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Abstract 
Thalamic brain areas play an important role in adaptive behaviors. Nevertheless, the population 
dynamics of thalamic relays during learning across sensory modalities remain mostly 
unknown. Using a cross-modal sensory reversal learning paradigm combined with deep brain 
two-photon calcium imaging of large populations of auditory thalamus (MGB) neurons, we 
identified that MGB neurons are biased towards reward predictors independent of modality. 
Additionally, functional classes of MGB neurons aligned with distinct task periods and 
behavioral outcomes, both dependent and independent of sensory modality. During non-
sensory delay periods, MGB ensembles developed coherent neuronal representation as well as 
distinct co-activity network states reflecting predicted task outcome. These results demonstrate 
flexible cross-modal ensemble coding in auditory thalamus during adaptive learning and 
highlight its importance in brain-wide cross-modal computations during complex behavior. 

 
 

 
Summary  
Deep brain imaging reveals flexible network states of sensory thalamus predicting task 
outcome in mice. 
 
 
  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.23.554119doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.554119
http://creativecommons.org/licenses/by/4.0/


 

Hasegawa, Huang & Gründemann, bioRxiv, 2023 
2 

Main 
Relaying sensory information from subcortical areas to sensory cortices is a fundamental 
function of thalamus1,2, yet we are only starting to understand the computational role of 
individual sensory thalamic nuclei in flexible encoding during adaptive behaviors3–7. Auditory 
thalamus (medial geniculate body, MGB) flexibly encodes sensory information across 
associative learning8–12, and populations of individual MGB neurons exhibit diverse single cell 
response adaptations to conditioned tone stimuli in a behavioral state-dependent manner during 
fear learning5. In addition to learning-related auditory response plasticity, MGB neurons 
process cross-modal sensory inputs in a complex manner10,13. For example, visual stimuli 
enhance MGB tone responses non-linearly10, while tactile stimuli affect MGB tone responses 
bidirectionally13, indicating that, similar to cortical and collicular brain areas, MGB processes 
cross-modal sensory inputs in addition to its auditory relay function14–17. These data suggest 
that MGB is an active computational unit which processes complex information across sensory 
modalities upon adaptive behaviors. Nevertheless, it remains unknown how large-scale 
neuronal dynamics in auditory thalamus represent sensory stimuli of different modalities that 
change their assigned value and expected outcome during flexible learning.   

Results 
Auditory thalamus neurons display various response patterns to cross-modal sensory 
stimuli in reward associative learning. 
To address this question, we developed a cross-modal sensory Go/Nogo reversal learning task 
in mice to test for neuronal population dynamics during sensory learning and for cognitive 
flexibility upon changing reward contingencies. Mice (N = 8 animals) were trained to associate 
counterbalanced auditory (12 kHz tone) and visual (rightward drifting grating) stimuli as Go 
(reward predictor) or Nogo (not rewarded) cues (Fig. 1a-c). Once mice learned the task at 
expert level (Initial learning), the reward contingency was reversed and the previous Go cue 
became non-predictive of the reward, while the previous Nogo cue turned into a reward-
predictor (Reversal learning). Animals learned the initial rule within approximately 10 days 
(Fig. 1d-f and fig. S1). Upon reversal learning, task performance dropped initially, yet mice 
learned the new stimulus-reward rule again with a similar learning rate (N = 8 mice, Fig. 1d-g 
and fig. S1). These data indicate that mice flexibly associate sensory stimuli with reward 
outcome across initial and reversal learning using similar learning strategies. 
To track the activity patterns of MGB neurons during learning, we performed longitudinal in 
vivo two-photon calcium imaging of large populations of individual MGB relay neurons 
through a gradient refractive index (GRIN) lens across all stages of the learning paradigm 
(Fig. 1h, Movie S1). During naive and expert phases of initial and reversal learning, MGB 
neurons exhibited a large variety of distinct response patterns to the auditory tone as well as 
the visual stimulus and combinations thereof (Fig. 1h-j, fig. S2), indicating that subsets of MGB 
neurons are inherently responsive to cross-modal sensory stimuli. Nevertheless, the learning-
induced reward association of the Go stimulus during initial or reversal learning altered the 
proportion of stimulus-responsive MGB neurons towards the Go stimulus regardless of the 
sensory modality (Fig. 1k, fig. S2). These results demonstrate that auditory thalamus processes 
cross-modal sensory information during discriminatory reward learning and that MGB 
responsiveness is dynamically biased towards reward predictors independent of stimulus 
modality. 
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Fig. 1. Auditory thalamus neurons exhibit diverse responses and dynamic bias towards reward predictors 
upon cross-modal reversal learning.  
a, Schematic of the behavioral setup. b, Experimental design of the sensory Go/Nogo reversal learning paradigm. 
c, Trial structure. d, Task performance of one representative mouse. e, Example d-prime transition of the same 
mouse shown in (d). Learning threshold: d-prime > 1.5. f, Number of sessions to reach learning criterion (N = 8 
mice). Stimulus-reward association sequence (auditory to visual vs. visual to auditory) is counterbalanced across 
mice (N = 4 for each group). g, Transitions of d-prime around the learning threshold are similar between initial and 
reversal learning (mean ± SEM, N = 8 mice). h, Top left: Schematic of GRIN lens implantation. Top right: Example 
two-photon image (max intensity projection) of MGB. The contrast is enhanced for improved visualization. Bottom: 
Ca2+ traces from three example neurons in Go, Nogo and Catch trials (mean ± SEM). i, Mean individual cell 
activities in Go and Nogo trials during the initial learning (single session for Naïve and Expert, N = 8 mice). Cells 
were sorted by the mean response amplitude during the stimulus presentation in Go trials. Cell IDs are matched 
across Go and Nogo trials in each learning phase. Black and gray triangles represent the stimulus and delay period 
onset, respectively. j, Mean individual cell activities in Go and Nogo trials during the reversal learning (single 
session for Naive and Expert, N = 8 mice). k, Proportion of stimulus-responsive cells from the data shown in i and j. 
Top: The transition of the proportion of stimulus-responsive cells from naive to expert phases in the initial learning. 
The proportions of the stimulus-responsive cells were altered from Naive to Expert phases in both initial and 
reversal learning (both p < 0.01, Chi-square). Parts of panel 1a were created with BioRender.com. 
 
Functional neuronal subgroups predict task-outcome in MGB. 
Next, we separated MGB neurons into functional subgroups by using a k-means-based cluster 
analysis approach. MGB neurons exhibited distinct stable, learning-enhanced as well as 
learning-inhibited responses to the reward-predicting Go stimuli (Fig. 2a,b). These learning-
related functional clusters in MGB emerged regardless of the modality of the Go stimulus 
(Fig. 2a,b, right). In addition to stimulus-driven responses, subsets of MGB neurons developed 
ramping activity during the non-sensory, pre-reward delay period of Go trials (Ramp-up or 
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Ramp-down clusters), during which the animal has to retain the stimulus type (Go vs. Nogo) 
and prepare for the action. This ramping activity was specific to the Go stimulus, given that 
only a small proportion of neurons exhibited ramping activity during Nogo delay periods 
(fig. S3d,e). 
We then compared the activity patterns of the same neurons across expert states in initial and 
reversal learning when the animals are successfully performing the task, and found task-
specific MGB neurons that are active during distinct trial epochs irrespective of the sensory 
modality (Fig. 2c, left). In contrast, a second modality-specific group of MGB neurons was 
modulated by the trial epoch in a sensory modality-specific manner (Fig. 2c, middle). These 
results demonstrate that reward learning drives heterogeneous neuronal plasticity in MGB that 
flexibly reflects task features and reward outcomes in a modality-driven as well as modality-
independent manner. 
 

 
Fig. 2. Reward learning induces heterogeneous single cell plasticity in a task- and modality-specific 
fashion. 
a, Functional subgroups of MGB neurons in initial learning. Left: Heatmaps of single cell activities before and after 
learning in initial learning. Cells were clustered into functional subgroups depending on their activity patterns 
(n = 164 cells from 6 mice). Middle: Average calcium traces (mean ± SEM) of the functional subgroups shown on 
the left side. Right: Proportion of cells in each cluster. Each dot represents the data from the individual mouse. Red 
and green dots represent the type of stimulus-reward association. b, Learning-related functional subgroups in 
reversal learning (N = 6 mice, n = 175 cells). Figure structures are the same as (a). c, Functional subgroups 
exhibiting task and modality-specific plasticity in the two expert phases in initial and reversal learning. Left: Average 
calcium traces (mean ± SEM) of the task-specific functional subgroups. Middle: Average calcium traces (mean ± 
SEM) of the modality-specific functional subgroups. Right: Proportion of cells in each cluster.  

Functional plasticity in MGB is not exclusively driven by behavioral variables. 
During the cross-modal Go/Nogo paradigm, mice adapted their behavior flexibly and 
reversibly. Behavioral variables such as body movement, licking9,18,19 or arousal level20 affect 
neural activity in a brain-wide manner. Depending on the trial epoch, approximately 5.7-
38.6 % of MGB neurons exhibited correlations of Ca2+ activity with behavioral variables 
(fig. S4a,b, threshold: r = 0.2). However, the behavioral modulation of Ca2+ activity was not 
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systematically changed across learning (fig. S4c,d). In addition, we found that the strength of 
the correlation of Ca2+ activity and locomotion or pupil size in neurons that were tracked across 
the behavioral paradigm was unchanged or even decreased after learning and upon behavioral 
adaptation (fig. S4e,f). In addition to locomotion and arousal, the number of licks during the 
pre-reward delay period increased after learning (fig. S4g,h). Nevertheless, anticipatory licking 
did not systematically modulate MGB activity during expert phases (fig. S4i,j) and did not 
correlate with the proportion of ramping cells during the delay period (fig. S4k). Taken 
together, these results indicate that subsets of individual MGB neurons correlate with 
behavioral variables such as locomotion, pupil size and licking, yet changes in behavior are not 
the main driver of functional plasticity and changes in learning-related activity in MGB. 

Learning induces coherent neuronal population representations during reward-
preceding periods. 
In addition to the classification of individual stable and plastic MGB neurons, we next asked if 
and how the neural population representation of MGB changes upon learning. Throughout an 
individual session as well as across learning, the trial-by-trial population vector correlation 
(PVC, Pearson’s r)21–23 of the stimulus period (Go and Nogo trials) remained stable (Fig. 3a,b, 
figs. S5-6). In contrast, the PVC specifically increased during the reward-preceding delay 
period of Go trials once mice learned the stimulus-reward contingency in initial learning and 
flexibly adapted to the previous non-rewarded delay period after reversal learning (Fig. 3c,d, 
figs. S5-6). Thus, upon associative learning, the neuronal representation of the MGB 
population becomes more similar during the reward-preceding delay period in a sensory 
modality-independent fashion (figs. S5-6). The PVC increase was specific to the outcome and 
not the action given that it occurred only during the delay period of Hit, but not False Alarm 
trials, where mice incorrectly licked to a Nogo stimulus. (Fig. 3e,f, and figs. S7-8). 
Furthermore, the delay period PVC increase was present in trials with and without anticipatory 
licking (Fig. 3g) indicating that enhanced PVCs during the delay period are not driven by the 
preparatory behavior of the animal or lick impulsivity. Removing delay cells (i.e., Ramp-up 
and Ramp-down cells, see Fig. 2a,b; see fig. S9 for the removal of unspecific subclusters) did 
not affect the increase in PVC (Fig. 3h), indicating that the change in population representation 
during the delay period is driven by the total population of MGB neurons.  
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Fig. 3. Learning-induced remodeling of neural population level representations of task features in MGB. 
a-d, Representative single session trial-by-trial population vector correlation matrices of stimulus (a, b) and delay 
(c, d) periods from one example mouse. Bar charts show the means of Go trial PV correlation between naive and 
expert phases in initial (a, c) and reversal learning (b, d) from all mice (N = 8 mice, 2-3 sessions / mouse, see figs. 
S5-8). e,f, Mean trial-by-trial population vectors correlation of the delay period of Hit and False Alarm (FA) trials in 
different learning stages (N = 8 mice, 1-3 sessions / mouse, see figs. S7, 8). g, Mean trial-by-trial correlation in the 
delay period in Hit trials with or without anticipatory licking in the initial learning (N = 8 mice, 1-3 sessions / mouse, 
see figs. S5, 6). Due to the small number of the Hit trials with licking in reversal learning, we excluded the reversal 
learning data for this analysis. h, Mean trial-by-trial correlation in the delay period after removing all ramping cells 
found in Fig. 2a,b in all mice (N = 6 mice, 2-3 sessions / mouse, see fig. S9). Each dot is the mean R value in 
individual sessions in each training stage for all mice. Statistical tests: Linear mix model (a-f, h, *p < 0.01, details 
in Table S1). Wilcoxon rank sum test (g). 
 
Associative reward learning changes the co-activity network structure in MGB. 
Next, we analyzed how the co-activity network structure changes across learning in MGB by 
computing the weighted undirected graphs of MGB population activity24,25. Here, nodes in the 
co-activity network represent individual MGB neurons and edges the positive pairwise 
Pearson's correlation coefficients of neural activity between all neuron pairs (Fig. 4a). During 
the delay periods of the Go trials, the hubness (average of the activity correlations between all 
cell pairs) increased from the naive to the expert phases, while it was unaffected in the Nogo 
trials (Fig. 4b). Furthermore, the mean shortest path length between any two neurons became 
shorter in the expert phase in the Go trials, which is consistent with a global increase of hubness 
(Fig. 4b). Local co-activity structures represented by the cluster coefficient of triad did not 
increase from the naive to expert phases (fig. S10a), indicating that the observed changes are a 
global event in the total MGB population. Upon reversal learning, the co-activity structure 
during the delay period was actively remodeled, both globally (hubness and path length) and 
locally (cluster coefficient) (Fig. 4b, fig. S10a), indicating that MGB co-activity network 
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structure is dynamic during changing stimulus-reward contingencies. Furthermore, removing 
the cluster of delay ramping neurons (or a similar number of random neurons) from the analysis 
did not affect the changes in the co-activity network structure (fig. S10b,c). These results 
indicated that the general MGB population mediates the remodeling of the co-activity network. 
Anti-correlation networks (negative Pearson’s r) remained unchanged in all learning stages 
(fig. S11). In summary, global co-activity network structures in MGB changed dynamically 
during the reward-preceding delay period and flexibly re-adjusted after learning in a modality-
unspecific fashion. Changes in co-activity structures during the stimulus period were less 
consistent and limited to the reversal learning period (fig. S12). Altogether, these results 
demonstrate that the functional co-activity structure in MGB can be rapidly re-organized 
through associative reward learning and learning rule switches, which could help to support 
the cognitive processing of task-relevant information24,25. 

 

Fig. 4. Learning re-organizes MGB co-activity structure.  
a, Co-activity matrix construction and network analysis. The co-activity matrix represents the cell-by-cell pair-wise 
Pearson’s correlation (r) from all concatenated time series vectors of the delay periods (Dts) from all trials (see left 
matrix for construction of time series vector). The co-activity strength is visualized by line thickness in a circular 
plot for each cell pair (r > 0.3, dots indicate individual neurons). Global MGB co-activity strength is quantified by 
hubness and shortest path length. Dtsn: 2 s time series during delay period in trial n. ri,j: Pearson's correlation of 
calcium activity between cell i and j. Hi : hubness of cell i to all its neighbors. L1,2: path length between cell 1 and 2. 
b, Left: Representative circular plots show an example MGB co-activity network structure at different learning 
stages of Go and Nogo trials for one representative mouse before and after learning the rule switch. Right: Changes 
of hubness and path length across all neuron pairs in each learning stage which are baselined to the values in the 
naive Go (Stimulus 1) or Nogo (Stimulus 2) condition (N = 210 neurons from 6 mice, 3000 bootstraps). Error bars: 
95 % confidence interval of mean. 
 
Discussion 
Recent work has shed light on the role of sensory thalamus in adaptive behaviors3,4, while the 
neural dynamics of sensory thalamus in flexible learning of complex tasks across multiple 
sensory modalities remained elusive. Here, we combined a cross-modal (auditory and visual) 
reversal learning paradigm with longitudinal deep-brain two-photon calcium imaging in medial 
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geniculate body (MGB) and demonstrated that sensory thalamus dynamically encodes sensory 
as well as task-related information, adapting its neural responses to varying task rules. 

We find that auditory thalamus exhibits adaptive processing of auditory and visual information 
(Fig. 1h-j and figs. S13, 14) similar to sensory cortices15,16. Responses of MGB neurons to 
auditory and visual stimuli are plastic and modulated upon cross-modal stimulus-reward 
learning (Fig. 1k), indicating that sensory encoding in MGB is dynamic upon cognitively 
demanding tasks irrespective of the sensory modality (fig. S2). A subset of MGB neurons 
developed ramping activity during the reward-preceding delay period (Fig. 2a-c), during which 
the animal has to hold the predictive information of the stimulus about the trial outcome, which 
could reflect reward anticipation11 or short-term memory to guide the next action26, similar to 
cortical and thalamic areas of the mouse motor system27. Reciprocal loops between motor 
thalamus and cortex have been shown to be necessary to maintain ramping activities in either 
region during delay periods27, suggesting that, similar to the motor system, auditory thalamus 
could cooperatively maintain delay ramping activity together with auditory and other cortices. 

On the population level, learning can either increase28,29 or decrease30,31 trial-by-trial 
correlation, whilst other cognitive factors such as attention32,33 exhibit a bi-directional 
influence. In our reversal learning task, the neuronal representation of sensory stimuli in 
auditory thalamus was stable across learning, regardless of whether they were predictive of a 
reward (Go cue) or not (Nogo cue). These findings are similar to previous observations for 
conditioned stimulus presentations in aversive auditory fear learning5. In contrast to the 
stimulus period, the MGB population response (trial-by-trial correlation) became more 
coherent across trials during the non-sensory pre-reward delay period, once mice learned the 
task-reward rule, irrespective of the sensory modality (Fig. 3a-d, figs. S5, 6). This trial-by-trial 
population vector correlation increase during the delay period was specific to Hit trials, but not 
False Alarm trials (Fig. 3e, f, figs. S6, 7), indicating that the re-organization of the population 
activity during the delay period is dependent on the predicted task outcome and not the general 
reward preparation and consumption movement per se (e.g., licking, Fig. 3g). Recently, trial-
by-trial correlations were suggested to account for the optimization of information 
communication between upstream sensory information encoding and downstream read-out 
guiding behaviors in different population representation subspaces34–36. Together, our findings 
link changes in population dynamics of auditory thalamus to a wider brain network that is 
implicated in functions of task representation37, short term memory27,38, outcome-dependent 
actions39 and reward anticipation11.  

Co-activity network structure during the reward-preceding delay period was remodeled across 
associative learning regardless of the sensory modality, while it remained by-and-large stable 
during the stimulus period (Fig. 4b, figs. S10, 12). The distinct changes of co-activity network 
states between the stimulus and delay periods may result in differential information transfer to 
downstream areas to prime information integration and guide behavioral outputs in Go or Nogo 
trials7,40,41. While the global co-activity network changed upon learning (i.e., path length and 
hubness), the local co-activity network (i.e., cluster coefficient) did not systematically change 
during the delay period, and ramping cells did not contribute to the enhancement of the co-
activity network (fig. S10). This suggests that the activity of the total MGB population supports 
the functional network structure and not individual functional subgroups of neurons. Upon 
reversal learning, the co-activity structures were dynamically remodeled not only during the 
delay but also during the stimulus periods (fig. S12), which indicates that reversal learning 
might depend on a distinct learning rule, resulting in the generalization of the Go stimulus from 
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a sensory representation towards a predictive state representation that could be flexibly 
assigned to future learning rule updates. It remains to be tested if and how these changes are 
mediated and whether they are generated locally or if they are co-dependent on external activity, 
e.g., primary or associative cortical brain areas42.  

What are the neural mechanisms that guide the functional plasticity in MGB from naive to 
expert phases across reward associative learning? Given the sparse local recurrent connectivity 
within mouse sensory thalamus1,43,44 and negligible proportions of local inhibitory neurons5,45, 
local microcircuit plasticity is unlikely to drive changes in response patterns. Plausible 
scenarios could include changes of synaptic plasticity, neuromodulation or adaptations of long 
range bottom-up excitatory46,47 and/or inhibitory3,4 inputs. In addition, corticothalamic 
feedback2,48 could stabilize changes in MGB population activity upon learning, either directly 
or di-synaptically via the thalamic reticular nucleus (TRN). Future studies will need to test how 
distinct circuit elements and their combination can affect functional population level plasticity 
in auditory thalamus. 

While reward learning biased the sensory responses of MGB neurons towards reward-
associated Go stimuli during the task regardless of sensory modality (Fig. 1k, fig. S2), the 
sensory responses in off-task non-rewarded mapping sessions before and after learning (i.e., 
passive measurements of tuning to multimodal sensory stimuli) were not biased to the on-task 
Go stimuli (figs. S13, 14). Specific multisensory enhancement to the Go stimulus, which was 
previously observed during appetitive learning in MGB10, did not take place during off-task, 
non-rewarded sessions (figs. S15, 16). This could be due to a fast devaluation of reward-
conditioned stimuli11. Finally, while uni and multisensory responses could be altered on the 
single cell level (figs. S13, 14), sensory stimuli could be reliably decoded from the MGB 
population activity across learning (fig. S17). The complementary mechanisms of single cell 
plasticity and population-level stability of sensory coding could be crucial to allow for dynamic 
neuronal representations upon learning, while ensuring stable representations of the 
environment5,49. 

Altogether, our study reveals that auditory thalamus displays flexible adaptations of single cell 
responses and co-activity network states that align not only with sensory but also task-period 
and outcome-relevant information, which change bi-directionally upon reversal learning, 
highlighting the role of sensory thalamus in complex neural computations for adaptive 
behaviors.  
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Methods 

Animals: All experiments were performed in accordance with the institutional guidelines of 
University of Basel and were approved by the Cantonal Veterinary Office of Basel-Stadt, 
Switzerland. Six to 10-week-old (at the start of the experiment) male C57BL/6J mice were 
used throughout this study. Animals were housed on a 12-hour light / dark cycle at an ambient 
temperature (22 º C) and humidity (55 %) and had free access to food and water until the 
initiation of the behavioral experiment. Throughout the behavioral experiment, animals were 
placed under food restriction and their body weights were maintained at 85-90% of their free-
feeding weights. Well-being was monitored daily through the entire experimental period. No 
statistical methods were applied to pre-determine the sample size for each experiment. The 
investigator was not blinded for surgery, behavioral and imaging experiments or data analysis.  

Surgical procedures: Buprenorphine (0.1 mg/kg) was subcutaneously injected approximately 
30 min before surgery for analgesia. Then, mice were anesthetized with isoflurane (1.5 - 2.0% 
maintenance) through the oxygen-enriched air (95 %, 1-3 l/min, Oxymat III, Weinmann). 
Anesthesia level was monitored via breathing rates and foot and tail reflexes before and during 
surgery. Mice were placed in a stereotaxic apparatus (Model 1900, Kopf Instruments), and 
their body temperature was maintained through a heating pad (Rodent warmer, 53800M, 
Stoelting). Their eyes were covered by an eye protective cream (Bepanthen Augen und 
Nasensalbe, Bayer). The mixture of Lidocaine (10 mg/kg) and Ropivacaine (3 mg/kg) was 
injected under the skin over the skull for local anesthesia. Stereotaxic viral injections were 
performed as previously described5. Briefly, a small craniotomy was performed above the 
medial geniculate body (MGB, AP: -3.28, ML: -1.9, DV: -3.0 mm) by using a stereotaxic drill 
(Model 1911, Kopf) with a burr drill bit (105-0135-225, Kyocera). A pulled glass pipette (2-
000-001, Drummond Scientific) filled with AAV vector was slowly lowered into the brain with 
the help of a micropositioner (Model 2650, Kopf). AAV2/1.syn.jGCaMP7s 50 (Addgene, 
104487-AAV1, ca 500nl, diluted by sterile PBS, 1-2x) was injected into MGB with a pressure 
ejection system (Picospritzer, Parker). One to two weeks after viral injection, a gradient 
refractive index (GRIN) lens (0.6 mm diameter, 7.3 mm length or 1.0 mm diameter, 4 mm 
length, Inscopix) was implanted during the second surgery (anesthesia and analgesia, see 
above). 0.6 mm lenses were implanted as previously described 5. Briefly, a 0.8 mm diameter 
craniotomy was performed above MGB (drill: 105-0709.400, Kyocera) and a small track was 
cut with a 0.7 mm sterile needle. Next, the GRIN lens was slowly advanced into the brain using 
the Micropositioner (Model 2650). For the implantation of 1.0 mm diameter lenses, a 1.2 - 1.3 
mm craniotomy was performed above MGB using a hand drill (503599, World Precision 
Instrument) with a burr drill bit (200 µm diameter, C1.104.002, Bösch Dental). Tissue above 
MGB was slowly aspirated through a sterile blunt needle (27G, Endo irrigation cannula) 
connected to a suction system. Sterilized phosphate buffer saline (PBS) was used to irrigate the 
brain until the bleeding stopped around the aspirated site. Next, the 1.0 mm lens was slowly 
advanced into the brain with the micropositioner. Both, 0.6 and 1.0 mm lenses were fixed to 
the skull with light curable glue (Loctite 4305, Henkel). A custom-made head bar was attached 
to the skull next to the GRIN lens, and the skull was sealed with Scotchbond (3M), Vetbond 
(3M) and dental acrylic (Paladur, Kulzer, Orth Jet, Lang Dental and/or C&B Super-Bond, Sun 
Medical). Meloxicam (5 mg/kg) was injected subcutaneously after the surgery for post-
operative analgesia.   

Behavioral apparatus: The behavioral apparatus was housed in a light shield chamber under 
a custom-built two-photon microscope (Independent NeuroScience Services (INSS), UK). 
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Mice were head-fixed by a custom-designed holding system and placed on a running-wheel 
connected to a rotary encoder (E6A2-CS3E, Omron) to measure locomotion. Auditory and 
visual stimuli were presented with a speaker (ES1, Tucker Davis Technologies, placed at 
upper-right, 10 cm from the mouse head) and a 7-inch screen (Adafruit 1667, placed 10 cm 
from the right side of the mouse face at a parallel angle), respectively. The screen system was 
modified to minimize the light exposure to photomultiplier tubes (PMTs) during a visual 
stimulus presentation in the two-photon imaging 51,52. During the experiment, the gray 
background was continuously presented from the screen. A lick spout was mounted on the 
custom-built retractable stage controlled by Trinamic motion control language (TMCL). A 
reward (soy milk) was delivered by a custom-designed peristaltic pump system by using a 
micropump (mp6, Bartels Mikrotechnik). A licking of a reward spout was detected by a lick 
detector modified from the detector described in a previous study 53. The experiments were 
controlled by a custom-written program in MATLAB (MathWorks) with NI USB-6008 
(National Instruments) and RZ 6 (Tucker Davis Technologies), and the timing of TTL 
input/output of behavioral events were recorded by RZ 6 at 50 kHz sampling rate. 

In vivo two-photon calcium imaging: In vivo two-photon calcium imaging was performed 
using a custom-built two-photon microscope (INSS, UK). The microscope was equipped with 
a resonant scanning system and a pulsed Ti:sapphire laser (λ = 940 nm, Chameleon Vision S, 
Coherent). A motorized three-axis system (Zaber motor) connected with a microscope head 
(Z-direction) and breadboard under the behavioral apparatus (X-Y directions) enabled locating 
an objective lens above the GRIN lens. The microscope system was controlled by ScanImage 
software (Vidrio Technologies). Green and red fluorescent photons were collected with an 
objective lens (x16, 0.80 NA, Nikon). Photons were separated by a dichroic mirror (T565lpxr, 
long pass, Chroma) and barrier filters (green: ET510/80m, red: ER630/75m), and measured by 
PMTs (PMT2101, Thorlab). The imaging frame was 512 x 512 pixels, and the frame rate was 
approximately 30 Hz. Fields of views (FOVs) of two-photon images were approximately 330 
µm x 330 µm (at 3.0x zoom, 1.0 mm diameter GRIN lens, N = 6 mice) or approximately 400 
µm x 400 µm (at 2.5x zoom, 0.6 mm diameter GRIN lens, N = 2 mice). Note that GRIN lens 
FOVs do not correspond to the actual size of the imaged brain areas due to the spatially non-
uniform optical distortion inherent to GRIN lenses54. 

Two-photon Image Processing: Two-photon images were processed using Suite2P55. The 
images were motion-corrected, and regions of interest (ROIs) were automatically generated. 
Next, experimenters curated ROIs and sorted them as neurons or not. A small portion of ROIs 
were drawn using a manual ROI drawing function of Suite2p. A neuropil signal was also 
calculated for each ROI by Suite2P. A correction coefficient (0.7) was multiplied with the 
neuropil signal, and each ROI signal was subtracted from this value and handled as Ca2+ signal 
of individual neurons. To extract the same ROI signals through the behavioral and sensory 
mapping sessions, we employed ROIMatchpub (https://github.com/ransona/ROIMatchPub). 
For behavioral sessions, we selected 2-3 sessions per learning phase (initial naive, initial expert, 
reversal naive and reversal expert) for each mouse. The naive phase consisted of the first 2-3 
behavioral sessions, and the expert phase consisted of the 2-3 sessions in which d-prime (d’, 
discriminability index)56 reached over 1.5. Across these selected sessions, we tracked the same 
ROIs wherever possible. The ROI tracking procedure was done separately for behavioral and 
sensory mapping sessions. The same ROI signals, or matched cell data, were used for the 
following analyses: k-means clustering of the Go/Nogo task (Fig. 2a-c, fig. S3), co-activity 
network structure analysis (Fig. 4 and figs. S9-12), correlation analysis for behavioral variables 
and Ca2+ signals (fig. S4a-f) as well as the sensory mapping analysis (figs. S13-17) unless 
stated otherwise. For the trial-by-trial population vector correlation analysis, co-activity 
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network structure analysis as well as decoder training (see below), Ca2+ signals of individual 
neurons were detrended and lowpass filtered to 5 Hz with a Butterworth filter. 

Sensory mapping: Before the start of the sensory mapping sessions, mice were head-fixed 
under the custom-built two-photon microscope and habituated to the behavioral apparatus and 
environment for minimum 3 days. Each session started with a 1 min habituation period. 
Auditory (4, 8, 12, 16 or 20 kHz pure tones at 75 dB, 2 s), visual (Upward, downward, 
rightward or leftward sine wave drifting gratings, 100% contrast, 2 Hz, 0.05 cycle per degree, 
2 s) or multisensory stimuli (combination of auditory and visual stimuli, e.g., 4 kHz pure tone 
with upward drifting grating, 2 s) were presented. The sensory stimuli were presented in a 
pseudo-random order. Each auditory, visual and the multisensory stimulus was presented 8 
times (e.g., 4 kHz pure tone, rightward grating, and the combination of them were presented 
for 8 times), and a total of 240 trials (8 trials x 30 stimulus types of uni and multisensory 
stimuli) were performed in one session per day. Inter-trial interval (ITI) was 6-9 s. For one 
mouse, each stimulus was presented 5 times and a total of 150 trials / session were performed. 
Sensory mapping was performed for 2-3 consecutive sessions before and after the sensory 
Go/Nogo reversal learning paradigm.  

Behavioral training in a sensory Go/Nogo reversal learning task: Following sensory 
mapping sessions, mice were pre-trained to lick a spout to receive a liquid reward (soy milk) 
for 1-2 days under head-fixation. Next, the animals were trained to perform a sensory Go/Nogo 
task, which consisted of Go trials (30%), Nogo trials (35%) and catch trials (35%) (total number 
of trials: 140 per session). At the beginning of each trial, a 6-13 s ITI was initiated. Then, either 
an auditory stimulus (Go cue, 12 kHz pure tone, 75 dB, 2 s), a visual stimulus (Nogo cue, 
rightward drifting grating, 2s) or no stimulus (2 s blank period, catch trial) was presented. The 
sensory stimulus or blank period was followed by a delay period (2 s) without any sensory 
stimulus. At the end of the delay period, a response window (1.5 s) was initiated and a 
retractable lick spout moved forward to the mouse. Go trials required mice to lick the spout 
(Hit) to obtain a reward (8-10 µl soya milk), otherwise the trial was considered as an error 
(Miss). In Nogo trials, mice were required to withhold the lick response (Correct Rejection, 
CR). If the mice licked the spout in the Nogo trial, the trial was considered as an error (False 
Alarm, FA). In catch trials mice were required to withhold the lick response (catch-CR). If 
mice licked the spout, the trial was considered as an error (catch-FA). If mice accidentally 
touched the spout too early (within 200 ms after the response window onset) (e.g., due to 
grooming), the contact was not considered as a response. Catch trials were introduced to ensure 
that mice identify the Go cue as a reward predictor. Task performances for Nogo and catch 
trials developed similarly (Fig. 1d,e, and fig. S1). Thus, the task performances in those trials 
were combined to calculate the task performance index, d-prime (d’) as follows: d’ = Z (Hit 
ratio) - Z (False alarm ratio). Hit and False alarm ratios were calculated as follows: Hit ratio = 
the number of Hit trials/(the number of Hit trials + the number of Miss trials); False alarm ratio 
= the number of false alarm trials/(the number of false alarm trials + the number of correction 
rejection trials). If the ratio reached 1.0, the ratio was adjusted to calculate d’ 56. Z is the inverse 
cumulative distribution function, and Z (Hit ratio) and Z (False alarm ratio) were calculated by 
using the qnorm function (https://de.mathworks.com/matlabcentral/fileexchange/48978-
qnorm-matprobabilities-dblmean-matsigmas-booluseapproximation). Once d’ reached values 
above 1.5 for three consecutive days, mice were considered experts and a reversal learning 
paradigm was initiated. Upon reversal learning, the stimulus-reward contingency was 
switched. In the group in which the auditory stimulus was presented as a Go cue, the visual 
stimulus was now presented as a Go cue and rewarded and vice versa for animals in which the 
visual stimulus was initially presented as a Go cue. Once d’ reached values above 1.5 for three 
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consecutive days, mice were considered reversal experts. The order of the stimulus-reward 
contingency was counterbalanced between mice, i.e., four mice were trained to the auditory 
stimulus as a Go cue first and four mice were trained to the visual stimulus as a Go cue first. 
Specific cases of data exclusion: Mice were trained for a maximum of 28 sessions. Due to 
slower learning, one out of eight mice reached only two reversal expert sessions before the 
training had to be terminated. Furthermore, in two out of eight mice the training had to be 
briefly suspended due to technical issues, which did not have a major impact on task 
performance after re-initiation of the paradigm. In one mouse, an imaging artifact gradually 
appeared from the lateral edges of the two-photon image in one session. Data from the later 
stage of this session was excluded from analysis. In one mouse, the data recording of one 
session was aborted in the middle of the session due to the malfunction of the acquisition 
system. Since the number of trials reached more than half of the session, the data obtained in 
this session was included for the data analyses.  

Video recording: Mouse behavior was monitored during the experiment with a CMOS camera 
(a2A2590-60umPRO, Basler) equipped with a CCTV lens (Moritex ML-M1616UR) and a 
band-pass filter (DB850, Midwest) (N = 7 mice) or a Raspberry Pi Camera Module 2 with a 
shortpass filter (FES850, Thorlabs) controlled by Raspberry Pi 3 model B+ (N = 1 mouse). 
Either camera system was located on the left side of the mouse together with a custom-made 
infrared LED system (830 nm). In the CMOS camera system, each frame acquisition was 
synchronized with the acquisition of a two-photon image (ca. 30 Hz) through ScanImage. In 
the raspberry Pi camera system, each frame was acquired at ca. 30 Hz in free-run mode and 
image acquisition was monitored by internally-generated TTLs. During offline analysis, the 
tongue and pupil were detected and tracked by animal pose estimation using DeepLabCut 
(DLC)57. The experimenter manually labeled the tongue and the eight points on the edges of 
the pupil (top, top-right, right, bottom-right, bottom, bottom-left, left, top-left) for each mouse 
to train the model. Videography based licking-behavior was detected if the tongue was tracked 
by DLC for at least two consecutive frames. The pupil area was calculated by using a circle fit 
function58 (fitcircle, https://mathworks.com/matlabcentral/fileexchange/15060-fitcircle-
m?s_cid=ME_prod_FX) from available data points at each frame. Pupil area data was 
smoothed by using a hampel filter (MATLAB built-in function, number of neighbors, 10; 
number of standard deviations, 1.0).  

Mean individual cell activity during Go and Nogo trials: Heatmaps were used to visualize 
mean activities of individual MGB neurons pooled from all mice across learning (N = 8 mice, 
Fig. 1i, j). For the naive phase, the data of the first training session in both initial and reversal 
learning were used to show the unconditioned responses to sensory stimuli. For the expert 
phase, the data from the session with the highest d’ in both initial and reversal learning were 
used to show well-conditioned responses to the sensory stimuli. The calcium data was 
baselined to the mean during 0.5 s before stimulus presentation in each trial. The data of 
individual calcium traces were averaged across Go and Nogo trials separately (maximum 42 
trials for Go trials, and maximum 49 trials for Nogo trials in a single session). Cell IDs were 
sorted according to the amplitude of the mean sensory response during the stimulus 
presentation (2 s) in the Go trials.  

Proportion of stimulus-responsive cells in the sensory Go/Nogo task: Stimulus-
responsiveness was determined through a two-step procedure. First, we performed a signed-
rank test to examine if the sensory response of each cell was significantly different from zero. 
In each cell, the sensory response during the stimulus presentation (2 s) was averaged in Go 
and Nogo trials. Then, the means of the sensory responses pooled across Go or Nogo trials 
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were used for a signed-rank test of each cell. Cells with statistical significance in the signed-
rank test were selected for response thresholding (threshold: median z-score > ± 0.2). In 
addition, for auditory stimulus trials, the sensory response during the stimulus onset (0.3 s) was 
averaged and analyzed in the same manner as described above to catch fast-adapting MGB 
neurons. If a neuron was classified as sensory responsive during the whole 2 s stimulus 
presentation period or as onset responsive, the neuron was included as auditory responsive. 
Neurons where then classified as Go, Nogo or ‘both’ responsive cells depending on the trial 
type. Neurons that did not pass the detection threshold were classified as non-responsive cells. 
K-means cluster analysis: K-means cluster analysis was performed to sort individual neurons 
into functional subgroups. The calcium traces of matched individual neurons (N = 6 mice, n = 
210 cells) were averaged across Go or Nogo trials for 2-3 sessions in each training phase (naive, 
expert, reversal naive and reversal expert). The mean Go or Nogo responses of each neuron 
were concatenated between naive and expert phases in both initial and reversal learning (time-
series concatenation). The time-series for each cell was composed of the concatenated stimulus 
and delay periods of native and expert training phases, while initial and reversal learning were 
treated as independent observations. This times series underwent principal component analysis 
followed by k-means clustering (cosine distance) to sort the individual neurons into functional 
clusters. Thirty clusters were generated, and clusters showing similar activity patterns were 
merged manually 5. After generating the merged clusters, cell IDs in each merged cluster were 
separated to the initial and reversal learning data. To track the activity patterns of the MGB 
neurons between the two expert phases in initial and reversal learning, we performed k-means 
cluster analysis by using the data of the two expert phases in the initial and reversal learning 
(Fig. 2c, fig. S3a-c). After the preprocessing described above, the data of the two expert phases 
were concatenated between initial and reversal learning, then k-means clustering was 
performed. 
Correlation analysis between behavioral variables and neuronal activity: Correlations 
between behavioral variables (locomotion, pupil size) and single cell Ca2+ traces were 
calculated as the Pearson’s correlation coefficient in Hit trials across learning (fig. S4a-f). The 
first session in the naive phase and the session with the highest d-prime in the expert phase 
were selected in both initial and reversal learning. Pupil, locomotion and calcium data of day-
matched cells was down-sampled to 5 Hz. Cells that exhibited correlations between the 
behavioral variable and the calcium data of |r| > 0.2 and p < 0.05 were considered as 
significantly correlated. R-value distributions were compared between the naive and expert 
phase in both initial and reversal learning by a Kolmogorov-Smirnov test (ks-test2, MATLAB). 
To measure the change of correlation across learning, the difference of |r| values between naive 
and expert phases in matched cells was measured for stimulus, delay and ITI periods (signed-
rank test). The pupil data was analyzed in the same manner except that the pupil data was 
smoothed by a Hampel filter (see above) and z-scored (fig. S4b,d,f). 
Anticipatory licking analysis: Anticipatory licking was quantified during the delay period. 
To visualize how the number of anticipatory licks change across learning, the proportion of 
trials with anticipatory licking was plotted as a function of the number of anticipatory licks per 
trial. The number of trials with or without anticipatory licking was pooled from all mice in each 
training phase, and this pooled data was used for chi-square testing (fig. S4g). The probability 
of anticipatory licks per time bin was calculated across mice (fig. S4h). For visualization 
purposes, lick probability was smoothed by a moving average (5 frames, movmean, 
MATLAB). To examine how anticipatory licking influenced MGB activity during the delay 
period, Ca2+ traces of Hit trials with and without anticipatory licking were separated and 
baselined to the mean Ca2+ fluorescence 150 ms before the delay period onset (fig. S4i, same 
baseline duration for fig. S4j). 
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Trial-by-trial population vector correlation: Before the construction of the population 
vector (PV), calcium data for each cell was baselined to the mean of the 2 s pre-stimulus period 
on a trial-by-trial basis. Next, the mean calcium responses during the stimulus and delay 
periods were calculated and the population vector constructed. Trial-by-trial population vector 
correlations (PVC, Pearson’s) were calculated across the stimulus and delay periods of all trials 
and plotted as a N-by-N correlation matrix per session (N = number of trials). Mean correlation 
values from all trial pairs in each session were used for summary statistics. A linear mixed 
model was used to compare the difference of R values (fixed effect: naive vs expert, random 
effect: mouse ID). For a fair comparison between trials with and without anticipatory licking, 
only sessions with more than 6 trials with and without anticipatory licking each were included 
in the analysis (Fig. 3g). Reversal learning was excluded from the analysis of anticipatory 
licking due to low trial numbers. To examine the contribution of ramping cells to the PVC 
during the Go delay period ramp-up and ramp-down cells were removed from the PV, and PVC 
values of the Go delay period were re-calculated. The same number of cells as ramp-up and 
ramp-down cells were randomly removed to generate the shuffle dataset (nShuffle = 30, fig. 
S9).  

Weighted graph-based analysis of MGB co-activity network structure: Undirected 
weighted graph that represents the relationship of calcium activity between MGB neurons were 
computed based on matched cell data (n = 210 neurons). In the graph, nodes and edges stand 
for cell identities and the pairwise Pearson's correlation coefficients between two neuron pairs, 
respectively. The calcium activity data was baselined to the mean of the 2 s pre-stimulus period 
of each trial. The pair-wise correlation coefficient of the time-series data (2 s) during the 
stimulus and delay periods was calculated between all cell pairs in Go and Nogo trials. Each 
graph with the number of nodes M, which are identical to the number of matched cells is 
represented by its adjacency M-by-M symmetric matrix C where each element rij is the 
Pearson's correlation coefficients (-1≤ r ≤1) between two nodes (neurons) i and j. Positive and 
negative edges were analyzed separately (fig. S11). The strength of the global co-activity 
network structure among MGB neurons was quantified by hubness, i.e., the mean of the pair-
wise activity correlation of each node to all the others:  

𝐻! =
1
𝑚%𝑟!,#

$

#%&

		 

We estimated the global communication efficiency between any two nodes by measuring the 
geodesic (shortest) path length in the graph. First, a weighted graph with the length between 
two nodes, i and j as Lij=1/rij was created. Next, the shortest path length between any two nodes 
was computed using Dijkstra's algorithm among 3903 cell pairs. The local co-activity network 
structures were quantified by the cluster coefficient of the triad. The cluster coefficient of the 
triad was calculated among 50376 triads 59. wij is the edge weight between any two nodes. 𝑤)!#is 
the normalized edge weight by the maximum weight in the adjacency matrix between cell i 
and j: 

𝐶! =
1

𝑘!(𝑘! − 1)
%(𝑤)!#𝑤)!'𝑤)#')&/)
#,'

 

𝑤)!# = 𝑤!#/𝑚𝑎𝑥(𝑤) 
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The same number of cells as ramp-up and ramp-down cells were randomly removed to generate 
the shuffle dataset (nShuffle = 30, fig. S10). Network structure was recalculated using the 
shuffle dataset. Functional connectivity parameters were calculated using the 
BrainConnectivity toolbox (https://github.com/jblocher/matlab-network-
utilities/tree/master/BrainConnectivity). Plotting and confidence interval calculation were 
adapted from DABEST toolbox (https://github.com/ACCLAB/DABEST-Matlab). 

General sensory responsiveness: To quantify the general sensory responsiveness of MGB 
neurons before and after the Go/Nogo learning in sensory mapping session (fig. S13), the 
calcium data during the stimulus presentation (2 s) was split in half (0 - 1 s and 1 - 2 s). The 
mean of the calcium data during these two periods was handled as individual data points. Next, 
it was tested whether individual MGB neurons were responsive to auditory, visual and/or multi-
sensory stimulus through the same two-step procedures as described above. In multi-sensory 
trials, the data from all visual grating directions were averaged, and the sensory response to 
auditory frequencies were tested. In fig. S13c, cells were defined as excited/inhibited if they 
were responsive to any auditory frequency or grating direction. In fig. S13d, the response 
amplitude of the cells that were responsive to at least one of the sensory stimuli in pre-learning 
were compared to the response amplitude of the same sensory stimuli in post-learning sessions. 
In fig. S13e, change of peak tuning frequency or grating direction was calculated if a cell was 
responsive to any frequency/direction in both pre- and post-learning session. In fig. S13g and 
h, the time series of the averaged population response and the response amplitude of the cells 
with the significant response to the reward-associated stimulus in Go/Nogo training (12 kHz, 
rightward drifting grating, 12 kHz with rightward drifting grating) were compared between the 
pre- and post-learning session. In fig. S13i, the change of peak tuning frequency or grating 
direction was calculated if a cell was responsive to the conditioned stimulus (12 kHz, 
rightward-drifting grating, 12 kHz with rightward drifting grating) both in pre- and post-
learning session. 

K-means clustering of tuning curves: To sort MGB neurons into groups with similar 
frequency tuning patterns, k-mean clustering (‘correlation’ distance) was performed with 20 
features (5 frequencies, multi-/uni-sensory and pre/post training) (fig. S15). Sensory responses 
to the auditory (4, 8, 12, 16 and 20 kHz) and multi-sensory stimuli (4, 8, 12, 16 and 20 kHz 
with drifting gratings) were averaged across trials and sessions (1-3 sessions). Visual stimulus 
feature (i.e., grating directions) was collapsed in multi-sensory trials. The calcium data in the 
response period was baselined to 0.5 s before stimulus presentation. The mean of the calcium 
activity during the stimulus presentation (2 s) was used to generate frequency tuning curves. F: 
mean calcium response during stimulus presentation period. m: cell number (pooled across 6 
mice). f: auditory frequency. Clustering matrix:  

!
𝐹!""#$%&'

()* ⋯ 𝐹!+"#$%&'
()* 𝐹!""#$%&'
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𝑚 = 1,2,…233 

𝑓1…𝑓5:	4, 8, 12, 16, 20	𝑘𝐻𝑧 

To examine if frequency tuning curves were stable or plastic, similarity of the frequency tuning 
curves between pre- and post-learning sessions for each cell was quantified by Pearson's 
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correlation (R) in auditory and multi-sensory trials separately. The distribution of Pearson's R 
pooled across all cells was compared between auditory and multi-sensory trials by ks-test 
(fig. S15c) to examine in which trial the frequency tuning curve would be more plastic or 
stable. 

Multi-sensory index: The multi-sensory index was calculated by the division of the average 
response in multi-sensory trials (AV) to the sum of average response in uni-sensory trials (A: 
auditory trials, V: visual trials). Cells with a non-significant response in both AV and A trials 
were excluded from multi-sensory index calculation. Cells with different calcium response sign 
in multi-sensory response and sum of uni-sensory response were excluded (𝐴*𝑉 ⋅ 5𝐴* + 𝑉7 <
0	). Absolute value of sensory response was taken to demonstrate the principle of multi-sensory 
integration (linear or non-linear). Visual grating directions were averaged in multi-sensory 
response as well as uni-sensory response. First order exponential fitting was conducted to 
reveal the trend of data distribution for each auditory frequency (fig. S15d). Multi-sensory 
indexes of all individual cells and all auditory frequencies were compared regardless of 
response sign and amplitude (fig. S16). Two-dimensional two-sample ks-test was performed 
to test if the distribution of the multi-sensory index was comparable between pre- and post-
learning (See, Table S1). 

𝑀𝑢𝑙𝑡𝑖𝑠𝑒𝑛𝑠𝑜𝑟𝑦	𝑖𝑛𝑑𝑒𝑥* =
E𝐴*𝑉E
E𝐴* + 𝑉E

														𝑓 = 4, 8, 12, 16, 20	𝑘𝐻𝑧 

 
Single cell correlation analysis across multisensory mapping sessions: Single cell averaged 
peri-stimulus time histograms (PSTH) of uni- and multisensory trials for stimulus features 
(auditory frequency, grating direction) in pre- and post-learning were sorted by stimulus 
amplitude (0 – 2 s) and plotted as heat maps (fig. S14). Next, the Pearson’s correlation between 
the response time series of individual neurons before and after learning was calculated and 
average across all cells (fig. S14)60.  

Decoder analyses: Linear support vector machine (SVM) decoders were trained on the 
stimulus period (normalized by 1 s pre-stimulus baseline) for all tracked neurons in each multi-
sensory mapping session for each animal. Time series data were down-sampled to 3 Hz to 
avoid overfitting. The decoders trained on individual sessions were tested in a pair-wise manner 
for all sessions (fig. S17a). For modality decoding (fig. S17b), decoders were trained on 70 % 
of the data and tested on a 30 % hold-out test-set. Same numbers of trials from each modality 
were selected for training and testing in 50 iterations to avoid a biased accuracy measurement 
due to unbalanced trial number in each modality (50 % multi-sensory, 16.7 % auditory, 13.3 
% visual). For auditory frequency decoding (fig. S17c), trial sub-sampling was not necessary 
since each auditory frequency was presented for a same number of trials. Uni-sensory and 
multi-sensory trials were combined in one dataset. Visual stimulus feature was collapsed in 
multi-sensory trials leaving only frequency labels (4, 8, 12, 16 and 20 kHz). Train/test ratio 
remained 70/30 (140 training trials, 60 test trials). Simple accuracy (modality: x / 27 trials, 
frequency: x / 60 trials, x = number of correct decoded trials) in all iterations were averaged 
yielding pair-wise session decoding accuracy. Shuffle data (n = 100) were generated by circular 
permutation of the down-sampled time series features for each train/test iteration (n = 50) from 
which mean accuracy values of shuffle iterations were taken to depict chance decoding 
accuracy and further averaged to yield pair-wise session decoding accuracy (fig. S17b,c). 
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Histology: After training, mice were transcardially perfused with phosphate buffer saline 
(PBS) followed by ca. 40 ml 4 % paraformaldehyde (PFA) in PBS. Immediately after 
perfusion, brains were removed and post-fixed in 4 % PFA overnight at 4 °C. Then, brains 
were stored in PBS at 4 °C until dissection. 150 µm coronal slices were prepared using a 
vibratome (Campden Instruments) and immunostained for calretinin as an anatomical marker 
as described previously 5. Briefly, after PBS washes, brain slices were immersed in blocking 
solution (10% normal horse serum, S-2000-20, Vector Laboratories) with 0.5 % Triton (T8787, 
Sigma-Aldrich) in PBS for 2 hours at room temperature. Next, slices were incubated in primary 
antibody (goat anti-calretinin, 1:1000, CG1, Swant) in carrier solution (1% normal horse serum 
with 0.5% Triton PBS) overnight at 4 °C. Slices were washed again in 0.5% Triton PBS and 
incubated for 2 h at room temperature or overnight at 4 °C in secondary antibody (donkey anti-
goat 647, 1:1000, A-21447, ThermoFisher) in carrier solution. After final washes by PBS, 
slices were mounted on slides and cover slipped using 22 x 50 mm, 0.16 - 0.19 mm thick cover 
glass (FisherScientific). Images were acquired with a LSM700 confocal microscope (Zeiss), 
Axio Scan Slide Scanner (Zeiss) or Olympus BX63. Acquired images were post-processed 
with ImageJ (https://imagej.nih.gov/ij/) to locate the implantation site of the GRIN lenses. 

Statistical methods: Statistical analysis was performed in MATLAB (MathWorks). Alpha 
level was set at 0.05 and Bonferroni correction was applied to statistical tests (see Table S1). 
Chi-square test, rank sum test, signed-rank test, linear mixed model (LMM), two-sample 
Kolmogorov-Smirnov test (ks-test2) and two-dimensional two-sample Kolmogorov-Smirnov 
test (https://github.com/brian-lau/multdist) were performed for datasets indicated in Table S1. 
Data are presented as mean ± SEM unless otherwise stated. Statistical results and p values are 
presented in Table S1. 
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Movie S1. 
An example movie of Hit trials in naïve and expert phases. For visualization, the images are 
cropped and resized. The movie of the calcium imaging was also temporally smoothed. 

Data S1. 
Source data for Figures in main text (Figs. 1-4). 

Data S2. 
Source data for Supplementary Figures. 
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fig. S1 | Task performance of individual mice during the sensory Go/Nogo task. (a-c) The task performance of individual
mice and Hit reaction time (RT) in the initial learning. (a) Transition of d-prime from all mice. (b) Transition of the task performance
of individual mice. Top row: Auditory-reward group. Bottom row: Visual-reward group. (c) Left: Hit RT pooled across all mice in the
naive and expert phases. Right: Transition of median Hit reaction time. Each dot represents the individual mouse data. RT in the
expert phase was shorter than that in the naive phase (signed-rank test). The first behavioral session in the naive phase and the
session with the highest d-prime in the expert phase were used for the RT analysis. (d-e) The task performance of individual mice
and Hit RT in the reversal learning. The figure configurations are the same as a-c. Reaction time in the expert phase was shorter
than that in the naive phase (signed-rank test). * in the figures represent the statistical significance. *, p <0.05.
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fig. S2 | Activity of individual cells and the proportion of stimulus-responsive cells in auditory and visual reward groups.
(a) GRIN lens front and putative field of view (FOV) from all mice (N = 8 mice). Each line represents the lens front and the putative
FOVs of the two-photon image. For the 1.0 mm lens, the FOV is approximately 330 um x 330 um. For the 0.6 mm lens, the FOV
is approximately 400 um x 400 um. Due to the distortion of the image through the GRIN lens, these FOV values do not necessarily
reflect the actual size of the brain image. (b) The proportion of stimulus-responsive cells from all mice (N = 8 mice). (c) Mean
individual cell responses and the proportion of stimulus-responsive cells from Auditory-reward (initial learning) → Visual reward
(reversal learning) group. Left: Heatmaps of the mean individual cell activities in Go and Nogo trials of a single representative
session during the initial learning (n = 458 cells in the naive phase, n = 411 cells in the expert phase cells from 4 mice) and reversal
learning (n = 413 cells in the naïve phase, n = 388 cells in the expert phase from 4 mice). Cells were sorted by the averaged
response amplitude during the stimulus presentation in Go trials. Cell IDs are matched across Go and Nogo trials in each learning
phase. Black and gray triangles represent the stimulus and delay period onset, respectively. Right top: The proportion of stimulus-
responsive cells in initial and reversal learning. Right bottom: The stacked-bar charts of the stimulus-responsive cells from naive
to expert phase in the initial and reversal learning. The proportions of stimulus responsive cells was altered from the naive to the
expert phase across learning in both initial and reversal learning (p < 0.01, chi-square test, in both initial and reversal learning).
(d) Mean individual cell responses and the proportion of stimulus-responsive cells from Visual-reward (initial learning) →Auditory
reward (reversal learning) group. The figure configurations are the same as (c). The proportions of stimulus responsive cells were
altered from the naive to the expert phase across learning in both initial and reversal learning (p <0.01 for Initial and p < 0.05
reversal learning, after Bonferroni correction, chi-square test).
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fig. S3 | Task-specific and modality-specific clusters in Go trials and functional clusters in Nogo trials.
(a-c) Functional subgroups with the task and modality-specific learning plasticity in the two expert phases in both initial and
reversal learning. (a) Heatmaps of single cell activities in the two expert phases (N = 6 mice, n = 154 cells). (b) Proportion of cells
in each functional cluster. Each dot represents the data from the individual mouse. (c) Average calcium traces (mean +/- SEM) of
the functional subgroups shown in (a). Top row: Average calcium traces in the two expert phases. Left: Task-specific clusters.
Middle: Modality-specific clusters showing the plasticity in the initial learning. Right: Modality-specific clusters showing the
plasticity in the reversal learning. Bottom row: Average calcium traces of the two expert phases with additional traces of other
conditions with the same sensory modality. The additional traces were overlaid to show how reward learning modulated the
neuronal activity within the same sensory modality. The figure configuration from Left to Right is the same as the top row. (d)
Functional subgroups of MGB neurons in Nogo trials in initial learning. Left: Heatmaps of single cell activities in the naive and
expert phases in initial learning (N = 6 mice, n = 126 cells). Middle: Average calcium traces (mean +/- SEM) of the functional
subgroups. Right: Proportion of cells in each cluster. Each dot represents the data from the individual mouse. Red and green dots
represent the types of stimulus-reward condition. (e) Functional subgroups of MGB neurons in Nogo trials in reversal learning (N
= 6 mice, n = 135 cells). The figure structures are the same as (d).
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fig. S4 | Behavioral variables are not the main source of MGB plasticity. (a, c and e) Correlation analysis of Ca²+ trace and
locomotion in Hit trials in initial and reversal learning (N = 6 mice, n = 210 cells). The longitudinally tracked cells were used for this
analysis. (a) Left: The proportion of the significantly correlated cells in each time window (Stimulus, Delay and ITI periods) in the
initial learning (Left) and reversal learning (Right). (c) The distributions of the locomotion - Ca²+ correlation between the naive
(black) and expert phases (color) in the initial learning (Left) and reversal learning (Right) from all cells. Top: The probability
density function during the stimulus period. Middle: Probability density function during the delay period. Bottom: Probability
density function during the ITI period. ITI periods is 2 s before the stimulus presentation. (e) The change in the magnitude of
correlation. The difference of the absolute r value for each MGB neuron between the naive and expert phases (Mean ± SEM)
was calculated. (b, d and f) Correlation analysis of Ca²+ trace and pupil size in Hit trials in the initial and reversal learning (N = 6
mice, n = 210 cells). Figure configurations are same as a, c and e for locomotion analysis. (g) The proportion of Hit trials with
anticipatory licking during the delay period across all mice (N = 8 mice). The number of trials with anticipatory licking increased
from the naive to expert phases in both initial and reversal learning (p < 0.01 for initial and reversal learning, after bonferroni
correction, chi-square test). (h) The probability of anticipatory licking at each time bin (Mean ± SEM) in Hit trials from all mice (N
= 8 mice). The probability of anticipatory lick was calculated at each time bin across Hit trials for each mouse, then averaged
across all mice. (i) Average population activities of MGB neurons (Mean ± SEM) during the delay period in Hit trials with and
without anticipatory licking across all mice (N = 8 mice). Left: Population activities in the initial expert (Lick trial = 192 trials and n
= 755 cells, non-lick trial = 143 trials and n = 755 cells), Right: Population activities in the reversal expert (Lick trial = 90 trials and
n = 637 cells, non-lick trial = 244 trials and n = 709 cells). (j) Average population activities of MGB neurons (Mean ± SEM) aligned
at the first anticipatory licking onset during the delay period. Left: Average population activities of MGB neurons in the initial
learning (61 trial, n = 749 cells for naive, 192 trials, n = 755 cells for expert). Right: Average population activities in the reversal
learning (13 trials, n = 604 cells for naive, 90 trials, n = 637 cells for expert). (k) The proportion of ramping cells (ramp-up and
ramp-down cells) found in k-means analysis as a function of the mean of the number of anticipatory licking during the delay period
per trial in Hit trials. * and ** in the figures represent the statistical significance after Bonferroni correction. *, p <0.05, **, p <0.01.
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fig. S5 | Stable evolution of MGB activity patterns during the stimulus period in the Go/Nogo learning task. (a) Representative
trial-by-trial correlation matrix within and between Go/Nogo trials in one session. (b) Stimulus activity correlation matrices from all mice
in different learning stages (Naive/Expert/Reversal-naive/Reversal-expert). Each matrix represents pair-wise population vector
correlation (PVC) for all trials in one learning session. (c) Mean correlation value (R) in each session shown in (b) was grouped into
initial (left) and reversal training (right). PVC in stimulus period in Expert and Reversal-expert did not significantly differ from Naive or
Reversal-naive condition respectively (details in Table S1). Visualization of counterbalanced stimulus-reward pairing by color of dots.
Both groups showed consistent trend of activity pattern. Red: Mice trained on auditory-reward pairing in initial training session. Green:
Mice trained on visual-reward pairing in initial training session.
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fig. S6 | Distinct evolution of MGB activity patterns during the delay period in the Go/Nogo learning task. (a) Delay activity
correlation matrices from all mice in different learning stages (Naive/Expert/Reversal-naive/Reversal-expert). Each matrix represents
pair-wise population vector correlation (PVC) for all trials in one learning session. (b) Mean correlation value (R) in each session shown
in (a) was grouped into initial (left) and reversal training (right). PVC in delay period in Go trial in Expert or Reversal-expert condition is
higher than Naive or Reversal-naive respectively (slope > 0, p < 0.01, N = 8, details in Table S1). Visualization of counterbalanced
stimulus-reward pairing by color of dots. Both groups showed consistent trend of activity pattern. Red dots: Mice trained on auditory-
reward pairing in initial training session. Green dots: Mice trained on visual-reward pairing in initial training session.
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fig. S7 | Coherence of MGB population activity is increased during the delay period of Hit but not False Alarm (FA) trials.
(a) Representative trial-by-trial PVC matrix within and between Hit and False Alarm trials of one session. (b) Delay activity PVC
matrices from all mice in different learning stages (Naive/Expert/Reversal-naive/Reversal-expert). Each matrix represent pair-wise
PVC for all trials in one learning session. Summary data were shown in Fig.3 e, f and Table S1.
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fig. S8 | Coherence of MGB population activity is not increased during the stimulus period of Hit and False Alarm (FA) trials,
but remodeled after reversal learning. (a) Representative trial-by-trial PVC matrix within and between Hit and False Alarm trials of
one session. (b) Stimulus PVC matrices from all mice in different learning stages (Naive/Expert/Reversal-naive/Reversal-expert). Each
matrix represent pair-wise PVC for all trials in one learning session. (c) Summary data. (N = 8, details in Table S1).
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fig. S9 | Increase of population vector correlation (PVC) in MGB during learning depends on MGB population activity and is
not driven by ramping-cells. (a) Mean trial-by-trial PVC (R) during the delay period of Go trials in different learning stages. Increase
of PVC persisted even if ramping cells (ramp-up and ramp-down, Fig. 2a, b) were removed (* p < 0.01, details in Table S1). (b) Increase
of PVC was dependent on the MGB population activity instead of subsets of neurons. Same number of cell as ramping cells (ramp-up
+ ramp-down) in each mouse were randomly removed before calculating PVC (number of random cells =30, *p < 0.01, details in Table
S1).
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fig. S10 | MGB co-activity network structure does not depend on ramping cells. (a) Decrease of local connectivity was observed
specifically in reversal-naive learning stage when reward contingency was changed, suggesting a re-organization of pre-configured
connectivity that was established in Initial-expert stage. (b) Ramp-cells were not the sole contributors of connectivity re-organization.
Removing ramp-cells (ramp-up and ramp-down, Fig. 2a, b) or random cells did not abolish the change of network architecture which
was an indication of MGB general ensemble remodeling during reward-association learning task (detail in Methods).
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fig. S11 | Negative correlation co-activity network during delay period in Go-trials. (a) There was no prominent change of global
negative co-activity structure from Naive to Expert stage in Initial and Reversal learning phase which was in accordance to the
increase of global positive co-activity network (detail in Methods). Local negative co-activity network became less connected from
Naive to Expert stage suggesting an increase of connectivity during delay period when the mouse learned the task structure. Error
bars: 95 % confidence interval of mean.
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fig. S12 | MGB co-activity networks during the stimulus period. (a) Experimental design. (b and c) Change of hubness, path
length and cluster coefficient across all neuron pairs in relation to the naive Go (or) Nogo condition (detail in Materials and Methods).
There was no obvious change of global and local connectivity in initial training phase during stimulus presentation period for within
group identical stimulus 1 and 2. Conversely in reversal learning, global and local connectivity of both Go and Nogo stimuli were
strengthened. Neural representation of stimuli that were associated or dissociated with reward contingency were remodeled in the
reversal naive phase. Error bars: 95 % confidence interval of mean.
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fig. S13 | Sensory coding in MGB is not biased to the reward-associated stimuli in non-rewarded sensory mapping sessions.
(a) Schematics of sensory mapping. Various auditory and visual stimuli were presented as unisensory stimulus, and the combination of
them were presented as multisensory stimulus. (b) Average population calcium activity in uni- and multi-sensory trials before and after
learning (n = 233 cells, 6 mice). (c) Proportions of the excited and inhibited cells to auditory, visual and multi-sensory stimuli. (d)
Transition of the sensory response amplitude from the cells showing the significant response at pre-learning stage were plotted. Each
line represents sensory responses before and after learning from the same cell for a specific stimulus feature (tone frequency or grating
direction). (e) Changes of the best frequency/direction tuning across learning. (f) Averaged population calcium activity to the reward-
conditioned sensory stimuli (12 kHz tone, rightward grating, combination of them, n = 233 cells, 6 mice). (g) Average population
responses of the excited or inhibited cells to the conditioned stimuli. (h) Transition of the sensory response amplitude to the conditioned
stimuli. Each line represents the sensory response of the same cell before and after learning. (I) Changes of the best frequency/direction
tuning referred to the conditioned stimuli. Statistical details in Table S1. Parts of panel S13a were created with BioRender.com.
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fig. S14 | MGB single cell responses across sensory mapping. (a) Heat-map shows average peri-stimulus time histogram (PSTH)
of cell response in pre-learning for uni-sensory auditory stimulus sorted by pre-learning response amplitude during stimulus
presentation (column a). Same sorting index was used to sort post-learning PSTH (column b). Reduced response amplitude with
same sorting index indicated a remapping of sensory response to the same auditory frequency. Post-learning responses were not
diminished after learning if cells were sorted with amplitude in post-learning session (column c). Correlation of cell response time
series using two different indexes was compared to quantify the extent of remapping (Rab:Rac, 2-sample ks-test). (b, c) Same
measurement for uni-sensory visual response and multi-sensory response.
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fig. S15 | Single cell tuning properties are not biased to the reward-associated stimuli in non-rewarded sensory mapping
sessions. (a) Example sensory responses of individual MGB neurons to auditory and multisensory stimuli. Individual neurons showed
stable or plastic sensory response patterns to auditory and multisensory stimuli. (b) Transition of tone-frequency tuning across
learning. The neurons showing a similar changing pattern of frequency tuning were grouped by k-means clustering. (c) Distribution of
tuning curve similarity of individual neurons across learning. Tuning curve similarities are comparable in auditory and multisensory
trials. R is Pearson’s correlation coefficient between pre- and post-learning tuning curve (n = 233 cells, 6 mice). (d) Multisensory index
as a function of unisensory tone response. Two-dimension distribution of unisensory response (auditory) versus multisensory index
was compared between pre-learning and post-learning conditions (5 frequencies were pooled, p > 0.05, details in Table S1).
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fig. S16 | Multisensory integration remains unchanged after cross-modal reward learning. (a) Multi-sensory integration principle
is described in each quadrant. Data in 1st and 3rd quadrant were included in analysis in fig. S15d. (b) Average response of Multi-
sensory trials (Audiovisual trials) for each cell and for each auditory frequency were plotted against the sum of average response of
Uni-sensory trials (Auditory and Visual trials). Diagonal line represents unity between multisensory responses and the linear sum of
individual unisensory responses. Response distribution was not different between pre-learning and post-learning sessions (2-
dimensional 2-sample KS-test, details in Table S1). Each dot indicates a cell (repeat measurement form 1-3 sessions).
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fig. S17 | The total MGB population reliably encodes sensory information. (a) Decoding design matrix. Linear-SVM decoder was
trained and tested in a session-by-session manner. (b) Three-way modality decoding. Left: Matrix of modality decoding accuracy from
one representative mouse. Middle: Matrix of modality decoding accuracy from the same mouse generated by the shuffled data. Right:
Decoding accuracies grouped by intra-day, pre cross-day and pre-post cross-day conditions. Modality decoding accuracies were
above chance (*p < 0.01). Each dot represents the one session data from one mouse. Shuffle data showed the chance level decoding
accuracy. (c) Five-way tone-frequency decoding. The figure structures are the same as (b). Frequency decoding accuracies were
above chance (*p < 0.01, details in Table S1).
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Supplementary Tables
Table. S1. Summary of statistical tests

Fig Method Statistics 
value

df p bonferroni-
corrected p

detail description notes

Fig.1f Signed-rank test 2.00E+01 8.44E-01 NA N of session to reach criterion 
between initial and reversal learning

Fig.1k, left Chi-square test 2.95E+01 1.74E-06 3.48E-06 Initial learning, 
cell type ratio

2x bonferroni 
correction

Fig.1k, Right Chi-square test 2.66E+01 7.22E-06 1.44E-05 Reversal learning, 
cell type ratio

2x bonferroni 
correction

Fig3. a-d Linear Mix Model
(fix:Nai-Exp, random: Mouse ID)

1.62E-02 45 3.18E-01 1.27E+00 Main-effect slope, Go,Stim 4x bonferroni 
correction

8.03E-02 45 9.89E-06 3.96E-05 Main-effect slope, Go,Delay 4x bonferroni 
correction

Linear Mix Model 
(fix:RevNai-RevExp, random: 

Mouse ID)
2.55E-02 44 2.53E-02 1.01E-01 Main-effect slope, Go,Stim

4x bonferroni 
correction

6.88E-02 44 8.79E-06 3.52E-05 Main-effect slope, Go,Delay 4x bonferroni 
correction

Fig3. e,f Linear Mix Model 
(fix:Nai-Exp, random: Mouse ID)

7.51E-02 45 3.49E-05 1.40E-04 Main-effect slope, Hit,Delay 4x bonferroni 
correction

1.27E-02 40 9.72E-02 3.89E-01 Main-effect slope, FA, Delay 4x bonferroni 
correction

Linear Mix Model
 (fix:RevNai-RevExp, random: 

Mouse ID)
6.36E-02 43 5.43E-05 2.17E-04 Main-effect slope, Hit,Delay

4x bonferroni 
correction

1.47E-02 44 2.47E-01 9.88E-01 Main-effect slope, FA, Delay 4x bonferroni 
correction

Fig3. g Wilcoxon Rank Sum Test 9.10E+01 3.08E-01 6.15E-01 Expert-Hit, Lick/Nolick 2x bonferroni 
correction

9.50E+01 4.73E-01 9.45E-01 Naive-Hit, Lick/Nolick PVC-Hit-
Lick/Nolick

Fig3. h Linear Mix Model 
(fix:Nai-Exp, random: Mouse ID)

5.81E-02 34 1.07E-03 2.14E-03 Main-effect slope, Go,Delay (Nai Exp)

2x bonferroni 
correction 

(removing ramp 
cells)

6.60E-02 32 2.47E-04 4.95E-04 Main-effect slope, Go,Delay (RevNai 
RevExp)

Fig Method Statistics 
value

df p bonferroni-
corrected p

detail description notes

fig. S1c Signed-rank test 3.50E+01 1.56E-02 3.13E-02 Hit RT between naive and expert phase 2x bonferroni 
correction

fig. S1f Signed-rank test 3.50E+01 1.56E-02 3.13E-02 Hit RT between naive and expert phase 2x bonferroni 
correction

fig. S2c Chi-square 1.84E+01 3.57E-04 7.14E-04 Proportion of stimulus-responsive cell
in Aud-reward 1st in Initial learning

2x bonferroni 
correction

fig. S2c Chi-square 2.85E+01 2.80E-06 5.60E-06 Proportion of stimulus-responsive cell
in Aud-reward 1st in Reversal learning

2x bonferroni 
correction

fig. S2d Chi-square 1.75E+01 5.57E-04 1.11E-03 Proportion of stimulus-responsive cell
in Vis-reward 1st in Initial learning

2x bonferroni 
correction

fig. S2d Chi-square 1.20E+01 7.50E-03 1.50E-02 Proportion of stimulus-responsive cell
in Vis-reward 1st in Reversal learning

2x bonferroni 
correction

fig. S4c, left ks-test (2 sample) 1.24E-01 7.36E-02 2.21E-01

r value distributions between naive and 
expert phase

during the stimulus period in Hit trials, 
locmotion

3x bonferroni 
correction

fig. S4c, left ks-test (2 sample) 1.81E-01 1.73E-03 5.19E-03

r value distributions between naïve and 
expert phase

during the delay period in Hit trials, 
locomotion

3x bonferroni 
correction
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fig. S4c, left ks-test (2 sample) 6.19E-02 8.04E-01 2.41E+00

r value distributions between naïve and 
expert phase

during the ITI period in Hit trials, 
locomotion

3x bonferroni 
correction

fig. S4c, right ks-test (2 sample) 1.33E-01 4.35E-02 1.30E-01

r value distributions between naïve and 
expert phase

during the stimulus period in Hit trials, 
locmotion

3x bonferroni 
correction

fig. S4c, right ks-test (2 sample) 1.33E-01 4.35E-02 1.30E-01

r value distributions between naïve and 
expert phase

during the delay period in Hit trials, 
locomotion

3x bonferroni 
correction

fig. S4c, right ks-test (2 sample) 7.14E-02 6.42E-01 1.93E+00

r value distributions between naïve and 
expert phase

during the ITI period in Hit trials, 
locomotion

3x bonferroni 
correction

fig. S4d, left ks-test (2 sample) 1.05E-01 1.88E-01 5.64E-01
r value distributions between naïve and 

expert phase
during the stimulus period in Hit trials

3x bonferroni 
correction

fig. S4d, left ks-test (2 sample) 1.57E-01 9.80E-03 2.94E-02
r value distributions between naïve and 

expert phase
during the delay period in Hit trials

3x bonferroni 
correction

fig. S4d, left ks-test (2 sample) 1.00E-01 2.32E-01 6.95E-01
r value distributions between naïve and 

expert phase
during the ITI period in Hit trials

3x bonferroni 
correction

fig. S4d, right ks-test (2 sample) 1.81E-01 1.73E-03 5.19E-03
r value distributions between naïve and 

expert phase
during the stimulus period in Hit trials

3x bonferroni 
correction

fig. S4d, right ks-test (2 sample) 8.10E-02 4.80E-01 1.44E+00
r value distributions between naïve and 

expert phase
during the delay period in Hit trials

3x bonferroni 
correction

fig. S4d, right ks-test (2 sample) 1.00E-01 2.32E-01 6.95E-01
r value distributions between naïve and 

expert phase
during the ITI period in Hit trials

3x bonferroni 
correction

fig. S4e, left signed-rank 8.49E+03 3.32E-03 9.96E-03 Delta of absolute r value during the 
stimulus period

3x bonferroni 
correction

fig. S4e, left signed-rank 5.96E+03 1.00E-08 3.00E-08 Delta of absolute r value during the 
delay period

3x bonferroni 
correction

fig. S4e, left signed-rank 1.08E+04 7.46E-01 2.24E+00 Delta of absolute r value during the ITI 
period

3x bonferroni 
correction

fig. S4e, right signed-rank 8.50E+03 3.47E-03 1.04E-02 Delta of absolute r value during the 
stimulus period

3x bonferroni 
correction

fig. S4e, right signed-rank 7.69E+03 1.24E-04 3.72E-04 Delta of absolute r value during the 
delay period

3x bonferroni 
correction

fig. S4e, right signed-rank 9.31E+03 4.44E-02 1.33E-01 Delta of absolute r value during the ITI 
period

3x bonferroni 
correction

fig. S4f, left signed-rank 1.12E+04 9.18E-01 2.75E+00 Delta of absolute r value during the 
stimulus period

3x bonferroni 
correction

fig. S4f, left signed-rank 9.74E+03 1.29E-01 3.86E-01 Delta of absolute r value during the 
delay period

3x bonferroni 
correction

fig. S4f, left signed-rank 9.78E+03 1.42E-01 4.25E-01 Delta of absolute r value during the ITI 
period

3x bonferroni 
correction

fig. S4f, right signed-rank 1.30E+04 3.22E-02 9.66E-02 Delta of absolute r value during the 
stimulus period

3x bonferroni 
correction

fig. S4f, right signed-rank 1.08E+04 7.71E-01 2.31E+00 Delta of absolute r value during the 
delay period

3x bonferroni 
correction

fig. S4f, right signed-rank 8.16E+03 9.40E-04 2.82E-03 Delta of absolute r value during the ITI 
period

3x bonferroni 
correction

fig. S4g, left Chi-square 5.56E+01 9.09E-14 1.82E-13
Frequency of lick and non-lick trial 

between naive and expert in initial 
learning

2x bonferroni 
correction

fig. S4g, right Chi-square 4.34E+01 4.36E-11 8.72E-11
Frequency of lick and non-lick trial 

between naive and expert in reversal 
learning

2x bonferroni 
correction

fig. S5 Linear Mix Model
 (fix:Nai-Exp, random: Mouse ID)

1.62E-02 45 3.18E-01 1.27E+00 Main-effect slope, Go,Stim 4x bonferroni 
correction
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-1.96E-02 45 4.98E-02 1.99E-01 Main-effect slope, NoGo, Stim
Linear Mix Model

 (fix:RevNai-RevExp, random: 
Mouse ID)

2.55E-02 44 2.53E-02 1.01E-01 Main-effect slope, Go,Stim

-4.29E-03 44 6.87E-01 2.75E+00 Main-effect slope, NoGo, Stim

fig. S6 Linear Mix Model
 (fix:Nai-Exp, random: Mouse ID)

8.03E-02 45 9.89E-06 3.96E-05 Main-effect slope, Go,Delay 4x bonferroni 
correction

-1.10E-02 45 1.07E-01 4.28E-01 Main-effect slope, NoGo, Delay
Linear Mix Model

 (fix:RevNai-RevExp, random: 
Mouse ID)

6.88E-02 44 8.79E-06 3.52E-05 Main-effect slope, Go,Delay

-1.85E-02 44 2.21E-02 8.85E-02 Main-effect slope, NoGo, Delay

fig. S8b Linear Mix Model
 (fix:Nai-Exp, random: Mouse ID)

1.52E-02 45 3.50E-01 1.40E+00 Main-effect slope, Hit,Stim 4x bonferroni 
correction

7.73E-04 40 9.35E-01 3.74E+00 Main-effect slope, FA, Stim
Linear Mix Model

 (fix:RevNai-RevExp, random: 
Mouse ID)

2.86E-02 43 9.31E-03 3.73E-02 Main-effect slope, Hit,Stim

9.81E-03 44 3.61E-01 1.45E+00 Main-effect slope, FA, Stim

fig. S9a Linear Mix Model
 (fix:Nai-Exp, random: Mouse ID)

5.81E-02 34 1.07E-03 2.14E-03 Main-effect slope, Go,Delay (Nai Exp)

2x bonferroni 
correction 

(removing ramp 
cells)

6.60E-02 32 2.47E-04 4.95E-04 Main-effect slope, Go,Delay (RevNai 
RevExp)

fig. S9b Linear Mix Model
 (fix:Nai-Exp, random: Mouse ID)

6.70E-02 34 1.69E-04 3.37E-04 Main-effect slope, Go,Delay (Nai Exp), 
random removal

2x bonferroni 
correction 
(randomly 

removing ramp 
cells)

7.24E-02 32 2.27E-05 4.55E-05
Main-effect slope, Go,Delay (RevNai 

RevExp), 
random removal

fig. S13c Chi-square Test 6.24E+00 4.41E-02 NA Uni-Aud, Pre:Post learning Response cell 
fraction

4.61E+00 9.98E-02 NA Uni-Vis, Pre:Post learning
3.20E+00 2.02E-01 NA Multi-AudVis, Pre:Post learning

fig. S13d Rank sum test 1.38E+04 7.62E-10 1.52E-09 Uni-Aud-Exc, Pre:Post learning 2x bonferroni 
correction

1.50E+04 4.95E-20 9.90E-20 Uni-Aud-Inh, Pre:Post learning 2x bonferroni 
correction

1.13E+03 7.32E-08 1.46E-07 Uni-Vis-Exc, Pre:Post learning 2x bonferroni 
correction

6.51E+03 9.20E-04 1.84E-03 Uni-Vis-Inh, Pre:Post learning 2x bonferroni 
correction

1.87E+04 2.55E-06 5.10E-06 Multi-AudVis-Exc, Pre:Post learning 2x bonferroni 
correction

3.03E+04 1.44E-19 2.88E-19 Multi-AudVis-Inh, Pre:Post learning 2x bonferroni 
correction

fig. S13h  Rank sum test 9.31E+02 9.88E-06 1.98E-05 Uni-12kHz-Exc, 
Pre:Post learning

2x bonferroni 
correction

7.15E+02 5.69E-07 1.14E-06 Uni-12kHz-Inh, 
Pre:Post learning

2x bonferroni 
correction

NA NA NA Uni-180deg-Exc, 
Pre:Post learning

n=4, 
sample too 

small for 
ranksum test

4.66E+02 1.04E-01 2.08E-01 Uni-180deg-Inh, 
Pre:Post learning

2x bonferroni 
correction

1.15E+03 4.98E-04 9.96E-04 Multi-12kHz180deg-Exc, 
Pre:Post learning

2x bonferroni 
correction

1.65E+03 8.01E-07 1.60E-06 Multi-12kHz180deg-Inh, 
Pre:Post learning

2x bonferroni 
correction

fig. S14 ks test (2-sample) 5.58E-02 8.51E-01 4.26E+00 D value, Uni-Aud: 4 kHz
4.29E-02 9.80E-01 4.90E+00 D value, Uni-Aud: 8 kHz
1.42E-01 1.67E-02 8.34E-02 D value, Uni-Aud: 12 kHz

R-Pre-learning 
activity (idx: 

Pre) vs
R-Post-learning 

activity (idx: 
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1.63E-01 3.50E-03 1.75E-02 D value, Uni-Aud: 16 kHz
1.55E-01 6.71E-03 3.36E-02 D value, Uni-Aud: 20 kHz
2.10E-01 5.21E-05 2.09E-04 D value, Uni-Vis: 0 deg
1.63E-01 3.50E-03 1.40E-02 D value, Uni-Vis: 90 deg
1.37E-01 2.22E-02 8.87E-02 D value, Uni-Vis: 180 deg
1.63E-01 3.50E-03 1.40E-02 D value, Uni-Vis: 270 deg
6.01E-02 7.82E-01 3.91E+00 D value, Multi-Aud: 4 kHz
8.15E-02 4.06E-01 2.03E+00 D value, Multi-Aud: 8 kHz
8.58E-02 3.43E-01 1.71E+00 D value, Multi-Aud: 12 kHz
1.46E-01 1.24E-02 6.21E-02 D value, Multi-Aud: 16 kHz
1.16E-01 8.11E-02 4.06E-01 D value, Multi-Aud: 20 kHz

fig. S15c ks test (2-sample) 7.73E-02 4.75E-01 R-Multi-sensory vs R-Uni-sensory all cells were 
included

5.62E-02 1.04E-01
Multi-sensory response distribution

(2d, x: Aud+Vis, y: index), 
pre vs post

all frequencies 
were mixed

fig. S15d 2-dimension K-S test (2-sample) 9.57E-02 1.85E-01 Multi-sensory index distribution 
(2d, x:Aud, y: index), pre vs post

all frequencies 
were mixed

fig. S16 2-dimension K-S test (2-sample) 5.62E-02 1.04E-01
Multi-sensory response distribution 

(2d, x: Aud+Vis, y: index),
 pre vs post

all frequencies 
were mixed

fig. S17b Wilcoxon Rank Sum Test 1.18E+03 3.66E-10 1.10E-09 Intra-day, data:shuffle, modality 
decoding

3x bonferroni 
correction

1.54E+03 2.18E-11 6.54E-11 Pre-cross day, data:shuffle, modality 
decoding

3x bonferroni 
correction

5.00E+03 2.15E-08 6.45E-08 PrePostCrossDay, data:shuffle, modality 
decoding

3x bonferroni 
correction

fig. S17c Wilcoxon Rank Sum Test 1.18E+03 3.29E-10 9.88E-10 Intra-day, data:shuffle, frequency 
decoding

3x bonferroni 
correction

1.55E+03 6.51E-12 1.95E-11 Pre-cross day, data:shuffle, frequency 
decoding

3x bonferroni 
correction

5.27E+03 3.19E-12 9.58E-12 PrePostCrossDay, data:shuffle, 
frequency decoding

3x bonferroni 
correction

R-Pre-learning 
activity (idx: 

Pre) vs
R-Post-learning 

activity (idx: 
R-Pre-learning 
activity (idx: 

Pre) vs
R-Post-learning 
R-Pre-learning 
activity (idx: 

Pre) vs
R-Post-learning 

activity (idx: 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.23.554119doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.554119
http://creativecommons.org/licenses/by/4.0/

	Hasegawa_et_al_Text_041
	Methods_023
	SupplementaryFigures_009
	Statistics_014_Biorxiv

