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A B S T R A C T   

Experiential richness creates tissue-level changes and synaptic plasticity as patterns emerge from rhythmic 
spatiotemporal activity of large interconnected neuronal assemblies. Despite numerous experimental and 
computational approaches at different scales, the precise impact of experience on network-wide computational 
dynamics remains inaccessible due to the lack of applicable large-scale recording methodology. We here 
demonstrate a large-scale multi-site biohybrid brain circuity on-CMOS-based biosensor with an unprecedented 
spatiotemporal resolution of 4096 microelectrodes, which allows simultaneous electrophysiological assessment 
across the entire hippocampal-cortical subnetworks from mice living in an enriched environment (ENR) and 
standard-housed (SD) conditions. Our platform, empowered with various computational analyses, reveals 
environmental enrichment’s impacts on local and global spatiotemporal neural dynamics, firing synchrony, 
topological network complexity, and large-scale connectome. Our results delineate the distinct role of prior 
experience in enhancing multiplexed dimensional coding formed by neuronal ensembles and error tolerance and 
resilience to random failures compared to standard conditions. The scope and depth of these effects highlight the 
critical role of high-density, large-scale biosensors to provide a new understanding of the computational dy
namics and information processing in multimodal physiological and experience-dependent plasticity conditions 
and their role in higher brain functions. Knowledge of these large-scale dynamics can inspire the development of 
biologically plausible computational models and computational artificial intelligence networks and expand the 
reach of neuromorphic brain-inspired computing into new applications.   

1. Introduction 

The hippocampus plays a central role in spatial, contextual, and 
episodic learning. It also represents a brain region capable of undergoing 
structural and functional changes in response to various stimuli, thus 
demonstrating its plasticity (Bird and Burgess, 2008; Lisman et al., 
2017). This plasticity is an activity-dependent process, and it has been 
linked to experience-dependent changes and neurogenesis (Kemper
mann et al., 2015). Over the past few decades, work has revealed much 
insight into individual cell types, synaptic machinery and plasticity, and 

action potentials in the major routes of information flow through the 
hippocampus (Lisman et al., 2017; Andersen et al., 2007). Nevertheless, 
little is known about how the individual circuit components dynamically 
interact to form cell assemblies (i.e., microcircuits) in hippocampal 
subnetworks and how this contributes to dynamically shaping the pro
cessing of information underlying learning and memory. Specific func
tionality within the hippocampal circuitry has been usually identified in 
relation to the canonical tri-synaptic pathway to relay information from 
the entorhinal cortex (EC) to the dentate gyrus (DG), then processed 
further to CA3 and CA1 before back-projecting to the entorhinal cortex 
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(EC) (Amaral and Witter, 1989). This pathway is, however, only one 
possible route by which information is processed in the hippocampus, 
and the EC may not be the only primary extrinsic input to consider. 
Indeed, electrophysiological recordings in hippocampal slices demon
strated evidence of back-projections from CA3 to DG and CA3 (Scharf
man, 2007). Computational modeling predicted improved pattern 
separation and completion and increased storage capacity in the CA3 
(Myers and Scharfman, 2011) due to such architecture. This pathway 
might also play a role in seizure activity originating in the ventral hip
pocampus (Scharfman, 2007). 

In mammals, the DG is one of the only two brain regions (together 
with the olfactory bulb) in which neurogenesis continues throughout 
life, providing a particular type of neural plasticity (Altman and Das, 
1965; Lepousez et al., 2013). In the DG, adult neurogenesis continuously 
generates new granule cell neurons that integrate into the tri-synaptic 
circuitry. They participate in the known network functions, affect 
computational dynamics (Kempermann, 2003; Aimone et al., 2009) and 
contribute to information processing, conjunctive encoding, cognition, 
and emotional regulation (Miller and Sahay, 2019). 

Rhythmic dynamics of local field potentials (LFPs) emerge from 
postsynaptic currents and reflect activity in cell assemblies. These can be 
taken as a proxy to investigate mechanisms underlying content-specific 
representations during encoding and transmitting information through 
the hippocampal circuitry (Watrous et al., 2015). Consequently, for 
further progress in understanding the computational principles gov
erning this highly plastic system, it is necessary to examine the elec
trophysiological features of the network architecture and the dynamics 
of oscillatory activity in hippocampal-cortical subnetworks at much 
greater depth and resolution as previously possible (Sirota and Buzsáki, 
2005). To satisfy these demands, acute ‘brain slices on-chip’ represent a 
very powerful experimental tool for studying neurophysiological pro
cesses across scales from cellular to network levels (Huang et al., 2012). 
Many studies have already exploited slice-based biosensors to report 
experimental paradigms with spiking and LFP activity recordings from 
individual and network-wide electrogenic cell assemblies using 
patch-clamp recordings (Reyes, 2019) and microelectrode array (MEAs) 
devices (Soe et al., 2012). In our work, we take a significant step further 
to advance this area of research. 

The importance and unique multi-layer dimensionality of the hip
pocampal circuitry, additionally empowered by neurogenesis- 
dependent plasticity, has triggered the development of several brain- 
inspired computational models of intelligence and learning paradigms 
and has inspired novel approaches in neuromorphic computing (Schu
man et al., 2022; Wu et al., 2022; Aimone and Gage, 2011; Zhang et al., 
2020). They also indicate novel lifelong learning approaches (Kudithi
pudi et al., 2022) and might even promise advances in biomimetic 
prosthetic devices for restoring and enhancing memory functions 
impaired in diseases and injuries (Hampson et al., 2018). Despite these 
perspectives, actual further advancements in new learning algorithms 
for developing scalable on-chip biological-based computing networks 
have been challenged by the as-yet limited understanding of the hip
pocampal connectome (Frenkel, 2021) arising from the interaction of 
dynamical neuronal ensembles. As we show here, large-scale recording 
methods that enable the simultaneous recordings of extracellular 
rhythmic activity with a single device allow us to effectively address this 
challenge (Emery et al., 2022; Buzsáki et al., 2015; Hu et al., 2022; Jun 
et al., 2017). 

In this study, we developed a neuroelectronics-based platform spe
cifically focusing on how large-scale oscillatory dynamics of communi
cation and the flow of information in hippocampal-cortical subnetworks 
are shaped by prior experience. While the classical experimental para
digm of environmental enrichment (ENR) has led to a large body of 
evidence about how environmental stimuli affect the brain, including 
the promotion of adult neurogenesis in the dentate gyrus (Kempermann, 
2019; Mohammed et al., 2002; Nithianantharajah and Hannan, 2006), 
knowledge about ENR-induced large-scale effects on hippocampal 

circuits and their activity has been very scarce (Tuncdemir et al., 2019). 
These effects have been generally implicated in the notion that the 
brain’s fine structure depends on past activity in the network (Tuncde
mir et al., 2019). The historical unavailability of large-scale neural 
recording methodologies partly explains the as-yet inadequate evidence. 
Large-scale electrophysiology has been inaccessible, and while 
non-invasive MRI in humans suggests that enrichment has global 
network effects (Urban-Wojcik et al., 2021), it does not have a sufficient 
spatiotemporal resolution to investigate the microscale network orga
nization and information processing in rodents (Little et al., 2012; 
Manno et al., 2022). The computational dynamics and connectome of 
large-scale hippocampal networks and their modification by experience 
have thus largely remained elusive. Electrophysiological studies 
comparing hippocampal circuits of rodents housed in an enriched 
environment (ENR) with standard-housed animals (SD) revealed 
enrichment-dependent effects on long-term potentiation (LTP) in indi
vidual neurons (Ohline and Abraham, 2019), and gamma oscillation 
enhancement in CA1 (Shinohara et al., 2013), but with the low number 
of recorded cells could not generalize to the hippocampal network-wide 
connectome. Further studies also revealed the basic local connectivity of 
adult-born neurons (Christian et al., 2014; Restivo et al., 2015) and 
experience-dependent structural synaptic plasticity (Holtmaat and 
Svoboda, 2009). At the same time, rabies virus-based tracing was used to 
identify the remodeling of structural connectivity by ENR (Bergami 
et al., 2015). However, all these previous reports could not answer the 
fundamental question of if and how ENR could promote the refinement 
and rewiring of the connectome. As simultaneous recordings of 
circuit-wide activity are required to estimate the large-scale wiring di
agrams of neural circuitry and determine the input/output trans
formation directly under experience, we hypothesize that previous 
studies might have qualitatively and quantitatively underestimated the 
change that rich experience brings to the large-scale hippocampal cir
cuitry and its functions. 

Recent advancements in active-pixel biosensors (Berdondini et al., 
2005; Imfeld et al., 2008) through the complementary 
metal-oxide-semiconductor (CMOS) technology have been exploited in 
many applications in neurosciences and biomedical engineering (Emery 
et al., 2022; Hu et al., 2022; Amin et al., 2017). In vitro (Amin, 2016) and 
in vivo (Angotzi et al., 2019) measurements of bioelectrical signals that 
can be simultaneously obtained from thousands of electrodes at high 
spatiotemporal resolution have become possible by the distinctive fea
tures of these devices, including on-chip addressing, multiplexing, and 
high signal-to-noise ratios (Imfeld et al., 2008). Although high-density 
biosensors have laid the foundation for studying network-wide hippo
campal-cortical epileptiform activity (Ferrea et al., 2012), understand
ing the large-scale computational dynamics of hippocampal-cortical 
circuitry under physiological conditions has dramatically lagged behind. 

We here report a novel, non-invasive, multi-site, long-term, and 
label-free large-scale brain-chip-based biosensor implemented in a 
CMOS-high-density microelectrode array (Hu et al., 2022; Imfeld et al., 
2008) (HD-neurochip) with integrative advanced computational ana
lyses. The array size over 7 mm2 with 4096 microelectrodes enabled 
simultaneous measuring and mapped multidimensional neural infor
mation dynamics across the entire rodent hippocampal-cortical circuit 
obtained from ENR and SD mice. Our results provide an unprecedented 
mesoscopic large-scale quantification of the circuit-wide functional 
connectivity and reveal the distinct effects of prior experience on 
spatiotemporal network dynamics and encoding information. Knowl
edge of these large-scale dynamics in the hippocampus may enable more 
efficient neuroscience-oriented computational models, promote the 
development of next-generation artificial intelligence networks, and 
expand the reach of memory neuromorphic brain-inspired sensors and 
chips into new applications in health and disease. 
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2. Materials and methods 

Animals and housing conditions. All experiments were performed 
on 12-week-old C57BL/6J mice in accordance with the applicable Eu
ropean and national regulations (Tierschutzgesetz) and were approved 
by the local authority (Landesdirektion Sachsen; 25–5131/476/14). 
Female C57BL/6J mice were obtained from (Charles River Laboratories, 
Germany) at five weeks of age and randomly distributed at six weeks of 
age into two experimental groups - standard (SD) housed and enriched 
environment (ENR) housed as previously reported (Garthe et al., 2016). 
Briefly, mice were placed in standard mouse cages (at least 4 per cage) 
with nesting materials and food and water ad libitum. Another group of 
mice (at least 8 per cage) was placed in larger cages allowing more 
differentiated social interactions compared to SD. ENR mice lived in 
specially designed (0.8 × 0.8 m) larger cages equipped with rear
rangeable toys, maze-like plastic tubes, tunnels with various openings, 
houses, additional nesting material, and food and water ad libitum. Food 
type and nesting material were standardized between the two experi
mental groups. Nesting material was changed weekly, with ENR cages 
receiving rearrangement of all additional structures providing learning 
opportunities. This allows the ENR cage environment to provide stimuli 
as well as differentiated social interactions. Mice stayed in the assigned 
environment for six weeks before the experiments began and remained 
until their experimental date. Mice were randomly selected between 
both groups on each experimental day, with a batch of recording ex
periments lasting one week. 

Acute brain slice preparation. Mice were anesthetized with iso
flurane before decapitation. Brain slices were prepared according to our 
previous study (Hu et al., 2022). Briefly, the brain was carefully 
removed from the skull and placed in a chilled cutting sucrose solution 
before slicing. The brain was securely placed inside a custom-made 
agarose-based container, which was then fixed onto the cutting plate. 
Dorsal horizontal slices, 300 μm thick, were prepared from both brain 
hemispheres using Leica Vibratome VT1200S (Leica Microsystems, 
Germany). Slices were cut at 0–2 ◦C in aCSF solution saturated with 95% 
O2 and 5% CO2 (pH = 7.2–7.4) of a high sucrose solution containing in 
mM: 250 Sucrose, 10 Glucose, 1.25 NaH2PO4, 24 NaHCO3, 2.5 KCl, 0.5 
Ascorbic acid, 4 MgCl2, 1.2 MgSO4, 0.5 CaCl2. Next, 
hippocampal-cortical slices were incubated for 45 min at 34 ◦C and then 
recovered at room temperature for at least 1 h before recordings with a 
high-density neurochip. Perfusate used during recordings contained in 
mM: 127 NaCl, 2.5 KCl, 1.25 NaH2PO4, 24 NaHCO3, 25 Glucose, 1.25 
MgSO4, 2 CaCl2, and was aerated with 95% O2 and 5% CO2. 

Large-scale CMOS-based biosensor recordings. Extracellular re
cordings were performed using high-density (HD) CMOS chips incor
porated into an acquisition system (3Brain AG, Switzerland) customized 
to our recording setup. HD neurochips are composed of 4096 recording 
electrodes with a 42 μm pitch size to contain an active sensing area of 
~7 mm2, ideal for recording entire hippocampal-parahippocampal 
cortical regions. The on-chip amplification circuit allows for 0.1–5 
kHz band-pass filtering conferred by a global gain of 60 dB sufficient to 
record slow and fast oscillations (Hu et al., 2022). High-density plati
num-black (Pt–B) electrodes were coated with 0.1 mg/ml PDLO (Sig
ma-Aldrich, Germany) and incubated for 20 min at 37 ◦C before 
recordings. Slices were moved and coupled onto the neurochips using a 
custom-made platinum harp placed above the tissue. A steady perfusion 
system was built to deliver oxygenated recording perfusate to the 
slice-neurochip interface with a flow rate of 4.5 mL/min and was tem
perature controlled at 37 ◦C throughout the experiment and recordings. 
We acquired extracellular recordings at 14 kHz/electrode sampling 
frequency from spontaneous activity through pharmacologically-evoked 
responses using 100 μM 4-aminopyridine (4-AP) (Sigma-Aldrich, Ger
many). A modular Stereomicroscope (Leica Microsystems, Germany) 
was designed and incorporated into the setup to capture the acute slices 
light-imaging simultaneously with the whole-circuit extracellular re
cordings. These images were further used to obtain the spatial 

organization of tissue relative to the firing electrode layout during 
analysis. Events of LFPs and multi-unit activity (MUA) activity were 
detected with hard threshold and precise timing spike detection algo
rithms (PTSD) (Maccione et al., 2009) algorithms and were performed 
with commercially available software (3Brain AG, Switzerland). 
Detected events were further processed and filtered with a low-pass 
filter (1–100 Hz) for LFPs, a band-pass filter (300–3500 Hz) for MUAs, 
and a band-pass filter (140–220 Hz) for ripple-like events. Additionally, 
LFP waveforms were band-pass filtered using a 4th-order Butterworth 
filter at delta (1–4 Hz), theta (5–12), beta (13–35), and gamma (35–100) 
bands. 

Data analysis. All basic and advanced algorithms used in this work 
were developed and implemented with custom-written Python scripts. 
Any package add-ons are cited accordingly. 

Structural clusters. To characterize hippocampal-cortical sub
networks behavior locally and globally, the functional firing electrodes 
were structurally related to a specific slice region. Thus, light micro
scope hippocampal images were overlayed on the neurochip micro
electrodes layout (i.e., functional-structural overlay). Electrodes were 
then grouped based on annotated structural markers on the 
hippocampal-cortical slice. These clusters included six major regions of 
the hippocampal-parahippocampal cortical circuitry – DG, Hilus, CA1, 
CA3, EC, and PC. 

Mean activity basic analysis. We selected three parameters to 
describe the mean activity features of large-scale spatiotemporal LFP 
oscillations, including LFP rate, amplitude, and event delay. LFP rate 
was defined as the number of detected LFP events per minute, and the 
delay was defined as the time between detected events. The signal 
amplitude analysis was obtained through full-wave rectification and 
low-pass filtering with a cut-off frequency of 100 Hz. 

Ripple event detection and analysis. We employed a multi-site 
averaging method (Kay et al., 2016) to detect ripple events in the hip
pocampal network. The raw LFP recorded signals from multiple spatial 
locations were bandpass-filtered between 140 and 220 Hz. Subse
quently, the event envelope was ascertained through a Hilbert transform 
and smoothed using a Gaussian function with a 4 ms standard deviation 
(SD). Spatiotemporal events were identified when the smoothed enve
lope exceeded 3 SD above the mean for a minimum duration of 15 ms. 
The frequency of occurrence and amplitude of ripples were then calcu
lated based on the average of all detected events. 

Time-frequency and power spectrum density (PSD) analyses. To 
determine the power distribution of the LFPs and the dominant fre
quencies within an oscillatory event, we constructed a frequency-time 
dynamic in pseudo-color spectrograms for a selected time window 
using filtered LFPs (1–100 Hz). To estimate the PSD, we used Welch’s 
method, as previously described (Hu et al., 2022), by calculating the Fast 
Fourier Transform (FFT) of the detected LFPs. 

Lognormal distribution. The LFP firing patterns of the hippocampal 
neuronal ensembles showed a wide degree of participation in the circuit 
activity and followed a skewed lognormal distribution. Thus, we 
computed the probability density function for the lognormal distribu
tion as previously described (Hu et al., 2022). 

p(x) =
1

xσ
̅̅̅̅̅
2π

√ e
− (lnx− μ)2

/2σ2  

Where μ is the mean, and σ is the standard deviation. 
Gini coefficient. To quantify the inequality of participation of in

dividual ensembles in the interconnected layers of the hippocampal 
circuit, we employed the Gini index, which was computed as the ratio of 
the areas on the Lorenz curve diagram (Hu et al., 2022). 

Gini=
A

A + B  

Where A is the area above the Lorenz curve, and B is the area below the 
cumulative LFP firing rates. 
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Spatiotemporal LFP trajectories. To quantify the propagation 
magnitude of the spatiotemporal LFP events in all interconnected hip
pocampal layers, we employed the center-of-activity trajectories (CATs) 
analysis (Hu et al., 2022). Voltage values embedded in the LFP frame 
activities within a 5 ms moving time bin were used to collect the CAT 
magnitudes in each firing event. The value of the CAT at time t is a 
two-dimensional vector. 

CA̅→
(t) =

[
CAx,CAxy

]
=

∑n

E=1
Vtm(E).[Col(E) − Rcol,Row(E) − Rraw]

∑n

E=1
Vtm(E)

Where Vtm(E) denotes the LFP firing rate corresponding to the active 
electrodes E within a time window (tm). Col(E) and Row(E) are the 
column and row numbers of the associated E. Rcol and Rrow are the co
ordinates of the physical center of 64 x 64 electrodes. n is the total 
number of active electrodes. Then, the CA trajectory from t0 to t1 with a 
time step Δt can be computed. 

CAT̅̅ →
(t0, t1)= CA̅→

(t0), CA̅→
(t0 +Δt), CA̅→

(t0 + 2Δt),…., CA̅→
(t1)

Based on the spatiotemporal trajectories for all the firing events, we 
categorized the propagation pathways of firing events in the inter
connected hippocampal-cortical network into three major groups; i) 
from the hippocampus to entorhinal/perirhinal cortical regions (Hip
pocampus → EC-PC); ii) from entorhinal-cortex to hippocampus (EC → 
Hippocampus); iii) intra-hippocampal circuits (only hippocampus). 

CATs-based velocity. To track and map the putative rate of 
spatiotemporal displacement of LFP events over the entire hippocampal- 
cortical interconnected layers with minimum reliance on slice structure 
and labeling methods, we calculated the velocity of the reconstructed 
CATs. We computed the distance from the beginning to the end of 
instantaneous vector quantity displacements of averaged CATs across 
layers using the known physical dimensions of electrode coordinates and 
size. Subsequently, we divided these displacements by the total time of 
associated firing events throughout the recording duration (Hu et al., 
2022). 

Velocity
̅̅̅̅̅→

=
Δd
̅→

Δt  

Where Δd is the change in displacement, and Δt is the change in time. 
LFP-spike information analysis. To quantify the information car

ried by phases of individual LFP fluctuations at the time of multi-unit 
spiking activity, we employed a four-step procedure; i) we extracted 
individual frequency information from a multi-layered hippocampal- 
cortical network at (4–12 Hz) band, resulting from our power frequency 
analysis; ii) we computed the instantaneous phase values (i.e., with π/ 2 
precision, where the phase values π

2 and 3π
2 correspond to the peak and 

trough of the oscillation, respectively) of the narrow-band waveform 
fluctuations in multiple events using the Hilbert transform. This allowed 
us to visualize the LFP phases in color-coded equispaced quadrants; iii) 
we extracted multi-unit spiking activity (MUA) from the interconnected 
hippocampal layers using the precise timing spike detection algorithm 
(Maccione et al., 2009) with a threshold set to 8 standard deviations of 
the band-pass filtered signal (Butterworth filter, 4th order) at 
(300–3500 Hz). We then labeled the spikes with the color of the LFP 
phase quadrants at the time of their occurrence and presented them in 
rastergrams and rate code plots; iv) next, we quantified the information 
carried by the phase of the LFPs and characterized in units of bits using 
the information-theoretic analysis (Mazzoni et al., 2013). 

Functional connectivity and causality. Cross-covariance was 
calculated between pairs of electrodes in the 64 x 64 array using Pear
son’s correlation coefficient (PCC) to infer large-scale statistically 
dependent connectivity on a multi-layered hippocampal network. This 
was followed by performing Multivariate Granger causality to quantify 

the influence of one time series on another and Directed Transfer 
Function (DTF) to measure directional information flow as we previ
ously described (Hu et al., 2022). All the electrodes were sorted by 
hippocampal-cortical subnetwork clusters, and the statistic calculations 
for PCC and interconnection links count were based on paired clusters. 

Network connectivity metrics. Graph Theory was used to charac
terize overall network topology and interconnectedness from detected 
LFP events. We computed the graph metrics in custom-written Python 
code and adapted functions from NetworkX-python package (Hagberg 
et al., 2008), available on GitHub (https://github.com/networkx). 
Briefly, the functional network connectivity metrics are described by 
considering node n as the central component of the graph that may or 
may not be connected to one another. In our case, a node corresponds to 
a specific electrode in the sensing array. Also, the edges e are the func
tional links or connections between each node n. 

Degree. To characterize the different representations of network 
connectivity, we characterized the degree k of a node n to describe the 
number of edges connected to a node. We also computed the in-degree 
or out-degree based on the direction of the vectors (i.e., the flow of 
information). 

ki =
∑

j∈N
aij, kin

i =
∑

j∈N
aji, kout

i =
∑

j∈N
aij  

Where ki denotes the degree of a node i. aij denotes the connection be
tween nodes i and j. N is the set of all computed nodes in the network, kin

i 
is in-degree and kout

i out-degree of node i, respectively. 
Degree centrality. To determine nodes with high topological cen

trality and influence on network function, the centrality (DCi) was 
computed as the normalized fraction of nodes that node i connected to 
(Rubinov and Sporns, 2010). 

DCi =

∑n

i∕=j
aij

n(n − 1)

Clustering coefficient. To measure how nodes in a given network 
tend to cluster together to assess the functional segregation, the clus
tering coefficient (CCi) was computed (Rubinov and Sporns, 2010). 

CCi =
2ei

ni(ni − 1)

Where ni denotes the number neighbors to node i, and ei denotes the 
number of links connecting the ni to the node i. 

Transitivity. To reveal the existence of tightly connected commu
nities, transitivity was characterized as the fraction of all possible con
nected triangles (Ntriads) to describe two edges with a shared vertex in a 
network (Rubinov and Sporns, 2010). 

T =
3 Nt

Ntriads  

Where Nt is the actual number of triangles in a network and Ntriads is the 
number of triads or possible triangles that consist of two edges with a 
shared vertex. 

Average shortest path length. To measure the functional integration 
of the information flow between layers in the network, the average 
shortest path length (Li) was computed (Rubinov and Sporns, 2010). 

Li =
∑

i,j∈N,i∕=j

d
(
vi, vj

)

n(n − 1)

Where d(vi, vj) denotes the shortest path from i to j, and is normalized 
over all possible paired numbers of nodes n in the network. 

Hub nodes and rich club nodes. To determine centralized, essential 
nodes in a network and reveal network topology, hub nodes and rich 
club nodes were analyzed. Hub nodes were detected based on three 
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nodal metrics - node strength, clustering coefficient, and network effi
ciency. The metric value for each node was calculated and compared to 
determine whether the node value was in the top 20% of all nodes 
(Schroeter et al., 2015). To restrict the definition of the hub node, we set 
limits with a hub score. Our hub score was valued between 0 and 3, 
where nodes either satisfied the top 20% in none, 1, 2, or all 3 nodal 
metrics. Within the hub node group is a subgroup of nodes with dense 
connections that conferred the rich-club nodes and are described as hub 
nodes with a higher degree than the average and provided by the rich 
club coefficient φ(k) (Kim and Min, 2020). 

φ(k)=
2E>k

n>k(n>k − 1)

Where k denotes the degree, n>k represents the number of nodes whose 
degree is larger than a given value k, and E>k denotes the number of 
connections in a subnetwork comprising n>k. 

Network topology characterization. To determine the potential 
impact of hub nodes on the network function and the organizational 
processes shaping network topology, we characterized the degree dis
tributions P(k) of detected nodes in SD and ENR datasets, which resulted 
in decayed distribution with a power-low tail (Barabási and Albert, 
1999). 

P(degree= k) ∼ k− α 

To estimate the power-low degree distribution P(k) to describe the 
scale-free topology with small-world attributes, we used the lognormal 
model fit. 

P(k)=
1

σ
̅̅̅̅̅
2π

√ e−
(k− μ)2

2σ2  

Where μ and σ are the mean and standard deviation of the distribution, 
respectively. 

To visualize the best-fit network characterization, a complementary 
cumulative distribution function (cCDF) was used instead of the prob
ability density of the node degree and plotted on logarithmic axes for a 
more robust visualization of the high-k regime. Goodness-of-fit tests 
were performed between actual data and fitted models and were esti
mated by the coefficient of determination R2. 

Robustness. To estimate the robustness and flexibility of networks 
for error tolerance and attack vulnerability, we employed two strategies; 
i) for error tolerance, we measured the node degree and remaining links 
after a fraction of nodes were randomly removed; ii) for attack vulner
ability, we measured the remaining links in the network after stepwise 
removal of high degree nodes. 

Graph map visualization. To visualize the large-scale network 
connectivity maps, we constructed the data architecture containing 
nodes and edges. This setup allowed marking the node IDs, coordinates, 
labels, edge sources, and edge targets. These maps were then converted 
into (.gexf) file format and were directly read and visualized in the 
Gephi program 9.2 version (https://gephi.org). To compare the ENR vs. 
SD, the top 2% of the total functional links were plotted with similar 
edge weights and degree range queries. 

Dimensionality. To characterize the link between network-wide 
collective activity and connectivity, we computed network dimension
ality (Litwin-Kumar et al., 2017). The functional connections or links 
between paired electrodes across all LFP events in a recording time 
window served as an input. The dimensionality is defined as the 
weighted measure of the number of axes of all firing electrodes in the 
activity population space. 

Dim(X)=
( ∑

iλi
)2

∑
iλi

2  

Where λi is the ith eigenvalue of covariance matrix X. The resulting value 
was normalized over the maximum dimensionality value to give a data 

range from 0 to 1. 
Statistical analysis. All statistical analyses were performed with 

Originlab 2020. All data in this work were expressed as the mean ±
standard error of the mean (SEM). All box charts are determined by the 
25th- 75th percentiles and the whiskers by the 5th- 95th percentiles and 
lengths within the Interquartile range (1.5 IQR). Also, the lines depict 
the median and the squares for the mean values. Differences between 
groups were examined for statistical significance, where appropriate, 
using the Kolmogorov-Smirnov test, Mann-Whitney test, one-way 
analysis of variance (ANOVA), or two-way ANOVA followed by 
Tukey’s posthoc testing. P < 0.05 was considered significant. Detailed 
statistical results are provided in .Supplementary Tables 1 and 2 

3. Results and discussion 

3.1. High spatiotemporal resolution biosensing platform 

To begin, we implemented a large-scale multi-site CMOS-based 
biosensing platform with an integrative computational framework, 
which allowed us to probe the dynamical impact of experience-induced 
functional complexity in the hippocampal-parahippocampal cortical (i. 
e., hippocampal-cortical) circuitry. Acute brain slices from mice reared 
in enriched environmental conditions (ENR) compared to standard 
housing (SD) were coupled to a high-density CMOS-based chip (i.e., 
4096 electrodes with a 42 μm pitch size) (Hu et al., 2022; Imfeld et al., 
2008) to allow recording a rich repertoire of spontaneous activity 
generated through pharmacologically-evoked sub-millisecond extracel
lular firing information sampled simultaneously from the entire 
hippocampal-cortical circuitry (Fig. 1a–c). We outlined the 
hippocampal-cortical circuit as six interconnected regions (DG, Hilus, 
CA3, CA1, entorhinal cortex ‘EC’, and perirhinal cortex ‘PC’) by over
laying the bioelectrical functional readouts on the corresponding 
anatomical subregions. This information was acquired concurrently 
with optical imaging. Our Brain-Chip biosensor readouts provided 
real-time firing activity sampled spatially from single pixel-like sensors 
(i.e., 64 x 64 pixel-array) in the format of sequential bioelectrical frames. 
On large-scale subnetworks, each sensing pixel’s encoded extracellular 
voltage signals were visualized with a false-color mapping, illustrating 
real-time bioimaging video frames of the entire hippocampal-cortical 
functional circuit (Fig. 1c). To improve the communication between 
the whole hippocampal-cortical slice and the high-density biosensing 
chip, leading to high-quality signal recordings with an enhanced 
signal-to-noise ratio, we biofunctionalized the porous platinum-black 
(Pt–B) coated electrodes using the adhesion-promoting molecule, 
poly-DL-ornithine (PDLO). The combination of Pt–B’s electrochemical 
properties (Abbott et al., 2020) and the PDLO molecule (Amin et al., 
2018) increased surface area for electrical signal detection and better 
electrical conductivity, ultimately improving tissue-electrode coupling. 
This optimized coupling significantly contributed to our platform’s 
overall performance, allowing for precise and reliable analysis of the 
network-wide mesoscale ex vivo connectome and spatiotemporal firing 
patterns influenced by ENR, as demonstrated in the subsequent sections. 
We also implemented a novel computational framework for multidi
mensional datasets to extract unique dynamical features (i.e., firing 
initiation and propagation, frequency spectrum properties, spike-LFP 
dynamics, functional connectivity, and network-wide topology) in 
order to uncover individual neural computations implicated in 
large-scale activity dynamics under experience-dependent enhancement 
(Fig. 1d–f). With this, our next-generation experimental-computational 
platform was designed to target the fundamental question of how 
exposure to ENR remodels the architecture, topology, and coding dy
namics of concrete functional neuronal networks, as these would explain 
the well-described enhancement of cognitive capabilities in ENR (Lis
man et al., 2017). 
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3.2. Spatiotemporal network-wide firing activity and dynamics 

To address the significance of using a large-scale acute brain slice- 
based biosensor to unveil the impact of ENR on recurring transient 
neural activity, we recorded spontaneous network-wide activity through 
pharmacologically-evoked responses (i.e., applying 4-aminopyridine ‘4- 
AP’). We computed and quantified the first-order statistical parameters 
of the spatiotemporal population firing patterns that demonstrated 
substantial responses in the ENR subnetworks, indicated by higher LFP 
rates, signal amplitude, and shorter delay features between consecutive 
LFP events (Fig. 2a–d and Supplementary movies 1-2). The oscillatory 
activity pattern of neural ensembles between hippocampal and cortical 
networks is essential for learning and memory, connecting synaptic 
plasticity and network information processing (Buzsáki, 1989; Lisman 
et al., 2005). We detected rhythmic firing initiating in CA3 and propa
gating to other hippocampal-cortical subnetworks that emerged from 
slow oscillation (below 100 Hz) superimposed by faster fluctuations (up 
to 200 Hz). Compared to SD, ENR networks yielded patterns of higher 
synchronicity (Fig. 2e and i) associated with increased superimposed 
ripple-like patterns in the hippocampal network, indicated by signifi
cantly higher frequency, inter-ripple-intervals (IRIs), and amplitude in 
ENR than SD (Fig. 2f–h and j-l, and Supplementary Fig. 1). These fea
tures endowed the active neuronal ensembles in ENR networks with 
more rhythm generators (Buzsaki, 2002) and more functionally con
nected anatomical subnetworks (McCormick and Contreras, 2001). 
These results may suggest a mechanism by which ENR improves the 
encoding and flow of spatiotemporal information (Shinohara et al., 
2013; Colgin et al., 2009). 

It has been shown in different brain regions that collective functional 
features of neuronal networks emerge from multiplicative and syner
gistic interactive parameters (i.e., firing patterns of synchronized 
neuronal populations), giving rise to skewed lognormal distributions, 
which permeate every level of brain organization. These networks with 
pre-configured skewed distributions conferred broad dynamical prop
erties, facilitating stability, resilience, and tolerance to failure (Hu et al., 
2022; Buzsáki and Mizuseki, 2014). 

Therefore, we assessed the firing rate distributions in ENR and SD 
recordings. We found that in ENR, the neuronal participation in syn
chronous network events showed strongly skewed lognormal distribu
tions. A small fraction of firing electrodes generated a higher firing 

frequency than SD (Fig. 2m and n, and Supplementary Fig. 2). In ENR 
networks, the asymmetric variation of firing distributions in different 
hippocampal-cortical subregions showed a significant extension of the 
right tail toward higher frequencies (DG, p < 10− 100, Hilus, p < 10− 137, 
CA1, p < 10− 21, CA3, p < 10− 14, EC, p < 10− 93, PC, p < 10− 27 Kol
mogorov-Smirnov test). To further quantify the inequality in the contri
bution of population synchrony and information content of firing 
electrodes across the entire network, we computed the Gini index from 
the Lorenz curve (Hurley and Rickard, 2009) (Fig. 2m and n insets) – the 
higher the index, the more unequal the participation of the firing elec
trodes. Intriguingly, we observed higher Gini coefficients in SD firing 
populations (higher inequality with most electrodes firing at a low rate) 
than in the ENR network, with many more electrodes contributing to 
recorded events (Fig. 3o). These results suggest that in ENR, the inter
connected hippocampal subnetworks of highly firing neuronal ensem
bles support collective stability and flexibility for continuous network 
remodeling without affecting global stability (Panas et al., 2015). 

Together, our results identified large-scale functional implications of 
enhanced oscillatory patterns in the ENR hippocampal-cortical sub
networks. The increased excitability and synchronous dynamics 
observed in ENR may suggest an enhanced involvement in rhythm 
generation (Buzsaki, 2002) and improved network stability (Butler and 
Paulsen, 2015; Jercog et al., 2017). However, further investigation is 
required to establish these relationships. 

3.3. Mapping information flow and firing patterns complexity 

The hippocampal circuit propagates information primarily through 
chemical synaptic transmission mediated in two pathways – serially 
along the tri-synaptic transmission from EC to DG, then to CA3 and CA1 
(Amaral and Witter, 1989), and via recurrent di-synaptic networks be
tween CA3 and DG (Scharfman, 2007). Additionally, high-frequency 
oscillations could be propagated via gap junctions (Draguhn et al., 
1998), while the propagation of slow oscillatory activity is modulated by 
non-synaptic ephaptic coupling (Fröhlich and McCormick, 2010). We 
used the simultaneous large-scale recordings from all subnetworks to 
quantify the long-range propagation incidence of 4-AP-induced firing 
oscillations. In region CA3 of ENR hippocampi, we found more localized 
firing activity ignition sites than in SD (Fig. 3a and b). The restricted 
activity distribution in CA3 propagated broadly towards adjacent and 

Fig. 1. Large-scale CMOS-based Biosensor Framework. a) Schematic representation of mouse living conditions in SD and ENR experimental groups and the 
timeline. ENR cage introduces novel objects, exploration, and social interactions compared to SD. b) Graphical illustration of mouse brain depicting the hippocampal 
region isolated and sectioned horizontally to be interfaced with the CMOS chip. c) Isometric imaging setup featuring the hippocampal-cortical slice coupled to a- 
CMOS-chip with 64 x 64 electrode array identified by Pixel-multi-frame real-time representation of the encoded network-wide activity enabling pseudo-color 
reconstruction of the entire circuit firing information from sequential frames. d-f) Integrative computational pipeline customized to preprocess multidimensional 
readouts obtained from multi-layered Hippocampal-cortical subnetworks to provide first-order statistical analysis, dynamical assessment, functional network con
nectivity, and topological complexity characterization. 
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distal areas of CA1 and via the recurrent network pathway back to the 
hilus and DG. Also, the activity incidence probability was significantly 
higher in all subregions after ENR (Fig. 3c). We calculated the time lag 
between consecutive events in each subregion and found that the 
probability of firing and coordination level (synchrony) were higher in 
ENR (Fig. 3d and insets). 

Next, we classified the center of activity trajectories (CATs) (Hu 
et al., 2022) with an unsupervised machine learning algorithm. We 
identified three propagation pathways: i) hippocampus to EC-PC, ii) EC 
to hippocampus, corresponding to the classical unidirectional 
tri-synaptic pathway, and iii) intra-hippocampal circuits mediated by 
the recurrent network (Fig. 3e–l). There was a more prominent propa
gation probability from the hippocampus to the cortex in ENR (63.2% ±
6.7) than in SD (22.7% ± 3.3). Although in absolute terms, the other 

propagation categories were less represented, in relative terms, ENR still 
showed a 9-fold increase in EC to hippocampus propagation and a 
3.5-fold increase in intra-hippocampal circuits (Fig. 3m). We then 
employed the reconstructed CATs for all events to calculate the rate of 
spatiotemporal displacement of network-wide firing events within these 
propagation pathways. ENR showed significantly greater mean CAT 
velocities (138 ± 3.3 mm/s vs. 78.1 ± 2.3 mm/s, hippocampus → EC, 
and 147 ± 10 mm/s vs. 105 ± 14.3 mm/s, EC → hippocampus; Fig. 3n). 
We also found significantly shorter CAT duration in all categories after 
ENR (Fig. 3o). 

In conclusion, these findings demonstrated the impact of rich expe
rience on modulating the characteristics of large-scale neural activity 
propagation resulting in faster information processing in the ENR than 
in the SD networks. This enhancement could be mediated by the 

Fig. 2. Large-scale Spatiotemporal Firing Features and Network Synchrony. a) Topographical pseudo-color mapping of ENR large-scale LFP firing pattern 
overlaid on the hippo-cortical structure. b-d) Statistical quantification of the spatiotemporal firing patterns recorded simultaneously from SD vs. ENR networks 
illustrates significantly higher LFP rates, amplitude, and faster LFP events (i.e., shorter delay) in ENR compared to SD networks (***p < 0.001 ANOVA) (n = 48 slices 
from 6 mice of SD and ENR each). e) Representative traces of firing waveforms aligned with the rastergram, and event counts of CA3, DG, and EC selected layers of 
the SD network. The rastergram and event counts display the interconnected subnetwork with synchronous events (LFPs-black and spikes-red dots). f-h) Pseudo-color 
spectrograms showing the frequency-time dynamics in CA3, DG, and EC firing clusters, respectively (red highlighted in e) overlaid with band-pass filtered waveforms 
to identify the firing spectrum from theta to ripples-like in SD. i) Same as in (e), but for ENR with higher synchronous and frequent events. j-l) similar to (f–h), but for 
ENR firing clusters (red highlighted in i) that show a greater magnitude of slow oscillations and ripple-like activity than SD. m-n) Firing rate distributions in different 
hippocampal subregions are skewed in SD and ENR networks and conform to a lognormal distribution. The distribution in ENR depicts the activation of substantial 
cell fractions with higher firing rates than SD and contributes significantly to the enhanced neuronal interactions. Dashed lines indicate medians (DG, p < 10− 100, 
Hilus, p < 10− 137, CA3, p < 10− 14, CA1, p < 10− 21 Kolmogorov-Smirnov test). Lorenz statistics (insets) illustrate the neuronal participation in different hippocampal 
subnetworks (i.e., DG and CA3). o) Gini coefficients in different hippo-cortical regions in SD and ENR networks (**p < 0.01, *p < 0.05 ANOVA). 
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Fig. 3. Dynamical Propagation and Firing Pattern Transmission. a-b) Incidence analysis of large-scale oscillatory activity patterns. A color scale indicating event 
probability is computed in 10 min recordings in SD and ENR networks. Both maps show defined initiation points in the CA3 and dynamic event propagation in the 
hippo-cortical circuitry. c) Quantification of event incidence shows significantly higher occurrence in ENR hippo-cortical subregions than in SD. (*p < 0.05, ***p < 
0.001, ANOVA, n = 48 slices from 6 mice of SD and ENR each). d) Quantifying event synchrony by event delay indicating a shorter mean duration of activity events 
in all hippocampal-cortical subnetworks in ENR compared to SD (***p < 0.001, ANOVA, n = 48 slices from 6 mice of SD and ENR each). The time interval between 
successive events (insets) in SD and ENR demonstrates an example of multiple events (E) occurring with shorter delays in ENR compared to SD. e-f) Exemplary 2D 
CATs superimposed onto the hippocampal-cortical structural network with a color-coded time scale revealing the propagation patterns in the SD network from 
hippocampus→EC-PC. (e) indicating all detected activity events, and (f) showing the average event marked with starting and end spatiotemporal points. g-h) Same as 
in e & f but for ENR network. i-l) Same as in (f & h) but for propagation patterns from EC→hippocampus and only hippocampus in SD and ENR networks. m) 
Quantification of the probability of propagation events based on the classified propagation categories (i.e., hippocampus→EC-PC, EC→hippocampus, and only 
hippocampus). (*p < 0.05, ***p < 0.001, ANOVA, n = 48 slices from 6 mice of SD and ENR each). n) Reconstructed CATs-based velocities from inter-layer firing 
events in the classified propagation categories (i.e., hippocampus→EC-PC, EC→hippocampus, and only hippocampus). (*p < 0.05, ***p < 0.001, ANOVA, n = 48 
slices from 6 mice of SD and ENR each). o) Quantification of detected CATs duration for the three classified propagation categories shown in m & n. (*p < 0.05, ***p 
< 0.001, ****p < 0.0001, ANOVA, n = 48 slices from 6 mice of SD and ENR each). 
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feedback loop from CA3 to DG, whose sharpened network synchrony is 
relevant for storing and retrieving information sequences (Lisman, 
1999) and facilitating pattern separation and completion (Myers and 
Scharfman, 2011). The propagation features in ENR networks might be 
associated with increasing the tightly layered organization of the hip
pocampus, thereby enabling stronger endogenous local fields to induce a 
significant effect on neural synchronization (Francis et al., 2003). 

3.4. Neural coding in the spike-phase dynamics 

The hippocampus uses temporal coding by theta rhythm phase pre
cession to coordinate behavior and cognition (Harris et al., 2002; Huxter 
et al., 2008). To study whether ENR would enhance the encoding 
conveyed by the LFP phase at the time of spiking activity, we quantified 
the relationship between the LFP and multi-unit spiking activity using 
the “phase-of-firing” coding paradigm (Montemurro et al., 2008). 

A first analysis of the LFP spectrum revealed the highest power in the 
oscillatory theta band (4–12 Hz; Supplementary Fig. 3a), so we 
considered theta oscillation a reliable frequency range to encode infor
mation at all firing electrodes in the network. We then quantified the 
LFP phases by assigning them to four color-labeled quadrants of equal 
duration (Fig. 4a and b). We employed the phase-of-firing coding to 
identify those LFP phase quadrants during which spikes were discharged 
over long periods (Fig. 4e and f). This allowed us to identify supposedly 
specific information contents encoded in the spatiotemporal patterned 
activity as opposed to the less specific spike count code shown in Fig. 4c 
and d. Indeed, our results suggested richer information content in the 
spike rate associated with the LFP phase than observed in the spike 
counts alone (Fig. 4g and h). The information encoded in the LFP phases 
of all four quadrants was significantly greater in the ENR network than 
in SD (Fig. 4i) and strongly depended on the LFP frequency range 
(theta). 

We further substantiated these findings by quantifying that spike 
counts alone conveyed 9.45 ± 1.18 bits/s of information in ENR net
works compared to 3.43 ± 0.39 bits/s in SD (Fig. 4j and k). The 4–12 Hz 
LFP phase carried 5.91 ± 0.40 bits/s in SD, but 18.85 ± 1.16 bits/sec in 
the ENR network, indicating an over-proportional gain in phase- 
dependent encoding in ENR compared to SD (Fig. 4j and k). The phase 
of oscillatory activity conveyed 99% in ENR vs. 72% in SD of additional 
information not obtained from spike counts. Although spike counts 
encoded more information in ENR than in SD, the theta LFP phases 
carried much higher information than obtained from spike count code 
alone. With increasing frequencies, the extra information encoded in the 
LFP phases declined to reach the spike count information at frequencies 
greater than 25 Hz in SD and 35 Hz in ENR. Thus, information carried by 
LFP phases of ENR and SD networks at higher frequency bands (13–30 
Hz and 30–100 Hz) was lower than 4–12 Hz but still carried more in
formation than spike counts (Supplementary Fig. 3b and c). 

In summary, these findings demonstrated the capability of our 
biosensor in capturing the impact of enriched experience on enhancing 
the density of encoded information by adding higher-dimensional 
complementary layers of information. Such phase-coding has been 
established as a mechanism for spatial representations (Harris et al., 
2002), where theta oscillations provide a pacemaker for the spike trains 
that organize spatial information (Huxter et al., 2008). Thus, our plat
form illustrated the impact of the prior experience in improving the 
characteristics of rhythmic dynamics, suggesting a mechanistic role for 
higher information processing during the offline state (i.e., ex vivo brain 
slice conditions) of animal behavior (Sanchez-Vives and McCormick, 
2000). 

3.5. Experience-dependent enhancement on network-wide functional 
connectivity and topologically complex organization 

Next, taking advantage of the rich information ingrained in our 
unique multi-site recordings from SD and ENR conditions, we aimed at 

quantifying the reciprocal relationships between hippocampal-cortical 
subnetworks from simultaneously firing patterns of concomitantly 
active neuronal ensembles by computing the cross-covariance of pair
wise firing electrodes using Pearson’s correlation coefficient (PCC) (Hu 
et al., 2022). Analysis of the slow oscillatory component of local field 
potentials (LFPs) up to 100 Hz yielded association matrices of firing 
coefficients with dimensions equal to the number of firing electrodes in 
the 64 x 64 chip array (Fig. 5a and b). We found significant enhancement 
in the local and global strength of spatial interactions in ENR networks 
compared to SD, as shown in the cross-correlogram and the quantified 
differences between connectivity matrices (Fig. 5c–e). SD and ENR 
networks displayed a modular functional organization featuring groups 
of nodes in dense clusters (white rectangles in Fig. 5c and d). Compared 
to SD, modules of the ENR network were more hierarchical, as indicated 
by large modules consisting of smaller modules (white dotted rectangles 
in Fig. 5c and d). 

To estimate the mesoscale connectivity and measure the information 
flow and its direction within the correlated links, we employed multi
variate Granger causality and the directed transfer function (DTF) (Hu 
et al., 2022). The ENR network showed both higher unidirectional (i.e., 
DG→CA3, CA1, EC, PC) and bidirectional (i.e., CA3↔CA3, CA1↔CA1, 
DG↔DG, Hilus↔Hilus, EC↔EC, and PC↔PC) interaction links compared 
to the SD network (Fig. 5f–h) and (Supplementary movies 3-4). 

To assess the impact of ENR on the spatial and topological 
complexity of the network, we employed graph-theoretic analysis to 
build the wiring diagrams of local and global neural activity patterns to 
describe and quantify the network’s organization and communication 
properties (Fig. 6a). The network is mathematically described as neural 
nodes linked by functional connections as edges. We computed the 
graph metrics from connectivity patterns of co-firing neuronal ensem
bles (corresponding to the firing electrodes of the array) encoded in the 
LFPs under SD and ENR conditions (Fig. 6b and c). 

The degree analysis of the nodes and their incoming and outgoing 
connections revealed massively enhanced network complexity in ENR 
compared to SD (Fig. 6d and Supplementary Fig. 4). We also found a 
significant increase in the total number of links and degree centrality 
(Fig. 6e and f). According to their clustering coefficient (CC) and tran
sitivity, ENR networks were consistently more segregated than SD net
works (Rubinov and Sporns, 2010) (Fig. 6g and h). We also found 
significantly shorter paths in ENR, indicating a greater network inte
gration (Rubinov and Sporns, 2010) (Fig. 6i). 

ENR networks had more densely-interconnected nodes (hubs) and 
more ‘rich clubs’ than SD, suggesting a greater higher-order functional 
specialization, more network resilience, and an expansion from local to 
more global effects (McAuley et al., 2007) in ENR (Fig. 6j and k). 

Dimensionality of a network describes the size of its neuronal pop
ulation in relation to the dynamic range of firing activity of its individual 
neurons. High-dimensional coding endows neural circuits with a larger 
coding space to facilitate the separation of overlapping activity repre
sentations (Litwin-Kumar et al., 2017; Cunningham and Yu, 2014). We 
found that as a function of the average connectivity, the ENR network 
exhibited higher dimensionality than the SD network and that in ENR 
with increasing connectivity (i.e., pairwise correlation of activity pat
terns), dimensionality of the coding space decreased more protractedly 
than in SD; thus providing the network with a greater capacity for linear 
separability of overlapping patterns (Cayco-Gajic and Silver, 2019) 
(Fig. 6l and Supplementary Fig. 5). 

Small-word topology is a key feature of many biological networks 
(Watts and Strogatz, 1998) that is characterized by a scale-free archi
tecture with highly connected hub nodes and a degree distribution that 
decays with a power-law tail (Barabási and Albert, 1999). Scale-free 
networks provide error tolerance and resilience to random failures 
(Albert et al., 2000). We found that the functional node degree distri
butions of SD and ENR networks indeed followed a power-law function 
(Fig. 6m), a finding that we have previously also postulated for a tran
scriptomic network of adult hippocampal neurogenesis (Overall and 
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Fig. 4. Information Encoded in the Phase-of-LFP Oscillation. a-b) For SD and ENR networks, waveform traces of LFP activity from large-scale recordings of 
hippocampal-cortical layers (CA3, DG, and EC) showing all extracted and averaged waveforms in the theta oscillatory range (4–12 Hz) that are color-coded with four 
quadrants indicating the associated phase of the LFP firing. c-d) Raster plots of SD and ENR networks showing LFP and multi-unit spiking activity in all inter
connected hippocampal-cortical subnetworks. Black dots for LFPs and red dots indicate spikes. e-f) The same time course in c and d but only for spikes color-coded by 
the phase of LFPs at which the spikes were emitted. g-h) Multi-unit spike rate in SD and ENR networks (black lines) and the amount of spikes is computed according 
to the LFP phase (color-coded), which indicates the same spike rate (SD vs. ENR) encodes additional information associated with the LFP phase. i) For a given time 
course of spike trains, the multi-unit spiking activity can be partitioned based on the slow oscillatory LFP signal into four color-coded phase quadrants. Thus, the 
spiking probability in the LFP phases is computed for SD and ENR networks. Compared to SD, the ENR network shows significantly higher information encoded in all 
quadrants of the firing phases. (*p < 0.05, **p < 0.01, ANOVA). j-k) Rate coding vs. phase coding to compare the conveyed information of hippocampal-cortical 
firing information in SD (j) and ENR (k). Plus sign shows the spike rate information in SD and ENR networks in j-k. (spike information, p < 10− 9, phase information, 
p < 10− 8, Mann-Whitney test, ANOVA). 
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Kempermann, 2018). The ENR network, however, displayed a heavier 
tail with a more significant number of densely linked hubs compared to 
the SD network, which becomes visible in the log-log plots in the insets 
of Fig. 6m. 

To assess the tolerance of the networks against disruptions and 
damage to communication between interconnected layers, we compared 
the connectivity robustness by quantifying the changes in the remaining 
links and node degree when nodes were randomly removed from the 
network graphs constructed based on the firing patterns in both SD and 
ENR (Fig. 6n). In ENR, the communication strength was only slightly 
affected by increasing errors (i.e., randomly removing nodes up to the 
maximum size of the SD network), as indicated by the relatively stable 
node degree and remaining links compared to SD (Fig. 6n). Thus, ENR 
networks exhibited greater robustness against random failures than SD 
networks. 

The failure intolerance of scale-free networks comes at the cost of 
increased attack vulnerability when the highly connected hubs are hit 
(Albert et al., 2000). ENR networks maintained network redundancy for 
a much greater number of removed nodes before reaching a total loss of 
communication between links (i.e., the mean lifetime decay of the de
gree distribution was shorter in the SD networks (25.5 ± 0.124) 
compared to (96.09 ± 0.33) in ENR (Supplementary Fig. 6). 

In sum, prior experience yielded large-scale changes in the local and 
extended hippocampal-cortical circuitry, expressed in its enhanced 
functional connectome and increased dimensionality for encoding a 

larger activity space. This could facilitate efficient pattern separation to 
integrate different neural representations with minimum overlap (Lit
win-Kumar et al., 2017; Cunningham and Yu, 2014; Alvarez et al., 2016; 
O’Neill et al., 2008). 

4. Conclusions and outlook 

We have here provided an innovative tool to address the unmet need 
for large-scale biosensing techniques to map experience-dependent 
plasticity. We applied this approach to hippocampal-cortical spatio
temporal coding that is not accessible with current fMRI imaging, 
electrophysiological and biosensing approaches, and computational 
models. We engineered a novel brain-on-chip biosensing platform to 
enable neurophysiological information from network-wide firing time 
courses and advanced computational framework to unveil rich experi
ence impacts on activity dynamics, functional connectivity, and infor
mation dimensionality. This is the first demonstration of the ex vivo 
network-wide mesoscale connectome and the spatiotemporal firing 
pattern dynamics modulated by environmental enrichment. These 
findings may provide a pathway to investigate fundamental mechanisms 
of experience-dependent plasticity underlying high brain functions of 
memory, navigation, and cognition (Kempermann, 2019; Nithianan
tharajah and Hannan, 2006). These investigations could be expanded to 
scrutinize the influence of dynamic environmental experiences, 
encompassing social interactions, physical activity, and learning 

Fig. 5. Circuit-wide Functional Connectome. a) The entire Hippocampal-cortical slice is overlaid on the 64x64 microelectrode array allowing for monitoring the 
six interconnected subregions simultaneously with their concurrent structural information. b) Exemplary pairwise firing electrodes in the chip array to extract time 
courses to compute the PCC. c-d) Functional connectivity matrices representing cross-correlation of SD and ENR networks constructed and clustered by the pairs of 
firing neurons in their associated interconnected subnetworks. ENR displays higher correlation values in all hippocampal-cortical networks. White squares located 
along the diagonal illustrate modular graphs, where a set of nodes are highly connected in a region, while white dotted squares illustrate hierarchical modular graphs 
that are submodules of the large modules. e) Quantification of the correlation matrices shows a significant increase of PCC in interconnected regions of the ENR 
network compared to SD. Red-line indicates the interconnected subnetworks with significance differences (*p < 0.05, **p < 0.01 ANOVA) (n = 48 slices from 6 mice 
of SD and ENR each). f-g) Connectome mapping of the hippocampal-cortical network in ENR and SD. The network visualization was done using the Gephi program to 
illustrate 2% of the total connection in SD (node = 136, and links = 1762) and ENR (node = 661, and links = 21,648) networks, which indicates a salient higher 
density of connection in ENR (g) compared to SD network (f). Graph nodes are scaled according to degree strength and colored according to hippocampal-cortical 
module association and indicated in colored circles legends. Colored links identify the intra- and inter-cluster connections. h) Quantification of the directed 
interconnected links shows higher unidirectional and bidirectional communication in the ENR compared to the SD network. Red-line for significant interconnections 
(*p < 0.05 ANOVA) (n = 48 slices from 6 mice of SD and ENR each). 
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processes, which play a crucial role in modulating brain function (Tor
quet et al., 2018; van Praag et al., 2000). These factors promote neural 
adaptations and brain network connectivity while offering potential 
benefits in pathological conditions such as stroke, epilepsy, dementia, 
stress, and aging (Nithianantharajah and Hannan, 2006; Abrous et al., 
2022). 

Our simultaneous recordings were facilitated by optimized electrical 

coupling of the tissue-electrode interface, which enabled long-term 
stability of cellular activity with optimal spatiotemporal resolution. 
These measurements highlight the enhanced large-scale rhythmic dy
namics in the ENR group, as evidenced by increased firing statistics and 
encoded information in LFPs and multi-unit activity. This enhancement 
may support pre-configured activity patterns necessary for spatiotem
poral information processing, as well as the observed increase in gamma 

(caption on next page) 
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oscillation, synaptic and cellular properties in both in vivo and in vitro in 
local subnetworks in ENR-dependent behavioral conditions (Ohline and 
Abraham, 2019; Shinohara et al., 2013; Villette et al., 2015; Mehta et al., 
2002). 

We further characterized the large-scale initiation, propagation, and 
complex transmission termination of firing activity that emerged from 
neuronal ensembles. We determined the probability of field potential 
activity occurrence and its spatiotemporal topographic propagation. 
After reconstructing the CATs, we employed an unsupervised machine- 
learning algorithm for further analysis and classification. These classi
fications outlined the impact of rich experience on promoting faster 
information transfer and processing and enhanced large-scale spatio
temporal activity dynamics. Remarkably, this opens up new possibilities 
for unraveling strategies of neural information processing (Kumar et al., 
2010). Nevertheless, an in-depth investigation is necessary to accurately 
identify the propagation mechanisms that facilitate improved informa
tion flow and network-wide pattern dynamics in ENR. This may 
encompass the combined roles of synaptic and non-synaptic in
teractions, including gap junction and ephaptic propagation (Draguhn 
et al., 1998; Fröhlich and McCormick, 2010). 

Our unique network-wide electrophysiology data and rigorous al
gorithms from network science (i.e., graph and dynamical system the
ories) allowed us to show that ENR enhanced local functional 
connections to optimize network-wide rewiring, adaptability of func
tional remodeling and firing pattern evolvability by preserving the 
functional integrity of the subregional networks (Bassett et al., 2010). 
The enhanced connectome in ENR subnetworks displayed densely 
linked hub nodes characterized by a scale-free small-world topology that 
revealed high-dimensional coding for faster processing of the propa
gating neural activity, which could facilitate efficient pattern separation 
by providing larger activity space (i.e., decreased noise and variability) 
to embed different representations with minimum overlap (Lodge and 
Bischofberger, 2019). 

Altogether, our study suggests a new biosensing tool for examining 
network-wide activity-dependent dynamics of neuronal assemblies, 
focusing on the enhancement attributed to the response of networks 
influenced by environmental enrichment. The present study is not 
explicitly designed to investigate the causal relation of experience- 
induced network dynamics to underlying processes such as neuro
genesis, which remains to be established. 

This approach could elucidate the computational benefits of an ENR- 
enhanced connectome for improved learning and memory, including 
flexible reversal learning, spatial remapping, and others (Mehta et al., 
2002; Cuneo et al., 2012). Several studies have demonstrated ENR ef
fects on delaying the onset of neurodegenerative diseases and various 
types of brain injuries (Nithianantharajah and Hannan, 2006). Thus, 
mapping and understanding large-scale experience-dependent con
nectome might contribute to uncovering the network deficit mecha
nisms underlying brain dysfunctions and identifying novel targets for 
the future development of more efficacious therapeutics. Given such 

demands and opportunities, our platform could lay the foundation for 
developing prosthetic devices to restore and enhance declining memory 
functions in aging or disease (Hampson et al., 2018). Based on the 
exceptional insights into large-scale computational neural dynamics, we 
posit that our platform has the potential to provide a source of brain 
inspiration for novel neuromorphic computing solutions, enhance cur
rent artificial intelligence methods and expand them into new applica
tions, and may render radically different neural learning algorithms 
with unique computational intelligence (Schuman et al., 2022; Zhang 
et al., 2020; Kudithipudi et al., 2022). These advancements are consis
tent with developments in the fields of biosensors and neuroengineering, 
in which neurological and mental health issues are addressed from the 
perspective of impaired computation in brain microcircuits. 
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Fig. 6. Network-wide Complexity and Coding Dimensionality. a) Schematic illustration of key complex network metrics of large-scale hippocampal-cortical 
network on HD-chip array. b-c) Functional connectivity maps of the spatial distribution of interconnected subnetworks showing increased complexity of ENR 
compared to SD networks. Arrows indicate the exemplary selected nodes in the DG layer of SD and ENR to identify the associated local and global interactions. d) 
ENR network exhibits higher complexity shown by higher node degree (**p < 0.01 ANOVA). e-f) ENR network is significantly more densely interconnected than SD, 
indicated by higher numbers of links and node degree centrality (*p < 0.05 ANOVA). g-h) Graph clustering coefficient and transitivity confer significant network 
functional segregation in ENR than SD (**p < 0.01 ANOVA). i) ENR networks show a lower path length indicating higher functional integration than SD networks 
(*p < 0.05 ANOVA). j-k) ENR networks display highly dense connected hub nodes and emerging rich club organization than SD networks (**p < 0.01, *p < 0.05 
ANOVA). l) ENR network exhibits a greater dimensional subspace for information coding than SD computed as a function of average connectivity (p < 10− 8 Kol
mogorov-Smirnov test). Although dimensionality is reduced to 50% (colored squares), ENR maintains higher connectivity than SD. m) Scale-free functional network 
topology with small-world properties in SD and ENR networks indicated by the power-law distribution. The log-log plot of the cumulative connection distribution for 
ENR networks exhibits a significantly heavier tail than SD networks indicating low-degree nodes coexist with a few densely connected hubs, yet higher than SD 
networks (inset), which reach a cut-off on the power-law lead to steep decay of the tail of connectivity distribution (*p < 0.05 Kolmogorov-Smirnov test). The 
lognormal function fitted the power-law distribution with goodness-of-fit in a log-log plot (with a coefficient of determination R2 = 0.96 and 0.99 for SD and ENR, 
respectively). n) ENR networks display higher connectivity robustness to random failures quantified by the percentage of degree and remaining links after random 
node removal (SD vs. ENR degree and remaining links, p < 10− 8 Kolmogorov-Smirnov test). 
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Supplementary data to this article can be found online at https://doi. 
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