biological age, serving as so called epigenetic 

clocks. First-generation epigenetic clocks, includ-

ing Horvath’s and Hannum’s clocks, were developed 

using chronological age as a surrogate for biologi-

cal age [22, 23]. However, it is crucial to not only 

include CpGs that display changes with chronological 

time, but also those that account for substantial vari-

ation in physiological and molecular characteristics 

among individuals of the same chronological age. 

Thus, second-generation epigenetic clocks, including 

phenotypic age (PhenoAge) and GrimAge were opti-

mized to capture multi-system physiological dysfunc-

tions and health span [24, 25]. PhenoAge, trained on 

mortality-related clinical biomarkers, and GrimAge, 

developed using plasma proteins that are associated 

with age-related conditions, more closely reflect the 

high inter-individual variability in the underlying 

biological aging processes than the first-generation 

epigenetic clocks. Moreover, transcriptional analysis 

also revealed that genes linked to Horvath/Hannum’s 

clocks are only related to development and differen-

tiation pathways [26]. By contrast, genes associated 

with PhenoAge and GrimAge are involved in crucial 

aging pathways, including increased activation of 

pro-inflammatory and interferon pathways, cytokine-

mediated signaling pathway, mitochondrial signa-

tures, and fatty acid transmembrane transport [24, 

25]. Previous studies have shown that the discrepancy 

between an individual’s epigenetic age and chrono-

logical age, referred to as epigenetic age acceleration 

(including AgeAccel.Horvath, AgeAccel.Hannum, 

AgeAccelPheno, and AgeAccelGrim), is associated 

with age-related phenotypes and is a strong predic-

tor of all-cause as well as cardiovascular mortality 

[26–32]. Recent studies further showed that AgeAc-

celGrim outperforms other epigenetic age accelera-

tion estimators in the prediction of age-related dis-

eases and mortality [33, 34].

An important question remains whether and how 

inter-individual differences in cardiovascular risk fac-

tor profiles (including levels of lipoproteins and meas-

ures of kidney function, inflammation, adiposity, and 

glucose homeostasis), as well as changes in makers of 

vascular function (blood pressure, arterial stiffness, 

endothelial function, hemodynamics), are associated 

with epigenetic age acceleration at the population-

level. In particular, the relation between cardiovas-

cular risk factors and AgeAccelPheno and AgeAc-

celGrim has received little study [35–37]. Moreover, 

the association of quantitative and highly sensitive 

markers of vascular function with these four epige-

netic estimators has not been investigated, and there-

fore, the comparative utility of the first- and second-

generation epigenetic age acceleration estimators in 
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capturing similarities and differences in multi-domain 

cardiovascular dysfunction remains to be established.

We aimed to investigate whether a comprehensive 

set of cardiovascular risk factors involving multiple 

domains, as well as quantitative markers of vascu-

lar function, have consistent and independent effects 

on four epigenetic age acceleration estimators across 

a wide age range in the general population. We pos-

tulated that individuals with unfavorable profiles of 

cardiovascular risk factors and quantitative markers 

of vascular function would exhibit higher epigenetic 

age acceleration, and that lifespan estimators (i.e., 

AgeAccelPheno and AgeAccelGrim) would out-

perform the first-generation epigenetic clocks (i.e., 

AgeAccel.Horvath, AgeAccel.Hannum).

Methods

Study population

This study was based on the Rhineland Study, an 

ongoing single-center, population-based cohort study 

that recruits people aged 30 years and above from 2 

geographically defined areas in Bonn, Germany. The 

only exclusion criterion is the insufficient command 

of the German language to provide informed con-

sent. Persons living in the recruitment areas are pre-

dominantly German from Caucasian descent. A pri-

mary objective of the Rhineland Study is to identify 

determinants and markers of healthy aging. For this, 

we use a deep-phenotyping approach. At baseline, 

participants complete an 8-h in-depth multi-domain 

phenotypic assessment. Moreover, various types of 

biomaterials, including blood samples (buffy coat, 

serum, EDTA-plasma), urine, stool, and hair samples, 

are collected. Approval to undertake the study was 

obtained from the ethics committee of the Univer-

sity of Bonn, Medical Faculty. We obtained written 

informed consent from all participants in accordance 

with the Declaration of Helsinki.

As the recruitment in the Rhineland Study is ongo-

ing, for the current analyses, we used baseline data of 

the first 4200 consecutively participants of the Rhine-

land Study with methylation data. We excluded samples 

that did not meet the methylation data quality control 

criteria (n = 6). The final analysis sample comprised 

4194 participants.

DNA methylation quantification

Genomic DNA was extracted from buffy coat frac-

tions of anti-coagulated blood samples using Che-

magic DNA buffy coat kit (PerkinElmer, Germany) 

with Chemagic Magnatic Separation Module 1 and 

Chemagic Prime 8 Automated Workstation, and 

was subsequently bisulfite converted using the EZ-

96DNA Methylation-LightningTMMagPrep from 

Zymo according to the manufacturer’s instructions. 

DNA methylation levels were measured on Illumina 

iScan using Illumina’s Human MethylationEPIC 

BeadChip. The methylation level for each probe was 

derived as a beta value representing the fractional 

level of DNA methylation at that probe. Sample-

level and probe-level quality control was performed 

using the ‘minfi’ package [38] in R (version 3.5.0). 

Samples with sex mismatch or a missing rate at > 1% 

across all probes were excluded. Probes with a miss-

ing rate > 1% (at a detection p value > 0.01) were also 

excluded following previously published recommen-

dation guidelines for analyzing methylation data [39].

Estimation of epigenetic age acceleration

Four epigenetic clocks were utilized: scores on Hor-

vath and Hannum’s clocks were calculated accord-

ing to the algorithms described by Horvath et  al. 

and Hannum et  al., using 353 and 71 CpG sites, 

respectively [22, 23]. PhenoAge and GrimAge were 

calculated based on the algorithms developed by 

Levine et al. and Lu et al., using 513 and 1030 CpG 

sites, respectively [24, 25]. Epigenetic age accelera-

tion is defined as the residual (in years) that results 

from regressing epigenetic age on chronological age. 

The corresponding age-adjusted measures of epi-

genetic age acceleration are denoted as AgeAccel.

Horvath, AgeAccel.Hannum, AgeAccelPheno, and 

AgeAccelGrim.

Measurement of classical cardiovascular risk factors

Blood samples were collected between 7:00 and 9:45 

in the morning from an antecubital or dorsal hand 

vein after overnight fasting. Low-density lipoprotein 

(LDL) cholesterol, high-density lipoprotein (HDL) 

cholesterol, triglycerides, total cholesterol, cystatin 

C, C-reactive protein (CRP), insulin, glucose, and 

glycated hemoglobin (HbA1c) concentrations in 
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venous blood samples were measured using stand-

ard methods at the local clinical chemistry laboratory 

of the University Hospital of Bonn. Insulin resist-

ance was calculated as: insulin (mIU/L) × glucose 

(mmol/L)/22.5. Estimated glomerular filtration rate 

(eGFR) was estimated using the CKD-EPI equation 

[40]. Percentage of body fat was measured by direct 

segmental multi-frequency bioelectrical impedance 

analysis (InBody770). Body mass index (BMI) was 

calculated as weight in kilograms divided by height in 

meters squared. Waist circumference [41] was meas-

ured according to WHO recommendations, localiz-

ing the middle anatomical point between the lowest 

rib and the iliac crest with an anthropometric tape 

(SECA 201). The Framingham 10-year cardiovascu-

lar risk score was calculated for individuals from 30 

to 79 years old without coronary heart disease, stroke, 

and peripheral arterial diseases, using published gen-

der-specific algorithms [42].

Measurement of blood pressure

Systolic blood pressure (SBP) and diastolic blood 

pressure (DBP) were measured three times (separated 

by 10  min intervals), using an oscillometric blood 

pressure device (Omron 705 IT). The measurements 

were performed while people were sitting in a resting 

chair in a quiet environment, and the average of the 

second and third measurements was used for further 

calculation. Mean arterial pressure [43] is calculated 

as (SBP + 2 × DBP)/3. Pulse pressure (PP) is the dif-

ference between SBP and DBP.

Measurement of arterial stiffness

Arterial stiffness was assessed by total arterial com-

pliance index (TACI, mL/mmHg/m2), aorta-femoral 

pulse wave velocity (PWV, m/s) and ankle-brachial 

index (ABI). TACI was calculated as stroke volume 

(SV, mL) divided by PP and then multiplied with 

body surface area (BSA,  m2). PWV was assessed 

with an integrated oscillometric method, defining 

the propagation time of the pulse wave as the delay 

between opening of the aortic valve determined with 

impedance cardiography (ICG) waves and the arrival 

of the pulse wave to the mid-femoral cuff. PWV was 

calculated as the distance measured between the 

supra-sternal notch and the mid-femoral cuff divided 

by propagation time. ABI, calculated as the ratio of 

the ipsilateral ankle and brachial SBP, was measured 

on both sides with oscillometry. In cases where the 

ABI on both sides was lower than 1.40, the lower 

value was used for analysis, whereas in other cases 

the higher value was used as recommended previ-

ously [44].

Measurement of endothelial function

Endothelial function was assessed as reactive skin 

hyperemia (RSH) with a laser Doppler flowme-

try device (Moors, UK) using a local thermal heat-

ing protocol. Skin blood flow (SBF) on the ventral 

surface of the forearm was measured for a total of 

26  min. After 2  min of baseline SBF measurement, 

the area was heated up to 40 °C until the end of the 

examination. The baseline SBF is followed by a nadir, 

and after approximately 20 min, it reaches a plateau 

that is linked to nitric oxide production capacity of the 

endothelial cells [45]. RSH was calculated as ([(pla-

teau SBF – baseline SBF)/baseline SBF)] × 100).

Measurement of hemodynamics

Hemodynamics was assessed by cardiac index (CI, L/

min/m2), systemic vascular resistance index (SVRI, 

dynes/s/cm5/m2) and stroke index (SI, mL/m2). They 

were measured beat-to-beat for approximately 8 min 

with an impedance cardiography device (Cardio-

Screen 2000, Medis, Germany) and computed by Car-

diovascular Lab Software (Medis, Germany based on 

stoke volume (SV, mL). Briefly, cardiac output (CO 

[L/min]) was computed as SV multiplied by heart rate 

[beat per minute]; CI was computed as CO divided by 

BSA. SVRI was calculated as MAP divided by CO, 

multiplied by 80. SI was computed as SV divided by 

BSA.

Demographic and health variables

We included age, sex, and education level as demo-

graphic covariates. Education level was grouped as 

less than high school, high school, or higher. Smok-

ing status was defined as “current smoker” or “non-

current smoker” based on self-report: current smokers 

were defined as those who reported smoking within a 

year from the examination date. Non-current smokers 

were defined as those who had not smoked in the life-

time or those who had quit smoking more than a year 
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before the examination date. Missing smoking values 

were imputed based on cotinine metabolite levels: 

individuals with a cotinine level exceeding the non-

current smoker sample-defined 97.5 percentile were 

classified as smokers. Participants were considered 

to have diabetes if they had a self-reported physician 

diagnosis of diabetes, glycated hemoglobin (%) levels 

of 6.5% or more, or used anti-diabetic medication, as 

defined according to the anatomical therapeutic chem-

ical (ATC) code A10, which were used regularly (i.e., 

daily, every other day, weekly) during the past year. 

Hypertension was defined as a self-reported physician 

diagnosis of hypertension, or an average systolic blood 

pressure ≥ 140  mmHg and/or diastolic blood pres-

sure ≥ 90 mmHg, or the use of antihypertensive drugs 

(ATC code C02, C03, C07, C08, C09) which were 

used regularly (i.e., daily, every other day, weekly) 

during the past year. Stroke and myocardial infarction 

were defined as a self-reported physician diagnosis.

Statistical analysis

Data were summarized as mean ± standard devia-

tion (SD) or counts with proportions, for continuous 

and categorical variables, respectively. Differences 

between women and men were compared using lin-

ear regression for continuous variables, and logistic 

regression for categorical variables, adjusting for age. 

Pearson correlation coefficients were used to assess 

correlations among cardiovascular factors, and epige-

netic age acceleration. Moreover, we used hierarchi-

cal clustering to group cardiovascular risk factors, as 

well as markers of vascular function into homogenous 

clusters according to their degree of interrelatedness 

(R package ‘ClustOfVar’).

We assessed the relation between each cardiovascu-

lar factor (independent variable) and each epigenetic 

age acceleration estimator (dependent variable) using 

multiple linear regression. All cardiovascular variables 

were standardized before further analyses in order to 

enable better comparison of the effect sizes across dif-

ferent physiological domains. For all the analyses, com-

plete data were used. In the first model, we adjusted for 

batch information. In model 2, we additionally adjusted 

for sex, which is more meaningful when it comes to 

AgeAccel.Horvath, AgeAccel.Hannum, and AgeAc-

celPheno, as GrimAge already takes sex effect into 

account by using sex as a covariate in its definition 

[25]. Model 3 was further adjusted for smoking status 

(current or not). As AgeAccelGrim is a composite bio-

marker derived from DNAm-based surrogate biomark-

ers of seven plasma protein levels — i.e., adrenomedul-

lin (ADM), beta-2 microglobulin (B2M), cystatin C, 

growth differentiation factor 15 (GDF-15), leptin, plas-

minogen activation inhibitor 1 (PAI-1), tissue inhibitor 

metalloproteinase 1 (TIMP-1)-, and smoking pack-years 

(PACKYRS) [25], we further assessed the association 

between cardiovascular factors and the 8 corresponding 

surrogate variables (i.e., DNAmADM, DNAmB2M, 

DNAmCystatinC, DNAmGDF15, DNAmLeptin, 

DNAmPAI1, DNAmTIMP1, DNAmPACKYRS) to 

explore which underlying DNAm-based biomarkers 

drive the associations. To correct for multiple compari-

sons, we used Bonferroni correction to account for nine 

independent cardiovascular domains derived from hier-

archical clustering, considering P < 0.0056 (0.05/9) as 

statistically significant.

As parameters within each physiologic cluster 

were highly correlated, we additionally calculated 

an average Z score for each cluster. We then included 

these cluster scores in one multivariable regression 

model to assess the independent relation of each clus-

ter with epigenetic age acceleration, adjusting for sex, 

batch information, and smoking status.

To explore sex differences between cardiovascular 

factors and epigenetic age acceleration, we assessed 

the interaction between sex and each cardiovascular 

factor and performed sex-stratified analyses, if the 

interaction term was statistically significant. To test 

whether our results would be affected by cardiovas-

cular co-morbidity, we also performed a sensitiv-

ity analysis by excluding participants with diabetes, 

stroke, or myocardial infarction. Potential nonlinear 

relationships were examined by plotting each cardio-

vascular factor against epigenetic age acceleration. If 

there was a potentially nonlinear relationship based 

on visual inspection, quadratic terms for cardiovas-

cular factor were added to the regression models. All 

standardized effect estimates are reported with their 

95% confidence intervals (CIs).

Results

The characteristics of the study population are pre-

sented in Table  1. A total of 4194 participants had 

DNA methylation data available and were included in 

the analyses.
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Table 1  Characteristics of the study population

Overall (n = 4194) Women (n = 2280) Men (n = 1914) Adjusted p value*

Demographic characteristics

Age, year 0.523

  Mean (SD) 54.2 (13.6) 54.0 (13.3) 54.3 (13.9)

  Median [Min, Max] 54.0 [30.0, 95.0] 54.0 [30.0, 95.0] 54.0 [30.0, 90.0]

Education, n (%)  < 0.001

  Low 106 (2.5%) 74 (3.2%) 32 (1.6%)

  Middle 1819 (43.4%) 1106 (48.6%) 713 (37.3%)

  High 2269 (54.1%) 1100 (48.2%) 1169 (61.1%)

  Current smoking, n (%) 545 (13.0%) 284 (12.5%) 261 (13.6%) 0.078

  Hypertension, n (%) 1456 (34.7%) 696 (30.5%) 760 (39.8%)  < 0.001

  Diabetes, n (%) 178 (4.2%) 68 (3.0%) 110 (5.7%)  < 0.001

  Stroke, n (%) 61 (1.5%) 29 (1.3%) 32 (1.7%) 0.155

  Myocardial infarction, n (%) 60 (1.4%) 16 (0.7%) 44 (2.3%)  < 0.001

Epigenetic age acceleration, year, mean (SD)

  AgeAccel.Horvath 0.3 (5.3)  − 0.3 (5.1) 1.0 (5.4)  < 0.001

  AgeAccel.Hannum 0.3 (5.6)  − 0.6 (5.7) 1.4 (5.4)  < 0.001

  AgeAccelPheno 0.1 (6.6)  − 0.4 (6.7) 0.7 (6.4)  < 0.001

  AgeAccelGrim  − 0.2 (7.3)  − 1.1 (7.1) 0.9 (7.4)  < 0.001

Cardiovascular factors, mean (SD)

  LDL, mg/dL 127 (35.5) 126 (36.6) 128 (34.1) 0.171

  HDL, mg/dL 62.2 (17.7) 69.6 (17.1) 53.3 (13.8)  < 0.001

  LDL/HDL ratio, % 2.2 (0.9) 1.9 (0.8) 2.6 (0.9)  < 0.001

  Triglyceride, mg/dL 111 (67.6) 96.3 (49.7) 128 (80.7)  < 0.001

  Total cholesterol, mg/dL 199 (38.9) 203 (39.6) 194 (37.6)  < 0.001

  Cystatin C, mg/L 0.9 (0.2) 0.9 (0.2) 0.9 (0.2)  < 0.001

  Estimated glomerular filtration rate, ml/

min/1.73m2
91.6 (18.3) 91.4 (17.5) 91.7 (19.3) 0.238

  C-reactive protein, mg/L 1.8 (3.2) 1.8 (3.3) 1.7 (3.0) 0.261

  Percentage of body fat, % 27.9 (9.0) 31.8 (8.5) 23.3 (7.1)  < 0.001

  BMI, kg/m2 25.7 (4.2) 25.2 (4.5) 26.4 (3.7)  < 0.001

  Waist circumference, cm 87.6 (12.9) 82.0 (11.5) 94.3 (11.2)  < 0.001

  Insulin, mIU/L 10.3 (7.5) 9.3 (5.9) 11.5 (8.9)  < 0.001

  Insulin resistance 2.4 (2.3) 2.1 (1.8) 2.8 (2.7)  < 0.001

  Glucose, mg/dL 92.0 (15.3) 89.5 (14.6) 95.0 (15.5)  < 0.001

  HbA1c, mmol/mol 36.0 (5.5) 35.9 (5.2) 36.2 (5.9) 0.010

  Cardiovascular risk  score# 0.4 (0.4) 0.1 (0.1) 0.8 (0.2)  < 0.001

  SBP, mmHg, mean (SD) 126 (15.7) 123 (16.4) 130 (13.8)  < 0.001

  DBP, mmHg, mean (SD) 75.5 (9.3) 73.8 (9.1) 77.4 (9.2)  < 0.001

  Mean arterial pressure, mmHg 92.3 (10.5) 90.0 (10.6) 95.0 (9.8)  < 0.001

  Pulse pressure, mmHg 51.5 (10.4) 50.2 (10.8) 53.0 (9.6)  < 0.001

  Total arterial compliance index, mL/mmHg/m2 1.1 (0.3) 1.1 (0.3) 1.0 (0.2)  < 0.001

  Pulse wave velocity, m/s 6.8 (1.4) 6.6 (1.4) 6.9 (1.4)  < 0.001

  Ankle-Brachial index 1.2 (0.1) 1.1 (0.1) 1.2 (0.1) 0.002

  Log reactive skin hyperemia, log (%) 5.8 (0.9) 5.8 (0.9) 5.8 (0.9) 0.143

  Cardiac index, L/min/m2 3.2 (0.5) 3.3 (0.5) 3.0 (0.5)  < 0.001

  Systemic vascular resistance index, dynes s/cm5/m2 2120 (469) 1970 (409) 2300 (474)  < 0.001
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Estimations of epigenetic age acceleration

AgeAccel.Horvath, AgeAccel.Hannum, and AgeAc-

celPheno were all moderately correlated with each 

other (r = 0.59–0.61). AgeAccelGrim was weakly 

correlated with AgeAccelPheno (r = 0.32) and the 

first-generation estimators (r = 0.16–0.21). Epigenetic 

age acceleration was significantly higher in men than 

women for all the four measures (Table 1).

Relation between classical cardiovascular risk factors 

and epigenetic age acceleration

Conforming to their known physiological interrelations, 

hierarchical clustering of the classical cardiovascular 

risk factors yielded five categories (Fig. 1a), compris-

ing of lipoproteins (LDL, total cholesterol, triglyceride, 

HDL, LDL/HDL ratio), kidney function (cystatin C and 

eGFR), inflammation (CRP), adiposity (% body fat, 

BMI, waist circumference), and glucose homeostasis 

(blood insulin levels, insulin resistance, blood glucose 

levels, HbA1c). Most of these classical cardiovascular 

risk factors and risk factor categories were only weakly 

correlated with each other (eFig. 1), indicating that dif-

ferent risk factor categories indeed represent different 

physiological domains.

Markers of kidney function (cystatin C and eGFR), 

adiposity (% body fat, BMI and waist circumference), and 

cardiovascular risk score were consistently associated with 

the four epigenetic age acceleration estimators (Fig. 2a and 

eTable 1). Measures of inflammation (CRP), and glucose 

homeostasis (insulin, insulin resistance, and blood glu-

cose) were associated with AgeAccel.Hannum, AgeAc-

celPheno, and AgeAccelGrim, but not with AgeAccel.

Horvath. Within the lipoprotein category, triglyceride and/

or HDL levels were only associated with AgeAccelPheno 

and AgeAccelGrim. Moreover, compared to AgeAccel.

Horvath and AgeAccel.Hannum, effect sizes of these 

HDL, high-density lipoproteins; LDL, low-density lipoproteins; BMI, body mass index; HbA1c, glycated hemoglobin, SBP, systolic 

blood pressure; DBP, diastolic blood pressure; SD, standard deviation
# Cardiovascular risk score was calculated among participants < 80 years old without cardiovascular diseases (n = 3982)
* Comparison between women and men, adjusted for age

Table 1  (continued)

Overall (n = 4194) Women (n = 2280) Men (n = 1914) Adjusted p value*

  Stroke index, mL/m2 52.1 (8.7) 53.7 (8.7) 50.2 (8.3)  < 0.001

Fig. 1  Hierarchical clustering of cardiovascular factors. 

Abbreviations: LDL, low-density lipoproteins; HDL, high-den-

sity lipoproteins; eGFR, estimated glomerular filtration rate; 

CRP, C-reactive protein; BMI, body mass index; HbA1c, gly-

cated hemoglobin; DBP, diastolic blood pressure; MAP, mean 

arterial pressure; SBP, systolic blood pressure; PP, pulse pres-

sure; TACI, total arterial compliance index; PWV, pulse wave 

velocity; ABI, ankle-brachial index; RSH, reactive skin hyper-

emia; CI, cardiac index; SVRI, systemic vascular resistance 

index; SI, stroke index
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cardiovascular risk factors were larger for AgeAccelPheno 

and AgeAccelGrim. Ten out of 16 cardiovascular risk fac-

tors were significantly associated with all four epigenetic 

age acceleration estimators when only adjusted for batch 

effect (eTable  1, model 1). Most of these associations 

remained similar for AgeAccelPheno and AgeAccelGrim 

upon further adjustment for sex (model 2) and smoking 

status (model 3), whereas effect sizes for lipoproteins and 

markers of glucose homeostasis changed markedly for 

AgeAccel.Horvath and AgeAccel.Hannum (eTable 1).

In evaluating the independent effects of the various 

risk factor clusters (Fig. 2b), we found that decreased 

kidney function, increased inflammation, and higher 

adiposity markers were independently associated with 

larger AgeAccelPheno and AgeAccelGrim. Increased 

inflammation and higher adiposity markers were 

also independently associated with larger AgeAccel.

Hannum, whereas only decreased kidney function 

was independently associated with larger AgeAccel.

Horvath.

Relation between markers of vascular function (blood 

pressure, arterial stiffness, endothelial function, and 

hemodynamics) and epigenetic age acceleration

Hierarchical clustering of markers of vascular func-

tion yielded four categories, comprising of blood 

pressure (DBP, MAP, SBP), arterial stiffness (PP, 

TACI, PWV, ABI), endothelial function (RSH), and 

hemodynamics (CI, SVRI, SI) (Fig. 1b). Measures of 

blood pressure, arterial stiffness, endothelial function, 

and hemodynamics were only weakly correlated with 

most of the classical cardiovascular risk factors and 

across categories, with higher correlation within each 

category as expected (eFig. 1).

When analyzed separately, higher blood pressure 

measures and larger arterial stiffness were consist-

ently associated with higher epigenetic age accel-

eration (Fig.  3a  and eTable  2). In contrast, a better 

hemodynamic function was associated with lower 

AgeAccel.Horvath and AgeAccel.Hannum, while 

a better endothelial function was only significantly 

associated with lower AgeAccelGrim.

When we evaluated the independent effects of the 

various vascular function clusters on epigenetic age 

acceleration (Fig.  3b), we found that an unfavorable 

blood pressure profile was associated with higher 

AgeAccel.Horvath, AgeAccel.Hannum, and AgeAc-

celPheno. Increased arterial stiffness and decreased 

endothelial function, however, were only associated 

with higher AgeAccelGrim.

Relation between cardiovascular markers and 

AgeAccelGrim component variables

Except for DNAmGDF15, the DNAm-based plasma 

protein components of AgeAccelGrim were all asso-

ciated with the classical cardiovascular risk factors 

(eFig.  2a). Moreover, the association between clas-

sical cardiovascular risk factors and AgeAccelGrim 

was mainly driven by DNAmPAI1, DNAmTIMP1, 

and DNAmPACKYRS. The classical cardiovascu-

lar risk factors were more strongly associated with 

DNAmPAI1 than with AgeAccelGrim. The asso-

ciation of blood pressure and arterial stiffness with 

AgeAccelGrim was driven by DNAmPAI1, while the 

association of reactive skin hyperemia and AgeAccel-

Grim was driven by DNAmPACKYRS (eFig. 2b).

Sex-stratified analyses

All four epigenetic age acceleration estimators were 

consistently higher in men compared to women 

(Table  1), which is consistent with previous results 

[46]. The effects of classical cardiovascular risk 

factors on epigenetic age acceleration did not dif-

fer between men and women, except for cystatin C, 

eGFR, and CRP, which had a stronger association 

with epigenetic age acceleration in men. Regarding 

markers of vascular function, the effects of arterial 

Fig. 2  Relation between classical cardiovascular risk factors and 

epigenetic age acceleration. a Effect of individual cardiovascu-

lar risk factors on epigenetic age acceleration. Model: epigenetic 

age acceleration ~ each independent variable + batch informa-

tion + sex + smoking status; Cardiovascular disease risk score 

included participants < 80  years old without cardiovascular dis-

eases (n = 3982). b Independent effects of cardiovascular risk fac-

tors clusters on epigenetic age acceleration. Model: epigenetic age 

acceleration ~ lipoproteins + kidney function + inflammation + adi-

posity + glucose homeostasis + sex + batch information + smoking 

status. Abbreviations: LDL, low-density lipoproteins; HDL, high-

density lipoproteins; eGFR, estimated glomerular filtration rate; 

CRP, C-reactive protein; BMI, body mass index; HbA1c, glycated 

hemoglobin; SD, standard deviation
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stiffness and worse hemodynamics on epigenetic 

age acceleration were significantly stronger in men 

than in women, but similar between sexes for blood 

pressure traits and endothelial function (eFig.  3 and 

eTable 3).

Sensitivity analyses

The estimated effects of all cardiovascular risk fac-

tors and markers of vascular function on epigenetic 

age acceleration remained virtually identical after 

exclusion of participants with diabetes or those with 

a history of stroke or myocardial infarction (n = 299). 

We also examined potential nonlinear relationships 

between cardiovascular risk factors and markers of 

vascular function and epigenetic age acceleration. 

None of the associations significantly deviated from 

linearity.

Discussion

We performed a large and comprehensive study to 

elucidate the precise contributions of cardiovascular 

risk factors and quantitative markers of vascular func-

tion across multiple domains on the four most com-

monly used epigenetic estimators of biological aging. 

Through this approach, we were able to compare the 

utility of both first- and second-generation epigenetic 

age acceleration estimators in capturing multi-domain 

cardiovascular dysfunction. Using a population-based 

approach, we found that across a wide age range, indi-

viduals with an unhealthy cardiovascular risk profile, 

as well as those with unfavorable functional vascular 

parameters, consistently displayed accelerated epige-

netic aging. AgeAccelPheno and AgeAccelGrim out-

performed AgeAccel.Horvath and AgeAccel.Hannum 

in capturing multisystem dysregulation. Importantly, 

the effects of cardiovascular risk factors and markers 

of vascular function on accelerated epigenetic aging 

were independent, suggesting that targeting of (modi-

fiable) cardiovascular risk profiles across different 

physiological domains is likely to have a cumulative 

effect with respect to slowing of the unhealthy aging 

process.

Our findings indicate that an unfavorable car-

diovascular health profile could underlie interindi-

vidual differences in biological aging, contributing 

to unhealthy aging-related morbidity and mortality. 

Indeed, cardiovascular dysfunctions across multiple 

physiological domains were consistently associated 

with the four most widely used epigenetic age accel-

eration estimators, which capture variations in the 

rate of biological aging beyond chronological age. 

Moreover, our study also provides clues on how lifes-

pan estimators (i.e., AgeAccelPheno and AgeAccel-

Grim) might capture more aspects of biological aging 

and outperform the first generation aging estimators 

(i.e., AgeAccel.Horvath and AgeAccel.Hannum) 

as determinants of morbidity and mortality. Aging 

involves complex changes across multiple physiologi-

cal domains, and consequently, its pace is determined 

by the cumulative effects across those domains [47, 

48]. Compared with Horvath and Hannum’s clocks, 

which do not account for the heterogeneity of physi-

ological complexity among individuals, PhenoAge 

and GrimAge, include not only CpGs with strong 

time-dependent changes, but also those related to 

divergence in the rate of aging [24–26]. Indeed, we 

found that more cardiovascular factors with larger 

effect sizes were associated with AgeAccelPheno and 

AgeAccelGrim as compared to AgeAccel.Horvath 

and AgeAccel.Hannum. Collectively, these findings 

thus suggest that AgeAccelPheno and AgeAccelGrim 

more closely reflect the cumulative effects of the 

underlying aging-related molecular mechanisms on 

the epigenome [22–25, 49, 50].

Previous studies have found associations of BMI, 

blood pressure, and metabolic syndrome, with epige-

netic age acceleration. However, these mostly focused 

on only a few cardiovascular risk factors or a com-

posite cardiovascular health score [51, 52], mainly in 

relation to first-generation age acceleration estimators 

[35–37, 53]. Our findings substantially extend previ-

ous findings by showing that unfavorable changes 

in cardiovascular risk factors across multiple physi-

ological domains are independently associated with 

the four most widely used epigenetic age acceleration 

estimators across a wide age spectrum. This indicates 

Fig. 3  Relation between markers of vascular function and 

epigenetic age acceleration. a Effect of individual vascular 

function markers on epigenetic age acceleration. Model: epi-

genetic age acceleration ~ each independent variable + batch 

information + sex + smoking status. b Independent effects 

of vascular function clusters on epigenetic age acceleration. 

Model: epigenetic age acceleration ~ blood pressure + arterial 

stiffness + endothelial function + hemodynamics + sex + batch 

information + smoking status
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that the effects of changes in multiple cardiovascular 

domains are additive at the epigenetic level, suggest-

ing an independent modification of the rate of biolog-

ical aging. The relationships of many cardiovascular 

risk factors with increased cardiovascular-associated 

morbidity and decreased life expectancy have been 

well established [1, 42, 54]. However, the underlying 

molecular pathways mediating these associations are 

much less clear. A potential mechanism could be the 

influence of cardiovascular risk factors on systemic 

gene expression profiles through changes in DNA 

methylation [16, 21]. Our findings highlight a robust 

relation between most known cardiovascular risk fac-

tors and accelerated epigenetic aging.

Importantly, we also found that unfavorable 

changes in quantitative markers of vascular function 

were associated with accelerated epigenetic aging. 

Previous studies of such markers mainly focused on 

studying the methylation status of single genes [20, 

55]. They showed that hemodynamic changes may 

exert part of their role in the pathogenesis of vascu-

lar diseases through epigenetic remodeling [19, 20]. 

As epigenetic age acceleration takes a panel of CpG 

changes into account, our findings support the notion 

that cardiovascular dysfunction may induce multiple 

methylation changes across the epigenome, which 

could have an impact on the rate of biological aging. 

We also found that endothelial function was associ-

ated with AgeAccelGrim, suggesting that this lifespan 

estimator may be able to capture the molecular signa-

ture of endothelial dysfunction associated with CVDs. 

Although the precise molecular mechanisms remain 

to be elucidated, this may occur through loss of pro-

teostasis involving vascular remodeling, inflammation, 

and immune dysfunction: Plasma proteins used in the 

construction of GrimAge, including adrenomedullin 

[56], beta-2- macroglobulin [57], growth differentia-

tion factor 15 [58], and plasminogen activator inhibi-

tor 1 [59], are markers of inflammation response and 

immune function which have been linked to CVDs.

Our study has both strengths and limitations. First, 

we were able to scrutinize the effects of a wide range 

of cardiovascular risk factors and quantitative mark-

ers of vascular function conjointly in a large study 

concerning the relation between cardiovascular and 

accelerated epigenetic aging. Second, we present 

results for the four most widely used epigenetic age 

acceleration estimators, showing that although the 

effects are consistent across the different estimators, 

AgeAccelPheno and AgeAccelGrim more closely 

reflect changes in cardiovascular risk factors. Third, 

our estimates are based on a broad age spectrum, 

ranging from 30 to 95  years old, and are therefore 

likely to represent the association between cardiovas-

cular and accelerated epigenetic aging across most of 

the adult lifespan. On the other hand, the cross-sec-

tional nature of our study precludes formal evaluation 

of the directionality of the effects. So, although we 

consider it likely, based on findings from prior stud-

ies showing that cardiovascular risk factors trigger 

changes in DNA methylation [12–20, 60], the con-

verse cannot be excluded. Another limitation of our 

study could be that we defined participants’ diabetes 

and hypertension status based on self-reports in con-

junction with current regular use of anti-diabetic and 

anti-hypertensive medications, respectively, which 

could potentially have introduced a (non-differential) 

misclassification bias; however, if anything, this is 

likely to have biased the results towards the null.

Conclusion

In conclusion, we found that multiple cardiovascu-

lar risk factors and quantitative markers of vascular 

function across different physiological systems were 

consistently and independently associated with accel-

erated epigenetic aging. Therefore, promoting cardio-

vascular health may lower epigenetic age accelera-

tion, with potential health impacts that go beyond the 

purely cardiovascular aspects of the aging process.
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