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Abstract: Frontotemporal lobar degeneration (FTLD) includes a heterogeneous group of disorders

pathologically characterized by the degeneration of the frontal and temporal lobes. In addition to

major genetic contributors of FTLD such as mutations in MAPT, GRN, and C9orf72, recent work has

identified several epigenetic modifications including significant differential DNA methylation in

DLX1, and OTUD4 loci. As aging remains one of the major risk factors for FTLD, we investigated the

presence of accelerated epigenetic aging in FTLD compared to controls. We calculated epigenetic

age in both peripheral blood and brain tissues of multiple FTLD subtypes using several DNA

methylation clocks, i.e., DNAmClockMulti, DNAmClockHannum, DNAmClockCortical, GrimAge, and

PhenoAge, and determined age acceleration and its association with different cellular proportions

and clinical traits. Significant epigenetic age acceleration was observed in the peripheral blood of

both frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP) patients compared to

controls with DNAmClockHannum, even after accounting for confounding factors. A similar trend

was observed with both DNAmClockMulti and DNAmClockCortical in post-mortem frontal cortex

tissue of PSP patients and in FTLD cases harboring GRN mutations. Our findings support that

increased epigenetic age acceleration in the peripheral blood could be an indicator for PSP and to a

smaller extent, FTD.

Keywords: frontotemporal lobar degeneration; frontotemporal dementia; progressive supranuclear

palsy; DNA methylation aging; epigenetic clock

1. Introduction

Frontotemporal lobar degeneration (FTLD) refers to a heterogeneous group of disor-
ders that are pathologically characterized by the degeneration of the frontal and temporal
lobes resulting in clinical manifestations that predominantly include a progressive decline
in behavior or language [1,2]. FTLD is the third most common cause of dementia (termed
frontotemporal dementia (FTD)) following Alzheimer’s disease (AD) and Dementia with
Lewy Bodies [3]. Patients presenting with dementia due to FTLD can typically be grouped
into one of three clinical categories based on their early and predominant symptoms:
behavioral variant frontotemporal dementia (bvFTD), and two language variants, seman-
tic dementia (SD), and primary progressive non-fluent aphasia (PNFA) [3]. In addition,
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FTLD encompasses a spectrum of other neurodegenerative clinical phenotypes, includ-
ing atypical forms that overlap with motor neuron disease/amyotrophic lateral sclerosis
(MND/ALS) (FTD-MND, FTD-ALS) and with atypical parkinsonian disorders such as
corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP) [1,4]. Based on
the neuropathology and nature of the proteinaceous aggregates, FTLD can be characterized
mainly into, FTLD with inclusions of hyperphosphorylated tau (FTLD-tau); FTLD with
ubiquitin immunoreactive neuronal inclusions, which include the 43 kDa transactive re-
sponse DNA-binding protein (TDP-43) inclusions (FTLD-TDP), the fused in sarcoma (FUS)
inclusions (FTLD-FUS), and the unidentified ubiquitin-positive inclusions (FTLD-UPS);
and a small population of FTLD with no inclusions (FTLD-ni) [1,5].

Familial forms of FTLD account for up to 30–40% of all cases, with mutations in MAPT,
GRN, and C9orf72 accounting for a majority of the cases [4]. Recent studies have also
reported several epigenetic modifications in various FTLD subtypes including significant
differential methylation in the 17q21.31 locus (which includes MAPT) in the peripheral
blood of individuals with PSP, and to a lesser extent in FTD [6]; hypermethylation in DLX1
was also reported in the prefrontal cortex of individuals with PSP [7]. A recent study
by Fodder et al. also conducted a meta-analysis and identified that hypomethylation in
OTUD4 was associated with FTLD across pathological subgroups and subtypes [8].

One of the major risk factors for most complex neurodegenerative disorders and
dementia is aging. FTD is a predominantly early onset form of dementia, typically seen
in individuals under the age of 65 years, and although only 20–25% of the cases present
in old age, aging remains to be one of the biggest risk factors [9]. Therefore, in addition
to deciphering the complex etiology and molecular mechanisms that occur due to the
heterogeneity brought about by the genetic, epigenetic, and environmental factors, it is also
important to address the effect of aging in the development and progression of diseases
within the FTLD spectrum. However, the association of biological markers of aging with
risk of this disease spectrum remains largely unexplored.

Epigenetic clocks have proven to be excellent estimators of biological age and have
been repeatedly used as biomarkers of biological age. Epigenetic clocks are DNA methy-
lation (DNAm) based biomarkers that use penalized regression models, such as elastic
net regression to select a subset of DNAm sites that can be used to estimate the DNAm
age of any tissue or cell type [10]. Epigenetic age acceleration can then be calculated by
comparing the difference between DNAm age and chronological age, wherein a positive
age acceleration value indicates that the tissue is biologically older than expected and
vice versa for a negative age acceleration value. The first pan-tissue epigenetic clock was
created by Horvath, followed by multiple other tissue specific clock such as the blood tissue
specific clock created by Hannum et al., and a more recent cortical tissue specific clock
created by Shireby et al. [11–13]. These first-generation predictors of age were followed by
several other epigenetic clocks called the second-generation clocks, which were developed
as predictors of lifespan and health (PhenoAge), mortality (GrimAge), and clocks which
showed strong associations with other phenotypic traits [14,15]. Accelerated epigenetic
aging has been shown to be associated with various clinical traits, disease phenotypes,
as well as altered cellular proportions in several tissues and disease contexts including
AD and other neurodegenerative diseases [16,17]. A previous study in C9orf72 mutation
carriers with FTD, FTD-ALS, and ALS clinical phenotypes identified that an increase in
DNAm age acceleration was associated with an earlier age of onset and shorter disease
duration in the blood, but with just earlier onset in the frontal cortex and spinal cord tissue,
thus reflecting the severity/progression of the disease [18].

Therefore, with the aim of comprehensively investigating the role of these DNAm
based biomarkers of aging in the different subtypes of FTLD, in both peripheral blood and
post-mortem brain tissue, we performed DNA methylation-based clock analyses using
multiple blood, cortical, and pan-tissue epigenetic clocks.
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2. Materials and Methods

2.1. Study Overview/Design

2.1.1. Peripheral Blood Samples

Cohort 1 comprised publicly available peripheral blood epigenome-wide DNA methy-
lation profiles of FTD, PSP, and control individuals (Gene Expression Omnibus—GEO
accession number GSE53740) [6]. The dataset originally consisted of DNA methylation
profiles generated from the peripheral blood of patients with neurodegenerative disorders
(n = 190; 121 FTD, 7 FTD-MND, 43 PSP, and 15 AD, 1 CBD, and 4 with unknown diagnosis),
and healthy controls (n = 193) enrolled as part of a large genetic study in neurodegenerative
dementia (Genetic Investigation in Frontotemporal Dementia, GIFT) at the UCSF Memory
and Aging Center (UCSF-MAC) [19]. The FTD-MND cases were merged with FTD group,
and the CBD case was merged with the PSP group. AD samples were not included in
our study as the analysis focused on diseases under the FTLD umbrella; 4 samples with
unknown diagnosis were also excluded.

2.1.2. Post-Mortem Brain Tissue Samples

Cohort 2 consisted of epigenome-wide DNA methylation profiles generated from
the frontal cortex grey matter of post-mortem brain tissues from 16 individuals with FTD
with TDP-43 pathology (i.e., FTLD-TDP type A (TDPA, C9orf72 mutation carriers), (n = 8);
and FTLD-TDP type C (TDPC, sporadic), (n = 8)), and 8 neurologically normal controls.
All post-mortem brain tissues in cohort 2 were donated to the Queen Square Brain Bank
archives and are stored under a license from the Human Tissue authority (No. 12198) as
described by Fodder et al. [8]. Cohort 3 consisted of epigenome-wide DNA methylation
profiles generated from the frontal lobe of post-mortem brain tissues from 33 individuals
with FTLD (FTLD-TDP types A and B (GRN (n = 7) and C9orf72 (C9, n = 13) mutation
carriers, respectively), and FTLD-tau (FTDP-17—MAPT mutation carriers, n = 13)) and
14 neurologically normal controls. All post-mortem tissues in cohort 3 were obtained under
a Material Transfer Agreement from the Netherlands Brain Bank, and MRC King College
London, as described by Menden et al. [20]. Cohort 4 consisted of epigenome-wide DNA
methylation profiles generated from post-mortem prefrontal lobe of 94 individuals with
PSP and 72 controls for which data were made publicly available (GEO accession number
GSE75704) [7].

2.2. DNA Methylation Data Pre-Processing

For cohorts 1 and 4, DNA methylation profiling was performed using the Infinium
Human Methylation450 BeadChip (Illumina, San Diego, CA, USA), as described by Li et al.
and Weber et al., respectively [6,7]. DNA methylation profiling for cohorts 2 and 3 were
performed using the Infinium HumanMethylationEPIC BeadChip (Illumina, San Diego,
CA, USA). Sample processing steps and detailed methodology have been described previ-
ously [8,20]. Raw files (methylated and unmethylated intensity files in case of cohort 1 and
.idat flies for cohorts 2–4) for the DNA methylation profiles for all cohorts were subjected
to harmonized quality control and pre-processing steps using ChAMP (v. 2.21.1), minfi
(v.1.46.0), and WateRmelon (v.2.6.0) R (v.4.2.1) packages as previously described [21–24].
Briefly, raw intensity files were subjected to rigorous quality control checks, which included
filtering out failed and atypical samples as well as outlier detection. This was followed by
the removal of samples with <80% bisulfite conversion using bisulfite conversion assess-
ment, which converts probe intensities into percentage. Poorly performing probes were
filtered out if they had a bead count of <3 in more than 5% of the samples, or if over 1%
of samples showed a detection p-value > 0.05. In addition, samples were excluded if they
showed >1% probes above the 0.05 detection p-value threshold, and if sex predictions did
not match with phenotypic sex.
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More detailed characterization of the samples that passed the aforementioned quality
control checks in each cohort is given in Table 1. Dasen normalization was carried out
for all cohorts except Cohort 1, for which quantile normalization performed (as .idat files
were unavailable). Cell proportions in the blood were estimated from DNA methylation
data using methods implemented into the advanced analysis option of the epigenetic age
calculator software, which employs both Houseman’s method to estimate proportions
of CD8 T cells, CD4T cells, natural killer cells, B cells, monocytes and granulocytes [22,
25], and Horvath’s method to estimate abundance measures of plasma blasts, CD8 +
CD28-CD45RA- T cells, naive CD8 T cells, and naive CD4 T cells [12]. Cell proportion
estimations in the bulk brain tissues were performed to classify cell types into neuron-
enriched (NeuN+), oligodendrocyte-enriched (SOX10+), and other brain cell types (NeuN-
/SOX10-) populations using the CETYGO R package (https://github.com/ds420/CETYGO
(accessed on 17 February 2023)) as previously described [26,27].

Table 1. Cohort demographics.

Peripheral Blood

Sample Group No. of Individuals
Females (%)

[% Unknowns]
Average Chronological

Age (SD)

Cohort 1

Controls 178 53.4 [13.5] 68.9 (10.4)

FTD 117 26.5 [43.6] 65.2 (9.0)

PSP 44 15.9 [40.9] 69.9 (7.3)

Total 339 39.2 [27.4] 67.7 (9.8)

Post-mortem brain tissue

Sample Group No. of individuals
Females (%)

[% unknowns]
Average Chronological

age (SD)

Cohort 2

Controls 8 62.5 75.8 (5.6)

FTLD-TDPA (C9orf72) 7 57.1 66.9 (4.8)

FTLD-TDPC
(Sporadic)

8 50.0 72.9 (4.8)

Total 23 56.5 72.0 (6.1)

Cohort 3

Controls 14 64.3 78.4 (11.8)

FTLD-TDPA (GRN) 7 71.4 64.6 (7.6)

FTLD-TDPB (C9orf72) 13 61.5 63.8 (8.2)

FTLD-Tau (MAPT) 13 46.2 60.9 (7.6)

Total 47 59.6 67.5 (11.5)

Cohort 4

Controls 71 35.2 76.0 (8.0)

PSP 93 41.9 71.6 (5.3)

Total 164 39.0 73.5 (6.9)
Cohort 1—purple; cohort 2—blue; cohort 3—green; cohort 4—yellow; FTD—frontotemporal dementia; PSP—
progressive supranuclear palsy; FTLD—Frontotemporal lobar degeneration; FTLD-TDPA/B/C—FTLD with 43
kDa transactive response DNA-binding protein (TDP-43) positive inclusions, types A, B and C; C9orf72—C9orf72
mutation carriers; GRN—GRN mutation carriers, FTLD-Tau—FTLD with tau-positive inclusions; MAPT—MAPT
mutation carriers.

2.3. Epigenetic Clocks and Estimations of DNAm Age Acceleration

For the peripheral blood dataset (Cohort 1), DNAm age estimation was performed
using 4 clocks designed either for pan-tissues or specifically designed for blood, namely
DNAmClockMulti [12], DNAmClockHannum [11], PhenoAge [14], and GrimAge [15]. For the
post-mortem brain datasets (Cohorts 2–4), DNAm age estimation was performed using 2 clocks,
the pan-tissue DNAmClockMulti and the cortical tissue specific DNAmClockCortical [13]. DNAm
ages for DNAmClockMulti, DNAmClockHannum, PhenoAge, and GrimAge were calculated
using the advanced analysis with normalization, on the online calculator (http://dnamage.
genetics.ucla.edu/ (accessed on 03 December 2022)). In addition to the DNAm age estimates

https://github.com/ds420/CETYGO
http://dnamage.genetics.ucla.edu/
http://dnamage.genetics.ucla.edu/
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and age acceleration residuals, the online calculator also provided Intrinsic Epigenetic Age
Acceleration (IEAA) measures for the DNAmClockMulti and DNAmClockHannum, as well as
Extrinsic Epigenetic Age Acceleration (EEAA) measures. IEAA is the residual obtained
from a multivariable regression of DNAm age on chronological age and blood cell count
estimates; and is therefore unaffected by both variation in chronologic age and blood cell
composition, making it a measure of cell-intrinsic aging [28]. EEAA, on the other hand,
are residuals that are obtained by combining Hannum DNAm age with three blood cell
components (naïve cytotoxic T cells, exhausted cytotoxic T cells, and plasmablasts) to
form an aggregate measure (enhanced Hannum DNAm age followed by regression onto
chronological age) [29]. EEAA is a measure that is dependent on age-related changes in the
blood cell composition and integrates known age-related changes in blood cell counts with
a blood-based measure of epigenetic age before adjusting for chronologic age and therefore
is a measure of immune system aging [30]. The DNAm ages for DNAmClockCortical were
calculated as described by Shireby et al. [13]. For all clocks, standard linear regression
models were applied and DNAm age acceleration was calculated as the residual obtained by
linear regression of DNAm age on chronological age and adjusting for possible confounders
such as tissue-specific cell type proportions. A brief overview of the study design is
described in Figure 1; the number of individuals included in each cohort represent the
samples remaining after quality control (Figure 1).

tt

ff

Figure 1. An overview of the study design.
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2.4. Statistical Analysis

Comparisons for statistical significance in the DNAm age acceleration between cases
and controls across groups/brain regions were performed using Kruskal–Wallis test, and
pairwise comparisons between groups (i.e., FTLD subtypes vs. controls) within each cohort
were performed using pairwise Wilcoxon test with the Benjamini–Hochberg multiple
testing correction. Correlations between epigenetic age acceleration (i.e., residuals obtained
by linear regression of DNAm age on chronological age) and cell-type proportions (e.g.,
estimates of neuronal proportions) and/or disease traits (e.g., disease onset) were calculated
using Pearson’s coefficient.

3. Results

3.1. Correlation between DNAm Age and Chronological Age in the Peripheral Blood and
Post-Mortem Brain Tissue Cohorts

For the peripheral blood dataset (Cohort 1), significant strong correlations were ob-
served between chronological age and DNAm age in all 4 clocks, DNAmClockMulti

(r = 0.79, p = 1 × 10−75), DNAmClockHannum (r = 0.81, p = 2 × 10−82), PhenoAge
(r = 0.71, p = 8.5 × 10−55), and GrimAge (r = 0.88, p = 3.1 × 10−114), with GrimAge show-
ing the strongest correlation, highest significance, and lowest error (defined as median ab-
solute deviation between DNAm age and chronological age) (Supplementary Figure S1).
Similar to that observed in the peripheral blood, significant strong correlations were also
observed between chronological age and DNAm age for both DNAmClockMulti (r = 0.7–0.94,
p = 5.4 × 10−5–1.8 × 10−25) and DNAmClockCortical (r = 0.81–0.97, p = 6.9 × 10−8–2.2 × 10−39)
in the post-mortem brain samples, with Cohort 3 (FTLD-TDPB C9orf72, FTLD-TDPA GRN, and
FTLD-Tau MAPT mutation carriers) showing the strongest correlation and highest significance
with both clocks (Supplementary Figure S2). Overall, DNAmClockCortical predominantly dis-
played stronger correlations with higher significance in all post-mortem brain tissue cohorts.
The median absolute deviation (error) varied between the cohorts and the clocks, ranging be-
tween 4.1 and 15, with the lowest for DNAmClockMulti and highest for DNAmClockCortical

in Cohort 2. An underestimation of DNAm age compared to actual chronological age
was observed with DNAmClockMulti in all brain tissue cohorts except Cohort 2, whereas
DNAmClockCortical generally tended towards DNAm age overestimations (Supplementary
Figure S2).

3.2. Epigenetic Age Acceleration in the Peripheral Blood of Individuals with a Clinical Diagnosis of
FTD and PSP

Significant epigenetic age acceleration was observed for the FTD (AgeAccel = ~2 years,
p = 0.002) and PSP cases (AgeAccel = ~4 years, p = 0.0006) compared to controls with
DNAmClockHannum (Figure 2b and Supplementary Table S1), with similar trends (although
not statistically significant) observed with DNAmClockMulti (Figure 2a). Age acceleration
remained significant upon adjustment for differences in blood cell counts, as observed by
IEAAHannum for both FTD (AgeAccel = ~2 years, p = 0.03) and PSP (AgeAccel = ~3 years,
p = 0.01) when compared to controls, and a similar result was observed with IEAAMulti

(Figure 2e,f). Further, significant age acceleration was observed with EEAA, which accounts
for known age-related changes in blood cell counts during epigenetic age estimation and is
a measure of immune system aging, for both FTD (AgeAccel = ~3 years, p = 0.0003) and
PSP (AgeAccel = ~5 years, p = 0.0003), when compared to controls (Figure 2g). A trend
in age acceleration (~2 years) for FTD only was observed with the PhenoAge epigenetic
estimates, whereas with the GrimAge clock, age acceleration was observed in both FTD
(~1.5 years) and PSP (~1.5 years), compared to controls, although no statistical significance
was observed upon pairwise comparison (Figure 2c,d).
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Figure 2. Epigenetic age acceleration in the peripheral blood samples of Cohort 1 (purple) consti-

tuting FTD (n = 117) and PSP cases (n = 44) as well as controls (n = 178) with the DNAmClockMulti,

DNAmClockHannum, PhenoAge, and GrimAge clocks. (a–d) Epigenetic age acceleration (y-axis)

in relation to disease status (x-axis) with the 4 clocks; (e,f) intrinsic epigenetic age acceleration

(IEAA, y-axis) of DNAmClockMulti and DNAmClockHannum with respect to disease status (x-axis);

and (g) extrinsic epigenetic age acceleration (EEAA, y-axis) with respect to disease status (x-axis).

CTRL—control, FTD—frontotemporal dementia, PSP—progressive supranuclear palsy. Age accel-

eration residuals were obtained by regressing DNA methylation age against chronological age and

adjusting for confounding factors such as cell type proportions. The bar plots depict the mean value

and standard error (y-axis). p-values for across group comparisons were calculated using the Kruskal–

Wallis test (p-values shown at the top of the plots (a–g)), and p-values for pairwise analysis between

each disease group and controls were calculated using the Wilcoxon’s test with Benjamini–Hochberg

correction for multiple testing (p-values shown at the bottom of the plots (a–g)).

3.3. Epigenetic Age Acceleration in Post-Mortem Brain Tissue of Pathologically Confirmed
FTLD Subtypes

Similar to what was observed in blood, in the brain tissue of sporadic PSP cases
(Cohort 4) a trend towards epigenetic age acceleration (~1 year) was observed with both
DNAmClockMulti and DNAmClockCortical compared to controls (Figure 3c,f). Epigenetic
age acceleration, albeit not statistically significant, was also observed for the FTD-TDPA
GRN mutation carriers (Cohort 3) with DNAmClockMulti, with concordant results from the
DNAmClockCortical (Figure 3b,f). The C9orf72 mutation carriers of both FTLD-TDP types A
(Cohort 2) and B (Cohort 3), as well as the sporadic FTLD-TDP subtype C (Cohort 2) and
the MAPT mutation carriers (Cohort 3), however, showed no consistent evidence in favor of
age acceleration compared to controls with both DNAmClockMulti and DNAmClockCortical.

Previous studies, including ours have revealed that cell-type composition in a spe-
cific tissue influences DNAm age estimation and thus epigenetic age acceleration [13,26].
Therefore, we analyzed the association of epigenetic age acceleration in the post-mortem
brain tissues using neuronal and oligodendrocyte proportion estimates obtained from the
cell-type deconvolution algorithm CETYGO [27]. In agreement with the previous reports,
a significant negative correlation was observed between age acceleration and neuronal
proportions for both control and disease groups in all cohorts with DNAmClockCortical; a
concordant result was also observed with DNAmClockMulti in cohort 4 (Figure 4). Positive
correlations were observed between oligodendrocyte proportions and epigenetic age accel-
eration for all cohorts with both clocks except for Cohort 2 with DNAmClockCortical, which
could be due to the fact that unlike the other brain tissue cohorts, this cohort comprises
grey matter instead of a mix of grey and white matter, and thus lower proportions of
oligodendrocytes (Figure 4).
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Figure 3. Epigenetic age acceleration in the post-mortem brain tissues using DNAmClockMulti and

DNAmClockCortical. Cohort 2 (blue) constituted FTLD-TDP types A (C9orf72 mutation carriers,

n = 7), and C (sporadic cases, n = 8), and controls (n = 8), Cohort 3 (green) constituted FTLD-TDP

types B (C9orf72 mutation carriers n = 13), and A (GRN mutation carriers, n = 7), FTLD-Tau MAPT

mutation carriers (n = 13) and controls (n = 14), and Cohort 4 (yellow) comprised PSP cases (n = 93)

and controls (n = 71). (a–f) Epigenetic age acceleration (y-axis) in relation to disease status (x-axis)

for the cohorts with DNAmClockMulti and DNAmClockCortical. CTRL—control, TDPA-C9—FTLD-

TDPA (C9orf72 mutation carriers), TDPC—FTLD-TDPC (sporadic); TDPA-GRN—FTLD-TDPA (GRN

mutation carriers), TDPB-C9—FTLD-TDPB (C9orf72 mutation carriers), MAPT—FTLD-Tau MAPT

mutation carriers, PSP—progressive supranuclear palsy. Age acceleration residuals were obtained by

regressing DNA methylation age against chronological age and adjusting for neuronal proportions;

the bar plots depict the mean value and standard error (y-axis); p-values for across group comparisons

were calculated using the Kruskal–Wallis test (a–f).

3.4. Association of Epigenetic Age Acceleration with Disease Onset and Duration

A previous study reported significant inverse associations between age acceleration
(defined in that case as the difference between DNAm age and chronological age) and
clinical traits such as disease onset and duration in the blood of patients with C9orf72 repeat
expansions (ALS, ALS-FTD, and FTD), with a similar trend observed in the spinal cord,
frontal and temporal cortices in ALS and ALS-FTD patients with disease onset, but not
with disease duration [18]. In our brain datasets, for the FTLD-TDPA C9orf72 mutation
carriers in Cohort 2, weak negative correlations were observed between age acceleration
(residuals) and disease onset with DNAmClockMulti, but not with DNAmClockCortical

(Supplementary Figure S3a,b); no negative correlation was observed with disease onset
for FTLD-TDPB C9orf72 mutation carriers in Cohort 3 with both clocks (Supplementary
Figure S3b,c). As Zhang et. al. [18] found a trend towards inverse associations between
age acceleration difference, we also examined the associations between age acceleration
difference and disease onset and results were very to those we observed for the residuals
(Supplementary Figure S3e–h). Zhang et al. [18] also reported inverse associations between
age acceleration and disease duration in blood and in the temporal cortex; in line with that,
a significant inverse association between age acceleration (both difference and residuals)
and disease duration was observed in individuals with C9orf72 mutations of FTLD-TDPB
subtype in Cohort 3 with DNAmClockMulti (Figure 5c,g), and a similar trend was observed
with DNAmClockCortical (Figure 5d,h). Individuals with C9orf72 mutations of FTLD-TDPA
subtype in Cohort 2 also showed a trend towards inverse correlations with disease duration
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with both clocks (Figure 5a,b,e,f). GRN mutation carriers of FTLD-TDPA subtype also
showed significant strong inverse correlation between age acceleration (residuals) and
disease onset with DNAmClockCortical, whereas MAPT mutation carriers showed significant
strong inverse correlation between age acceleration (residuals) and disease onset with
DNAmClockMulti (Supplementary Figure S4).

ff

ffi

ff

ff
ff

ff

Figure 4. Associations between epigenetic age acceleration and cellular (neuronal and oligodendro-

cyte) proportions for DNAmClockMulti and DNAmClockCortical in the different brain tissue cohorts.

(a–l) Age acceleration residuals (y-axis) versus neuronal (NeuN positive) and oligodendrocyte (SOX10

positive) proportions (x-axis) for DNAmClockMulti and DNAmClockCortical for Cohort 2 (blue; FTLD-

TDPA C9orf72/FTLD-TDPC) (a–d), Cohort 3 (green; FTLD-TDPB C9orf72, FTLD-TDPA GRN, and

FTLD-Tau MAPT mutation carriers) (e–h), and Cohort 4 (yellow; PSP) (i–l). Age acceleration residuals

were obtained by regressing DNA methylation age against chronological age; cellular proportions

were obtained using a DNA methylation-based cell-type deconvolution algorithm as described by

Shireby et al. [27]. The correlation coefficient and p-values shown were calculated using Pearson cor-

relation. CTRL—control, TDPA-C9—FTLD-TDPA (C9orf72 mutation carriers), TDPC—FTLD-TDPC

(sporadic); TDPA-GRN—FTLD-TDPA (GRN mutation carriers), TDPB-C9—FTLD-TDPB (C9orf72 mu-

tation carriers), MAPT—FTLD-Tau MAPT mutation carriers, PSP—progressive supranuclear palsy.
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Figure 5. Association between age acceleration and duration with DNAmClockMulti and

DNAmClockCortical for the C9orf72 mutation carriers in cohorts 2 (blue) and 3 (green). Age ac-

celeration residuals (y-axis) for DNAmClockMulti and DNAmClockCortical versus disease duration

(x-axis) for Cohort 2 (a,b), and Cohort 3 (c,d), age acceleration difference (y-axis) versus disease onset

(x-axis) for Cohort 2 (e,f) and Cohort 3 (g,h). Age acceleration residuals were obtained by regressing

DNA methylation age against chronological age and adjusting for confounding factors such as neu-

ronal proportions obtained using a DNA methylation-based cell-type deconvolution algorithm as

described by Shireby et al. [27]. Age acceleration difference was the difference between DNA methyla-

tion age and chronological age. The correlation coefficient and p-values shown were calculated using

Pearson correlation. TDPA-C9—FTLD-TDPA (C9orf72 mutation carriers), TDPB-C9—FTLD-TDPB

(C9orf72 mutation carriers).

4. Discussion

Accelerated aging has been shown to be an important predictor of several age-related
diseases including cancer [31], diabetes [32], as well as neurodegenerative diseases such
as AD [33]. Moreover, associations between accelerated epigenetic age and various clin-
ical traits, phenotypes, and cellular proportions have also been reported [17,34]. Our
study aimed to systematically evaluate the presence of accelerated epigenetic aging in
multiple neurodegenerative conditions occurring as a result of FTLD in the peripheral
blood using multi-tissue and blood specific epigenetic clocks such as DNAmClockMulti,
DNAmClockHannum, PhenoAge, and GrimAge, as well as in the case of post-mortem
brain tissue using DNAmClockMulti and the brain tissue specific DNAmClockCortical. Our
analysis of epigenetic age acceleration in the peripheral blood revealed significant age ac-
celeration in both FTD and PSP individuals compared to controls with DNAmClockHannum,
with a concordant trend being observed with DNAmClockMulti. These results remained
significant even after accounting for differences in blood cell counts (IEAA) and upon
accounting for known age-related changes in blood cell counts during epigenetic age es-
timation (EEAA) (Figure 2, Supplementary Table S1). A similar trend was observed in
the post-mortem brains, with epigenetic age acceleration being observed in PSP patients
compared to controls with both DNAmClockMulti and DNAmClockCortical (Figure 3c,f) and
a trend towards epigenetic age acceleration in the GRN mutation carriers (FTLD-TDPA)
(Figure 3b,e).

For the peripheral blood cohort, comparing the blood and multi-tissue clocks,
DNAmClockHannum showed stronger correlation, higher significance, and lower error
values compared to DNAmClockMulti, as expected. For the brain tissue cohorts similarly,
as expected, DNAmClockCortical showed higher correlations with stronger significance be-
tween DNAm age and chronological age for all cohorts; however, the error values were not
necessarily lower compared to DNAmClockMulti. Specifically, strong correlations between
DNAm age and chronological age observed with Cohort 2 demonstrate the applicabil-
ity of both clocks to grey matter tissues in addition to a mix of white and grey matter
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(Cohorts 3 and 4) as well as to white matter tissues, as previously demonstrated by our
group [26]. In addition, concordant to previous reports, age acceleration was generally
positively correlated with oligodendrocyte proportions and negatively correlated with
neuronal proportions in brain tissue indicating the role of cellular proportions, which are
typically altered in disease, towards epigenetic age estimations and validating our previous
findings [26].

Epigenetic age acceleration observed with DNAmClockHannum in the peripheral blood
(Cohort 1) in both FTD and to a larger extent in PSP compared to controls remained signifi-
cant even after accounting for differences in the blood cellular composition (IEAAHannum).
Neuroinflammation has been shown to be a major component in the pathology and pro-
gression of several neurodegenerative diseases including FTD [35]. Dysregulation of the
peripheral immune system has also been previously reported, with an increased expression
observed in genes associated with adaptive immune cells (CD19+ B-cells, CD4+ T-cells,
and CD8+ T-cells) and decreased expression in genes associated with innate immune cells
(CD33+ myeloid cells, CD14+ monocytes, BDCA4+ dendritic cells, and CD56+ natural
killer cells) in FTD participants compared to healthy aging [36]. These differences in the
peripheral immune system in FTD compared to healthy aging makes it crucial that we
account for known age-related changes in blood cell counts (EEAA); epigenetic age ac-
celeration remained significant even after accounting for these changes in both FTD and
PSP supporting the significant increase in epigenetic age of the immune system in FTLD
compared to controls. Similar trends in epigenetic age acceleration were also observed with
DNAmClockMulti and IEAAMulti. These findings strongly suggest that increased epigenetic
age in the peripheral blood can be an indicator for PSP and, to a smaller extent, FTD [35,36].

A similar trend in accelerated epigenetic aging could be observed in post-mortem
brains of PSP patients compared to controls with both DNAmClockMulti and
DNAmClockCortical; however, for the FTD subtypes, only the GRN mutation carriers (FTLD-
TDPA) showed a consistent trend towards epigenetic age acceleration. The concordance in
age acceleration patterns in the blood (~4 years) and brain (~1 year) in case of PSP could be
an indicator of shared methylation patterns and shared systemic aging related processes
occurring in both tissues. Epigenetic age acceleration has also been reported in other neu-
rodegenerative diseases, such as in the blood of Parkinson’s disease (PD) patients compared
to controls, where increased age acceleration with IEAAMulti and EEAA were observed [37],
and in a longitudinal study of control individuals that revealed increased DNAm age in
the blood to be a significant predictor of dementia at follow-up after 15 years [38].

Findings from a previous report also correlated epigenetic age acceleration difference
measures in ALS/FTD patients with C9orf72 mutations with a more severe disease phe-
notype as represented by shorter disease duration and earlier age of onset primarily in
the blood, and to an extent, with an earlier age of onset in brain tissues [18]. However,
this cohort consisted of only cases, and the lack of controls limited the study primarily
to clinical phenotypes. In our datasets, we observed weak negative correlations between
the age acceleration (both residuals as well as difference) and disease onset in the brains
of FTLD-TDPA patients with C9orf72 mutations with DNAmClockMulti; however, no neg-
ative correlation was observed for of FTLD-TDPB C9orf72 mutation carriers in Cohort 3
with both clocks. Nevertheless, we did observe significant inverse association between
age acceleration (both difference and residuals) and disease duration in individuals with
C9orf72 mutations of FTLD-TDPB subtype in Cohort 3 with DNAmClockMulti (Figure 5),
and a similar trend with DNAmClockCortical. These results partially agree with the results
of the previous study [18]; however, the sample sizes in both studies were relatively small
and therefore these findings should be interpreted with caution.

Our study has several limitations, including the fact that our blood and brain cohorts
were not derived from the same individuals, and the brain cohorts 2 and 3 are relatively
small. Further, we did not possess details regarding the clinical and neuropathological traits
for Cohort 1, limiting the assessment of epigenetic age acceleration for different genetic
and sporadic FTD subtypes or the association analysis with disease onset and duration in
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the peripheral blood dataset. Nevertheless, our study provides important groundwork by
comparing epigenetic age acceleration measures for several FTLD phenotypes in both blood
and brain tissues as well as their associations with clinical traits using multiple estimators
of DNAm age. Future studies with larger sample sizes for each of the subtype, ideally
investigating blood and brain tissue derived from the same individuals, are required to
corroborate our findings.

5. Conclusions

Our comprehensive analysis using several epigenetic clocks in both peripheral blood
and post-mortem brain tissue cohorts reveals significant epigenetic age acceleration in the
peripheral blood of individuals with FTD and PSP compared to controls as well as similar
age acceleration trends in the brain tissue of individuals with PSP and GRN mutation
carriers of FTLD-TDP type A.

Supplementary Materials: The following supporting information can be downloaded at: https:

//www.mdpi.com/article/10.3390/cells12141922/s1, Table S1: Average DNAm ages and average

age acceleration for the different cohorts; Figure S1: Epigenetic age analysis of the peripheral blood

samples in Cohort 1 with the DNAmClockMulti, DNAmClockHannum, PhenoAge, and GrimAge

clocks; Figure S2: Epigenetic age analysis of post-mortem brain tissues using DNAmClockMulti

and DNAmClockCortical; Figure S3: Association between age acceleration and disease onset with

DNAmClockMulti and DNAmClockCortical for the C9orf72 mutation carriers in cohorts 2 and 3; Figure

S4: Association between age acceleration and disease onset and duration with DNAmClockMulti and

DNAmClockCortical for the FTLD-TDPC subtype in cohort 2 and FTLD-TDPA-GRN and FTLD-Tau-

MAPT mutation carriers in cohort 3.
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