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Phase information is conserved in sparse,
synchronous population-rate-codes via
phase-to-rate recoding

Daniel Müller-Komorowska 1,2,5 , Baris Kuru2,5, Heinz Beck2,3 &

Oliver Braganza 2,4

Neural computation is often traced in terms of either rate- or phase-codes.

However, most circuit operations will simultaneously affect information

across both coding schemes. It remains unclear how phase and rate coded

information is transmitted, in the face of continuous modification at con-

secutive processing stages. Here, we study this question in the entorhinal

cortex (EC)- dentate gyrus (DG)- CA3 system using three distinct computa-

tional models. We demonstrate that DG feedback inhibition leverages EC

phase information to improve rate-coding, a computation we term phase-to-

rate recoding. Our results suggest that it i) supports the conservation of phase

information within sparse rate-codes and ii) enhances the efficiency of plasti-

city in downstream CA3 via increased synchrony. Given the ubiquity of both

phase-coding and feedback circuits, our results raise the question whether

phase-to-rate recoding is a recurring computational motif, which supports the

generation of sparse, synchronous population-rate-codes in areas

beyond the DG.

One of the most fascinating aspects of neuronal activity is its ability to

encode sensory variables, such as place, intensity or context. Yet,

understanding how sensory variables can be decoded from spikes of a

neural populations and passed on for further processing to a different

set of neurons with different properties continues to be an interesting

challenge. This challenge is compounded when multiple coding stra-

tegies are at play across different interacting regions. Two broad

coding strategies have been identified acrossmultiple brain regions. In

rate-coding schemes information is encoded in the firing rates of

populations of neurons1. Temporal coding schemes, on the other

hand, describe when information is encoded in the precise timing of

spikes relative to a relevant reference signal2–4. A prominent temporal

coding scheme is phase-coding, where the timing of spikes with

respect to an ongoing field-potential oscillation represents

information5,6. For instance, the precise timing of spikes within theta

oscillations is known to carry spatial information in both the

hippocampus7–9 and its input areas10,11. Specifically, cells within these

regions display theta-phase precession, meaning that the spatial

location of an animal is reliably related to the timing of spikes within

the ongoing theta cycle. Interestingly, phase precession is being

reported in a steadily increasing number of brain areas, representing

spatial as well as non-spatial information12–14, in both rodents and

humans15,16.

Importantly, phase- and rate-coding schemes are not mutually

exclusive and likely often play complementary roles13,17. However, it is

not well understood how phase- and rate-coded information is mod-

ified during successive stages of processing. This is non-trivial because

both the firing rate and the temporal relation of action potentials are

substantially modified by local circuit motifs. For instance, feedback

inhibition is often argued to perform a so called winner-takes-all
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computation on neuronal rate-codes, where only the cells with the

highest input rates get to fire18,19. However, feedback inhibition is likely

to also strongly affect information coded via theta phase precession,

or other time codes20. More generally, it remains unclear how phase-

and rate-coded information are transmitted, in the face of continuous

modification at consecutive processing stages in the brain

Here, we use computational modeling of the entorhinal cortex

(EC)−dentate gyrus (DG)–CA3 system to rigorously examine how the

information contained in phase- and rate-codes is modified by an

experimentally well-constrained feedback inhibitory circuit. We use

this system because (i) phase- and rate-codes are known to carry

spatial information in these sequentially connected subfields, and (ii)

the DG is a prominent example of strong canonical inhibitory circuits

with known physiological and computational properties. Specifically,

feedback inhibition in DG supports so called “pattern separation,” i.e.,

the decorrelation of activity patterns, which in turn is thought to

improve successful associative storage in CA3 networks, thus enhan-

cing so called “pattern completion”21. Notably, computational

explorations of pattern separation and completion have over-

whelmingly assumed rate-coding schemes (but see Madar et al.22),

despite evidence for the relevance of spike-timing22,23.

Our results reveal a coding principle emerging when (i) feedback

inhibitory circuits and (ii) phase precessing inputs coincide, termed

“phase-to-rate recoding.” We show that feedback inhibition draws on

ECphase information to create a sparse, yet synchronized, population-

rate-codewith increased information content.We establish this results

using three complementary approaches, namely (i) spatial information

analysis24, (ii) perceptron analysis25, and (iii) tempotron analysis26.

Phase-to-rate recoding has two key advantages. First, it allows

information within dense phase-codes to be conserved within sparse

rate-codes. Second, by increasing DG synchrony, it increases the

efficiency of spike-timing-dependent plasticity (STDP) at recurrent

CA3 synapses. Together, this suggests that phase-to-rate recoding in

the DG may support the canonical hippocampal functions of pattern

separation and completion. Given the ubiquity of temporal coding and

feedback circuits, these results also raise the question whether brain

circuits more generally can implement variations of phase-to-rate

recoding to create sparse, synchronous population-rate-codes with

increased information content.

Results
DG pattern separation of phase- and rate-codes
To investigate how phase- and rate-coded information are transmitted

across the EC-DGcircuit, wefirst created aphenomenologicalmodel of

phase-precessing grid-cell firing in EC. Briefly, we modeled a grid cell

population of 200 cells, matching the empirical distribution of grid

sizes, phases andorientations27,28 (Fig. 1a, Supplementary Fig. 1a, b).We

then adapted a phase precession model29 allowing us to create natur-

alistic phase-precessing spike patterns for trajectories through virtual

space. Specifically, we assumed amousemoving through virtual space

in a straight line at a constant velocity (20 cm/s; Fig. 1b), simulating

grid cell activity based on a constant theta oscillation at 10Hz (Fig. 1c,

Supplementary Fig. 1c). This reproduced the distinctive phase pre-

cessionpatterns observed empirically, both for average data of ECgrid

cells8,10 (Fig. 1d, e) and single trial data of identified EC stellate cells30,31

(Supplementary Fig. 2).

To explore how phase and rate information from EC inputs was

affectedby local circuits inDG,weused apreviously establishedmodel

with well-constrained temporal properties (pydentate32). Briefly,

pydentate reflects a biophysically realistic model, in which we had

precisely calibrated the spatial and temporal properties of the com-

plex feedback inhibitory microcircuit output to experimental data32

(Fig. 1f, g, a local circuit model containing 2000 GC and 108 inter-

neurons, see “Methods”).

While there is substantial research on the ability of the DG circuit

to perform pattern separation of rate-coded inputs, it has never been

explored if it can also perform pattern separation of phase-coded

inputs. To address this question, we fed the empirically matched EC-

patterns into pydentate, adjusting the synaptic weight of perforant

path (PP) inputs to lead to plausibly sparse activity in DG (Fig. 1h, i). To

examine if the DG network performed pattern separation on these

inputs, we simulated pairs of parallel trajectories with varying distance

(Supplementary Fig. 1b).

A common way to define pattern separation is as a decrease in

Pearson’s correlation (R) between activity pattern pairs from the

input area (EC) to the output area (DG). To explore pattern separa-

tion in both a rate- and a phase-coding domain, we next devised a

method to perform an analogous analysis for phase-coded inputs.

Specifically, we computed either the mean rate or the mean phase of

spikes within individual theta cycles (100ms time bins), over the

course of each trajectory. The information within each theta cycle

can be thought to be represented by a theta-vector (Fig. 1j), where, in

polar coordinates, the angle is defined by the mean phase of spikes

(θ) and themagnitude is defined by the firing rate (r)3,5. For each GC, a

trajectory is thus represented as a sequence of theta-vectors, one per

100ms bin (Supplementary Fig. 1d, e). In order to isolate phase and

rate information for independent analysis, it was necessary to

transform individual theta-vectors from polar to Cartesian coordi-

nates ([r, θ] into [x, y]; Fig. 1h). This is because phase-values of cycles

without spikes are undefined, precluding correlation calculation, but

the corresponding [x, y]-coordinates are well defined (namely as

[0,0]). We then isolated phase-codes by holding rate constant and

vice versa (see methods).

This allowed us to compute Pearson’s correlations for pairs of EC

input patterns (Rin) and the corresponding pairs of DG output pat-

terns (Rout), for only phase or only rate information (Fig. 1k, l,

respectively). Greater distances between parallel trajectories led to

decreasing correlations of EC patterns (Rin) for both phase- and rate-

code. Note that the presently reported maximal input correlation

values are not unphysiologically low, but reflect a necessary metho-

dological idiosyncrasy, namely the need to measure correlations

based on 100ms (theta) time-windows. Such short time-windows are

known to artificially reducemeasured rate-correlation values several-

fold22,32. Identical spike trains (those of our similar trajectories) lead

to correlations of Rrate = 0.4 when assessed with 100ms time-

windows and Rrate = 0.85 when assessed with 2 s time-windows. In

other words, the actual underlying data covers a similar range as

previous studies22,32 when compared appropriately, i.e., based on

similar time-windows (note that, to the best of our knowledge there

are no previous studies assessing phase code correlation). Indeed,

“behaviorally” identical trajectories (distance = 0 cm) led to input

correlations indistinguishable from the shown maximal input corre-

lation (distance = 0.5 cm, Supplementary Fig. 7), suggesting we cover

the behaviorally plausible range (given the constraint of a Poisson

process).

We found that the network reliably separated more correlated

input patterns in both phase- and rate-code (Fig. 1k, l, data points were

consistently below unity, where unity indicates that input and output

correlations are identical). We quantified total pattern separation as

the area between mean output correlations and unity32 (Fig. 1k, l,

insets), revealing that both rate and phase effects are significant (one-

sample t test for deviation from 0, n = 10, rate: mean area=0.118 ±

0.003, p = 9.6 × 10−11; phase: mean area=0.049 ±0.003, p = 1.4 × 10−8,

Supplementary Table 1). Notice that a direct comparison of pattern

separation between phase- and rate-coding is problematic, e.g.,

because the two codes span different ranges of input similarity.

Nevertheless, these data suggest that pattern separation in theDGmay

operate via both a phase- and a rate-code.
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Impact of EC phase-code on DG rate-code
While pattern separation is thought to aid downstream learning,

decorrelation metrics do not directly inform us about the information

content of neural activity patterns (in either rate- or phase-codes).

Specifically, it is conceivable that DG inhibitory microcircuits increase

decorrelation simply by removing information. This is important,

because a pattern separation mechanism which simply degrades

information might lead to worse rather than improved auto-

associative encoding in CA3. We therefore next investigated

the theta-phase structure and information content of EC and DG

activity, and the latter’s dependence on inhibitory microcircuit

motifs (Fig. 2).

As expected, phaseprecessionof grid cells (see Fig. 1d, e) led to EC

phases distributed relatively broadly across the theta cycle (Fig. 2a, b,

gray histograms), consistent with experimental data10,30,33. In other

words, the EC phase-code makes use of much of the phase-coding

space. By contrast, in the intact DG circuit GC spiking was con-

centrated within the early theta cycle, implying less of the possible

coding space was utilized (Fig. 2a, upper left). Strikingly, the peak of

activity in DG (the output area) seemed to precede the peak of activity

in EC (the input area). Indeed, themean phase vector of DGwas earlier

in the theta cycle than that of EC (Supplementary Fig. 3). This highly

counterintuitive pattern is consistent with available data in vivo, which

also shows (i) a more restricted phase distribution and (ii) an earlier
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peak for DG than EC11 (see “Discussion”). Note that the “early” versus

“late” theta terminology used throughout this paper is a narrative

convenience - since theta is a cyclical phenomenon “late” theta grid

cells can also drive “early” theta GCs11, though in the present case this

would imply implausibly long synaptic delays (>50ms, see

“Discussion”).

Next, we tried to pinpoint the circuit mechanism responsible for

the absence of late-theta GC spikes. To this end, we selectively

removed feedforward, feedback, or total inhibition in our model

(Fig. 2a). We found that removing feedback, but not feedforward

inhibition substantially broadened the DG theta-phase histogram. This

suggests that, while the presence of feedback inhibition is likely

important for sparse coding and pattern separation, it may interfere

with the transmission of phase information from EC to DG.

We hypothesized that feedback inhibitionmay partially translate

EC phase-code into a GC population-rate-code. The reason is that the

timing of input spikes is crucial in determining which cells become

active and trigger feedback inhibition19,34. To test this idea, we

devised a shuffling procedure which fully conserves the mean fre-

quency and population-level theta-phase distribution in EC, but

removes all phase information about the animal’s location, i.e., phase

precession (Fig. 2b, d). Interestingly, shuffling slightly increased GC

firing rates, despite identical rates in EC (Fig. 2c, see Supplementary

Table 2 for statistics). The effect was clearest in the disinhibited

network, suggesting phase-coding and intrinsic GC properties

interact to slightly increase sparsity. However, since the effect was

small, we do not further consider it. Note that the potential effect of

increased firing for shuffled data works in the opposite direction of

our main results below, rendering these conservative.

We then inspected how shuffling affected pattern separation,

including the potential roles of feedback and feedforward inhibition

(Fig. 2e–g). Shuffled EC inputs were still significantly decorrelated by

the full DG network (Fig. 2e,f; one-sample t-test for deviation from 0,

n = 10 each, rate: mean area=0.137 ± 0.004, p =4.0 × 10−11; phase: mean

area=0.02 ±0.001,p = 2.6 × 10−3, SupplementaryTable 3). Note that, for

shuffled phase-codes the range in input similarity is already reduced to

almost zero, precluding a meaningful interpretation of these results.

The following thus pertains to the rate-codes, where input correlations

are identical (Fig. 2g). First we observed that, consistent with previous

results32, both feedforward and feedback inhibitory microcircuits

contributed to pattern separation (Fig. 2g, see Supplementary Table 4

for statistics). This was the case for both shuffled and non-shuffled EC

inputs. Interestingly, correlation analysis additionally suggested an

improvement of pattern separation of rate codes due to phase shuf-

fling (Fig. 2g). This may be, because GC coincidence detection trans-

lates EC phase randomization into a GC population code

randomization in a supra-linear way. Inversely, it suggests that phase

information in EC per se actually decreases DG pattern separation.

However, in this context it is important to reemphasize that Pearson’s

correlation coefficient is insensitive to the informational content of a

signal. For instance, randomizing spikes over spatial bins may improve

decorrelation metrics, simply by removing spatial information35.

However, beforewe explore this possibility, it is worth noticing that the

apparent improvement of pattern separationdue to shufflingwasmost

pronounced in networks containing the feedback inhibitory micro-

circuit (Fig. 2g, full, no ff). By contrast, in networks in which the feed-

back inhibitory microcircuit was disabled (Fig. 2g, no fb, disinh), the

effect of shuffling was dramatically reduced. This effect of phase-

shuffling on rate-correlations suggests a role of the feedback circuit in

mediating between the two coding-schemes.

To quantify howwell spatial information fromEC is retained in the

DG, we next performed spatial information analysis24 (note that this

assesses rate- but not phase-codes). If EC phase information is recoded

into GC rate codes, then perturbing EC phase information should

disrupt GC spatial (rate) information. To directly test this idea, we

calculated the mean spatial information within the EC and GC popu-

lations with and without EC-phase shuffling. The spatial information

content within EC differed slightly between shuffled and non-shuffled

data (Fig. 2h left, from 0.317 ± 0.005 to 0.316 ±0.006, paired t test,

p = 4.3 × 10−3, n = 10), but given the tiny effect size this difference is not

meaningful. By contrast, GC spatial information was substantially

decreased by shuffling, across all networks (Fig. 2h right, see Supple-

mentary Table 5 for statistics). This suggests that the apparent

improvement in pattern separation due to shuffling was associated

with a loss of spatial information. Notably, as for correlation analysis,

the effects were most pronounced in networks containing feedback

inhibition.

Next, we controlled for changes inmeanGC rate, due to removing

inhibition. Specifically, wewanted to ascertain that the observed effect

did not arise from increased mean GC activity. Changes in sparsity

might produceconfounding effects for a variety of reasons, e.g., due to

non-linear effects in cell recruitment or due to biases in the measure-

ment of spatial information per spike36. We therefore ran simulations

in which we systematically varied the PP input-strength (synaptic

weight), and with it GC sparsity, allowing us to choose PP weights that

control for mean GC activity (Supplementary Fig. 4). Our findings

remained robust (Fig. 2i): Disrupting EC phase information led to

decreases of spatial rate information across networks, with the largest

effects occurring in networks with feedback inhibition (Fig. 2i, see

Supplementary Table 6 for stats). The relative increase in spatial

information with respect to the shuffled data was greatest in the full

network (Fig. 2j, see Supplementary Table 7 for statistics) and most

saliently reduced in circuits containing no feedback inhibition (Fig. 2j).

Finally, we asked if the observed effects would remain robust to i)

neural membrane noise and ii) additional noisy GC inputs. This is

important, because time-codes might be highly sensitive to neural

noise or potential interference. Furthermore, the presently modeled

grid-cell inputs reflect only one of the many functionally and anato-

mically diverse GC inputs in vivo33. Adding noise (or noisy inputs)

reflects a parsimonious way of probing if our results would

remain robust in the presence of these non-modeled GC inputs.

First, we added Gaussian noise to the GC membrane potential, where

Fig. 1 | Pattern separation of both rate- and phase-codes. a Examples of spatial

rate profiles for four randomly generated entorhinal cortex (EC) grid cells with

empirically plausible variation in grid scales and orientations27,28. b A linear trajec-

tory (20 cm/s, black dashed arrow) of a virtual mouse was assumed to simulate EC

population activity. c A 10Hz theta oscillation was assumed to simulate a phase

precessing29 probability distribution used to modulate an inhomogeneous Poisson

process. d Top: five random Poisson instantiations; bottom: resulting mean

phase. e Illustration of resulting spatial phase-codes for grid cells with varying

orientation (compare Hafting et al.10). f Schematic of biophysically realistic dentate

gyrus (DG)model (pydentate) containing granule cells (GC), basket cells (BC), HIPP

cells (HC) and mossy cells (MC). g Cell-specific firing patterns of pydentate32.

h Representative example showing the sparse GC spiking pattern that EC grid cell

spiking evokes in pydentate (20 of 200 grid and 20 of 2000 GCs). iMean grid and

granule cell activity levels (data presented as mean± SD). j Illustration of how

“theta-vectors” are transformed from polar [phase, rate] to Cartesian [x, y] coor-

dinates. For subsequent analyses, rate-codewas isolatedby holding phase constant

and vice versa. k Pearson’s correlation coefficient between pairs of trajectories of

varying distance for EC (Rin) and DG (Rout) population-rate-codes. The inset shows

the mean area between the data (black dashed line) and unity (gray line), quanti-

fying overall pattern separation (asterisks indicate significance in two-tailed one-

sample t-test for deviation from 0, rate: mean area=0.118 ± 0.003, p = 9.6 × 10−11).

l Same as k but for population-phase-codes (phase: mean area=0.049 ±0.003,

p = 1.4 × 10−8). n = 10 grid seeds throughout. Box plots show the median, the inter-

quartile range (box) and the data range w/o Tukey-outliers (whiskers). Source data

are provided in Source Data.xlsx. Also see Supplementary Table 1 for statistics and

Supplementary Fig. 1.
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Fig. 2 | Spatial phase information in EC is translated to spatial rate information

in DG. a Theta-phase histograms for EC and DG spikes, depending on the presence

or absence of DG inhibitory circuit motifs (full: full pydentate model; no ff: feed-

forward inhibition removed; no fb: feedback inhibition removed; disinh.: fully

disinhibited network). b Theta-phase histograms for data with shuffled EC phases.

Note that, since EC phases were shuffled according the probability distribution

implied in the non-perturbed theta phase histogram (a), the resulting theta dis-

tributions are by design minimally affected. c Mean firing rates in EC (left) and DG

(right) for shuffled and non-shuffled data. d Phase precession plots10, showing the

degradation in phase-code for shuffled data despite the conserved theta-phase

histograms. e, f Pattern separation of rate- and phase-code in the full network as in

Fig. 1i, j, but for shuffled data (asterisks indicate significance in two-tailed one-

sample t test for deviation from0,n = 10 grid seeds, rate: mean area=0.137 ± 0.004,

p = 4.0 × 10−11; phase: mean area=0.02 ± 0.001, p = 2.6 × 10−3). g Quantification of

total pattern separation for shuffled and non-shuffled data across network condi-

tions. h Spatial information analysis across conditions. i Spatial information ana-

lysis across conditions with controlledGC-spike rates (for conditionswith impaired

inhibition, perforant path input weights were decreased to obtain GC firing rates

similar to the full network). j Data were normalized to show the fractional

improvement of DG spatial information given EC phase information. n = 10 grid

seeds in all panels. Box plots show themedian, the interquartile range (box) and the

data range w/o Tukey-outliers (whiskers). Asterisks in c, g–j indicate statistical

significance in Bonferroni post-tests following significant two or one-way ANOVA.

Source data are provided in Source data.xlsx. Full statistics are summarized in

Supplementary Tables 2–7.
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the initial amplitude of noise was matched to in vivo recordings37

(Supplementary Fig. 5a, b). We found that the feedback-inhibition

mediated effect of EC phase-shuffling on DG rate codes remained

robust even if noise was increased to 5x realistic levels (Supplementary

Fig. 5c, d). We also investigated a more specifically defined additional

input from the lateral entorhinal cortex (LEC), thought to contain

contextual information. The modeled grid cell inputs (which we for

brevity referred to as from EC) originate in the medial EC (MEC). LEC

inputs are particularly interesting in the present context because they

are also theta-modulated, but their modulation appears to be coun-

tercyclical to MEC38. We added such a counter-cyclically modulated

LEC input simulating the same context with either similar (Supple-

mentary Fig. 6) or identical (Supplementary Fig. 7) “context”-input

patterns (where the latter contains additional spatial phase and rate

information). This led to marked changes in the theta-phase distribu-

tion of GC spiking, but the feedback-inhibition dependent effect of

MEC phase-coding on DG rate-coding remained robust. For simplicity,

we will continue to refer to MEC as EC below.

These results suggest that spatial phase-codes in EC are in part

converted to spatial rate-codes in DG, a computation we term phase-

to-rate recoding. The data further point to the feedback inhibitory

microcircuit as the principal mediator of these effects, and suggest

that the computation is highly robust to noiseor potential interference

from additional inputs.

Partial degradation of DG phase code
Our previous results suggested that the feedback inhibitory micro-

circuit leads to a constriction of the utilized phase-coding space from

the entire theta cycle to a smaller portion of the theta cycle (Fig. 2a).

This suggests the DG in general, and its feedback inhibitory micro-

circuit in particular, may partially degrade phase-codes arriving from

EC. However, so far we have only assessed the effects on rate-coded

information24, leaving unclear how exactly phase-coded information is

affected. In this context it should perhaps be emphasized that the

presence of phase-to-rate recoding is ultimately logically independent

of the degradation of the original phase code - it requires only that

upstream phase-codes improve downstream rate-codes. Nevertheless,

the question towhich degree phase codes are conserved in the present

context is important in and of itself (see discussion).

We therefore next used a perceptron approach to systematically

investigate the “decodability” of both rate- and phase-codes in DG

(Fig. 3). Decodability was measured as the learning speed of a per-

ceptron and is expected to increasewith both information content and

decorrelation25. The perceptron was trained to decode pairs of adja-

cent trajectories with varying distance on either the grid cell popula-

tion or the granule cell population given either shuffled or non-

shuffled EC codes (Fig. 3a, b).

Learning speeds clearly increased with distance with an apparent

saturation beginning at approximately 15 cm, likely because parallel

trajectories no longer shared any individual grid fields. Furthermore, as

expected, the decodability of the EC rate-codes was not affected by

phase-shuffling (Fig. 3c, top; the lines are fully superimposed), while the

decodability of EC phase-codes was severely degraded (Fig. 3c, bot-

tom). Notice that, by design, phase shuffling does not perturb the

population code allowing the phase-perceptron to still learn even if no

phase information is present (i.e., from phase-shuffled EC data, Fig. 3c,

bottom: orange trace). Importantly, perceptron learning speed is

directly affected by population sparsity, rendering a direct comparison

between EC and DG (or different circuit conditions) uninformative

(note thedifferent y-axis scales in Fig. 3c–g, see “Methods”). Toquantify

the impact of EC phase information, we thus normalized the non-

shuffled to shuffleddata,whichhave similar sparsity and thus represent

an internal control. This revealed an approximately two-fold improve-

ment in phase decodability at 15 cm (Fig. 3c, right; one-sample t test

against 1, n = 10, mean ratio=1.950±0.028; p = 7.2 × 10−11). These results

suggest that phase-shuffling selectively removed thephase information

from the EC patterns, allowing us to directly ask how such selective

removal would affect not only rate- but also phase-coding in the DG.

Perceptron analysis confirmed our previous finding that feedback

inhibition partially translates EC phase information into a DG rate

code. Removing EC phase information via shuffling significantly

interfered with perceptron decoding of DG rate-codes within the full

network (Fig. 3d, top). The analysis additionally showed thatDGphase-

coding was also disrupted by EC-phase shuffling (Fig. 3d, bottom).

However, the disruption of phase decodability in DG was far smaller

than in EC (compare Fig. 3c, d). This is consistent with the notion that

phase information in DG is already impaired by feedback inhibition. To

directly test this idea, we again investigated the impact of inhibitory

network motifs on rate and phase decodability (Fig. 3e–g).

We first selectively removed feedforward inhibition (Fig. 3e),

which led to no marked changes in the relative decodability of rate-

and phase-codes as compared to the full network (Fig. 3d). By contrast,

removing feedback inhibition (Fig. 3f) almost entirely removed the

effect of shuffling for the rate code (Fig. 3f, top), while simultaneously

amplifying its effect on the phase-code (Fig. 3f, bottom). This confirms

that feedback inhibition simultaneously degrades phase-coding but

improves rate coding in the DG. Finally, disrupting both feedforward

and feedback circuits led to learning patterns similar to the no feed-

back or EC networks, namely no difference in rate coding and a sig-

nificant degradation in phase-coding due to shuffling (Fig. 3g).

These findings further support the idea that feedback inhibition

mediates phase-to-rate recoding within the DG. To statistically com-

pare results, we again normalized the non-shuffled data to shuffled

data (Fig. 3h–k) to control for effects arising from mere changes in

meanGCactivity levels. Indeed, when feedback inhibitionwaspresent,

EC phase information improved decodability by approximately 20%

for both rate- and phase-codes (Fig. 3h, i, full, no ff; see Supplementary

Tables 8 and 9 for statistics). However, when feedback inhibition was

removed, the improvement for rate decodability disappeared, while

phase decodability improved to approximately 40% (Fig. 3h, i, no fb,

disinhibited).

Next, we again controlled for GC activity rates in an alternative

way (by reducing PP input weights), (Fig. 3j, k, see Supplementary

Tables 10 and 11 for statistics). In particular, the question arises if

achieving the sparse DG code via phase-to-rate recoding has advan-

tages when compared to a similarly sparse code achieved without

inhibitorymicrocircuits. As for spatial information analysis, the results

further support the notion of phase-to-rate recoding. While this addi-

tional analysis suggested feed-forward inhibition may also play a role,

the dominant effect was still for feedback inhibition (compare Fig. 2j

and Fig. 3j). Interestingly, the apparent boosting of phase decodability

for circuits without feedback inhibition disappeared (Fig. 3k), sug-

gesting it is sensitive to overall GC sparsity.

Finally, we used an alternative information measure, namely

positional information39,40, to directly assess the impact of feedback

inhibition on DG phase-information. While the perceptron analysis is

suggestive, it still does not unambiguously address the question to

which degree phase information is degraded by feedback inhibition.

By contrast, positional information analysis allows to directly assess

phase information. Briefly, positional information is defined as the

reliability of occurrence of a particular phase (or rate) within a parti-

cular position across trials40. Consistent with previous research40, we

found positional information to be strongly dependent on the

employed smoothing scale (Supplementary Fig. 8a, see “Methods”).

Nevertheless, overall the results confirmed that the prominent

decrease in rate information when eliminating feedback inhibitionwas

accompanied by an increase in phase information (Supplementary

Fig. 8b, c). Notably feedback inhibition significantly reduced but did

not eliminate phase information in DG. In other words, spatial phase

information is partially degraded by the DG feedback circuit.
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While these results suggest complex interactions of microcircuit

function, sparsity and information (also see Supplementary Fig. 4),

they unambiguously support the notion of feedback inhibition medi-

ated phase-to-rate recoding.

Tempotron decodability of combined DG phase-rate code
We next asked what the combined effect of the changes to DG rate-

and phase-codes might be. In particular, the transformation of GC

spike-trains to rate and phase vectors relies on various assumptions
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Fig. 3 | Perceptron decodability of EC and DG rate- and phase-codes confirms

phase-to-rate code translation. a Schematic of perceptron decoder. X and Y

coordinates (see Fig. 1j) for each cell and time bin are fed into the perceptron as a

flattened array (full: full pydentate model; no ff: feedforward inhibition removed;

no fb: feedback inhibition removed; disinh.: fully disinhibited network).

b Illustration of perceptron training. Learning speed (decodability) was assessed as

1/NE, whereNE indicates the number of epochs required for the RootMean Squared

Error (MSE) loss to cross a threshold of 0.2 (see Cayco-Gajic et al.25). c Effect of

phase-shuffling on rate- and phase-codes in EC. Left: learning speed (1/NE) for

varying distances between parallel trajectories (0–60 cm). Right: non-shuffled

results divided by shuffled results for 15 cmdistance. Asterisks indicate significance

in two-tailed, one-sample t test against 1, no multiple comparisons, n = 10, mean

ratio=1.950±0.028; p = 7.2 × 10−11. d–g Learning speeds for rate (top) and phase

(bottom) codes in DG networks with selectively disabled inhibitory circuit

motifs as in Fig. 2 (full model: full pydentate model; no ff: feedforward inhibition

removed; no fb: feedback inhibition removed; disinh.: fully disinhibited network).

h Fractional improvement of DG rate-code learning speed (non-shuffled normal-

ized to the phase-shuffled data) across conditions (at distance = 15 cm). i Same as

(h) but for phase-code. j Analogous to (h), but where differences in mean GC-firing

rates arising from the respective circuit interventions are controlled for by

adjusting PP input strength to achieve comparable GC rates. kAnalogous to (i), but

with controlled GC-firing rates. n = 10 grid seeds in all panels. Box plots show the

median, the interquartile range (box) and the data range w/o Tukey-outliers

(whiskers). Asterisks indicate significance in (two-tailed) Holm–Sidak post test,

following significant one-wayANOVA. Sourcedata are provided inSource data.xlsx.

Full statistics are summarized in Supplementary Tables 8–11.

Article https://doi.org/10.1038/s41467-023-41803-8

Nature Communications |         (2023) 14:6106 7



(most importantly that the relevant information is contained in the

mean rate or phase within a theta cycle). We thus sought a com-

plementary analysis approach which assesses decodability based on

unprocessed spike trains.

A minimal approach to assess decodability, analogous to the

perceptron, but operating on spike trains is the tempotron26. Briefly,

the tempotron is a single leaky integrate-and-fire (LIF) neuron driven

by exponentially decaying synaptic currents generated by N input

spike-trains. During training, theweights of afferents are adjusted such

that a simple threshold can distinguish between input patterns

(Fig. 4a). Analogous to the perceptron, decodability can then be

assessed via the learning speed (Fig. 4b, see “Methods”).

To explore how tempotron decodabilitywas affected by phase-to-

rate recoding, we trained a tempotron on pairs of trajectories (15 cm

distance) for shuffled and non-shuffled data in both the full network

and the no-feedback network with controlled GC-rates (as in Fig. 2i, j

and Fig. 3j, k).We focus on the feedback as opposed to the feedforward

circuit because it shows the most pronounced effects and it is more

tightly experimentally constrained32. The results were broadly con-

sistent with the perceptron results. Both EC-phase shuffling and the

removal of DG feedback inhibition interfered with tempotron decod-

ability (Fig. 4c, Supplementary Table 12 for statistics). Finally, we pro-

bed if somegeneral spike-train characteristic couldpredict the relative

contribution of individual GCs to tempotron learning (Supplementary

Fig. 6). We found no simple predictive characteristic, suggesting that

changes in theta-organized spike times and synchrony at the

population-level drive the effects. These results suggest that phase-to-

rate recoding improves the overall decodability of combined phase-

rate codes in DG spike trains.

Mechanism of phase-to-rate recoding
Next we asked how phase-to-rate recoding can be explained mechan-

istically. In general terms, feedback inhibition must be capable of

suppressing APs in the GC population in a way that increases spatial

information (recall that spatial information measures rate-coded

information24).

We hypothesized a simple mechanism whereby phase precession

induces spatially selective inhibition of spikes: First we reasoned that,

in the absence of inhibition, EC phase-precession should be inherited

by someGCs (Fig. 5a). For instance, someGC (GC1 in Fig. 5a) is likely to

receive supra-threshold inputs in one place (p1) only in the late theta

cycle (green), while in another place (p2) the cell would tend to fire

only in the early theta cycle (blue). Some other GC (GC2 in Fig. 5a) will

receive inputs that lead to the inverse pattern. If wenowconsider these

two GCs in the presence of the feedback circuit, our previous results

suggest that phase specificfiringwill be translated to spatially selective

inhibition of spikes (Fig. 5b). GCs driven to spike in the early theta cycle

will recruit inhibition leading to the suppressionofGC spikes in the late

theta cycle. In the given example thismeans thatGC2will inhibit GC1 in

p1 and GC1 will inhibit GC2 in p2 (Fig. 5b, black panel). By contrast, if

either EC phase-coding or DG feedback inhibition is impaired (Fig. 5b,

gray panels), spatial information and rate decodability decrease.

To test this hypothesis, we reexamined our modeled GC spike

patterns. Our hypothesis predicts that some random subset of GCs

should have increased spatial information due to the spatially selective

inhibition of late-theta spikes. To identify these cells, we first calcu-

lated the cell-wise spatial information for both full and no-feedback

networks. Inspecting the 50 cells with the highest spatial-information

difference across the whole trajectory confirmed that “inhibited

spikes” tended to occur in late theta (Fig. 5c, green dashes in the lower

but not upper panel). Spatially selective inhibition becomes most

clearly discernible when inspecting the population-code for an indi-

vidual place in the no feedback condition (Fig. 5d). Specifically, cells

1–25, which otherwise have a clear spatial preference early in the tra-

jectory (Fig. 5c, p1–10) fire numerous “late-theta noise spikes” at this

final position of the trajectory when feedback inhibition is absent

(Fig. 5d, green arrow). These are almost fully suppressed when feed-

back inhibition is present (Fig. 5d, top two panels).

Furthermore, for late-theta inhibition to act in a spatially selective

manner, an intact EC-phase code is required (Fig. 5d, compare top two

panels). Indeed, perturbing the EC-phase code via shuffling led to GC

codes with similar late-theta inhibition and of similar sparsity, but

without the marked spatially selective AP-inhibition. Specifically,

shuffling led to “early-theta noise spikes” (Fig. 5d, blue arrow), pre-

cisely as hypothesized (compare Fig. 5b). This confirmed that the

effect was not driven by changes in sparsity (also see Supplemen-

tary Fig. 10).

Finally, we asked if spatially selective AP-inhibition occurs only in

late theta. We have introduced the mechanism as if early theta GC

spikes recruit inhibition, but are not themselves affected by it. This

simplification helps to illustrate the mechanism, but misleadingly

suggests the necessity of total GC suppression at a particular theta-

phase. Since the actual recruitment of inhibitory interneurons will

occur locally and staggered in time32,41, we reasoned total suppression
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Fig. 4 | Tempotron decodability of GC spike trains. a Illustration of tempotron

learning of spike trains. Briefly, GC input spike trains (left) were temporally con-

volved into the tempotron (right, seemethods). For learning, input weights of each

GC were adjusted such that correct patterns superseded threshold, but incorrect

patterns did not. The example illustrates learning for an incorrect pattern, where a
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(black trace/arrows). b Illustration of tempotron learning (normalized loss over
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rates as in Fig. 3j, k (mean ± sd). c Tempotron learning speed for the full and no-
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Source data are provided in Source data.xlsx. Full statistics are summarized in

Supplementary Table 12.
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is not necessary and that phase-to-rate recoding should also occur

within ongoing activity in early theta. To test this, we repeated the

positional information analysis13,39 based exclusively on spikes within

early theta (0-π, Supplementary Fig. 11). This analysis confirmed that

phase-to-rate recoding also shapes ongoing population activity and

does not require its cyclic full suppression.

Together with the previous data, this strongly suggests that

phase-to-rate recoding operates via a mechanism of spatially selective

inhibition of spikes. Themechanism canbe summarizedby drawing on

Robert Gütig’s evocative question “To spike, or when to spike?”:4

The DG feedback circuit decides which GCs are allowed “to spike”

based on “when” EC cells spike.

Phase-to-rate recoding mediates improved STDP at CA3 recur-
rent synapses
Finally, we asked what the effect of phase-to-rate recoding on STDP in

CA3 might be. This is important, because STDP at recurrent

CA3 synapses is thought to be a key mechanism underlying the for-

mation of attractors and memory42–44. Our previous results suggest

that one consequence of the computation is a more synchronous
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Fig. 5 |Mechanismofphase-to-rate recoding.Amechanistic hypothesis (a,b) and

the supporting data (c, d). a Phase-place coupling in DG will be inherited from EC.

Consider a random set of EC grid cells (G1-G6) across two places (p1, p2), with

typical phase-place relationships (intensity plots in left column). Typical firing

patterns of these grid cells across the two places (middle column) will be dis-

tributed between early (blue) and late (green) theta cycle. Given convergent input

of grid cells on GCs (GC1, GC2; right column), the latter will inherit phase-place

coupling, implying spatially selective late-theta firing for some random set of GCs

(GC1,2) b DG rate code quality under four conditions, namely the presence or

absenceof ECphase-coding (columns) orDG feedback inhibition (rows). Our results

indicate that early-theta GC spikes will suppress late-theta GC spikes (arched black

lines from blue to green). When both DG feedback inhibition and EC phase-code is

intact (upper left panel), GC2 will thus inhibit GC1 in p1 and GC1 will inhibit GC2 in

p2, leading to high spatial information and good rate-decodability. Without

feedback inhibition (lower row), late-theta spikes additionally occur in the “wrong”

place (e.g., GC1 will fire in p1 undermining its spatial selectivity). If EC phase-coding

is impaired (right column), place specific spikes are randomized between early and

late theta, leading to a loss of spatial selectivity in inhibition. c GC spikes over the

full trajectory (aggregated over 20 Poisson seeds), color-coded by theta phase with

or without feedback inhibition (the 50 GCs with the largest difference in spatial

information between full and no fb networks are shown, sorted by spatial pre-

ference). Each theta cycle is mapped to a place, such that the trajectory can be

subdivided into place 1 to 20 (p1,…,p10,…p20). Note the sparsity of late-theta

(green) spikes in the full network.dMagnificationof the same50cells in p20 for the

four conditions in (b). Note the presence of “early-theta noise spikes” (blue oval) in

the shuffled and “late-theta-noise spikes” (green oval) in the no fb networks, pre-

cisely as predicted (b).
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population code within individual theta cycles in DG (see Fig. 2a). This

strongly suggests that the efficacy of STDP in recurrent CA3 networks

should be improved. To explore this idea in more detail, we built a

minimal CA3 model45,46 with voltage-based synapses, drawing all rele-

vant parameters from experimental data (Fig. 6a). Briefly, we created a

network of 600 recurrently connected LIF CA3 pyramidal neurons,

which were randomly connected to GC inputs according to known

sparse connectivity rules47. We additionally added 60 feedforward

inhibitory interneurons, one of themost prominent features of the DG

to CA3 connection48. In the present context, this circuit is crucial to

consider because it adds an additional temporal constraint on the

activation of CA3 pyramidal cells: GC inputs to CA3 cells are followed

with short latency by powerful feedforward inhibition49.

To keep sensitivity analysis tractable, we again focused on the key

question raised by our previous results, namely if phase-to-rate

recoding via feedback inhibition provides advantages over a similarly

sparse code with superior phase information but less synchrony

(Fig. 6, see Supplementary Tables 13 and 14 for statistics). We thus

probed the resultingmodel with the non-shuffled data of either the full

network or the no-feedback network, controlling for overall GC

activity rates as above (Fig. 6b).

We first explored the minimal model abstracting away from

numerous complexities of the real system (e.g.,mossy-fiber facilitation

or recurrent excitation). This minimal model was designed to isolate

the impact of DG synchrony on CA3 STDP. We found that the CA3

pyramidal firing rates were significantly greater for the full network,

suggesting that phase-to-rate recoding, in DG, and the resulting syn-

chrony, lead to more efficient recruitment of CA3 pyramidal cells

(Fig. 6c, top). We noticed that CA3 interneuron rates were inversely

affected (Fig. 6c, bottom), suggesting that the difference in pyramidal

cell recruitment may be partially driven by decreased inhibition in the

full network. However, varying inhibitory output strength revealed

that differences in CA3 rates remained evenwithout inhibition (Fig. 6d,

top), suggesting the difference in CA3 pyramidal cell recruitment was

not primarily driven by differential interneuron recruitment. Cross-

correlation analysis confirmed that both GC and CA3 principal cell

activity was more synchronous for the full than the no feedback case

(Supplementary Fig. 12a). These results suggest that phase-to-rate
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Fig. 6 | Phase-to-rate recoding improves STDP in CA3. a Schematic of the simple

CA3 model and its input. b Representative examples of DG spike trains (left) and

mean GC firing rates (right), comparing the full and the GC-rate-controlled no-

feedback (no fb) pydentate model. c Representative examples of the spike trains

and mean firing rates elicited by this input in samples of CA3 pyramidal cells (top)

and CA3 feedforward interneurons (bottom). d Pyramidal and interneuron rates in

response to varying the inhibitory interneuron output (mean ± sd). e Illustration of

symmetric STDP kernel leading to synaptic potentiation independent of spike

sequence (arb. units indicates arbitraryunits). fMean synaptic potentiation after 2 s

simulation for inhibition=2mV and tauSTDP = 20ms. g Sensitivity analysis of mean

synaptic potentiation for variations in inhibitory strength (as in d) and tauSTDP for

the full (left) and no-feedback (middle) networks, aswell as their ratio (right).h Left,

mean synaptic potentiation (f) normalized to the equivalent ratio of pyramidal cell

firing rates (as in c, d). Right, sensitivity analysis for normalized synaptic poten-

tiation. i–l Same as e–h, but for asymmetric STDP. Asterisks indicate significance in

two-sided t tests. Asterisks indicate significanceatp <0.0001 in unpaired two-tailed

t test with Welch’s correction; n = 30, 23 grid seeds for full and no feedback,

respectively. Box plots show themedian, the interquartile range (box) and the data

range w/o Tukey-outliers (whiskers). Source data are provided in Source data.xlsx.

Full statistics are shown in Supplementary Tables 13 and 14.
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recoding improves both the recruitment and synchrony of CA3 pyr-

amidal cells by sparsely firing GC populations.

To investigate how this would affect plasticity in the recurrent

CA3 pyramidal network, we adapted a standard STDP mechanism45,46

to experimental data, namely the non-typical symmetric STDP recently

demonstrated for CA342 (Fig. 6e). Synaptic weights at recurrent

synapses were initialized at zero, allowing us to simply monitor the

final synaptic weights as a proxy for the efficacy of STDP. To isolate the

effects of DG inputs,wedroveCA3 spiking exclusively byGCs (minimal

model: recurrent CA3 synapses undergo plasticity but do not affect

membrane potential). We found that the full network led to a several-

fold increase in synaptic weights as compared to the no-feedback

network (Fig. 6f). We next probed if this effect was sensitive to i)

inhibitory strength and ii) the time window of STDP. Inhibitory

strength was varied as above (from no inhibition to 5mV inhibition,

which almost abolished pyramidal cell activity, see Fig. 6d). The STDP

time window (tauSTDP) was varied between 10 and 50ms (covering

both the canonical 20ms and broader windows42). Both full and no-

feedback networks showed robust plasticity over the full range of

parameters (Fig. 6g, left). Furthermore, the ratio of weights between

full vs no-feedback was strictly ≥1 (Fig. 6g, right), indicating the full

network reliably producedgreater plasticity levels. The effect vanished

only in the absence of CA3 inhibition, suggesting it depends on the

CA3 feedforward inhibitory circuit. Within the most plausible range of

parameters (tauSTDP =20–50ms, inh. ~1–3mV, based on plausible CA3

rates50), plasticity was improved between 2 and 5 fold.

Next, we asked if the improved plasticity was driven solely by the

increased firing rates of pyramidal cells (Fig. 6c, top), or if increased

synchrony also made STDP per se more efficient. To assess this ques-

tion we normalized total weight changes (Fig. 6f) based on the

respectivemeanCA3 rates (which areproportional to the total number

of spikes fired, Fig. 6c, d). The resulting normalized weight increases

were still significantly more pronounced for the full network (Fig. 6h).

This suggests that the temporal coordination of CA3 pyramidal cell

firing (Supplementary Fig. 12a) improves plasticity beyondwhat would

be expected from the improvements in pyramidal cell recruitment

alone. Sensitivity analysis suggested that, for the most plausible

parameter constellations (see above) the improvement was between

1.5 and 2.5 fold.

Next, we asked if these results would remain robust for a more

realistic model of CA3 (extended model, Supplementary Fig. 13).

Specifically, we (i) exchanged simple voltage-step for current-based

synapses, creating more realistic temporal dynamics, (ii) introduced

the characteristic powerfulmossy fiber facilitation51, and (iii) added the

excitatory drive at the recurrent CA3 synapse based on the weights

derived from STDP. We also, (iv), added an experimentally described

synaptic scaling mechanism52 to mitigate biologically implausible

synaptic runaway due to the positive feedback loopbetween firing rate

and STDPwithin individual pyramidal cells. Eachof these factorsmight

lead to non-trivial changes in the temporal activity patterns inCA3, and

is thus likely to affect the impact of phase-to-rate recoding on CA3

STDP. Nevertheless, our results confirmed the previous findings. The

full DG network led to increased CA3 population cross-correlation

(Supplementary Fig. 12b) as well as greater firing rates, mean weight

increases and normalized weight increases (Supplementary

Fig. 13d–h). Together, this suggests that phase-to-rate recoding via the

feedback inhibitory microcircuit in the DG leads to significant

improvements of CA3 plasticity, due to improvements in both CA3 cell

recruitment and STDP. The consequence may be a more efficient

formation of CA3 attractors.

Finally, we asked if this effect might generalize to the numerous

brain regions with more typical asymmetric STDP (Fig. 6i-l), i.e., if it is

robust to an asymmetric STDP kernel (Fig. 6i). For this we returned to

the more agnostic minimal model, changing only the STDP mechan-

ism. We found that, while the overall induction of plasticity was

expectably lower (Fig. 6j, k), themore synchronous GC code in the full

network as opposed to the (GC-rate controlled) no-feedback network

still produced several fold increased plasticity levels. This was the case

for overall plasticity (Fig. 6k, right), as well as when accounting for the

differential recruitment of pyramidal cells (normalized weight increa-

ses, Fig. 6l). Overall, these results suggest that a beneficial con-

sequence of phase-to-rate recoding can be improved STDP in

downstream areas, driven by increased synchrony of the population-

rate code.

Discussion
In this paper, we have studied two of themost general coding schemes

utilized by neurons: rate- and phase-codes. We address the problem

that circuits generating essential characteristics of neuronal activity,

such as sparse firing, may differentially affect rate- and phase-codes.

How then is phase and rate coded information transmitted through

networks that differ in their ability to support the respective coding

schemes? Here, we report a candidate solution for a hippocampal

circuit. We find that feedback-inhibition translates incoming phase

information into a synchronized, high-information rate code, a phe-

nomenon we term phase-to-rate recoding (Fig. 7).

Specifically, we studied an extended brain system involved in

processing spatial information, the EC-DG-CA3 system. In this system,

the dentate gyrus is thought to perform a pattern separation compu-

tation in order to decrease the (rate-code) similarity between neural

patterns21,53–56. It is furthermore well-established that this function

relies on specific properties of the underlying circuits, including the

local inhibitory microcircuit32,41,57–59. Thus, this is an excellent example

of a brain region in which the computational function likely mandates

the implementation of a circuit with specific properties (feedback

inhibition), which modifies not only firing rates but also affects the

temporal relations between spikes. Our results suggest, that these

temporal effects may actively support computations that were pre-

viously theorized in terms of rate coding alone.

Our model highlights the role of feedback inhibition in phase-to-

rate recoding, while the role of feed-forward inhibition was less pro-

nounced. The temporal features of feedback inhibition, and its role in

assembly competition (through lateral inhibition) are indeed specifi-

cally suited to contribute to phase-to-rate recoding. However, we note

that themodel we have used is experimentally well-constrained only in

terms of feedback inhibition32, and consequently does not permit

strong claims about the relative role of feedforward circuits. Under

some conditions, feedforward inhibition may also be important in

phase-to-rate recoding, though this would likely occur on faster time

scales.

One consequence of phase-to-rate recodingwas sparser butmore

synchronous GC activity. This is relevant because GCs project to the

CA3 region, where memory engrams are thought to be stored in

recurrent networks of CA3 principal cells through associative

plasticity44,60,61. Importantly, STDP occurs most efficiently on time-

scales below 100 ms42, implying that increased GC synchrony at these

time scales should strongly facilitate the formation of attractors. Our

results show that increased synchrony can indeed improve plasticity

several fold, both for the symmetric STDP described in CA3 as well as

for asymmetric STDP, common in most other brain areas (Fig. 6).

Numerous previous studies have hypothesized trajectory encod-

ing, or the compression of temporal sequences as the primary function

of phase precession9. Briefly, a rodent’s trajectory through adjacent

place fields, given phase precession, naturally leads to the encoding of

spatial trajectories within individual theta cycles. This temporal com-

pression from behavioral to theta-timescales is thought to allow the

encoding of the spatial trajectories via STDP, for instance in area

CA342,61.

The present study proposes another function of phase preces-

sion, which may operate in particular where codes are required to be
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sparse and synchronous. It is noteworthy that the two functions may

compete at the local level, since the inhibition of late-theta spikes

should impede trajectory encoding. Accordingly, our results suggest

that DG is ill suited to trajectory encoding, due to its powerful feed-

back inhibitory circuits32. However, downstream area CA3 will never-

theless simultaneously receive an “intact” theta-phase code directly

from EC. How the conjunction of these functionally differentiated

inputs in CA3 might affect its operation remains to be explored.

More generally, the question arises if feedback inhibition neces-

sarily entails a partial degradation of phase codes. This “trade-off

scenario” predicts that areas with an intact phase-code should have

little, or weak feedback inhibition. Interestingly, Tingley and Buzsaki40

indeed report the efficient encoding of position through phase- but

not rate-codes in lateral septum, where no local inhibitory circuit is

documented62 (note that other studies do report spatial rate coding in

lateral septum63). According to the trade-off scenario, temporal codes

in brain areas with local feedback inhibitory circuits9,10,12, exist despite

feedback inhibition. Feedback inhibition may for instance be suffi-

ciently weak to preclude a full phasic inhibition, but to the degree that

it acts, will nevertheless impair phase coding. Our analysis of early-

theta phase to rate recoding supports this notion in the DG, since it

showed moderate phase-code degradation even in the absence of full

phasic inhibition (Supplementary Fig. 11).However, this does not imply

that phase codes are necessarily degraded by feedback inhibition.

Specifically, feedback inhibition should only interfere with phase

codes if the time-course of the former ismatched to the time-course of

the latter. If, for instance, time-codes exist on much longer timescales

than inhibition then inhibition could sparsify activity without much

impacting temporal information. If on the other hand the millisecond

timing of spikes carries information, while feedback inhibition only

unfolds on slower time scales, then sparsification may again occur

without much impact on time codes. The ultimate impact of feedback

inhibition on rate and phase codes will depend on numerous factors,

including the precise spatial and temporal properties of inhibition, the

overall strength of inhibition, and the type and oscillatory structure of

incoming temporal codes.

A prediction of our model in vivo is that the theta phase-

preference distribution of GCs should be narrower than for grid cells.

Indeed, already Skaggs et al.9 noted a characteristic “lack of activity at

the end of the theta-cycle” of GCs in vivo. Additional work11 allows a

direct comparisonbetween the theta phase distributions inDGand EC,

and overall also suggests a more constricted range of phase pre-

ferences in DG than EC (Supplementary Fig. 3; see below for some

caveats). Interestingly, these in vivo data display another pattern,

which appeared highly counterintuitive to its discoverers: The mean

phase vector of DG (the output area) precedes that of EC layer 2

(the input area) within the theta cycle (at least assuming plausible

synaptic delays of <50ms). The EC activity-peak is in turn followed

by a conspicuous silence in DG activity. This highly counterintuitive

pattern precisely matches the emergent pattern in our model, and

reveals powerful DG feedback inhibition as a potential explanation

(Fig. 2a). It should be noted that differences in EC cell types and pro-

jections provide an additional, though not mutually exclusive,

explanation33,64,65 (Supplementary Fig. 3c).

Nevertheless, it must be emphasized that our model reflects a

dramatic simplification compared to the in vivo circuit. For instance,

in vivo GCs receive numerous other inputs which may or may not

themselves contain time codes. Indeed, while there are some dis-

crepancies in the literature66–68, recent research suggests that perhaps

only 25%of DG-projecting EC stellate cells are grid cells33. We presently

chose to nevertheless focus our analysis on these inputs, because only

they allowed to specify awell-defined time code (addressing the roleof

additional inputs in various robustness analyses).

These caveats may explain a number of differences between

in vivo data and our model. For instance, Mizuseki et al.11 find that (i)

in vivo, EC cells are more strongly theta-modulated than DG cells and

that (ii) phaseprecession appears at least as pronounced inDG as in EC

(afindingpotentially at oddswith the presently suggesteddegradation

of phase information in DG). Relatedly, (iii) the DG cells in our model

appear more strongly theta-modulated than in vivo11,69. Interestingly,

concerning (i), recent research suggests that many strongly theta-

modulated EC cells recorded inMizuseki et al.11maynothavebeen grid
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cells33 and may not project to DG65 (they may be pyramidal cells).

Moreover, concerning (ii), it remains unclear to which degree the DG

cells recorded inMizuseki et al.11 reflectedmossy cells, rather thanGCs,

since extracellular recordings are known to be biased towards the

more active mossy cells69,70. Finally, the less stringent theta-

modulation of GCs in vivo (iii) suggests the impact of additional inputs.

Other features omitted in the present model include MF-CA3 LTP

and short term depression at PP synapses. While we have performed a

number of analyses suggesting considerable robustness to a variety of

factors (Supplementary Figs. 5–7 and 11–13), future research must

show in how far the presently proposed computation might be

enhanced, impaired or altered by factors not yet considered.

In conclusion, our results suggest a translation of phase to rate

codes in the EC-DG system by local feedback inhibitory circuits. The

consequence is a sparse, synchronized population-rate code, with

increased rate information content. All three properties, sparsity,

synchrony and information-content, may support the associative sto-

rage of non-overlapping engrams in downstream area CA3. The

essential ingredients for phase-to-rate recoding are (i) phase-coded

inputs and (ii) local feedback inhibitory microcircuits. Notably, these

ingredients are widespread in the mammalian CNS. Temporal coding

patterns such as phase precession are being discovered in more and

more brain structures12–14 and local feedback circuits are ubiquitous.

Our results thus raise the question whether phase-to-rate recoding

may be a conserved computational motif occurring in many brain

areas where the two ingredients coincide. Indeed, there is no reason

why the computational motif should not similarly work for other

temporal coding schemes, as long as feedback circuits systematically

leverage temporal information to improve population-rate codes. The

latter could support the formationofprecise auto-associative attractor

networks across the brain. More generally, this work also raises the

question which other recoding mechanisms may exist, that maintain

information at subsequent stages of processing, by redistributing

information among different coding schemes40.

Methods
Simulation of theta-phase-precession in EC grid cells
To simulate grid cell firing, we combined a grid cell model by Solstad

et al.28 and a phase precession model by Bush and Burgess29,71. To

create a grid cell firing function gw(x,y), where l = [x, y] are spatial

coordinates, the sum of three sinusoidal gratings specified by their

wavevectors k, with 60° and 120° angular differences were used28

(Supplementary Fig. 1a), according to Eq. (1):

gw x,yð Þ= 2

3

1

3

X

3

i = 1

cos ki l� l0
� �� �

+
1

2

 !

ð1Þ

Two hundred grid cells, with empirically matched parameters27,

were created (ki computed as in Solstad et al.28, based on (i) spacing,

(ii) orientation and (iii) spatial offset): Spacing drawn from a skewed

normal distribution between 15 and 120 cm with the median of 43 cm;

orientation drawn from uniform distribution between 0 and 60°; and

spatial offset drawn fromauniformdistributionbetween0 and 100 cm

in both x and y directions. The random number generators were see-

ded for each grid cell population to allow data reproducibility.

Throughout this manuscript, a “grid seed” corresponding to one grid

cell population (or mouse) will be the unit for statistical comparison.

We then simulated a mouse traveling on a linear trajectory at 20 cm/s

for 2 s. We modeled straight parallel trajectories at variable distances

(0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 45, 60 cm; Supplemen-

tary Fig. 1b).

To model phase precession, we adapted an approach using the

linear distanceof themouse to the closest grid vertex and thedirection

of travel29, combining it with the generated grid profiles28. To this end,

we used the formula previously used to obtain gw(x,y) to also calculate

the relative linear distance to the closest grid vertex d(x,y)using Eq. (2).

d x,yð Þ= arccos
3

2
×
gwðx,yÞ
gmax
w

� 1

2

� �

×
λ
ffiffiffi

6
p

4π

 !

ð2Þ

where gmax
w is the maximal firing rate of grid fields, and λ is the spacing

of a given grid cell (see above).

A virtual trajectory at 20 cm/s now corresponds to a mapping of

time (t) to position (x,y), such that we could calculate a spatial rate

profile rG(t) from gw(x,y) and d(t) from d(x,y) for each grid cell over the

course of the trajectory. Tomakephases precessmonotonicallyduring

the traversal of a grid field, d(t) was multiplied by −1 if the mouse was

leaving a grid field.

This allowedus to calculate phase precessionpatternswithin each

grid field29. Briefly, the relative linear distance d(t) was first trans-

formed into a preferred theta phase φ(t), according to Eq. (3).

φ tð Þ = k1π
dðtÞ
λ

+0:5

� �

ð3Þ

and then used to calculate a phase-code function rφ t,θð Þ using Eq. (4).

rφ t,θð Þ= expðcos θ tð Þ �φ tð Þð Þ× k2Þ ð4Þ

where k1 = 1 and k2 = 1.5 are constants which we chose to match

experimental data10,71 and θ(t) was an assumed global theta oscillation

at 10Hz. Note, that in Bush and Burgess29 cells display phase preces-

sion but the overall firing probability stays constant, i.e., firing prob-

ability does not increase towards the middle of a field, whereas in the

present model firing probability increases towards the middle

of a field.

Finally, the phase precessing spike rate profile (rφ,G) for each grid

cell was generated according to Eq. (5).

rφ,G = rφ t,θð Þ× rGðtÞ ð5Þ

scaled to obtain instantaneous firing rates consistent with experi-

mental observations10. Individual spike trains were generated by using

an inhomogeneous Poisson process based on the calculated spike

probability profiles (Elephant package72). To produce the phase pre-

cessionplots shown inFig. 1 individual trajectorieswere simulatedwith

random Poisson seeds 1000 times.

Isolation of phase- and rate-code
To isolate phase- and rate-code in EC or DG, we defined a separable

coding scheme based on the mean rate and phase within individual

theta cycles. An arising difficulty is that in theta cycleswhere a cell does

not fire the phase-code is undefined. Since any arbitrary substitution

of, e.g., phase = 0 for such undefined cycles impacts both correlation

measures and perceptron learning in non-trivial ways, we chose to first

transform the phase-rate code from polar to Cartesian coordinates.

Specifically, where the original phase defined the angle, and the rate

the length, of a vector (polar coordinates) we calculated the corre-

sponding x and y coordinates (Cartesian coordinates), which could be

readily learned by the perceptron (Fig. 1j). To isolate phase informa-

tion, we held firing rate (i.e., vector length) constant (1 Hz), effectively

eliminating the information contained in differential firing rates across

grid cells and space (other constants will rescale perceptron inputs,

but cannot reintroduce information contained in differential firing

rates). To isolate rate-information we held mean firing phase (i.e.,

vector angle) constant at π/4 (this ensured that rate information was

equally distributed across both Cartesian coordinates, but phase

information played no role). Subsequent analyses (Pearson’s correla-

tion, spatial information, perceptron learning) were then performed
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on the flattened [time-bin × cell × Cartesian coordinate] arrays (20

time-bins of 100ms each, 200 or 2000 cells, 2 Cartesian coordinates).

EC phase shuffling
In order to remove the information contained in theta phase preces-

sion in aminimally disruptive way, we devised a per-cell and per-theta-

cycle shuffling procedure, which conserves the overall theta-phase

distribution. Specifically, we recorded the emergent theta-phase dis-

tribution of EC cells in our model (Fig. 2a, gray histograms), and then

used it as an inhomogeneous Poisson template, to redraw EC spike

times within individual theta cycles of individual cells (Fig. 2b, gray

histograms). This fully conserves which cells fire in which theta cycles,

perturbing only the precise timing of the spikes. It also conserves the

overall theta-phasedistribution, which is important to avoid unspecific

effects deriving from the unequal recruitment of downstreamcells due

to mere threshholding.

GC membrane noise and LEC inputs
To ensure our results are robust when additional GC inputs are active

we simulated either GC membrane noise (modeling completely ran-

dom inputs) or LEC inputs (modeling a partially informative contextual

input), each with increasing strengths. GC membrane noise was

simulated through a continuous varying current injection at the soma

of each GC. Instantaneous noise current was drawn from a normal

distribution of mean 0 and different standard deviations (50, 250, 500

pA). As baseline standard deviation, we chose 50 pA, qualitatively

matching in vivo recordings37.

LEC inputs were created from an inhomogeneous Poisson pro-

cess, to create a counter-cyclical thetamodulation, but with no further

spatial or phase information (Supplementary Fig. 6). They were ran-

domly connected to theGCpopulation at the distal dendrites, butwith

at most one LEC input per GC. The counter-cyclical modulation profile

was generated by smoothing a saw-tooth wave (between 0 and 30Hz)

to match Deshmukh et al.38. To simulate a situation with “similar”

contextual input we assume the same ensemble of 20 LEC cells was

active, but with random spike trains (different Poisson seeds). To

increase their relative impact on DG, we systematically increased the

number of output synapses per LEC cell (Supplementary Fig. 6: 100 in

B, 150 in C and 200 in D). To simulate a situation with “identical”

contextual inputs (i.e., containing rate and phase information, Sup-

plementary Fig. 7) we let the same ensemble of 20 LEC cells repeat the

same spike train (same Poisson seed).

Spatial information
To calculate spatial (rate) information (IS) we used the standard spatial

information measure (Skaggs et al.24). Briefly, IS in bits/spike was cal-

culated for each cell according to Eq. (6).

Is =
X

S

s

p
rs
r
log2

rs
r

� �� �

ð6Þ

where s indexes spatial bins, p is the occupancy of a bin, rS is the mean

firing rate within the bin, and r is themean rate of the cell over all bins.

Note, that as we consider linear trajectories and uniform speed, a

spatial bin is simply a distance and occupancy is always the same. To

avoid spuriously high information values due to sparsity, we used 5 cm

spatial bins, aggregated spikes over 20 Poisson seeds, and included

only cells with at least 8 spikes overall. Total information per spikewas

then calculated either on a per cell basis or by averaging over cells.

Positional Information
To calculate positional (rate or phase) information we used the infor-

mation measure introduced by Olypher et al.39, as adapted by Tingley

and Buzsaki40. This measure allows to measure phase information

arising fromphaseprecession, givenmultipleuni-directional traversals

of the same field (e.g., on a circular track)40, since in such a setup

positions will be associated with specific phases across trials. Ipos(xi)

was calculated for each position and cell according to Eq. (7).

IposðxiÞ=
X

K ≥0

Pkjxi log2

Pkjxi
Pk

� �� �

ð7Þ

wherePk|xi is theprobability of a specificphase (or rate) k at a particular

position xi (assessed over trials or, in our case, Poisson seeds) while Pk
is the probability of k over all positions. To calculate this, rate or phase

values for each cell and position bin were discretized in to 7 data bins40

and then smoothed with a box filter over progressively larger sets of

position bins (1–20 bins corresponding to 2–40 cm). As above, cells

with <8 spikes over all 20 Poisson seeds were excluded from analysis.

For the phase code the circularmeanwas used and bins without spikes

(NaNs) were ignored. To obtain information per spike, data were

divided by themean spike rate and to obtain a summarymeasure, data

was averaged across all positions and cells.

DG model
The biophysically realistic model of DG (pydentate) was adapted from

Santhakumaret al.73 as previously described inBraganza et al.32. Briefly,

wemodel 2000GCs, 24 BCs, 24HCs and 60MCs, all with biophysically

realistic membrane conductances, and experimentally calibrated

synaptic properties. Specifically, the spatiotemporal properties of net-

feedback inhibition delivered to GCs was precisely tuned to match

experimental observations. The term “net-feedback inhibition”

emphasizes that the inhibition arriving at GCs derives from multiple

interconnected interneuron types within the inhibitory microcircuit

(for an overview see Supplementary Table 1 in ref. 32). We connected

every EC grid cell to 100 randomly chosen GCs and 1 BC, adjusting the

synaptic weight to obtain plausible activity levels. Specifically, the PP

weight was decreased from 1 to 0.9 nS in order to obtain an activity of

around 2% of GCs per 100ms theta cycle32,37,74, corresponding to

0.2–0.3Hz. DG circuit interventions were performed as in Braganza

et al.32, by setting the appropriate subset of synaptic weights to 0. For

GC rate-controlled data in the DG circuit interventions (e.g., Fig. 2i), PP

weightswere reduced further such thatGC rate stayedwithin the range

(0.2–0.3Hz) independent of which or whether inhibitory circuits were

present (see Supplementary Fig. 4).

Perceptron
A perceptron model was trained to compare the decodability of both

rate- and phase-code. The perceptron was implemented using

PyTorch75. At the output two sigmoid units were used to distinguish

two trajectories ([1,0] and [0,1]). The input to the perceptron was the

vectorized cells-by-bins matrix containing either rate or phase infor-

mation (Supplementary Fig. 1e). To allow statistical comparison, the

perceptron was trained on EC and GC data given 10 distinct grid cell

populations (corresponding to 10 virtual animals, i.e., samples). For

each grid seed the perceptron was trained to classify two trajectories

with varying distance (see above), where a trajectory was presented in

the form of 20 random spike trains (independent inhomogeneous

Poisson processes, given rφ,G), or more specifically, the 20 resulting

phase-rate vectors. Perceptron weights were adjusted via stochastic

gradient descent, for 10,000 epochs, during each of which all 40

phase-rate vectors of a trajectory pair were presented. Learning rate

had to be adjusted between conditions due to different population

sparsity (within conditions it was constant at either 10−3 or 10−4). The

loss function used was the Root Mean Square Error (MSE). Decod-

ability was then quantified as 1/NE, where NE is the number of epochs

until MSE reached the threshold of 0.2 (as in Cayco-Gajic et al.25).
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Tempotron
To investigate the decodability of complete spike trains in DG without

making assumptions about phase and rate coding windows, we used

the Tempotron as described in Gütig and Sompolinski26.

We trained the tempotron for 200 epochs on the granule cell

spike patterns (2000 GCs, 2 s) to distinguish trajectories 15 cm apart.

Other tempotron parameters were Vrest =0mV, τ = 10ms, τs = 2,

learning rate = 10−3. The classification threshold was set for the spiking

patterns of eachgrid seedby calculating themaximumoutput for each

pattern and averaging across the maxima. To quantify the learning

speed, we calculated the loss at each epoch as the sum of absolute

differences between the maximum output and the threshold, for each

incorrectly classified spike pattern. We then fit an exponential decay

function to the loss across epochs and defined the learning speed of a

grid seed as 1
τdecay

. We found that this procedure, while analogous to the

threshold approach taken for the perceptron, led to less noisy results.

Our tempotron implementation can be found at https://github.com/

danielmk/tempotron and is based on an implementation by Dieuwke

Hupkes.

CA3 model
To investigate the potential consequences of phase-to-rate recoding

on CA3 plasticity, we created a minimal CA3 model (minimal CA3

model) within the Brian2 simulation environment76, adapting

an STDP mechanism from Goodman and Brette45 based on Song

et al.46. Specifically, we created a CA3 pyramidal cell network of

600 recurrently connected leaky integrate and fire (LIF) cells45,

defined by Eq. (8).

dv

dt
=
E l � v+ vsyn

τm
ð8Þ

where v ismembrane voltage and all other parameters are as in Table 1.

This PyrCA3 population was then randomly connected to the 2000 GC

afferents with probability p = 0.35, leading to ~70 GCs per CA3 cell and

21 CA3 cells per GC47. We additionally modeled a population of 60

feedforward interneurons (INCA3), one of the most prominent features

of the GC-CA3 connection48, according to Eq. (5), but with a refractory

period of 5ms to prevent firing rates >200Hz. This is important, given

the likely role of the disynaptic latency in the feedforward-circuit on

CA3 input synchrony detection. Inhibitory potentials were modeled

with a latency of 5ms to match the experimentally determined range

of 2–7 ms77. STDP was modeled as in Goodman and Brette45, but was

made symmetric to match experimental findings in CA342. If not

otherwise specified, the STDP time-window was 20ms. To assess the

efficacy of STDP, all recurrent CA3 synapses were initialized with a

weight of zero, allowing to simply monitor the mean final weights as a

measure of total plasticity. In this minimal model CA3 spiking is

exclusively driven by GCs and not affected by recurrent CA3 inputs in

order to isolate the plasticity effects of DG inputs.

Parameter values were closely constrained by experimental data

(see references in Tables 1 and 2). Briefly, electrophysiological prop-

erties were taken to be the mean values for the respective cell types

from neuroelectro.org (Table 1). Synaptic connectivity values were

aggregated from the literature (Table 2). Large postsynaptic effects of

GCs were set to match the empirically observed ability of even single

GC discharges to sometimes elicit APs as well as disynaptic inhibition

in CA3 pyramidal cells. To probe sensitivity to plausible STDPwindows

we probed STDP time constants up to 50ms. To probe sensitivity to

feedforward inhibitory strength, we probed values from 0mV (no

inhibition) to −10 mV (where PyrCA3 activity is almost completely

suppressed). For parameter sweeps (Fig. 6 g, h, k, l) individual simu-

lations were run on 4 grid-seeds and 4 Poisson seeds, and only mean

values are plotted.

To check robustness for a more realistic and more complex CA3

model (extended CA3 model), we made three alterations (parameters

specific to the extended model in Tables 1 and 2 are cursive). First, we

replaced the original voltage-based for a current-based synapse

modeled as shown in Eq. (9).

dv

dt
=
E l � v+Rin Ie � I i

� �

τm

ð9Þ

where Rin is the input resistance and Ie and Ii are excitatory and inhi-

bitory synaptic currents, which are in turn defined by their amplitude

∆I and synaptic decay time constant τS (see Table 2)78. Second,

Table 1 | Properties of CA3 leaky integrate and fire cells

Cells References

PyrCA3

N 600 Number of cells CA3 pyramidal cell from

neuroelectro.org
τm 45ms Membrane time constant

vthr −48 mV AP threshold

vr −54 mV Reset voltage after AP

El −67 mV Resting potential

Rin 150 MΩ Input resistance

INCA3

N 60 Number of cells CA3 basket cell from

neuroelectro.org
τm 14ms membrane constant

vthr −37 mV AP threshold

vr −54 mV Reset voltage after AP

El −52 mV Resting potential

Rin 112 MΩ Input resistance

Italic entries refer to the extended CA3 model (Supplementary Fig. 13).

Table 2 | Synaptic connectivity and properties within the CA3 model

Synapses References

Connection prob. Postsynaptic effect

PyrCA3 => PyrCA3 p = 0.01 vsyn = 0 or ∆I =w×40 pA, τS = 15ms 85

GC => PyrCA3 p = 0.35 vsyn = 15mV

or Ie = (TM) pA

47,78,86

GC => INCA3 p = 0.7 (40–50 INCA3 per GC) vsyn = 5mV

or Ie =40 pA, τS = 15ms

48,78,86

INCA3 => PyrCA3 p = 0.1 vsyn = −0 to −5 mV (default = −2 mV) or Ii = 0 to 80 pA (default 40 pA) 77

Spike-based homeostasis All input synapses of a Pyr. cell ∆w =0.05 Brian2 docs: synaptic scaling

“TM” refers to the facilitating Tsodyks–Markram synapse. Italic entries refer to the extended CA3 model (Supplementary Fig. 13).
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we added mossy fiber facilitation modeled by a Tsodyks–Markram

(TM) synapse to match Toth et al.79 namely τinact = 30ms, ∆Imax = 5 nA,

release_fraction = 0.03, τrecovery 130ms, and τfacilitation = 530ms. Third,

we added the recurrent excitatory drive at CA3-CA3 pyramidal

synapses, which was determined by the weights resulting from STDP.

Note that, since symmetric CA3 STDP42 can only increase synaptic

weights (unlike the more typical asymmetric STDP), this setup quickly

leads to runaway excitation and weight-increases. In order to avoid

biologically implausible runaway weight increases, we additionally

added a simple cell-level synaptic scaling mechanism52, which

decrements all incoming synaptic weights of a cell by a factor of

0.05 for each outgoing action potential. Such a scaling mechanism is

plausible for CA3 pyramids80, but of course also affects mean weight

increases.

Statistical analysis
Statistical analysiswas performed in GraphPad Prism 4or 7 and the full

details are given in Supplementary Tables S1–S14. Briefly, we per-

formed t-tests or ANOVAs as appropriate. In the case of an ANOVA,

asterisks indicate significance in the post-test, given that the overall

ANOVAwas significant. The unit of statistical comparison was always a

grid seed (modeling a virtual animal, with a new random network

anatomy). For analyses in Figs. 1–3, we were only interested in very

large effects, and thus chose a sample size of 10. From Fig. 4, i.e., the

tempotron, we increased sample size to 30, since tempotron classifi-

cation is known to be noisy. For GC rate-controlled analyses network

seeds where GC rate was outside the permissible range of 0.2–0.3Hz

were excluded. Box plots show the median, the interquartile range

(box) and the data range w/o Tukey-outliers (whiskers), where Tukey-

outliers are defined as exceeding the 1.5× interquartile range.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
The pre-simulated spike data generated in this study have been

deposited in zenodo under accession code https://doi.org/10.5281/

zenodo.8280121 (https://doi.org/10.5281/zenodo.8280121). The pro-

cessed data underlying the figures are provided with this paper as

Source data file. Source data are provided with this paper.

Code availability
All code required to reproduce the present data figures is available at

https://doi.org/10.5281/zenodo.8278084 or https://github.com/

barisckuru/phase-to-rate. Our models relied on Python 3.9.12 and

standard software packages, namely NumPy 1.22.481, elephant 0.11.172,

neo 0.10.282, seaborn 0.11.283, PyTorch 1.12.175, as well as the NEURON

8.0.0-2-g0e9a0517+84, and Brian2 2.576 modeling environments.
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