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Email: cmkloske@alz.org ference, held in October 2021, leading neuroscience experts shared recent research

advances on and inspiring insights into the various roles that both the apolipoprotein
E gene (APOE) and facets of immunity play in neurodegenerative diseases, including
Alzheimer’s disease and other dementias.

METHODS: The meeting brought together more than 1200 registered attendees from
62 different countries, representing the realms of academia and industry.

RESULTS: During the 4-day meeting, presenters illuminated aspects of the cross-talk
between APOE and immunity, with a focus on the roles of microglia, triggering receptor
expressed on myeloid cells 2 (TREM2), and components of inflammation (e.g., tumor
necrosis factor o [TNFa]).

DISCUSSION: This manuscript emphasizes the importance of diversity in current
and future research and presents an integrated view of innate immune functions in

Alzheimer’s disease as well as related promising directions in drug development.
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1 | INTRODUCTION

The two well-established hallmark pathologies of Alzheimer’s dis-
ease (AD)—extracellular plaques of aggregated amyloid beta (AB)
and intraneuronal tangles of hyperphosphorylated, aggregated tau—
characterize all cases of AD and have been shown to play a direct
role in AD-related neurodegeneration. 3 However, there is evidence
that the precise mechanisms that lead to the development of char-
acteristic AD pathology may differ among individuals. Less than 1%
of individuals who develop AD have an early-onset form of the dis-
ease that is solely due to mutations in genes involved in AS processing,
including amyloid precursor protein (APP), presenilin 1 (PSEN1), and
presenilin 2 (PSEN2).*> In an effort to discover mechanisms that
lead to AD in the remaining 99% of individuals who have a sporadic
form of the disease that most often results in late-onset AD (LOAD),
researchers have used genome-wide association studies (GWASs) and
whole genome/whole exome sequencing (WGS/WES,) studies to iden-
tify more than 30 AD-related risk loci.® Among gene variants that are
associated with anincreased risk for LOAD, more than half are linked to
immune cell function. To date, the strongest known genetic risk factor
for LOAD is the apolipoprotein E (APOE) ¢4 variant,”~? which, during
the past decade, has been hypothesized to play a role in AD largely
through its immunomodulatory functions.’® The triggering receptor
expressed on myeloid cells 2 (TREM2), which is expressed by microglia
in the central nervous system (CNS), likely plays a significant role in
THE immunomodulatory functions of APOE, and genetic studies show
that rare TREM2 variants are among important risk factors for AD.
In turn, microglia play a principal role in the neuroinflammation that
accompanies the accumulation of AB during earlier stages of disease,
as well as immune dysregulation that modulates disease progression
throughout the course of AD.!! Building on a foundation of established
and strongly suspected roles of APOE, TREM2, microglia, and immune
changes in AD, current research focuses on understanding these roles
while identifying new intricately linked biological/pathophysiological
mechanisms and pathways, with the goal of determining how the mod-
ulation of one or more of these components might be effectively

targeted in drug development.(Supporting Information)

2 | APOLIPOPROTEIN E BIOLOGY

Apolipoprotein E (apoE) is the primary transporter of lipids and choles-
terol in the brain and plays critical roles in both the metabolism of
lipoproteins and the redistribution of cholesterol. Because of these
functions, apoE has long been afocus of research related to atheroscle-
rosis and cardiovascular disease.'? Outside of the CNS, apoE is gen-
erated primarily by the liver, whereas in the brain, apoE is produced
mainly by astrocytes. In the brain, microglia and neurons also are capa-
ble of generating apoE during times of stress.'314 Although a primary
function of apoE is to reduce intracellular cholesterol levels by efflux-
ing lipids, it also plays integral roles in the overall health of the brain and
in the progression and development of Alzheimer’s disease (or AD).
Three apoE isoforms affect the extent to which its functions are exe-

cuted, and are characterized by varying risks for the development of

RESEARCH IN CONTEXT

Systematic Review: The role of the apolipoprotein E gene
(APOE) and immunity in neurodegenerative diseases, includ-
ing Alzheimer’s disease and other dementias, is an active and
growing area of research. The authors of this article report
updates and advances in research presented at the APOE
and Immunity virtual conference, held in October 2021.
Interpretation: There have been strides in research identify-
ing the cross-talk between APOE and immunity, with a special
focus and emphasis on the roles of microglia and components
of inflammation, emphasizing the importance of diversity in
current and future research, and presenting an integrated
view of innate immune functions in Alzheimer’s disease as
well as related promising directions in drug development.
Future Directions: Research and advances into understand-
ing both APOE and immunity in neurodegenerative diseases
is needed to improve our understanding of brain diseases.
These and other topics will be explored in two individual
conferences, Immunity and APOE, both hosted in March
2023.

AD. APOE ¢3, which is present in ~78% of the general population, is
the most common of the three and is considered the standard “base-
line” or “control” allele in AD research.'® The APOE &4 allele, which is
present in ~14% of the general population, significantly increases the
risk of developing AD relative to APOE €3, such that APOE ¢4 homozy-
gotes are known to have the greatest risk for AD, with an estimated 10-
to 15-fold increase in risk in Caucasian populations (risk varies by race
and ethnicity). The APOE ¢2 allele, which is present in ~9% of the gen-
eral population and in about 5% of all individuals with AD, is associated
with a lower risk of the development of AD compared with the APOE 3
allele,’® and also is associated with increased longevity.!”

Compared with APOE ¢3, APOE ¢2 has a decreased affinity with low-
density lipoprotein receptor (LDLR) and is associated with a type-3
hyperlipoproteinemia that is observed in individuals carrying the APOE
€2 allele. APOE &4 is associated with an increased ability to bind lipids,
but because of reduced proteolytic activity can lead to an increase in
lipoproteins and cholesterol.2>18 A growing body of literature points
to the €4 allele as a driver of many types of AD-related neuropathol-
ogy, including impaired regulation of cholesterol and fatty acid levels
in the brain, damage to blood-brain barrier integrity, reduced cerebral

glucose uptake, and impaired insulin signaling in the brain.1?-22

2.1 | APOE genotype and glucose metabolism

Metabolic disorders, such as insulin resistance and type 2 diabetes,
increase therisk of dementia and have in common with AD awide range
of pathologic features, including inflammation, increased oxidative

stress, and vascular dysfunction.?®> Many studies suggest that APOE
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g4 may reduce insulin signaling, in part by impairing the recycling of
the insulin receptor.1? APOE status plays an important role in cerebral
glucose metabolism during aging, even in the absence of neuropathol-
ogy. Glucose metabolism is reduced in individuals with at least one
copy of APOE g4 compared with noncarriers.21-22 Changes in cerebral
glucose metabolism that occur in APOE ¢4 carriers begin many years
before the emergence of AD-related symptoms, as evidenced by reduc-
tions in cerebral glucose utilization on fluorodeoxyglucose positron
emission tomography (FDG-PET) imaging, which reflect decreased
neuronal activity and/or synaptic dysfunction.2* More recent studies
indicate that brain glucose hypometabolismis associated with impaired
glycemic control in the periphery in cognitively healthy subjects.?’ In
carriers, increased levels of glucose during midlife are linked to more
severe AD-related pathology at autopsy, particularly with regard to
neurofibrillary tangles in the medial temporal lobe. 2

In a study published in 2017, Nielsen and colleagues explored
the extent to which peripheral APOE levels affect cognition, gray
matter volume (GMV), and cerebral glucose metabolism in an isoform-
dependent manner. During the study they discovered important sex-
related differences, such that women had higher plasma levels of
total apoE and apoE e4 compared with men.2” They also found that
higher ratios of apoE e3/e4 were negatively associated with cerebral
metabolic rate of glucose (CMRgl) and GMV. Their findings pointed
toward a potentially important role of peripheral apoE levels with
regard to modulating brain health, and also offered potential insights
into the higher risk for AD among women.?”

In a more recent study (of the same cohort) conducted by Edlund
and colleagues, plasma insulin and glucose levels were obtained for
the previously studied 128 cognitively healthy apoE e3/e4 individuals
to determine the extent to which apokE is linked to peripheral glucose
metabolism, and in turn to glucose metabolism in the brain.28 The
investigators determined that lower plasma apoE e3 levels were asso-
ciated with higher plasma glucose but not with insulin in men and in
individuals with a body mass index (BMI) greater than 25. Negative
correlations were found between plasma glucose and CMRgl in the
left prefrontal and bilateral occipital regions of the brain. The authors
suggested that these associations may have functional implications
because glucose levels were in turn negatively associated with neu-
ropsychological test scores. They concluded that plasma apoE e3 but
not apoE e4 may be involved in insulin-independent processes that
govern plasma glucose levels. They noted that higher plasma glucose,
which has a deleterious effect on brain glucose metabolism, was asso-
ciated with lower plasma apoE levels in APOE £3/¢4 individuals. An
important implication is that higher plasma glucose and lower apoE
levels may be a potentially harmful combination that may lead to an
increased risk for AD.28

2.2 | Relationship between APOE ¢4 status and
C-reactive protein in AD

Inflammation has been observed consistently in brain tissue from

patients with AD [see 3.0 Inflammation]. Evidence of inflammation has
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been indicated by the presence of morphologically active microglia
and astrocytes and increased extracellular complement factors, as well
as cytokines and other inflammatory proteins, and elevated levels of
inflammatory proteins both inside the brain as well as outside in indi-
viduals with AD. C-reactive protein (CRP), for example, plays a key role
in the systemic response to inflammation, and plasma CRP has been
evaluated as a potential biomarker for AD.2? However, elevated blood
CRP level is associated with an increase in AD risk only in APOE ¢4
carriers.3031

In a recent study, Tao and colleagues examined the interactive
effects of both plasma CRP and APOE genotype on cognition and a
range of AD biomarkers.32 The study used data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), including APOE genotype,
plasma CRP concentrations, diagnostic status (diagnosis of mild cogni-
tive impairment [MCIl], and dementia related to AD), Mini-Mental State
Examination (MMSE) scores, Clinical Dementia Rating (CDR) score,
cerebrospinal fluid (CSF) concentrations of AB42, total tau (t-tau) and
phosphorylated tau (p-tau), and amyloid (AV45) PET imaging. Among
566 ADNI participants, 274 (48.4%) did not have an ¢4 allele, 222
(39.2%) had one ¢4 allele, and 70 (12.4%) had two APOE &4 alleles. Tao
and colleagues found that elevated CRP was associated with lower
MMSE scores at baseline and at 12-month follow-up, but only among
participants who had two APOE ¢4 alleles. They also found that two
APOE &4 alleles and elevated plasma CRP together were associated
with increased CSF levels of t-tau and p-tau. Among ADNI individuals
who had no APOE &4 allele, elevated CRP was associated with reduc-
tions in CSF t-tau and p-tau, and these effects were more pronounced
at 12-month follow-up. The authors concluded that CRP released dur-
ing peripheral inflammation could be a mediator of APOE ¢4-related
AD neurodegeneration and could, therefore, potentially serve as adrug
target for AD.

2.3 | APOE and neuroinflammation

In an effort to explore some of the underlying mechanisms by which
APOE &4 affects AD risk, and to expand on previous findings regarding
its role in impaired inflammatory responses, a recent study examined
the effect of APOE genotype on inflammatory profiles in AD brains.!?
The study’s investigators analyzed frozen brain tissue from the supe-
rior and middle temporal gyrus from APOE £3/¢3 and APOE ¢4/c4
participants with AD pathology, and APOE £3/¢3 participants without
AD pathology to examine how apoE isoforms affect the neuroinflam-
matory state of the brain both with and without AD.!! The NanoString
Human Neuroinflammation Panel was used to determine the transcript
levels of 757 inflammatory related genes, and immunohistochemistry
of P2RY12 was performed to assess microglial activation. The study
found that pathways related to neuroinflammation were impaired in
APOE ¢4/¢4 individuals with AD compared with APOE £3/¢3 individ-
uals with AD, and that the expression of genes related to microglial
activation (SALL1), motility (FSCN1), epigenetics (DNMT1), and others
showed altered expression in the former group. The study’s findings
suggest that APOE £3 can become responsive to pathology and brain
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changes, although it can result in a potentially harmful long-term
inflammatory response, whereas APOE ¢4 causes a weakened response
to pathology. Overall, the study indicated that apoE isoforms do appear

to modulate the immune response to AD-type pathology in the brain.1!

3 | NEUROINFLAMMATION AND CELLS
MEDIATING CNS IMMUNE SURVEILLANCE

Neuroinflammation is a response of the innate immune system in
the CNS which involves the activity of microglia and astrocytes in
combination with their secreted cytokines, chemokines, and altered
homeostatic functions, which together play a central role in an early
phase of AD pathogenesis.>® The primary mediators of inflammatory
mechanisms associated with AD are microglia and astrocytes— cells
that also are responsible for neural transmission and critical synaptic
remodeling.3*

A number of longitudinal studies showed that microglial activation
and AD-related inflammation in the CNS occur years before the onset
of AD-related symptoms.3>3¢ Other studies have demonstrated a
durable link between neuroinflammation and amyloid and tau accumu-
lation in the brains of individuals with AD.37:38 Although neuroinflam-
matory responses of microglia and astrocytes may precede Ag plaque
deposition, these responses are exacerbated with the accumulation of
AB during the pathogenesis of AD and also modulate later stages of
the disease, at turns either ameliorating disease or exacerbating it, in a
complex, dynamic process. One study suggested that neuroinflamma-
tion may even precede amyloid aggregation, as older APOE ¢4 carriers
with normal AD biomarkers had increased CSF levels of proteins
associated with inflammation.3? A fluctuation between pro- and anti-
inflammatory states typically occurs in patients during early stages
of AD, and it has been hypothesized that as the disease progresses,
the inflammatory phenotype becomes more homogeneous.“%*! Neu-
roinflammation also occurs during normal aging.*?> However, chronic
neuroinflammation is capable of inducing neuronal injury and/or death
by producing toxic substances such as reactive oxygen species (ROS)
and nitric oxide (NO), or by promoting the phagocytosis of neurons
by activated microglia. Activated microglia can engage in cross-talk
with astrocytes, and provoke reactive astrocytes to directly kill neu-
rons by means of secreted neurotoxic factors—as recently reported
these include long-chain saturated fatty acids that are trafficked in
apoE-containing lipoparticles.*® Both microglia and astrocytes, the two
primary components of the innate immune system, also have various
effects on the accumulation of A and tau pathology, in addition to their

direct effects on neuronal viability.

3.1 | Other immune cells of the CNS

Although it is well established that disease progression in AD involves
inflammation associated with the activation of innate immune cells,
the role of adaptive immunity in AD is less well understood. In
recent years, animal studies involving the depletion of B cells, T cells,

and NK cells have strongly suggested that adaptive immunity exerts
an important influence on AD progression.*#4> These studies have
revealed that there is significant cross-talk among cells involved in
innate immune responses—primarily mediated by microglia in the
CNS—and cells involved in adaptive immunity, which until recently
were believed to be derived primarily from peripheral circulation.*
The loss of cells from adaptive/peripheral immune cell populations by
means of genetic ablation, for example, has been shown to alter the
activation of microglia, increase neuroinflammation, and hasten amy-
loid pathogenesis.** Findings from other studies have suggested, in
contrast, that B-cell depletion might be used therapeutically.*”
Because a better understanding of the function of all cells involved
in CNS immune surveillance, in both the physiological and pathologi-
cal states, may facilitate the discovery of new therapeutic targets for
the treatment of neurological diseases, recent research has sought to
provide detailed answers to questions regarding the origin and devel-
opment of different types of immune cells in the brain.*¢*” One such
study led to the surprising finding that the mouse meninges contain a
source of B cells that are supplied not by the blood but from bone mar-
row in the skull.*” Using sophisticated techniques involving parabiosis
and bone marrow chimeras, Brioschi and colleagues®’ discovered a
lymphopoietic niche in the meninges—a reservoir for B cells that orig-
inate in skull bone marrow and travel to the meninges by means of
tiny vascular corridors in the bone. These B cells, which have never
had contact with peripheral blood, reside in such reservoirs until they
are needed in response to injury or neuroinflammation. By means of
single-cell RNA sequencing, investigators were able to determine that
awide range of B cells at various stages of maturity were located in the
meninges, including immature cells that express the immunoglobulin
M (IgM) receptor on their cell surfaces. Such findings suggest that the
meninges may be an area where immature B cells can be uniquely “edu-
cated” by CNS antigens, in contrast to B cells from the periphery, which
might be inclined to attack brain-specific antigens. In similar research
also conducted at Washington University, Kipnis and colleagues discov-
ered that skull bone marrow is also a key source of CNS immune cells
that determines when and to what extent immune cells in the brain
are derived from these sources,** how such cells may differ function-
ally from blood-derived cells, and how the source of immune cells in
the brain may change during aging or in the context of various CNS

diseases.

4 | MICROGLIA, ASTROCYTES, AND AD-RELATED
NEURODEGENERATION

Microglial cells, myeloid cells that arise from early embryonic yolk-
sac progenitors, are the primary macrophages of the brain and play a
critical role in neuroinflammation in the CNS.*® Microglia survey the
brain in an effort to detect disruptions from homeostasis (e.g., injury,
infection, disease, and so on) and subsequently work to clear debris
and resolve disruptions, and in turn maintain an optimal microen-
vironment. Microglia can respond to virtually all foreign entities in

the brain, most of which have been categorized as danger-associated
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molecular patterns (DAMPs) or pathogen-associated molecular pat-
terns (PAMPs).4? In the presence of AB, microglia become activated,
surround plaques, and attempt to phagocytose AB and prevent fur-
ther spread of plaques.”’® An excessive accumulation of AB can lead
to microglial cell death, and can increase inflammation and lead to
the recruitment of more microglia, thus perpetuating an inflammatory
cascade.*’ In addition, reactive microglia can release molecules such as
tumor necrosis factor-a (TNFa) and interleukin 13 (IL-158) among many
other cytokines and complement components that can either directly
recruit additional microglia to cause damage to surrounding tissue,>?
alter neuronal function, or act as a seed to drive reactive inflammatory
responses in adjacent cells like astrocytes.>2°3

A number of recent studies have demonstrated that, when in the
disease-associated state, microglia can increase the expression of
APOE.>*~>7 Accordingly it is important to explore whether microglial
apoE may be a major source of amyloid-plaque-associated apoE,°” and
whether efforts to induce a disease-associated state in microglia may

possibly increase plaque-associated apoE and in turn Ag aggregation.”®

4.1 | Using single-cell technologies to identify
diverse reactive glia phenotypes in AD

In AD and in other neurodegenerative diseases, many heterogeneous
sub-states of reactive microglia and astrocytes have been observed in
the brain. Traditionally, attempts were made to classify these cells into
binary types: proinflammatory phenotype, involving a reduction in the
release of neurotrophic factors and an exacerbation of inflammation
and cytotoxicity; and anti-inflammatory phenotype, characterized by
displays of anti-inflammatory cytokines, an increase in the expression
of neurotrophic factors, and a range of signals involved in protection or
repair processes. However, the advent and application of high through-
put single-cell sequencing technologies in recent years has found a
binary definition of reactive microglia/astrocytes to be incorrect and
that many sub-states exist. In addition to heterogeneity within and
across different disease/injury contexts, evidence from experimental
studies suggest that phenotypic switching can occur in response to
various stages of disease and/or degrees of disease severity.”?
Single-cell RNA-sequencing technologies are being used to improve
our understanding of microglia and astrocytes and to ascertain their
changing gene-expression profiles, their involvement in various path-
ways, and the epigenetic mechanisms that may be driving these
cells—with the goal of improving future efforts to modulate disease
by targeting these entities. A rapidly expanding collection of new
tools are now available that enable rapid and cost-effective sequenc-
ing of individual cells, and new approaches for isolating, targeting,
and establishing cultures of these cells in vitro.9-¢3 These new tools
are providing novel insights into the functions of microglia and astro-
cytes during normal development, as well as during the early initiation
and later progressive stages of many chronic neurodegenerative dis-
eases. A key aim is to create models that integrate both cell types, and
to reveal how they communicate and are able to integrate functions
throughout the brain. Accordingly, current efforts are underway to

THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

obtain microglia and astrocyte surface proteomes and secretomes and
to integrate these data with other multi-omics data sets (e.g., involving
transcriptomics, epigenetics, and proteomics).

Efforts to identify more diverse subtypes/profiles of microglial cells
are pointing increasingly to far greater complexity in human cells
compared with animal cells®*¢¢: however, only the most subtle of
differences are reported across species for astrocytes. Although astro-
cyte isolation and culture have been successful in both rodents®3
and humans, similar successes with microglia have been limited. An
important challenge has stemmed from the observation that removing
microglia from the CNS microenvironment leads to rapid alterations

67-69 and the creation of an ex vivo state of

in gene expression,
microglia has been particularly problematic.®? In some studies, for
example, researchers have accidentally assigned a biological relevance
to microglial states that do not exist in situ. This was historically a
problem for the in vitro study of astrocytes/microglia as well, because
early methods for culture relied on serum addition, which has been
reported to irreversibly alter the gene expression and function of
both astrocytes and microglia; however, recent serum-free methods
have circumvented this problem.>3¢1.6367 |t is important to note that
cholesterol, which is likely trafficked in apoE-containing lipoparticles
in vivo.6” Caveats still remain, however, as microglia and astrocytes
grown in culture, even in the absence of reactivity-inducing serum
components, are likely not fully recapitulating their in vivo coun-
terparts (e.g., morphologies of culture astrocytes are very basic and
lack the complex bushy tertiary and quaternary processes seen in
vivo). One should not discount the power of such culture-based sys-
tems, however, as the high fidelity investigation of single functional
interactions, or the role of cell-cell communication in homogeneous
populations (either of homeostatic or reactive sub-states) is difficult
to the level of impossible in vivo, due in large part to the extreme
heterogeneity of both cell types at both homeostatic®27°-72 and AD-
associated reactive states.®>7374 What remains a bottleneck for the
understanding of cellular heterogeneity is twofold: a lack of sub-state-
specific culture systems to study the functional changes that occur;
and second, a lack of genetic diversity in functional testing to deter-
mine if apoE isoform may alter not only gene expression differences
but also key homeostatic functions like lipid delivery, synaptogenesis,
and phagocytosis, among others. The investigation of these putative
altered functions will be particularly important moving forward—as the
astrocyte-microglia communication in AD seems particularly altered
given the APOE-TREM2 interactions already reported by many groups.

5 | TREM2 AND APOE

Research focused on the microglial receptor known as triggering
receptor expressed on myeloid cells 2 (TREM2) has increased recog-
nition of the importance of microglia in AD, particularly because a
number of mutations in TREM2 increase the risk for AD.”> TREM2 is
present on myeloid-derived cells such as microglia, macrophages, and
osteoclasts and responds to a wide range of entities including apop-
totic cells, AB, and lipoproteins. In individuals without AD pathology,
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this receptor protein enhances the rate of phagocytosis in microglia
and macrophages, and regulates inflammatory signaling, as well as
myeloid cell number, proliferation, and survival. TREM2 plays a role in
the pathogenesis of AD by modulating microglial functions, such as the
production of inflammatory cytokines, in response to AgB plaques and
tau tangles. When TREM2 is absent, amyloid pathology is enhanced
during the early stages in models of AD, and during the later stages
this tendency is increased further with the loss of the ability to clear
AB through phagocytosis. TREMZ2 variants contribute to AD pathogen-
esis in part by decreasing the phagocytic ability of microglia, and by
interfering with the proinflammatory response of these immune cells.

In AD, TREM2 appears enriched in microglia that surround neuritic
plaques. In mouse models that lack TREM2, microglia are unable to
move toward AfS plaques. Growing evidence suggests that the timing
of TREM2 expression is key—a finding that likely has important impli-
cations for drug development [see 8.1]. Studies have indicated that
although TREM2 is critical for the clearance of early AS plaques and
the slowing of cognitive decline during early stages of AD, expres-
sion of TREM2 during later stages of disease progression could have
disadvantageous long-term consequences.

5.1 | APOE and TREM2 interactions

In a recent study, Fitz and colleagues investigated how APOE and
TREM2, two major genetic risk factors for AD, affect microglial
response to AB.”® First, by applying shotgun lipidomics they com-
pared the phospholipid content of human brain and native mouse apoE
lipoproteins and established that there is an apoE isoform-specific
phospholipid signature. Overall, the native apoE e3 lipoproteins were
more lipidated and had a higher level of negatively charged phos-
pholipids compared to apoE e4, which may represent differences in
potential lipid-activation signals. Using preclinical AD mouse models,
they demonstrated that apoE e3 lipoproteins, in contrast to apoE e4,
prompted faster microglial migration toward injected Ag, facilitated
AB uptake, and ameliorated damaging effects of A8 on cognition. In
vivo two-photon imaging of mouse brains clearly demonstrated that
the apoE e3 lipoproteins caused microglia to gravitate toward AB and
surround the injection site more robustly compared with the apoE
e4, which can act as a protective mechanism decreasing the spread
of AB. This observation is in agreement with the authors’ previous
publication.”” Here they showed in Apoe €3 expressing AD model
mice, microglia establish a more complete barrier around small senile
plaques ,which restricted plaque growth compared to Apoe ¢4 express-
ing and Trem2~" mice. This emphasizes the importance of the early
response by microglia to amyloid pathology, which is apoE isoform
as well as Trem2 status dependent.”” Bulk and FACS sorted RNA-
sequencing demonstrated that, compared with cortical infusion of
apoE e4, infusion of apoE e3 lipoproteins led to the upregulation of
higher proportion of genes linked to activated microglia response. This
upregulation was most pronounced in microglia that have engulfed Ag,
suggesting that apoE e3 could initiate a stronger response by microglia
to AB than apoE e4. In single-cell RNA-sequencing analysis, microglia

of wild-type (WT) versus Trem2~/~

injected with apoE e3 or e4 lipopro-
teins were grouped in homeostatic and activated microglia clusters.
Overall, for all active clusters, they observed a higher number of dif-
ferentially expressed genes between WT versus Trem2~ in the mice
injected with apoE e4 rather than with apoE e3. This suggests that
apoE e4 lipoproteins compared to apoE e3 are less prepared to with-
stand TREM2 deficiency particularly in the presence of AB. Again, this
is similar to their previous findings, where they observed twice as many
differentially expressed genes when comparing Apoe €4 versus Apoe £3
AD model mice than their Trem2~~ counterparts, even with increased
amyloid pathology in both Apoe e4-expressing mice.”” The authors also
showed that, in vitro, the lack of TREM2 decreases AS uptake only
by APOE e4-treated microglia, thus suggesting an important inter-
action between TREM2 and apoE isoform. Their results support the
hypothesis that the phospholipid signatures of native apoE e3 lipopro-
teins trigger a more rapid phenotypic and transcriptional response of
microglia to AB than apoE e4 in ameliorating the deleterious effects of

AB.

6 | BIOMARKERS

Current research aims to discover the impact of a range of factors
that may affect AD pathology, such as APOE genotype and measures
of inflammation/inflammatory proteins, and how such factors may
influence disease progression, possibly long before the emergence
of clinical symptoms. Further investigation of such factors, including
the associations between AD biomarkers and fluid levels of apoE (in
plasma),”® may reveal new information about the sequence of events
that leads to AD, may provide more detailed information about the
influence of gender and racial differences on disease progression [see
7.0 DIVERSITY], and in turn may improve the ability to identify targets
for effective therapies.

Building on earlier studies that have demonstrated that apoE plays
a role in modulating concentrations of CSF AB1-42 (AB42) in patients
with AD-related cognitive decline, recent studies evaluated how the
effect of apoE on CSF AB42 varies by age and also aim to understand
the potential association between apoE and the onset of preclinical
AD.”? In one study that examined a large cohort of cognitively healthy
individuals from nine clinical research centers, APOE genotypes and
CSF AB42 concentrations were obtained for cognitively healthy indi-
viduals between the ages of 17 and 99.”% The investigators found
that CSF concentrations of AB42 were lower in APOE ¢4 carriers com-
pared with non-carriers in a gene dose-dependent manner, and that
the effect of apoE e4 on CSF AB42 was age dependent. Homozygous
APOE &4 carriers showed a steady decline in CSF AB42 concentra-
tions with increasing age throughout the entire age span examined in
the study. The study showed that individuals with the APOE ¢4 allele
start to exhibit a decrease in CSF AB42 concentration almost a decade
before APOE ¢4 non-carriers. Homozygous APOE ¢4 carriers were
believed to deposit AB42 during all of the ages examined in the study.
The authors suggest that there may be an APOE ¢4-dependent period
of early alterations in amyloid homeostasis, when amyloid slowly
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accumulates, which several years later, in conjunction with other down-
stream pathological events, such as tau pathology, may translate into
cognitive decline. Another study found no effect of APOE genotype on
CSF AB42 concentration in people younger than 35 years of age, cor-
roborating that the associations observed are not due to any direct
effects of apoE isoforms on CSF concentrations of AB42, but are
more likely explained by earlier onset of A8 accumulation in APOE ¢4
carriers.80

With the availability of a growing number of plasma biomarker tests,
an important question is whether APOE genotype might be used to
improve the performance of fluid biomarkers for AD pathologies. Stud-
ies that examined this question so far had conflicting results or found
that APOE genotype information does not improve the predictive value
of robust CSF biomarkers.3?8! For plasma AB42/AB40 ratio, however,
information on age and APOE genotype improves the diagnostic per-
formance of the test. To date, researchers have proposed that an ideal
biomarker should accurately measure changes in AD pathology (e.g., AB
or tau) regardless of APOE status.

6.1 | Using CSF proteomics to examine roles of
apoE and components of immunity in AD

One avenue by which researchers are attempting to better understand
heterogeneity among individuals with AD is through the applica-
tion of CSF proteomics. Because CSF contains thousands of proteins,
the concentrations of which can vary considerably among individu-
als with neurodegenerative disease, CSF proteomics have been used
in efforts to detect AD subtypes that reflect individual differences in
pathophysiological processes across the AD disease spectrum.

In a recent study examining data from two large independent AD
cohorts, the European Medical Information Framework for Alzheimer’s
Disease Multimodal Biomarker Discovery (EMIF-AD MBD) and the
Alzheimer’s Disease Neuroimaging Initiative (ADNI), investigators
found 705 proteins (77% of 911 tested) whose concentrations differed
in individuals with AD, compared with controls (who were defined as
having normal CSF amyloid and tau and normal cognition).2 Using
these proteins, it was possible to identify three distinct AD subtypes
with characteristic patterns of pathophysiology, one of which had a
distinct pattern of innate immune system activation. This subtype
was characterized by higher levels of proteins that—in both cohorts—
pointed to involvement of the innate immune system, as well as
oligodendrocyte development. Individuals comprising the subtype 2
population had, for example, high levels of proteins associated with
complement pathway activation, which may play a role in neuronal
injury in AD, because complement proteins can accumulate at synapses
and tag these for phagocytosis by activated microglia. The authors
noted that biological processes that characterize subtype 2 seem to be
associated with activated microglia, which may contribute to neuronal
dysfunction, or may be associated with the activation or dysregula-
tion of astrocytes. The team concluded that subtype 2 individuals may
potentially benefit from therapeutic strategies that target microglia
and astrocyte activation.

THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

6.2 | A hypothesis-driven approach to pro- and
anti-inflammatory proteins in Alzheimer’s disease

Neuroinflammation has been strongly associated with AD, and as such,
efforts have been made to obtain discrete CSF measures of inflamma-
tory proteins for both diagnostic and prognostic purposes; however,
such discrete measures may fail to account for overlapping disease
pathways and the relationships between them. In recently published
work by Hu and colleagues, 15 CSF proteins that reflect microglial
and T-cell functions were measured across diagnostic categories in
382 participants from ADNI, as well as for participants from two inde-
pendent cohorts. The researchers demonstrated that higher levels of
proteins related to soluble tumor necrosis factor receptor 1 (sTNFR1)
are associated with a reduced risk of conversion to dementia in peo-
ple with MCl related to AD, whereas higher soluble TREM2 levels are
associated with a slower decline in the dementia stage of AD. The team
demonstrated that these inflammatory proteins are capable of provid-
ing prognostic information independent of established AD markers.3
An important implication of this research is that CSF-based prog-
nostic biomarkers might complement core AD diagnostic biomarkers
in the very early stages of AD and provide additional prognostic infor-
mation at an early stage of disease. The authors note that other
investigators also examined CSF inflammatory proteins in AD, includ-
ing sSTNFR1, sTNFR225, and TREM2. With the large sample size drawn
from ADNI and two additional cohorts, the team was able to detect
extraordinarily consistent principal components (PCs) and PC families
across all cohorts, even when biomarkers within the same PC were

derived from different cell types.

7 | ENSURING DIVERSITY IN APOE AND OTHER
AD-RELATED RESEARCH

Research that examined interrelationships among APOE, cognitive per-
formance, morbidity, and mortality has focused mainly on populations
with European ancestry.84-8¢ However, conclusions drawn from such
studies do not adequately reflect the diversity of individuals who may
be at risk for AD. A recent examination of the international distri-
bution of APOE alleles drawn from public databases around the world,
as well as ancient DNA samples, for example, provided a number of
insights into the nature of human longevity that also shed light on
the importance of ensuring diversity in AD research.8” This study
emphasizes the importance of exploring APOE variability, as well as
the variability of other longevity and AD-related genes, with vital
consideration of population-specific cultural and ecological traits to
“disentangle” the pathway from genotype to phenotype for the pur-
pose of improving the interpretation of APOE-related data in different
populations. In an effort to learn more about overlooked contribu-
tions to AD phenotypes, a number of studies in recent years examined
the effects of APOE alleles and other AD-associated genetic variants
on cognition, with an emphasis on potentially important implications
related to differences in race/ethnicity and sex/gender among study

participants.88:8?
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7.1 | Examining AD-related sex and gender 7.2 | Examining differences in race/ethnicity
differences

Building on the knowledge that sex can be a key modifier of neu-
rological disease outcomes,’®?? a number of recent studies have
more closely examined sex-specific influences on neurodegenerative
diseases. In a recent study of sex-specific differences, for example,
Kodama and colleagues examined differences in microglial response
to tau pathology that exist between male and female mice.”? Because
previous studies revealed that sex differences in microglial gene
expression and functions could be observed in young adult mice,
were likely more pronounced in the aging brain, and that microR-
NAs (miRNAs) regulate immune networks in microglia, the authors
determined whether microglial miRNAs are expressed in and func-
tion in a sex-specific manner. After performing miRNA sequencing
(miRNA-seq) on microglia isolated from brains of adult mice and
inducing and evaluating changes in the transcriptomes of male and
female microglia, the authors found that they expressed different
miRNA patterns, both at baseline and in the context of tauopathy.
Furthermore, they discovered that the loss of miRNAs resulted in
sex-dependent consequences on the microglial transcriptome and tau
pathogenesis. The authors concluded that microglial miRNAs are key
contributors to sex-specific phenotypes and noted that a better under-
standing of microglial miRNA function could aid in the identification
of novel molecular networks that may contribute to neurological
diseases.

In a recent study exploring sex differences in humans with regard to
associations between APOE and CSF measures of tau, Babpour-Mofrad
and colleagues built on earlier research that revealed stronger associ-
ations between APOE ¢4 and CSF tau levels among women compared
with men, and suggested that APOE may play a role in modulating
risk for neurodegeneration in a sex-specific manner, particularly in
amyloid-positive individuals.”® Mofrad and colleagues obtained CSF
AB42, t-tau, and p-tau at threonine 181 (p-tau 181) levels from 1801
participants with probable AD dementia (n = 937), MCI (n = 437), and
subjective cognitive decline (n = 427). The authors found that among
APOE &4 carriers, sex differences in CSF p-tau, that is, higher levels in
females, are more apparent during early stages of disease, but that for
APOE ¢4 non-carriers, females are more evident in advanced disease
stages. Based on their findings, the authors concluded that the effect
of APOE ¢4 on sex differences in CSF biomarker levels vary depending
on disease stage in individuals with AD.?*

These and other recent studies examining sex differences (bio-
logical differences such as chromosomal gonadal or hormonal differ-
ences) and gender differences (psychosocial and cultural differences
between men and women, including access to education and occu-
pation) suggest that both sex and gender play an important role
in the development and progression of neurodegenerative diseases,
including AD. Continued investigation and understanding of both
sex- and gender-specific risk factors, as well as factors that may be
protective for AD, will be essential for developing and evaluating suc-
cessful individualized interventions for the prevention and treatment
of AD.>

A growing body of research is examining the established and suspected
differences in risks for AD and related dementias (ADRDs) among vari-
ous racial and ethnic populations to better understand the diagnostic
and prognostic implications of these differences, as well as implica-
tions for treatment, future research, and for the design of clinical trials.
An important goal is to determine the degree to which elevated risk
for and incidence of ADRD in various populations can be explained
by genetic differences, or by psychosocial/environmental differences,
racism, or by complex interactions between environmental and genetic
factors.

A recent study,”’® for example, examined psychosocial contribu-
tors to ADRD risk among non-Latinx Black older adults, who are
known to have an elevated risk of ADRDs compared with non-Latinx
White adults.””?8 The study examined data obtained from 221 non-
Latinx Black older adults who were participants in the Washington
Heights-Inwood Columbia Aging Project [WHICAP],?87? a longitu-
dinal, community-based study of aging and dementia in northern
Manhattan. Participants completed multiple measures of discrimina-
tion at a single time point and structural magnetic resonance imaging
(MRI) scans at two time points. Both everyday discrimination and life-
time discrimination were assessed, and MRI outcomes included both
hippocampal and white matter hyperintensity volumes. This infor-
mation was used to estimate associations between the measures
of discrimination and each MRI outcome over a period of 4 years.
The study’s investigators found that lifetime racial discrimination was
associated with lower initial hippocampal volume, and that every-
day racial discrimination was associated with a faster increase in
white matter hyperintensity volume over time. The investigators con-
cluded that racial discrimination is likely detrimental for brain aging
among non-Latinx Black older adults, and that it may contribute to the
disproportionate dementia burden among this population.

In an effort to evaluate racial differences in TREM2, a key immune
mediator in AD, another recent study examined the levels of CSF
soluble TREM2 (sTREM2) and compared the frequency of associ-
ated genetic variants in groups of individuals who self-reported their
race as African American (AA) or non-Hispanic White (NHW).8? Data
were obtained from 91 AAs and 868 NHWs who were participants in
the Knight Alzheimer Disease Research Center (ADRC) cohort, which
includes one of the largest groups of AA in AD research for which
both CSF biomarker and genetic data have been collected. The cohort,
which consists of community-dwelling older adults, includes partici-
pants both with and without cognitive impairment who are enrolled
in research studies of memory and aging at Washington University
in St. Louis. The study examined concentrations of CSF biomarkers,
including sSTREM2, as a function of race. The investigators found that
CSF sTREM2 levels were lower in the AA group compared with the
NHW group, and that AAs were more likely to have TREM2 coding vari-
ants, which were associated with lower CSF sTREM2. AAs also were
less likely to carry the rs1582763 minor allele, located near MS4A4A,
which was associated with higher CSF sTREM2. This study’s findings
were replicated in an independent cohort of 23 AAs and 917 NHWs.
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The investigators concluded that the lower CSF sSTREM2 levels among
AAs compared with NHWs were likely related to the greater tendency
for AAs to have genetic variants associated with lower CSF sTREM2
levels. These findings suggest that race may be associated with risk
for genetic variants that influence AD-related inflammation, as CSF
sTREM2 reflects TREM2-mediated microglial reactivity, a critical step
in the immune response to amyloid plaques.®?

In response to findings from several publications that have revealed
weak and inconsistent associations between APOE alleles and cogni-
tive decline, MCI, and ADRDs in Latinx populations, despite higher
rates of these disorders among Latinos compared with non-Latino
Whites, a recent study determined whether these inconsistencies
might be explained by ancestry-specific genetic effects.8® The study’s
investigators examined associations between APOE alleles and sig-
nificant cognitive decline, as well as MCI, in 4183 Latinos, com-
prising six distinct background groups—Cuban, Dominican, Mexican,
Puerto-Rican, South-American, and Central American—and explored
the degree to which continental genetic ancestry (e.g., European,
African, or Amerindian) likely modified these associations. Participants
were selected from the Hispanic Community Health Study/Study of
Latinos (HCHS/SOL), a population-based longitudinal cohort study of
16,415 U.S. Hispanic/Latino adults enrolled at four field centers (Bronx,
New York; Chicago, lllinois; Miami, Florida; and San Diego, Califor-
nia). Data obtained from the participants included anthropometry,
biospecimens, information about AD-related risk/protective factors,
and the results of four cognitive tests. The study found that APOE ¢4
was associated with an increased risk of significant cognitive decline,
with the strongest association among Cubans. APOE £2 was associated
with a decreased risk of MCI in Puerto Ricans. The study concluded
that Amerindian genetic ancestry protects against the risk of sig-
nificant cognitive decline conferred by the APOE &4 allele, and the
study’s authors indicated that future studies are needed to identify
Amerindian genetic variants that may interact with the APOE ¢4 allele,
as well as the nature of these interactions, with the goal of developing
genetic measures for predicting significant cognitive decline and MCI

in Latinos with mixed ancestry (of varying proportions).58

7.3 | Examining diverse cohorts in AD prevention
studies

Studies that have indicated higher rates of AD among AAs compared
with non-Hispanic Whites (or nHWSs) have raised important questions
regarding possible differences in etiology that may be responsible
for these differences. In an effort to estimate the incidence of AD
among AAs and NHWs across all available studies, Steenland and col-
leagues conducted a meta-analysis of six relevant population-based
studies and based on their calculations found that the incidence of
AD was 64% higher for AAs compared with NHWSs.1% They suggested
that the higher incidence for AAs might be explained by a combina-
tion of biological, psychological, and socioeconomic influences.'®° The
authors noted, for example, that AAs have higher rates of hyperten-
sion, obesity, and diabetes compared with NHWs, and that all of these

THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

comorbidities have been linked to AD. The authors also cited studies
indicating that vascular risk factors such as hypertension may acti-
vate neuroinflammatory responses and influence the levels of amyloid
in the brain. Steenland and colleagues noted that these variables, as
well as depression and stress, could be acting as confounders. The
authors indicated the need for further research to confirm hypothe-
sized biological, psychological, and socioeconomic factors, which may
have important implications for the development of future treatments
and for more accurate assessment of the public health burden of AD in
the United States.

In related research conducted 1 year earlier, Wharton and col-
leagues designed a study to assess the effect of modulating the
renin-angiotensin system (RAS) on the conversion to AD and cognitive
decline in people with MClI, as well as effects of the permeability of the
blood-brain barrier (BBB) and race on a potential relationship between
the RAS and AD.1%1 The researchers followed individuals receiving
antihypertensive medications who had MCI at baseline and who had
cognitive assessments during at least two follow-up visits to assess
conversion to AD as well as cognitive and functional decline. Among
all participants, 488 were receiving RAS-acting antihypertensive med-
ications. The team found that users of RAS-acting medications were
less likely to convert to AD and also demonstrated slower decline on
the CDR Sum of Boxes (CDR-SOB) and Digit Span Forward, compared
with nonusers. BBB-crossing RAS-acting medications were associated
with slower cognitive decline on the CDR-SOB, the MMSE, and the
Boston Naming Test. The investigators found that RAS-acting medica-
tions were more likely to be associated with cognitive benefits among
African Americans, compared with Caucasians. In addition to show-
ing that people prescribed RAS medications were less likely to convert
to AD, the study suggested that the BBB permeability of the medica-
tions may help explain cognitive benefit, and that African Americans
are more likely to benefit from RAS modulation than Caucasians. The
results of the study provided a strong rationale for trials investigating

RAS modulation during prodromal stages of AD.

8 | TARGETED THERAPIES

Research in recent years that has examined the cross-talk between
APOE and immunity has pointed to a number of promising directions
for drug development. Of particular interest to AD researchers are
early pathomechanistic alterations that occur along the AD continuum
and contribute to the development of neuroinflammation, pathologic
changes in immune signaling, and the progressive accumulation of AS
and tau, which might be targeted for the prevention or early-stage
treatment of AD.

8.1 | Modulation of protective TREM2-dependent
microglial functions

A growing body of research ranging from human genetics and
biomarker studies to human tissue/postmortem studies suggest the
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value of investigating novel therapeutic strategies that enhance
aspects of microglial function, such as innate immune signaling and
immunometabolism, for the treatment of AD. In particular, GWASs and
studies examining TREM2 signaling suggest that TREM2 may have ben-
eficial functions in the CNS, that loss of TREM2 function increases
the risk for AD, and that TREM2 modulation and/or activation might
be used to prevent the onset or slow the progression of sporadic
AD,102-104

Among the best-described approaches to the modulation of TREM2
activity are those involving agonist antibodies that are capable of acti-
vating receptor signaling and enhancing the protective function of
microglia. Four TREM2 agonistic antibodies—antibodies 1 and 2 (gen-

105 3nd

erated by R&D Systems and by Amgen, respectively), ALOO2c,
4D933—enhance survival of microglia and macrophages under low
macrophage colony-stimulating factor (M-CSF) conditions.%¢ These
antibodies have a number of shared characteristics, including a ten-
dency to bind in similar or overlapping sites within the stalk region of
TREM2.197 They also share the ability to stimulate both the prolifera-
tion and survival of myeloid cells. Moreover, all of these antibodies are
characterized by dual mechanisms of action, such that each is capable
of promoting TREM2 signaling by means of the cross-linking of sur-
face TREM2, which stimulates phagocytosis and the removal of cellular
debris, and also is capable of inhibiting TREM2 shedding. 106107
Evidence that TREM2 plays a role in supporting the compaction
of amyloid plaques and the clustering of microglia around amyloid
plaques, which in turn helps to reduce plaque-associated neuritic

106,108,109 s ggests that TREM2 agonist antibodies might be

pathology,
used to successfully target amyloid accumulation. Indeed, the ALOO2c
and 4D9 antibodies have been tested to determine whether they
affect amyloid accumulation in the brain of transgenic AD mouse
models.105:107.110 Although neither ALOO2c nor 4D9 has a tendency to
increase clustering of microglia around amyloid plaques, 4D9 reduces
the halo of amyloid plaques when administered to an APP knock-in
mouse model. Two studies also established that both ALO02a and 4D9
are capable of enhancing microglial phagocytosis of Ag as well as of
myelin debris.107:111

A growing number of studies suggest that sSTREM2 in CSF also
may be an important target for TREM2 agonist antibodies.'12 Stud-
ies of sSTREM2 in CSF have provided insights into disease pathogenesis
in AD through the examination of the sequence of microglia activa-
tion relative to A8 deposition and tau aggregation.!'? Recent studies
also suggest that sSTREM2 may have non-cell autonomous protective
functions and that changes in various physiological conditions and/or
disease states can affect levels of STREM2 in CSF.112 For these reasons,
sTREM2 is undergoing evaluation as a therapeutic biomarker as well
as a target for TREM2 antibodies.19%112 One antibody, 4D9, efficiently
binds sTREM2 in CSF when administered at high doses (50 mg/kg) in
the periphery, which correlates with an increase in total TREM2 levels

in the brain.107

This finding suggests that 4D9 is capable of achiev-
ing target engagement in the CNS in vivo, although further research
will be required to determine the exact mechanisms that mediates the
increase of soluble or cell-surface TREM2 in the CNS. One hypothe-
sis is that by blocking shedding activity, 4D9 may increase cell-surface

TREM2, and in turn may prevent its degradation and clearance.

As TREM2 antibodies undergo further development, researchers
will need to address a number of important safety considerations.
Because TREM2 antibodies affect a wide range of microglial subpop-
ulations and dynamic microglial states in the brain, it will be critical
to ensure that therapeutic efforts achieve a balance between ben-
eficial and harmful effects of immune activation. Current efforts to
use profiling data obtained with single-cell and single-nucleus RNA-
seq technologies to better understand the diversity of sub-populations
of microglia and their functions may eventually enable more com-
prehensive assessments of all microglia-targeting therapies.’%¢ Also
important will be efforts to determine the effects of TREM2 ago-
nist antibodies on bone as well as on lung, liver, spleen, and
peripheral adipose tissues. Further work will be required before
an optimal therapeutic molecular signature and optimal functional
outcomes of treatment with TREM2 agonistic antibodies can be

determined.

8.2 | APOE-modifying therapies

A major current avenue of drug development research involves iden-
tifying and targeting the factors through which APOE and its variants
influence the development of AD, with the aim of discovering whether
the protective effects of some APOE genotypes might be used to reduce
the probability or delay the onset of developing AD.

It is well established that APOE, the strongest risk factor among sus-
ceptibility genes for late-onset AD, has three common alleles (APOE
€2, €3, and ¢4) that give rise to six genotypes (APOE £2/¢2, €2/€3, £3/v3,
£2/¢4, £3/¢4, and £4/¢4). Particular APOE alleles, including APOE ¢2 and
the recently described APOE Christchurch mutation, are associated
with a reduced risk of developing AD and other neurodegenerative
disorders.113114 |n contrast, and compared with the most common
APOE £3/e3 genotype, each copy of the APOE ¢4 allele is associated
with a higher risk of AD dementia and with a younger age at demen-
tia onset, such that APOE ¢4 homozygotes are subject to the greatest
risk, whereas either one or two copies of the APOE ¢2 allele is asso-
ciated with a lower risk of AD and an older age of dementia onset.
APOE variants may have an even greater impact on the develop-
ment and potential treatment and prevention of AD than previously
thought—due in part to the likelihood that earlier studies underes-
timated the influence of the APOE genotype because they include
neuropathologically misclassified cases and controls.11>-117

In one recent study, Reiman and colleagues established that APOE €2
homozygotes have an exceptionally low likelihood of AD dementia.1*
The study demonstrated an exceptionally low likelihood of develop-
ing AD dementia among APOE ¢2 homozygotes in a large population of
clinically and neuropathologically confirmed individuals and controls.
Moreover, the investigators provided updated information for each of
the six common APOE genotypes with regard to the differential risk
for developing AD and demonstrated a stronger association of APOE
genotypes on the development of AD dementia than previously esti-
mated. The study further supported known effects of APOE genotypes
on standard measures of neuritic Ag plaque and tau tangle severity and
suggested progressively protective effects on Braak stage for genotype
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groups (such that APOE £3/¢4 < €2/¢4 < €3/e3 < £2/e3 < €2/¢2) compared
with APOE ¢4/¢4 homozygotes.

Other recent findings further stressed the importance of clarifying
factors through which APOE and its variants account for differential
risks for AD. In a recent study, Arboleda-Velasquez and colleagues,
determined that a Colombian PSEN1 E280A mutation carrier who did
not develop MCI until their mid-seventies (nearly three decades after
the median age of MCI onset among these carriers) had two copies
of the rare APOE £3 Christchurch (R136S) mutation.'® This APOE &3
Christchurch homozygote demonstrated resistance to ADAD despite
having the highest amyloid plaque burden among members of her kin-
dred (evidence of the overproduction of AB42 for more than 20 years).
Despite PET and CSF evidence of high AS plaque burden, the same
individual had PET evidence of limited tau tangle burden and neurode-
generation, which supports the idea that APOE variants have effects
on the development of AD that go beyond plaque burden. This idea
is further supported by evidence in other human and animal studies
that APOE variants likely have differential effects other than amyloid
plaque deposition, such as effects on AS aggregation and plaque mor-
phology, AB-mediated neuroinflammatory changes, tau propagation,
and neurodegeneration.

Although these studies strongly suggest that apoE and its associ-
ated molecular pathways may be particularly attractive therapeutic
targets, additional research will be needed to clarify the mechanisms
linking APOE with risk for AD. It will be particularly important to deter-
mine whether APOE variants contribute to differential AD risk due to
a toxic gain of function, which might suggest the benefit of an APOE
gene silencing treatment, or due to a toxic loss of function, which might
suggest the benefit of increasing apoE function. Reiman and colleagues
have proposed early-phase trial strategies in which these possibili-
ties might be tested in p-tau+ and NfL+ APOE ¢4 homozygous (as
determined by CSF or plasma).

Gene editing treatments, including gene-silencing antisense
oligonucleotide and RNA interference treatments already in devel-
opment, and apoE protein-reducing or -modifying treatments are
among currently proposed strategies that might safely and sufficiently
replicate the protective effects of APOE £2/¢2 genotypes to prevent
or delay the clinical onset of AD. A key challenge will be to inform
the efficacy of AD-modifying treatments in early phase clinical trials
with satisfactory endpoints. Among theragnostic endpoints that
are currently considered promising for APOE-modifying treatments
are CSF and plasma p-tau (e.g., p-tau181, 217, and 231), which are
indicators of AB-mediated tau pathophysiology, and CSF and plasma
neurofilament light (NfL), which are indicators of neuronal injury

and/or degeneration.

8.3 | Targeting chronic inflammation and soluble
TNF

Neuroinflammation is one of the earliest pathologic mechanisms
that occurs during the development of AD, which typically begins
decades before the onset of clinical symptoms [see 3.0 Neuroinflam-
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mation]. Although clinical trials that investigated compounds with
anti-inflammatory properties have failed to achieve primary endpoints,
current studies point to a continued strong therapeutic rationale for
pursuing such treatment strategies.

Numerous studies of animal models of AD, as well as longitudinal
human studies, suggest that TNF is an attractive therapeutic because
it plays an important role in early proinflammatory processes that
take place during preclinical stages of AD.21811? Many studies found
that elevated TNF levels are associated with both MCI and AD.3>118
TNF is released throughout the course of AD, by reactive microglia
and infiltrating peripheral immune cells, and to a lesser extent reac-
tive astrocytes and stressed neurons. One suggested initiator of this
TNF increase is increased levels of extracellular Aﬁlzo; however, given
that TNF increases are reported in several neurodegenerative dis-
eases without A, it is also likely that other non-AD specific drivers
of cytokine increase are equally responsible. TNF also can trigger y-
secretase activity, which causes an increased synthesis of AS peptides,
and in turn a further increase in the release of TNF.118 It has been
hypothesized that this feedback loop contributes to excessive levels
of TNF-a that in turn lead to AB synthesis, the inhibition of phagocy-
tosis of AB by microglia, and neuronal loss.*® TNF, along with other
cytokines released by immune cells under inflammatory conditions
in the early stages of AD, can drive reactive astrocyte sub-states—
either those that are neurotoxic,*3°2 or some with putative protective
functions.”® TNF also increases insulin resistance and related cognitive
declinein AD.121

Although insulin impairment and inflammation are characteristic
features of both type 2 diabetes and AD, until recently the shared
molecular and signaling interactions underlying these features were
not well understood. Recently investigators explored the disruption
of metabolite processing in both insulin impairment and neurodegen-
erative conditions such as AD.122 Specifically, they investigated how
soluble tumor necrosis factor signaling (solTNF) affects the integra-
tion of peripheral immune signals and metabolic feedback signals in
states of energy overload and insulin insensitivity. These researchers
found that a high-fat, high-carbohydrate diet (HFHC) diet in wild-type
C57BL6/J mice affects central insulin signaling and immune-metabolic
interactions in a solTNF-dependent manner, which is accompanied
by disruption in sociability and inflammatory gene networks in the
brain. They also found that selective solTNF neutralization can reduce
diet-induced insulin impairment, and identified solTNF as a potential
target for therapeutic intervention for lowering AD risk in inflamma-
tory states, findings that have implications for individuals with type-2
diabetes at higher risk for development of AD.

In November 2019, INmune Bio launched a phase 1b, proof-of-
biology trial of a protein biologic, known as XPro1595, which targets
and selectively neutralizes the soluble form of inflammatory cytokine
TNF, in 18 patients with clinically diagnosed AD. Participants, who
were required to have evidence of inflammation (elevated blood CRP,
hemoglobin Alc, high erythrocyte sedimentation rate [ESR], or carry
at least one APOE &4 allele), received weekly subcutaneous injections
of 0.3, 0.6, or 1.0, mg/kg XPro1595 for 3 months. In addition to report-
ing that the drug was safe, INmune Bio reported a dose-dependent
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reduction in biomarkers of neuroinflammation and neurodegeneration
across multiple measures and modalities at 12 weeks that continued to
improve in the six patients who remained on drug for 6 to 12 months.
A proof-of-concept Phase 2 study in mild AD patients with biomark-
ers of inflammation is currently underway to further explore whether
these biological changes in response to treatment can lead to clinical
improvement (ClinicalTrials.gov Identifier: NCT05318976).

9 | CONCLUSION

At the 2021 APOE and Immunity virtual conference, the APIOE and
Immunity research communities demonstrated an enthusiastic com-
mitment to advancing the interrelated fields of APOE and Immunity.
This meeting was marked by a strong collaborative spirit and ded-
ication to deepening our understanding of all aspects of APOE and
Immunity biology and their interconnected relationships.

The Alzheimer’s Association is committed to supporting dementia
researchers around the globe. Currently, the Alzheimer’s Association
has over $310 million invested in 950 projects in 48 countries on 6 con-
tinents. The Association supports researchers across dementia science,
including projects that advance our understanding of new treatment
strategies, and that improve our understanding of AD, help to improve
care and support for individuals with dementia and their families, and
help further our knowledge of brain health and disease prevention.

In 2023, the Alzheimer’s Association is hosting two conferences to
build upon the momentum of this APOE and Immunity virtual con-
ference. AAIC Advancements: APOE will be held in St. Louis Missouri
in March of 2023; and AAIC Advancements: Immunity will be held in
Boston, Massachusetts in March of 2023. It is hoped that both confer-
ences will attract new talent and funding to the field, while fostering

greater awareness of this high-impact research.
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received consulting fees from Denali, Retromer Therapeutics; received
support for attending meetings through NIH Grants; reports patents:
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options: Alzheon, Aural Analytics, Denali, Retromer Therapeutics and
ALZPath. Claire Sexton is a full-time employee of the Alzheimer’s
Association. Mali Gamez Tansey reports in the past 36 months grants
or contracts from NIH, MJFF, ASAP/MJFF, Parkinson Foundation,
Weston Family Foundation; received consulting fees from INmune
Bio, Cerebral Therapeutics. MGT received payment or honoraria in
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Rounds; The Gladstone, Neuroscience Seminar; Genentech Seminar,
Neuroscience Group; University of Kentucky ADRC Seminar Series;
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University of Wisconsin, Madison Group of Women in Medicine and
Science Symposium, Breaking Down Barriers; University of Tennessee
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taking (JU), grant No. 101034344) and JPND (bPRIDE), Alzheimer
Association, National MS Society (Progressive MS alliance); Health
Holland, the Dutch Research Council (ZonMW), Alzheimer Drug
Discovery Foundation, The Selfridges Group Foundation, Alzheimer
Netherlands, Alzheimer Association. CT is recipient of ABOARD,
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Neuroinflammation. CET has a collaboration contract with ADx Neu-
rosciences, Quanterix and Eli Lilly, performed contract research or
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AGO072946,NIH/NIA 1P01 AG078116; received payment or honoraria
from Brightfocus Foundation—Grant review and roundtable, Boston
University ADRC EAB; received support for attending meetings and/or
travel from Alzheimer’s Association: AAIC 2021, 2022; and Gordon
Research Conference 2022. DMW held a leadership or fiduciary role
as Editor in Chief Alzheimer’s and Dementia 2022-pres. Tyler James
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