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SUMMARY

Variance of gene expression is intrinsic to any given natural population. Here, we
present a protocol to analyze this variance using a conditional quasi loss- and
gain-of-function approach. The huva (human variation) package takes advantage
of population-scale multi-omics data to infer gene function and the relationship
between phenotype and gene expression. We describe the steps for setting up
the huvaworkspace, formatting datasets, performing huva experiments, and ex-
porting data.
For complete details on the use and execution of this protocol, please refer to
Bonaguro et al. (2022).1

BEFORE YOU BEGIN

Variation is an intrinsic characteristic of any biological parameter that is assessed at the population

level. In humans, this is an essential variable when studying diseases in larger cohorts, and is increas-

ingly recognized when describing healthy populations. Inclusion of omics data, such as transcrip-

tomics, in large cohort studies, allows the use of the variance in gene expression to set up quasi-

loss- and gain-of-function in silico experiments.

We have previously shown how variation in gene expression can be linked to gene function when

both variables are measured in the same cohort.2

We developed the huva R package to enable the use of variance in gene expression to predict the

functional role of a gene of interest (GOI). huva takes the extremes of the expression variance to

model a quasi-loss- and gain-of-function experiment. We provide huva with a standalone database,

huva.db, including several cohort-wide transcriptomic studies on healthy participants designed to

study the inter individual variability of the immune system (500FG,3,4 ImmVar,5 and CEDAR6). In

addition to the provided datasets, huva accepts user-provided datasets.

Huva is an easy-to-use R package that is also available via a graphical user interface on FastGenomics

(https://beta.fastgenomics.org/a/huva) enabling scientists with or without bioinformatics skills to

inspect the predicted function of a GOI for further validation experiments in culture systems (e.g.,

CRISPR-Cas9 mutants, RNA interference or gene overexpression) or animal models (e.g., knock-

out/knock-in mouse).
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Prerequisites/system requirements

1. Windows, Linux or MAC OSX system able to run Docker environments.

2. 64-bit processor.

3. 4GB system RAM (8GB recommended).

Running huva on a Docker container (recommended solution) does not require any dependency to

be pre-installed on the system. If installing huva locally, R and several other packages need to be

installed before huva (see troubleshooting 1 for details).

Setting up a huva workspace

Timing: 30 min

huva is an R package running on all operating systems compatible with base R (e.g., Windows, Linux,

MAC OSX). To simplify the set-up of a workspace for huva analysis and to ensure the reproducibility

of the analysis, we provide huva as a Docker image. We describe here the process to set up a Docker

container running the most up-to-date version of huva while also exemplifying in the trouble-

shooting section how to install huva and huva.db on a local workstation as an alternative. As dis-

cussed in the original manuscript,1 the huva framework runs on standard hardware (e.g., 1+ cores

and 8 GB of RAM memory) within a few seconds for each GOI, analyzing human variation from

over 2,400 transcriptomic profiles (included in the default huva.db).

4. Install Docker or another tool to deploy Docker containers (e.g., Singularity).

Note: depending on the operating system follow the instructions at https://www.docker.com/, on

Windows also the Windows Subsystem for Linux needs to be installed:

a. Set up the Windows Subsystem for Linux 2 (WSL2) and any of the available Linux distribu-

tions:

i. Install WSL2 first following the instructions reported here: https://learn.microsoft.com/

en-us/windows/wsl/install.

ii. Install Ubuntu or another Linux distribution as reported here: https://ubuntu.com/

tutorials/install-ubuntu-on-wsl2-on-windows-10#1-overview.

b. Download and install the latest version of Docker Desktop.

c. Verify the installation of Docker Desktop.

i. Open the Ubuntu terminal.

ii. Run:

Note: If Docker is installed and running correctly this will output some basic information on the

system, if no output is produced the installation was not successful. Since the cause of this mal-

function could be extremely diverse, it is advisable to consult the troubleshooting section of

Docker desktop (https://docs.docker.com/desktop/troubleshoot/overview/).

5. Start a Docker container for huva analysis.

a. First, download the latest version of the huva docker image by typing in the terminal:

>docker info

>docker pull lorenzobonaguro/huva_docker:015
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b. Start a container with the downloaded image.

c. Open the session on your browser by going to the address:

d. Log in with your username and password; in this environment, everything is ready to run a huva

experiment

Note: The tag of the latest available huva docker image can be checked at https://hub.docker.

com/. We discourage the use of the ‘‘latest’’ tag to ensure reproducibility of your script.

Note: This part is not intended as an exhaustive tutorial on how to use Docker, we encourage

the reader to explore Docker functionalities on https://www.docker.com.

CRITICAL: If Docker cannot be installed on your system or you want to install the huva and

huva.db packages with all the dependencies locally, we provide the respective script in the

troubleshooting section.

Format a new dataset (optional)

Timing: 30 min, according to the dataset size

huva and huva.db are designed for the addition of new datasets to the original database. This is an

optional step, which provides the user the opportunity to extend the analysis of human variation in

other settings, i.e., tissues and organs. To exemplify this function, we showcase the implementation

of the data from the GTEx consortium (v8).7

To generate a new huva.db, a normalized count table from transcriptomic data (e.g., RNAseq) is

required with each sample as a separate column and HGNC gene symbols as row names, paired

with a metadata table with samples as rows.

6. Data filtering and normalization: For RNAseq data, we recommend to filter low expressed genes

as suggested by common RNAseq analysis pipelines (DEseq2, edgeR). For data normalization,

we suggest using the rlog transformation from the DEseq2 package.8

Note: This function transforms the count data to a log2 scale minimizing the differences for

genes with low counts and normalizes the counts for the library size. Alternatively, logCPM

with TMM normalization or the voom function (both part of the Limma package) are suitable

transformation methods.

7. Data formatting: To be compatible with the huva_dataset format, format the new dataset as a sepa-

rate list for counts, annotation and eventual additional metadata. Each list should have a matching

substructure, here for example the structure of the GTEx dataset for whole blood and brain:

>docker run -dp [YOUR PORT]:8787 \ # define the port to use

>-e USER=[USER] -e PASSWORD=[PW] \ # username and password

>–name huva_analysis \ # name of the container

>-v [LOCAL DIRECTORY PATH]:/data/ \ # directory to mount

>lorenzobonaguro/huva_docker:015 #name of the docker image

>http://localhost:[YOUR PORT]/
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Note: The count table, annotation and metadata need to have a specific structure to be

compatible with the huva framework. The count table should be a matrix with the sample

names as column names and the gene names as row names. The metadata and annotation

should be a data.fame with the parameters as column names and the sample names as

row names. Those datasets can derive from different file format (e.g., csv, tsv, xlsx), R provides

basic functions to read those format and convert them to matrix or data.frame.

8. Generate new huva_dataset: use the generate_huva_dataset function to combine the individual

elements in an huva_dataset object that can be used for huva analysis:

CRUCIAL: The row names of the annotation table need to match the column names of the normal-

ized count table otherwise the script will not be able to perform the analysis correctly and will lead to

unexpected errors.

Note: By default, huva expects the genes to be annotated as HGNC gene symbols. If you pre-

fer to keep the genes annotated with ENSEMBL IDs or Entrez Gene IDs, see the trouble-

shooting section.

Note: If you start with a new dataset, we encourage some preliminary exploratory data anal-

ysis (EDA) to check the data quality and the eventual presence of unwanted batch effects. If

technical batches are present, this can be corrected with a batch correction tool such as the

Limma batch correction (removebatchEffect function) or ComBat (sva package9). For a

comprehensive review of the methods for EDA, we recommend the following resource.10

Note: When including a new dataset to huva.db, we suggest using datasets including tran-

scriptomes from a minimum of 100 donors and at least one additional phenotypic or func-

tional data layer.

Note: The huva.db format accepts two types of sample annotation. The annotation is a

required part of the huva.db, this variable is meant to store basic information on the experi-

mental cohort (e.g., sex, age) and accepts both numeric and non-numeric entries (does not

gtex_count

|_whole_blood # Matrix with whole blood normalized counts

|_brain # Matrix with brain normalized count

gtex_anno

|_whole_blood # Metadata data frame for whole blood

|_brain # Metadata data frame for brain

>library(huva) # load huva package

>library(huva.db) # load huva.db package

>

>gtex.db <- generate_huva_dataset(dataset_name = "GTEx_v8",

> data = "gtex_data",

> annotation = "gtex_anno",

> metadata = NULL)

ll
OPEN ACCESS

4 STAR Protocols 4, 102193, June 16, 2023

Protocol



accept missing values). The metadata variable, on the other hand, accepts only numeric

values and is meant to store additional experimental layers (e.g., cell counts or cytokines

secretion levels), here missing values are allowed.

KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

We will exemplify here the main steps required to run a huva in silico experiment (graphically sum-

marized in Figure 1). We will show how to run the experiment and how to explore the results gener-

ating both, summary statistics (e.g., differentially expressed genes, fold-change and p-value of

metadata and cell annotation, GSEA results) and graphical visualizations (e.g., GOI expression his-

togram, boxplot of the expression of selected genes, metadata and annotation boxplot and corre-

lation plot with the GOI, heatmap of differentially expressed genes, dotplot of GSEA results).

All code shown here is also available in the GitHub repository of this manuscript (https://github.com/

lorenzobonaguro/STAR_protocol_human_variation).

Furthermore, the huva R package includes a vignette which can be visualized in R after loading the

package (vignette("huva_workflow")). Each huva function also includes detailed documenta-

tion according to the standard R structure (e.g., help(run_huva_experiment)).

Exploratory huva experiment

Timing: 30 min

As a first exploratory step of the huva framework perform an exploratory huva experiment.

Note: In this step, the expression of the selected GOI is compared across selected datasets

and correlated with available metadata to evaluate the relationship between gene expression

and the available parameters. This approach provides a quick overview of GOI expression

across datasets and cell types, helping to shape downstream analyses.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Huva.db v. 0.1.5 Bonaguro et al.1 https://github.com/lorenzobonaguro/huva.db;
https://doi.org/10.5281/zenodo.7071267

GTEx v8 GTEx Consortium11 https://www.gtexportal.org/home/datasets

Software and algorithms

Huva v 0.1.5 Bonaguro et al.1 https://github.com/lorenzobonaguro/huva;
https://doi.org/10.5281/zenodo.7071267

DEseq2 v. 1.30.1 Love et al.8 https://bioconductor.org/packages/release/
bioc/html/DESeq2.html

Limma v 3.46.0 Ritchie et al.12 https://bioconductor.org/packages/release/
bioc/html/limma.html

Fgsea v. 1.16.0 Korotkevich et al.13 https://bioconductor.org/packages/release/
bioc/html/fgsea.html

ggplot2 v.3.3.3 R Tidyverse https://ggplot2.tidyverse.org/

Docker Desktop v 20.10.16 https://www.docker.com/products/
docker-desktop

RRID: SCR_016445

R v. 4.0.3 http://www.r-project.org/ RRID: SCR_001905

Other

Code for reproducibility of the analysis This paper https://github.com/lorenzobonaguro/
STAR_protocol_human_variation

Huva web portal Bonaguro et al.1 https://beta.fastgenomics.org/a/huva
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1. First, run the experiment; the results are stored in the R environment:

a. Load the packages.

b. Define your gene of interest (GOI) as a variable, exemplified here with MYD88.

c. Run the exploratory huva experiment with a simple function performing the analysis across all

datasets provided in the database.

Note: If a gene is not expressed in a dataset, a message will be displayed (e.g., "MYD88 is not

present in PLA").

2. Explore the results of the exploratory huva experiment using several built-in functions not only to

extract the data but also to plot and visualize the results.

Figure 1. Overview of the huva framework workflow

(A) Graphical visualization of the exploratory huva experiment workflow.

(B) Graphical visualization of the huva gene experiment workflow.

>library(huva)

>library(huva.db)

>GOI <- ‘‘MYD88’’

>gene_overview <- gene_exam(huva_dataset = huva.db,

gene = gene_name)
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a. At first, examine the expression of the GOI across the provided datasets.

i. Export the expression as data frame.

ii. Or plot the expression for each dataset (Figure 2A).

Note: The single plots are stored within the results of the exploratory huva experiment, which

can be accessed directly by exploring the object (e.g., gene_overview$plot$FG500_

whole_blood).

b. In the next step, investigate the correlation between the GOI and the provided annotations

and metadata with the outputs produced with the following commands.

i. A data frame with the annotation (get_anno_exam) or metadata (get_metadata_exam)

of each dataset.

ii. A table with statistics (t-test for discrete variables and Pearson’s correlation for continuous vari-

ables) for annotation (get_anno.stat_exam) and metadata (get_meta.stat_exam).

iii. Plots for single parameters (see examples in Figures 2B–2D).

Note: Some of the functions require the user to set a ‘‘study’’ and ‘‘dataset’’ argument to

export the results of the exploratory huva experiment. If the default huva.db is used, all avail-

able datasets/studies can be explored with the function huva_overview().

Note: The distinction between annotation and metadata is due to the structure of the huva

functions. The main formal distinction is that annotations are mandatory and do not allow

for missing values but can contain both numeric and non-numeric variables. On the contrary,

metadata are optional and can include missing data points without resulting in an error when

running a huva experiment but are limited to numeric variables.

>expr_exam <- get_expr_exam(huva_expression = gene_overview, > study = "ImmVar",

> dataset = "ImmVar_CD4T")

>expr_exam.plot <- get_expr.plot_exam(huva_expression = gene_overview, bins = 50, alpha = 1)

>expr_exam.plot

>anno_exam <- get_anno_exam(huva_expression = gene_overview, > study = "CEDAR",

> dataset = "CEDAR_CD4T")

>meta.table_exam <- get_meta_exam(huva_expression = gene_overview, study = "FG500")

>anno.stat_exam <- get_anno.stat_exam(huva_expression = gene_overview, study = "FG500",

dataset = "ALL")

>meta.stat_exam <- get_meta.stat_exam(huva_expression = gene_overview, study = "FG500",

dataset = "FG500_whole_blood_cellcount")

>anno.plot_exam <- get_anno.plot_exam(huva_expression = gene_overview, study = "FG500",

dataset = "FG500_whole_blood")

>anno.plot_exam$height

>meta.plot_exam <- get_meta.plot_exam(huva_expression = gene_overview, study = "FG500",

dataset = "FG500_whole_blood_cellcount")

>meta.plot_exam$‘Monocytes (CD14+)‘
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Figure 2. Exemplary result of an exploratory huva experiment

(A) Histogram of the expression of the gene of interest (GOI) in each dataset included in the huva.db. (CD4T - CD4+

T cells, CD8T - CD8+ T cells, CD14M - CD14+ monocytes, CD19B - CD19+ B cells, CD15G - CD15+ granulocytes, WB -

whole blood, PBMC - peripheral blood mononucleated cells).

(B) Correlation between gene expression and sex in the FG500 whole blood dataset.

(C) Correlation between gene expression and height in the FG500 whole blood dataset. Pearson’s correlation

statistics are shown.

(D) Correlation between gene expression and number of CD14+ monocytes in the FG500 whole blood dataset.

Pearson’s correlation statistics are shown. Box plots were constructed in the style of Tukey, showing median, 25th and

75th percentiles.
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huva gene experiment

Timing: 30 min

The huva gene experiment performs a huva analysis consecutively on all datasets included in the

huva.db.

For optimization of the analysis, the user can set several parameters. First, the huva.db and the GOI

need to be defined. Next, the quantile to be used for the analysis needs to be set together with the

gene set enrichment reference and the p-value adjustment method for the differential expression

(DE) analysis. For a detailed overview of the available parameters see the function documentation

(help(run_huva_experiment)). The results of the huva gene experiment are collected in a

huva_experiment R object for further exploration in each dataset.

3. First, execute the huva gene experiment, the results are stored in the R environment:

Note: The GOI has been set previously, see step: 1a.

Note: We provide here also a more detailed description of the parameters of the huva gene

experiment:

data: huva database to the used for the experiment (huva_dataset class object).

gene: Name of the gene of interest (GOI).

quantiles:Definition of the quantile of segregation of the samples to define the low and high groups,

quantiles are always symmetrical. If not differently stated, a quantile of 0.1 (10%) is used as default

(quantile 0.1 will use the 10th and 90th percentiles). The selection of the quantiles determines the

number of samples assigned to the low or high experimental groups. We recommend starting

with 0.10 for datasets of < 100 samples and 0.05 for datasets > 100 samples. As shown in the original

publication,1 this setting does not substantially affect the biological interpretation of the results.

gs_list: List of gene sets to be used for Gene Set Enrichment Analysis, the gene list needs to be pro-

vided using the same nomenclature as the huva.db (e.g., HGNC symbols).

summ: TRUE or FALSE, defines if the summary of the results in the different dataset should be calcu-

lated. Default as TRUE as some of the downstream functions need the summary results. Setting to

FALSE can speed up the analysis.

dataset_list: Vector used to filter the huva.db for the analysis for only selected datasets, if NULL

(default) all datasets will be used.

>binned_dataset <- run_huva_experiment(data = huva.db,

> gene = GOI,

> quantiles = 0.10,

> gs_list = hallmarks_V7.2,

> summ = T,

> datasets_list = NULL,

> adjust.method = "BH")
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adjust.method: p-value adjustment method used to correct the DE genes analysis. It can be set

to "holm" (Holm), "hochberg" (Hochberg), "hommel" (Hommel), "bonferroni" (Bonferroni), "BH"

(Benjamini & Hochberg), "BY" (Benjamini & Yekutieli), "fdr" (False Dircovery Rate), "none"

(no correction for multiple testing).

Note: If a gene is not expressed in a dataset a message will be displayed (e.g., "MYD88 is not

present in PLA")

4. Explore the results of the huva gene experiment using several built-in functions not only to

extract the data, but also to plot, and visualize the results.

a. Investigate the expression of a list of selected genes, including our GOI. This function com-

putes boxplots for all selected genes in all available datasets and outputs it as a list. The code

below exemplifies the visualization of the expression of three selected genes in the FG500

whole blood dataset (Figure 3A).

b. Export from the huva gene experiment the gene expression count table filtered for the data-

set used in the huva gene experiment, encompassing expression values for the binned

groups for all present genes expressed in the dataset of choice.

c. Further, investigate the relationship between the GOI and the provided annotations and

metadata with the outputs produced with the following commands.

i. The filtered annotation or metadata table.

ii. The statistical comparison between the low and high groups derived from the huva gene

experiment.

iii. Plots of single parameters for the two groups, high and low (Figures 3B and 3C).

>plot_binned <- plot_binned_gene(goi = c("MYD88", "CRELD1", "STAT1" "RCAN3"), huva_experi-

ment = binned_dataset)

>plot_binned$FG500_whole_blood

>expr_huva <- get_expr_huva(huva_exp = binned_dataset,

> study = "FG500",

> dataset = "FG500_whole_blood")

>anno_huva <- get_anno_huva(huva_exp = binned_dataset,

> study = "FG500")

>meta_huva <- get_meta_huva(huva_exp = binned_dataset,

> study = "FG500")

>anno.stat <- get_anno.stat_huva(huva_exp = exper,

> study = "FG500")

>meta.stat <- get_meta.stat_huva(huva_exp = exper,

> study = "FG500",

> dataset = "FG500_whole_blood_cellcount")

>anno.plot <- get_anno.plot_huva(huva_exp = exper,

> study = "FG500")
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d. Export the results from differential gene expression (DE) analysis of the comparison low vs.

high from the huva gene experiment and their visualization.

Note:Huva uses the Limmaworkflow12 for differential expression analysis, the output includes

logFC (log fold-change), average gene expression, t-value (moderated t-statistic), p-value,

p-value adjusted for multiple testing (according to the setting of the run_huva_experi-

ment function) and B-statistics value (log-odds that that gene is differentially expressed).

i. Export of the DE results from the huva gene experiment as a table. Settings can be chosen

manually in the function. Defaults for filtering are logFC > 1 and corrected p-value < 0.05.

ii. Using the result table (get_DE_huva), compute a PCA plot to visualize the separation of

the low and high groups in the latent space (Figure 3D).

iii. Generate a bar plot showing the number of DE genes (Figure 3E).

iv. Plot a heatmap of the differentially expressed genes (Figure 3F).

e. Within the huva gene experiment, a functional enrichment on the ranked gene list is per-

formed (GSEA14). This result uses the gene sets provided during the huva gene experiment

as a reference (see step 3, gs_list parameter in the run_huva_experiment function).

Explore the results with the help of built-in functions.

i. Export the ranked gene list into a separate object.

ii. From this result export the ranked gene list as a table for a chosen sample subset of the

chosen dataset, e.g., the CD4+ T cells from the ImmVar study.

>anno.plot$FG500_whole_blood$age

>meta.plot <- get_meta.plot_huva(huva_exp = exper,

> study = "FG500")

>meta.plot$FG500_whole_blood_cellcount$‘Monocytes (CD14+)‘

>DE_huva <- get_DE_huva(huva_exp = exper,

> study = "FG500",

> dataset = "FG500_whole_blood",

> pval = 0.001,

> logFC = 1)

>DE_huva$PCA_FG500_whole_blood

>DE_huva$plot_FG500_whole_blood

>plot_HM(DE_huva$HM_FG500_whole_blood)

>rank_huva <- get_rank_huva(huva_exp = exper,

> study = "ImmVar",

> dataset = NULL,

> n_top_genes = 5)
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iii. Plot the top up- and down-regulated genes (n_top_genes) for a chosen sample subset of

the chosen dataset, e.g., the CD4+ T cells from the ImmVar study (Figure 3G).

iv. Export and plot, also interactively, the result of the GSEA for a chosen sample subset of

the chosen dataset, e.g., the CD4+ T cells from the ImmVar study. Interactive visualization

was implemented to facilitate the interpretation of the plot (Figure 3H).

Note: A convenient way to perform a huva gene experiment is using our GUI available on

FastGenomics (https://beta.fastgenomics.org/a/huva). This provides fast access to huva

without the need for any coding skills. The main drawback of this alternative is the limited

capability to export plots and tables for secondary analyses (see point 5).

Note: Similar to the huva gene experiment, the R implementation of the huva approach can

be used for a huva phenotype experiment or huva signature experiment. A phenotype of in-

terest or a single-sample signature enrichment is used to stratify the samples into high and

low groups. More details on how to run these experiments can be found in the package

vignette.

Note: Some of the functions require the user to set a ‘‘study’’ and ‘‘dataset’’ argument to

export the results of the huva gene experiment. If the default huva.db is used, all available

datasets/studies can be explored with the function huva_overview().

CRITICAL: Within the huva gene experiment, some steps of randomization are per-

formed for statistical testing to ensure the reproducibility of the results, see trouble-

shooting section.

Export huva results for secondary analysis

Timing: 10 min

Outputs of huva experiments can be exported as standard R objects (e.g., data frames or lists) to be

used in other analytical pipelines. For example, the Differential Expression (DE) lists for low and high

groups from a huva gene experiment may be used for comparison to transcriptome results from a

genetic loss-of-function experiment in a model system (e.g., knock-out mouse) (i.e., input for GSEA).

The huva gene experiment output is similar to a standard list in R with the following structure:

>rank_huva$ImmVar_CD4T

>rank_huva$plot_ImmVar_CD4T

# Export the results

>gsea_huva <- get_gsea_huva(huva_exp = exper,

> study = "FG500")

# Static visualization

>gsea_huva$plot_FG500_whole_blood

# Interactive visualization

>gsea_huva$int_plot_FG500_whole_blood
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Note: The structure of the huva gene experiment can be visualized with: str(exper).

5. Export of the output of a huva gene experiment to facilitate interoperability with other analytical

pipelines. Export single outputs as exemplified below.

huva_experiment

|_[study_name] #Each study provided in the huva.db

| |_anno

| |_[dataset_name] #Applies for all elements at this level

| |_data

| |_DE_genes

| |_Rank_genelist

| |_gsea

| |_metadata

|

|_summary # Provides summary statistics for some of the results

|_Rank

|_[study_dataset_name] #Applies for all elements at this level

|_gsea

|_anno

|_metadata

# Export the filtered expression table for the ImmVar CD4+ T cell dataset

>exper$ImmVar$data$ImmVar_CD4T

# Export the filtered annotation table for the CEDAR CD8+ T cell dataset

>exper$CEDAR$anno$CEDAR_CD8T

# Export DE gene table from the CEDAR monocyte dataset

>exper$CEDAR$DE_genes$CEDAR_CD14M

# Export the ranked gene list from the ImmVar monocyte dataset

>exper$ImmVar$Rank_genelist$ImmVar_CD14M

# Export GSEA results from the CEDAR granulocyte dataset

>exper$CEDAR$gsea$CEDAR_CD15G

# Export filtered cell count metadata table from the FG500 PBMC dataset

>exper$FG500$metadata$FG500_whole_blood_cellcount

# Export summary statistics from CEDAR CD8+ T cell sample annotation

>exper$summary$anno$CEDAR_CD8T

# Export summary statistics from FG500 PBMC cytokine secretion metadata

>exper$summary$metadata$FG500_whole_blood_cytokines
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Figure 3. Exemplary result of a huva gene experiment for MYD88

(A) Boxplot showing the expression of selected genes (MYD88, CRELD1, STAT1, RCAN3) in the low and high groups

for the FG500 whole blood dataset.

(B) Boxplot showing the age of the donors in the high and low groups of the FG500 whole blood dataset.

(C) Boxplot showing the number of CD14+ monocytes in the high and low groups of the FG500 whole blood dataset.

(D) Principal component analysis (PCA) plot for the transcriptome of the low and high groups in the FG500 whole

blood dataset.

(E) Barplot showing the number of DE genes (p < 0.001, logFC > 1) in the comparison low vs. high in the FG500 whole

blood dataset.

(F) Heatmap of the differentially expressed genes (p < 0.001, logFC > 1) in the comparison low vs. high in the FG500

whole blood dataset.

(G) Dotplot of the top 5 down- and up-regulated genes according to fold change in the comparison low vs. high in the

ImmVar CD4 T+ cell dataset.

(H) Gene Set Enrichment Analysis (GSEA) plot on the ranked gene list in the comparison low vs. high in the FG500

whole blood dataset. Box plots were constructed in the style of Tukey, showing median, 25th and 75th percentiles.
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EXPECTED OUTCOMES

Huva allows the use of variation in the human population, e.g., on the transcriptome level, to predict links

between gene expression and functional phenotypes of any given cell type, organ, or tissue, for which

large multi-layer datasets are existing (omics, phenotypic, or clinical and functional data) are existing.

With the need of only a few lines of code, the huva experiment provides an overview of the predicted

role of a GOI. The combination of the exploratory huva experiment and huva gene experiment provides

the correlation between the expression of a selected GOI and phenotypic measurement together with a

well-defined list of DE genes and pathways enrichment combined with phenotypic and functional

changes.Computationally, this analysis requiresonly few seconds (3s onaverage) on standardhardware.1

The output of the huva experiment can be easily exported and integrated into many downstream pipe-

lines. This approach opens new possibilities to interrogate the increasingly available population-scale

multi-layered datasets to infer gene function and relationships between phenotypes and expression.

This aids the hypothesis generation to prioritize experiments in humans or appropriatemodel systems.1,2

QUANTIFICATION AND STATISTICAL ANALYSIS

A detailed description of the huvamethod is reported in the original publication.1We further refer to the

reader to the source code (see key resources table) for a detailed description of the statistical methods.

LIMITATIONS

The huva approach contrasts individuals with high and low expression of a GOI to predict the functional

role of a given gene.1 A limitation of the huva approach is its inability to infer causality between the GOI

and the predicted phenotype, for which further supporting experimental data are required (e.g., assess-

ment of human mutations, genetic model systems such as CRISPR-Cas KO). Furthermore, huva relies on

the assumption that variation in gene expression is linked to a functional phenotype. While all tested ex-

amples so far have shown this assumption to be valid,1 extension to all expressed genes depends on

further experimental validation. huva provides a complete set of predicted functional phenotypes for

all other genes that can serve as the basis for these tests. In addition, with the built-in huva.db, the

huva experiment focuses on human circulating immune cells. If the user wants to study a GOI in the

context of another cell type or organ, a new dataset needs to be provided (e.g., GTEx v8).

The huva R package offers a prime example of a tool to investigate variation in human cohorts. At the

moment, the included datasets in the huva package can be used to address gene functions within

the human immune system. Yet, the tool can be easily expanded to other tissues/cell types.

TROUBLESHOOTING

Problem 1

If technical limitations prohibit the installation of the Docker runtime in your computing environment

(prerequisites/system requirements), it is possible to install huva, huva.db, and all dependencies

locally on a workstation (step: Set up a huva workspace).

Potential solution

� Download and install R v. 4.0.1 from https://cran.r-project.org/. A newer version of R should be

compatible with huva v 0.1.5 but was not formally tested.

� From R, install the Bioconductor package manager:

>if (!require("BiocManager", quietly = TRUE))

> install.packages("BiocManager")

>BiocManager::install(version = "3.12")
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� Install huva dependencies.

� Download the huva and huva.db packages from Zenodo.

� Install huva.db.

� Install huva.

Problem 2

The provided normalized count table uses GeneIDs or ENSEMBL IDs instead of HGNC symbols

leading to no GSEA results (Format a new dataset).

Potential solution

We recommend using rlog normalized count tables formatted with gene symbols. If another anno-

tation is preferred, an updated reference for the GSEA needs to be provided. The structure of the

default hallmark GSEA reference can be inspected with View(huva.db::hallmarks_V7.2)

and used for preparation of a new reference with the desired gene annotation. The new reference

will need to be defined in the run_huva_experiment function.

>BiocManager::install(c("ggplot2", "Rmisc", "ggpubr", "reshape2",

> "ggsci", "plotly", "knitr", "pheatmap",

> "useful", "rmarkdown", "fgsea",

> "limma", "GSVA"),

> version = "3.12")

>download.file("https://zenodo.org/record/7088729/files/huva_0.1.5.tar.gz", destfile =

"./huva_0.1.5.tar.gz")

>download.file("https://zenodo.org/record/7088729/files/huva.db_0.1.5.tar.gz", destfile =

"./huva.db_0.1.5.tar.gz")

>install.packages("./huva.db_0.1.5.tar.gz",

> repos = NULL,

> type = "source")

>install.packages("./huv_0.1.5.tar.gz",

> repos = NULL,

> type = "source")

>binned_dataset_new <- run_huva_experiment(data = gtex.db,

> gene = "[GOI]",

> quantiles = 0.05,

> gs_list = [new_reference],
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Problem 3

The results of the huva gene experiment slightly change at every run despite having the same

settings.

Potential solution

To solve this problem a seed can be set to ensure reproducibility of the huva gene experiment (see

help(set.seed)) by adding the following line of code before the huva experiment.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead

contact, Lorenzo Bonaguro (lorenzobonaguro@uni-bonn.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The code used for the analysis shown in this manuscript was deposited on GitHub and Zenodo (see

key resources table). The huva code was previously reported1 and is available on GitHub and Zen-

odo (access number provided in the key resources table). The GTEx v8 dataset was downloaded on

13.10.2022 from the online portal (https://www.gtexportal.org/home/datasets), and raw counts

were used for the analysis.
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