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Cell type specificity for circuit output in the midbrain

dopaminergic system
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Abstract

Midbrain dopaminergic neurons are a relatively small group of
neurons in the mammalian brain controlling a wide range of
behaviors. In recent years, increasingly sophisticated tracing,
imaging, transcriptomic, and machine learning approaches
have provided substantial insights into the anatomical, mo-
lecular, and functional heterogeneity of dopaminergic neurons.
Despite this wealth of new knowledge, it remains unclear
whether and how the diverse features defining dopaminergic
subclasses converge to delineate functional ensembles within
the dopaminergic system. Here, we review recent studies
investigating various aspects of dopaminergic heterogeneity
and discuss how development, behavior, and disease influ-
ence subtype characteristics. We then outline what further
approaches could be pursued to gain a more inclusive picture
of dopaminergic diversity, which could be crucial to under-
standing the functional architecture of this system.
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Introduction

Specific circuits within the brain are formed by distinct
classes of neuronal cell types. A formidable challenge in
neuroscience is to comprehend how properties of indi-
vidual neurons contribute to the computational prop-
erties of neural circuits and ultimately to behavior. The
classification of neurons into cell types is thus one of the
prerequisites for the systematic and reproducible
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analysis of the computational function of neural circuits
in health and disease. However, the definition of a cell
type is conceptually difficult, as it can refer to highly-
specific molecular, anatomical, physiological properties
that, moreover, are not necessarily fixed and can change
during development, in various metabolic or disease
states, and during aging. Nevertheless, new technical
approaches in single-cell transcriptomics, circuit tracing,
functional imaging and fine-grained behavioral analysis
have given us unprecedented insight into molecular,
anatomical and functional neuronal diversity across
brain areas.

In contrast to fast acting neurotransmitters (e.g. gluta-
mate and GABA), modulatory neurotransmitters such as
monoamines affect the properties of downstream neu-
rons in the short to long term by regulating synaptic
transmission, excitability, plasticity, protein transport,
and even gene transcription. Neuromodulators signal via
G-protein coupled receptors (GPCRs). Whether a spe-
cific neuromodulator has a stimulatory or inhibiting
downstream effect often depends on the GPCR type
expressed and the type of downstream second
messenger signaling cascade activated in the receiving
neuron [1]. Although neuromodulators only indirectly
affect neuronal and network activity, they have profound
effects on the functional properties of neurons, circuits
and entire brain regions. Therefore, understanding the
function of neuromodulatory circuits is crucial to un-
derstanding information processing in the brain.

An example of a monoaminergic neuromodulatory
system that exerts a strong influence on a variety of
behaviors by modulating local and long-range circuits in
different brain regions is the dopaminergic (DA) system.
Within monoaminergic systems, the DA system has
unique anatomical features, since the collateralization of
DA neurons is limited (see below). This means that a
single DA neuron typically projects primarily to a single
brain area, making it plausible that the modulatory
function in which a DA subpopulation is involved is
determined by its target specificity. In the mammalian
brain, DA neurons are primarily located in the midbrain
(mDA), where they can be anatomically subdivided into
the retrorubal field (RRF), substantia nigra pars
compacta (SNc) and ventral tegmental area (VTA), with
few cells located in the SN pars reticulata and pars
lateralis (SNI). Together with further cell groups in the
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ventral periaqueductal grey (VPAG), dorsal raphe region,
as well as in the olfactory bulb and hypothalamus, these
small nuclei supply dopamine to almost the entire brain
[2]. Accordingly, dopamine modulates a wide variety of
neuronal functions (Table 1) and is involved in a
multitude of brain disorders such as Parkinson’s disease,
schizophrenia, anxiety or addiction [3—6]. To this date,
it remains a fundamental question how a single neuro-
transmitter, released from a comparably small number of
neurons, can control these different behaviors and be of
importance in various neurological diseases.

Addressing this functional heterogeneity has been
challenging. Therefore, researchers have employed
diverse approaches to categorize DA neurons into
subtypes focusing on disentangling different mDA
subclasses. This includes an anatomical classification
originally based on mDA soma location in midbrain
subnuclei or on mDA axonal projection pathways [2].
In recent years, with the availability of improved
tracing tools, imaging techniques and analytical
methods, it has become possible to determine the
correlation between the location of the soma, axonal
projections and even inputs with increasing accuracy
[7,8]. Alternatively, molecular markers have been used
to differentiate between mDA subtypes, an approach
that has been boosted by new techniques such as
single-cell RNA sequencing [9,10]. In addition, by
using electrophysiological or imaging approaches in
behaving animals, ideally in combination with machine
learning techniques to define behavioral segments, it
is possible to classify mDA neurons based on their
activity during specific behaviors and also determine
their anatomical position and/or axonal projection
targets (see for example [11—14]). In this review, we

Table 1

aim to highlight the importance of these cell type
classifications for comprehending the heterogeneous
mDA circuit function and discuss how to achieve a
more complete understanding of the intersection be-
tween different modalities, which will be necessary to
gain even deeper insights into functional mDA en-
sembles and how the mDA system modulates spe-
cific behaviors.

Functional anatomy of midbrain
dopaminergic outputs

"Tracing studies have established that the axonal output
pathways of mDA neurons often roughly correlate with
soma location (Figure 1). Iz vivo manipulation of dopa-
mine signaling, imaging of mDA axonal activity or
dopamine release have provided insight into how
dopamine function may be distributed across different
brain regions for specific behavioral outputs (Table 1).
The correlation between mDA soma location and axonal
projections is an important aspect to consider for the
functional dissection of the mDA system, since # vitro
and  vivo studies have reported distinct activity pat-
terns in different mDA subnuclei. Many of these pat-
terns can be attributed to the expression of distinct ion
channels or neurotransmitter receptors, which often
follow a medial-lateral or rostral-caudal expression
gradient (see for example [12,14—16]).

Importantly, for both VTA and SNc mDA neurons, a low
rate of axon collateralisation between different target
areas has been reported [17—21], enabling specific in-
formation transmission instead of wide broadcasting of
behaviorally-relevant signals. In addition, recent evi-
dence suggests that axons originating from molecularly-
defined mDA subtypes innervate only narrowly

Behavioral functions of mDA projections.

Target structure Dopamine function References
PFC Working memory [102]
NAc core Pavlovian reward learning [24]
NAc medial shell Response in learned instrumental task [24]
NAc lateral shell Reward prediction signaling [103]
Amygdala Anxiety, appetitive and aversive associative learning and extinction [69,99,104,105]
BNST Pain sensitivity 8, locomotion 2 [100]
Medial OT Odor preference [97]
LS Promotes aggression [96]
Lateral ENC Cue-reward associations [101]
DMS Motor control, movement initiation, vigor of movement, goal-directed [26]
actions
DLS Motor control, skilled movements, habitual actions [26]
TS Aversion, threat prediction [39,106]
Hippocampus Learning and memory (dopamine partially from locus coeruleus afferents) [107]

Please note that the functions listed for specific mDA target regions are only examples of the behaviors associated with dopamine signaling in these regions
and — especially given the extensive and ever-growing literature on dopamine function — by no means claim to be comprehensive. Abbreviations are defined

in the legend of Figure 1.
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Figure 1
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Axonal targets of mDA neurons according to soma location in the midbrain. VTA-mDA neurons, particularly in the caudal and ventromedial (vm)
VTA, project predominantly to the prefrontal cortex (PFC) and medial part of the ventral striatum (nucleus accumbens (NAc) core (c) and medial shell
(ms)) [18,95]. mDA neurons in the vmVTA are also the main source of DA innervation of the lateral septum (LS) [96]. mDA neurons sending projections to
the lateral part of the NAc (NAc lateral shell (Is)) are primarily located in the dorsolateral (dl) VTA and medial (m) SNc [18,24,95]. In the olfactory tubercle
(OT), medial regions are primarily innervated by mDA neurons in the vmVTA, while the lateral OT (IOT) receives projections from dIVTA-mDA neurons
[95,97]. DA innervation of the basolateral (BL) amygdala (AMY) has originally mainly been attributed to the VTA [18], but recent studies have also

highlighted pathways from across the SNc [98]. The ventral periaqueductal grey (vPAG) is the primary source of innervation of the central AMY (C-AMY)
[25,99] and the bed nucleus of the stria terminalis (BNST) [25,100]. The lateral entorhinal cortex (IENC) appears to receive broad input from both VTA and
SNc [101]. mSNc neurons project preferentially to the dorsomedial striatum (DMS), lateral ones (ISNc) to the dorsolateral striatum (DLS), while the tail of
the striatum (TS) is innervated by projections from mDA neurons in the ISNc and SN pars lateralis (SNI) [20,37]. Note that there is also a bias of ventral
SNc mDA neurons to project to DLS while dorsal ones project primarily to the DMS (not shown) [23,25,51,53]. Comparatively little is known about the

projection targets and functions of mDA neurons in the RRF, thus the RRF is not depicted here. lllustration was created with BioRender.

circumscribed anatomical areas within the larger mDA
target regions shown in Figure 1. For example, pro-
jections from one such subtype densely innervate only
the dorsal most part of the dorsolateral striatum (DLS)
while axons from another subtype show dense innerva-
tion of only the ventral part of the tail of the striatum
(TS) [22,23]. In addition, a number of molecularly
defined subtypes have been shown to preferentially
innervate either the nucleus accumbens (NAc) core or
the NAc shell [22,24,25]. Together these data indicate
that dopamine signaling can be specific for projection
subtypes and thus the postsynaptic target. Such highly
specific and compartmentalized target innervation
could be of great functional importance, both in the NAc
subdivisions and in the dorsal striatum, which is divided
into functional subdomains based on cortical and
thalamic inputs [26]. Moreover, although it has long
been postulated that dopamine is released via volume
transmission in target areas, thus lacking spatial accu-
racy, recent evidence mainly gained by studying dopa-
mine signaling in the dorsal striatum suggests more
precise transmission at both the spatial and temporal
scale [27,28].

Nevertheless, because of the small number of release
sites and the rapid depletion of dopamine in these
release sites, the activity of individual mDA neurons
may have little predictive value for dopamine release or

the effect of dopamine at the target site. In contrast, it
has been postulated that the pooled activity of groups of
mDA neurons might more closely reflect DA release
[27,29]. Whether these mechanisms of release and re-
ceptor activation apply to all mDA target areas remains
to be investigated.

Finally, when correlating mDA neuronal activity with
the effect on target neurons, one needs to consider
that subpopulations of mDA neurons have the ability
to co-release fast-acting neurotransmitters or slow-
acting neuropeptides [30—32]. It should be empha-
sized, however, that mDA neurons with a specific co-
release ability also have some specificity in their pro-
jection targets. For example, SNc¢ neurons projecting
to the dorsal striatum co-release GABA, while mDA
neurons that co-release glutamate are located in the
lateral SNc and VTA and send projections to the tail of
the striatum and many targets of VIA-mDA neurons
[25,33]. VIP-expressing neurons are located in the
vPAG and selectively project to the central amygdala
and the bed nucleus of the stria terminalis [25].
Overall, this adds another layer of circuit specificity,
both at the presynaptic site (e.g. transmitter-specific
microdomains or activity patterns that allow for
transmitter-specific release) and in the projection area
(cell type-specific neurotransmitter receptors and
signaling cascades).
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Cell type-specific afferent inputs for distinct
functional output

Another essential component for understanding how
information is processed in mDA circuits, is whether
mDA neurons with specific projection targets receive
inputs from selected brain areas and whether these
inputs show activity that correlates with the specific
behaviors encoded by these mDA neurons. Complex
rabies tracing studies analyzing monosynaptic inputs to
mDA subtypes defined by their specific projection tar-
gets demonstrate that mDA neurons receive in general
broad input from many brain areas with no clearly
distinct relationship between projection target and
monosynaptic input specificity [20,21,34—37]. Never-
theless, a bias in the distribution of direct inputs to
mDA subclasses with specific projection targets is
evident [20,21,36,38]. As there is a correlation between
mDA soma location and axonal projection targets
(Figure 1), this input bias may be attributed in part to
the topological organization of mDA cell bodies with
specific projection targets rather than to their output
specificity per se. For example, SNc¢c mDA neurons that
project to the DLS are located in the lateral SNc¢ and
receive more prominent reciprocal projections from the
DLS than from the dorsomedial striatum (DMS), while
the DMS-projecting mDA neurons that are located in
the medial SNc¢ have biased input from the DMS. One
population that appears to have more distinct direct
inputs, for example from the globus pallidus or the
subthalamic nucleus, are mDA neurons located in the
lateral part of the SN that send projections to the TS
[37,39]. In the VTA, a topological organization of inputs
has been described [21]. Since there is also a rough
topological organization of outputs in the VTA (see
above), this study suggests that the specificity of con-
nections to and from the VTA depends primarily on the
mediolateral location of the neurons within the VTA
[21]. In depth analysis of these data additionally
revealed some input bias based on projection targets. For
example, VITA-mDA neurons that project to the medial
prefrontal cortex are located in the medial VTA and
receive preferential inputs form the habenula and the
dorsal raphe, while VITA-mDA neurons that project to
the lateral nucleus accumbens are located in the lateral
VTA and are preferentially innervated by neurons of the
basal ganglia [40]. In addition to the long range mono-
synaptic inputs, mDA neurons also receive extensive
direct local input, including from other mDA neurons.
These local inputs fall into three clusters and a biased
contribution of these clusters to mDA neurons along the
lateral-medial axis of the VTA as well as to projection-
target defined VIA-mDA neurons has been demon-
strated [41].

Finally, the question remains how mDA neurons inte-
grate input signals to encode behavior, which likely
depends on the concerted activity of larger neuronal

populations. This has been examined in detail for
reward prediction error (RPE) signaling. A study by the
Watabe-Uchida lab has demonstrated that input ac-
tivity received by lateral VTA-mDA neurons is distrib-
uted across monosynaptic inputs from various brain
areas, some of which respond positively and others
negatively to the RPE, potentially resulting in a range
of excitatory and inhibitory signals to the RPE-
encoding mDA neurons. Still, this complex input
combination results in an apparently homogenous mDA
neuronal activity in RPE prediction [42]. More recent
work shows, however, that populations of VITA-mDA
neurons actually encode RPEs as a distributional
code, with slight variability resembling optimistic and
pessimistic predictions [43]. In consequence, future
rewards are not simply presented as a single mean in
the mDA system, but as a probability distribution of
possible rewards to account for multiple future out-
comes [44]. Moreover, it has been demonstrated that
mDA neurons heterogeneously encode a variety of task
parameters such as motor, sensory and cognitive vari-
ables and multiplex these signals [11,13,45,46]. This is
in part achieved by coding distinct variables with tonic
and phasic activity patterns [45], which can be selec-
tively modified by specific inputs to mDA neurons
[47]. In light of this heterogeneous signaling, it will be
an important task to identify whether defined
anatomical and/or molecular properties can separate
functionally specialized subpopulations within the
mDA system.

Molecular composition of the dopaminergic
system

Recent advances in molecular techniques such as single-
cell transcriptomics promise to solve the ongoing debate
about what constitutes an mDA subtype, based on their
molecular signatures. A recent review has synthesized
the results of single cell gene expression profiling
studies of postnatal brain or midbrain in the mouse in an
effort to delineate subsets of mDA neurons based on the
transcriptomic profiles uncovered in these studies and
identified at least seven different molecularly defined
mDA subtypes, three of them in the SNc [9]. While
these classifications are still valid, further transcriptomic
studies with large numbers of neurons and/or across
multiple species provide a continuous update of what
constitutes a molecularly-defined mDA neuron
[10,23,48]. For example, a recent study [10], which
performed single-nuclei RNA sequencing on a large
number of SNc-mDA neurons from different mamma-
lian species, including mouse and human, identified ten
different mDA cell types in the SNc alone, one of which
is specific to primates. This study highlights another
important aspect to be considered when classifying di-
versity in the mDA system: biologically relevant differ-
ences between mDA subgroups are likely conserved
across mammalian species (and some possibly even
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across tetrapods). It will be interesting to see if and
when a consensus eventually emerges on how many
distinct subclasses of DA neurons with different gene
expression profiles exist in different species and how
many of these are conserved across different mammalian
species or even beyond.

Managing multiple cell type modalities in
the dopaminergic system

The identification and growing precision of molecularly-
defined mDA subclasses leads to the obvious question of
how molecular identity relates to the other features of
mDA heterogeneity and, in particular, how this identity
is mechanistically linked to anatomical and functional
modalities of the respective subclasses. While some of
the molecular markers that define specific mDA subsets
have not (yet) been ascribed any obvious relevance for
mDA neuron function, some marker genes encode pro-
teins known to directly influence cellular computations.
An example is the calcium binding protein calbindin
(CALB1), which is not only associated with somatic
regular bursting activity patterns [16], but also regulates
dopamine release in a projection target-specific manner
[49,50]. In this respect, it will be of interest to inves-
tigate in the available single-cell transcriptome datasets
whether molecularly defined mDA subtypes show dif-
ferential expression of genes encoding functionally
relevant proteins (e.g., neuropeptide or hormone re-
ceptors, or ion channels critically modulating mDA
neuron activity patterns). An important consideration in
attempting to relate the identity of a neuron as deter-
mined by the transcriptome to its functional properties
is that gene expression levels do not necessarily corre-
late with protein expression levels and cannot reveal a
great deal about posttranslational modifications
affecting protein function or the subcellular location
of proteins.

Importantly, it will be key to integrate the molecular
classification with the specific anatomical and functional
features of mDA neurons. This would raise the ques-
tions whether these molecular subclasses have distinct
soma location and projection targets, distinct inputs,
electrophysiological properties and modulate specific
aspects of behavior. Indeed, initial attempts to map the
soma location of molecularly-defined mDA subtypes
showed preferential location in subnuclei or along the
lateral-medial and rostral-caudal axis, for example
vGlut2+ mDA neurons are located in the medial VTA,
lateral SNc, and SNI, Aldhlal+ Sox6+ neurons in the
ventral tier of the SNc¢, Aldhlal- Sox6-+ neurons in the
dorsal tier of the SNc and the lateral VTA [9,51].
Furthermore, molecular subtypes show distinct suscep-
tibility to neurodegeneration or stress and/or are acti-
vated during specific behaviors, e.g. during locomotion,
associative learning or to the instructive rewarding or
aversive cues [13,22—24,51—53].

Cell type specificity for circuit output Blaess and Krabbe 5

Nevertheless, even though anatomically- or molecularly-
defined cell types contribute to selective behavioral
functions of dopamine signaling, heterogeneity can still
be observed within these cell types. One possible
explanation could reside in further subtypes within the
current classification of mDA cell types, as highlighted
above [9]. Indeed, many mDA molecular subtypes are
defined by two or several marker genes. Therefore, it
will be important to analyze cell type function in terms
of combinatorial marker gene expressions. New ap-
proaches to target mDA subtypes based on the co-
expression of several genes (or lack thereof) include
intersectional genetic tools [25,54]. Indeed, the appli-
cation of intersectional approaches to map projections of
molecularly-defined mDA neurons and to investigate
them functionally in behaving mice show interesting
evidence that the molecularly-defined subclasses
innervate highly specific target areas. Examples include
preferential yet not exclusive axonal projections of
Aldhlal+, Anxla+, Sox6+, Bellla + or vGlut2+ mDA
neurons to distinct striatal areas [22,23,25,51].

Finally, another possible starting point to understand
how the molecular profile of an mDA neuron converges
with other features of heterogeneity is to consider the
molecular mechanisms underlying the development of
mDA neurons. For instance, given the relatively high
target specificity of mDA neurons described above,
mDA neurons that innervate a specific brain area likely
express a set of guidance receptors during axonal
outgrowth that is distinct from those of other sub-
populations, allowing them to find their specific pro-
jection target [55]. Similar specificity in the interaction
with the environment is likely to be important for the
migration of mDA neurons to their correct anatomical
position within the midbrain, which in turn may be
critical for ensuring that mDA neurons receive the cor-
rect local and long-range inputs owing to the correlation
between inputs and anatomical position of mDA cell
bodies discussed above. Moreover, mDA neurons
themselves might contribute to this input selectivity by
expressing molecules (secreted factors, cell adhesion
molecules etc.) that allow upstream neurons to specif-
ically target them while “ignoring” neighboring mDA
populations, a developmental mechanism that has not
yet been explored. Indeed, there is growing evidence
that diversity in the mDA system arises during
embryogenesis, beginning at the progenitor cell level
with the spatially and temporally specific generation of
distinct types of mDA neurons and the further emer-
gence of features of heterogeneity as mDA neurons
differentiate [55,56].

Classification of dopaminergic cell types
vs. cell states

While the anatomical properties of mDA neurons are
likely hardwired from an early developmental stage [55],
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some of the molecular markers identified in single-cell
transcriptomic analysis of the postnatal brain to define
certain subsets of mDA neurons are expressed in
changing patterns across the course of development. Of
note, vGlut2 (see previous section) is initially expressed
in all mDA neurons [57,58], and Sox6-expressing mDA
progenitors in the developing brain give rise to both
Sox6-positive and Sox6-negative adult mDA populations
[51]. It should also be considered that the molecular and
thus the functional identity of mDA neurons might
further change in adulthood, e.g. in circadian rhythm
[59], estrus cycle [60], during healthy aging [61] or in
disease [10,62—64]. Taking into account that metabolic
states [65], sleep [66] or simple behaviors such as
increased motor activity [67] can change gene expres-
sion programs in other regions of the brain, it is likely
that similar alterations can also be induced in mDA
neurons. Expression of molecular markers is thus not
necessarily static, but can vary over time and experi-
mental conditions, and thus may represent a cell state
rather than a cell type.

Similarly, the activity of mDA neurons can be modulated
by external parameters such as context [68] or behav-
ioral state [69—72]. This includes metabolic needs such
as hunger or thirst, which are crucial drivers for goal-
directed behavior. For example, cues signaling food re-
wards are potentiated in the mDA VTA—amygdala
pathway during hunger, but are attenuated in satiety. In
contrast, responses to aversive cues increase with the
transition to satiety, indicating opposing changes in cue
salience across behavioral states for this mDA projection
[69]. Furthermore, different motivational signals such as
social and food stimuli are encoded by overlapping
populations of mDA-VTA neurons. Hunger states or
opposite-sex encounters can dynamically change this
representation, which is accompanied by state-
dependent changes in gene expression related to
cellular excitability [73]. At this point, it is largely un-
known if state-dependent modulation affects selected
molecular and/or anatomical mDA subpopulations. On a
single cell level, it is likely correlated with expression of
distinct genes, for example receptors for distinct neu-
ropeptides or hormones modulating homeostatic needs.

Conclusion and future directions

The rapid development of methodologies that allow
unprecedented insights into the anatomical, molecular
and functional features have resulted in a tremendous
increase in our knowledge on how diverse the mDA
system is. However, to fully distinguish mDA cell types,
new approaches will be needed to integrate information
on the single cell level across distinct behavioral and
disease states with a more comprehensive definition of
individual anatomical and molecular identity. Taking
into account all modalities of mDA cell type heteroge-
neity, an ideal experiment would need to cover
anatomical information (morphology, soma location in

the midbrain, inputs and outputs), gene expression
analysis (molecular markers, specific ion channels and
receptors) and functional properties across behavioral
states on a single cell level (Figure 2). While this cannot
be achieved (yet) in its entirety with existing technical
approaches — and would likely exceed the capabilities of
any single research group — we have highlighted recent
studies addressing selected combinations of cell type
modalities that have substantially improved our under-
standing of the mDA system. Many new exciting tech-
niques allow to gain a more complete overview of mDA
cell type classification, and we are outlining major
questions that can now be addressed in the following.

1. How do unique molecular features overlap with anatomical
properties? More and more platforms and data re-
sources for large-scale spatial transcriptomics are
now becoming available [74—76]. These allow
linking gene expression with soma location and even
projection targets at the single cell level (‘EASI-
FISH’ [77]). Furthermore, new viral connectomic
approaches such as ‘BARseq’ or ‘Connect-seq’ allow
for combinations of circuit tracing with transcrip-
tional analysis, or trans-synaptic labeling from
molecularly-defined neuronal subpopulations [78].
This can additionally be combined with assays
measuring synaptic strength (e.g. ex vivo slice elec-
trophysiology) or / vivo monitoring of input activity
to clucidate the functional connectivity of mDA
subtypes [42,78]. How well these new tools will
work for mDA neurons remains to be determined, as
viral tropism is still an issue in the mDA system, with
popular approaches such as AAV2-retro failing to
efficiently label mDA neurons [79]. Labor-intensive
screening, e.g. for suitable serotypes of AAVs [80],
systematic approaches such as engineered capsid
structures [81] or receptor complementation stra-
tegies [82] can help to overcome these problems.
Alternatively, non-viral tracers such as retrobeads
[18] or cholera toxin B [77] are efficient strategies
for retrograde labeling of mDA projection pathways
and allow incorporating anatomical information with
other modalities such as gene expression using
spatial transcriptomics, functional recordings with
electrophysiology or calcium imaging, or even com-
binations of these approaches. Finally, to gain a
better insight into how developmental, behavioral
and disease states influence gene expression and
function of mDA subpopulations, it will be critical to
integrate the anatomical and molecular profiles of
these subclasses with information about their
epigenetic features [83].

2. How are behavioral functions encoded on the single cell level?
For functional assessments, one important consider-
ation is the technical approach of recording neuronal
activity. While fiber-based imaging typically allows for
reliable recording from a large population of somata or
axonal projections, it lacks cellular resolution and

Current Opinion in Neurobiology 2023, 83:102811
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Figure 2
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Distinct modalities used to categorize mDA neurons into subpopulations. The modalities of a given subclass are not static, but can be modulated by
behavioral states or local modulation. The interplay of these intrinsic determinants and extrinsic factors ultimately results in the functional output of the

mDA system. lllustration was created with BioRender.

thus is at risk of missing potential heterogeneity of
individual neurons within the recorded population.
Both brief and prolonged pauses in spontaneously
active mDA neurons are meaningful for circuit com-
putations [12,45,84], but likely to be overlooked with
this technique if only displayed in a subgroup and
masked by a majority of activated cells or axons.
Therefore, any interpretation that the response of a
projection- or molecularly-defined population is ho-
mogeneous based on fiber-photometry recordings
should be made with caution.

3. How do functional properties correlate with other cell type
modalities? Deep-brain imaging techniques now allow
for recordings of large mDA neuronal populations at
single-cell resolution in freely-behaving or head-fixed
mice [11,73]. Refined surgical approaches no longer
require tissue removal for the implantation of thin
lenses and thus allow for measurements of physio-
logical activity patterns in the almost intact brain.
Despite lacking temporal resolution, spike-inferring
algorithms promise to pry out tonic and phasic
mDA neuron activity patterns that are critical to
understand coding in mDA neurons from calcium
imaging data [85]. Importantly, since these re-
cordings are typically stable for many days, they allow

to follow individual neurons across distinct behavioral
states, and can even be combined with post-hoc
spatial transcriptomics to identify the molecular
profile of the imaged cell types (‘CaRMA’ platform
[86]) — making it the almost perfect experimental
approach to address all modalities of mDA cell type
diversity.

. How do somatic and axonal activity translate to dopamine

release at the targer sites? Genetically-encoded fluores-
cent sensors detecting extracellular dopamine in
projection areas cannot differentiate for release from
molecularly-defined subtypes, but can be combined
with optogenetic stimulation or recordings of axonal
activity in defined subpopulations [87]. Of note,
focusing on mDA target areas instead of their somata
would also allow to take local mechanisms of modu-
lation such as action potential initiation in distal
axons into account [88—90]. However, which of these
local modulatory mechanisms are actually important
for DA release in behaving animals requires further
research [91,92].

. What are the downstream effects of mDA projections on

recipient neurons in target areas? As highlighted above, co-
release of other neurotransmitters and peptides has to
be considered for many mIDA neurons, yet if distinct
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activity patterns are necessary for transmitter-specific
release is so far unclear. Binding of dopamine itself to
its receptors activates or inhibits — depending on the
type of receptor expressed — second messenger
signaling cascades that ultimately modulate cAMP
levels and PKA activity. Thus, examining these
downstream readouts may provide additional insight
into how dopamine signaling is integrated in the
receiving neuron to modulate its functional output
[93,94].

In conclusion, a concerted effort to investigate mDA
neurons in a multimodal manner by applying new
technologies as outlined above will be critical to un-
derstand the functional architecture of the DA system.
Such a comprehensive insight could provide the foun-
dation for developing therapeutic strategies to specif-
ically modulate abnormal DA functions in disease states
in a targeted, subcircuit specific manner.
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