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Abstract 

Data management and sample tracking in complex biological workflows are essential steps to 

ensure necessary documentation and guarantee the reusability of data and metadata. Currently, 

these steps pose challenges related to correct annotation and labeling, error detection, and 

safeguarding the quality of documentation. With growing acquisition of biological data and the 

expanding automatization of laboratory workflows, manual processing of samples is no longer 

favorable, as it is time- and resource-consuming, is prone to biases and errors, and lacks 

scalability and standardization. Thus, managing heterogeneous biological data calls for efficient 

and tailored systems, especially in laboratories run by biologists with limited computational 

expertise. Here, we showcase how to meet these challenges with a modular pipeline for data 

processing, facilitating the complex production of monoclonal antibodies from single B-cells. We 

present best practices for development of data processing pipelines concerned with extensive 

acquisition of biological data that undergoes continuous manipulation and analysis. Moreover, we 

assess the versatility of proposed design principles through a proof-of-concept data processing 

pipeline for automated induced pluripotent stem cell culture and differentiation. We show that our 

approach streamlines data management operations, speeds up experimental cycles and leads to 

enhanced reproducibility. Finally, adhering to the presented guidelines will promote compliance 

with FAIR principles upon publishing. 
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1. Introduction 

Over the last few decades, technological advancements in fields such as imaging, laboratory 

automation, computing, and data analysis have revolutionized the way biologists work and handle 

data (1 4). High-throughput (HT) and high-content (HC) studies are no longer exclusive to large, 

specialized labs but are gaining popularity in research conducted by smaller, independent teams 

(4 6). This trend is expected to continue, as smaller biology labs increasingly adopt HT/HC 

techniques due to decreasing costs, thereby generating large amounts of biological data. 

Additionally, many funding agencies and scientific journals have emphasized the value of HT/HC 

techniques in producing reliable and comprehensive data, which will further incentivize individual 

groups to incorporate HT/HC methods to generate high-quality research and stay competitive (7

10). 

Biological data is heterogeneous by nature and often includes experimental readouts, curated 

annotations, and metadata, among other type of data. The increasing size and complexity of 

biological datasets call for effective means to manage data in its complete life cycle throughout a 

workflow, and the generation, processing, analysis, and management of heterogeneous biological 

data require tailored systems to improve data governance (11 13). 

The increasing use of laboratory automation and the generation of experimental workflows with 

complex structures pose a unique challenge in backtracking and identifying samples and their 

related metadata. Each step of the workflow impacts the final data, and if problems arise, it can 

be difficult to backtrack and pinpoint where errors occurred. Likewise, the reproducibility of 

complex biological workflows is closely tied to precise record-keeping, especially as new 

techniques are introduced. As wet lab experiments are often complex, time-sensitive, and involve 

many researchers, the quality of documentation can be compromised. Moreover, manual data 

curation is time-consuming, labor-intensive, prone to human error, and at risk of biases, as it relies 

on the individual expertise of the curator. Any error in data curation compromises data integrity 

and can lead to incorrect conclusions, inefficient workflows, and the inability to reuse the data. 

Similarly, manual integration of data from multiple sources lacks standardization, has limited 

scalability, and can hinder the early detection of errors (14). 

To ensure data integrity in workflows and prevent potential data loss, strict quality control 

measures and careful monitoring of workflow steps are necessary. Although many systems exist 

for managing large datasets in biology (15), they are mainly implemented in larger, specialized 

facilities with teams trained in computer science. In smaller, individual labs, dedicated informatics 

staff may not be available and biologists are required to learn complex tools and technologies for 

data processing, despite lacking prior experience and facing severe time and resource 

constraints. Overall, there is an urgent need for design guidance for data processing solutions in 

biology workflows. 

Here, we present the recently established pipeline for modular data processing that facilitates and 

documents the complex production of monoclonal antibodies (mABs) derived from individual B-

cells. Implementing our data management system reduced the time spent on data processing by 

over one-third and improved data reliability. Our strategy proves that, with moderate effort, 
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biologists can set up an efficient, rewarding, systematic approach to routine data processing 

tasks. This approach will: i) simplify documentation; ii) facilitate reproducibility and improve 

accuracy by eliminating errors related to manual data handling; iii) speed up data processing, 

accelerating the generation of reliable insights and freeing hands for other tasks; iv) standardize 

data processing procedures, enabling comparison of results across series of experiments or labs; 

and v) support scalability, as modules of data processing pipelines can be up- or down-scaled to 

handle varied data amounts, adapting to changing research needs. Finally, and to demonstrate 

the versatility and transferability of our approach, we apply it to the development of a data 

processing pipeline for automated stem cell culture. We show that our design guidelines can serve 

as best practice recommendations for other biologists and be a step towards greater 

reproducibility, efficiency, and standardization of workflows in biology. 

 

Box 1. Terminology 

This box provides definitions for selected terms throughout the text. 

Data curation  the process of cleaning, organizing and standardizing data towards greater 

quality, utility and long-term preservation. Data curation is part of data processing. 

Data processing  all tasks that are performed on acquired data to prepare it for analysis, 

especially curation, formatting, transposition, joining, sub-setting and summarizing, but 

excluding data acquisition and storage. Data processing is a broad term, encompassing all 

data manipulation and transformation steps that facilitate extracting meaningful insights and, 

in the long term, knowledge. 

Data processing pipeline  the sum of all data processing modules for one workflow, aimed 

at converting raw input data into usable information. 

Data repository  storage space to catalog and archive data. Data is curated prior to deposit. 

Ideally, the storage space and contained data are managed by a database software that allows 

efficient retrieval of related data points. 

Knime module  a workflow in Knime performing a series of related tasks or operations, 

unit of Knime. 

Metadata  data that describes other, associated data. In the context of this work, metadata 

includes, but is not limited to: i) donor data associated with a sample (e.g., date of donation, 

cell number); ii) experimental settings and conditions (e.g., protocols, reagents, equipment); 

iii) association of experimental results with the original sample; iv) location of a given sample 

or its derivate. 

Module or data processing module  an individual Python script or Knime workflow. 
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2. Workflow for mAB production and data processing challenges 

We have recently established a wet lab workflow that enables the production of over one thousand 

mABs per year from patient-derived single B-cells. An antibody is composed of two protein chains, 

the heavy (H) and the light (L) chain, where th

enables in vitro generation of mABs with the same specificity as in the originating B-cell. The wet 

lab protocols have been outlined with minor deviations elsewhere (16 18). The procedures 

consist primarily of the following steps: cDNA is generated from individual B-cells. The cDNA 

it is necessary to perform three parallel PCR reactions (see Figure S1). The PCR amplicons are 

analyzed for correct size by electrophoresis and sequenced upon positive evaluation. Primer pairs 

specific for the sequenced H and L chains, and equipped with overhangs for Gibson Assembly, 

are selected for a final PCR reaction (for a complete primer set, see Table S1 in Supplementary 

Material). The final PCR products, covering the specificity-determining variable regions of 

antibodies, are cloned by Gibson Assembly into plasmids encoding the constant regions of H or 

L chains. The assembled plasmids are amplified in bacteria, purified, and sequenced to confirm 

sequence identity, i.e., that no mutations causing failures on the protein level have been 

introduced (19). HEK cells are then transfected with pairs of plasmids encoding matching H and 

L chains. After transfection, mABs produced by HEK cells are secreted into the cell media, and 

their concentrations are measured. 

Due to the complexity of the workflow, the production of mABs in a time- and resource-efficient 

manner implies a considerable data processing effort, as the following challenges must be 

addressed: 

1. Wet lab experiments represent a selection funnel, wherein not all samples that enter the 

workflow proceed to the end. This is because they involve a series of steps that progressively 

narrow down the selection of samples, i.e., not all B-cells will give rise to functional antibodies. 

Optimization of resource usage, therefore, requires the selection of successful samples after 

each analysis step. The next wet lab step is only executed when a significant number of 

successful samples have accumulated after a set of wet lab experiments (e.g., one full plate 

of 96 samples). 

2. A specific challenge to mAB production is their composition of H and L chains. As antibodies 

are composed of plasmid pairs, quality analysis requires the matching of heavy and light 

chains cloned from the same cDNA. Only if both heavy and light chains are positively 

evaluated are the chains pushed to the next step. If one chain of a pair is missing, several 

Wet lab experiment or experimental procedure  workflow steps that are conducted 

physically in the laboratory. 

Workflow  systematic series of interconnected steps designed to achieve specific research 

objectives , including wet lab work, data processing and data storage. 
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workflow steps must be repeated for the missing chain, increasing the complexity of both data 

processing and documentation. 

3. Another challenge to mAB production is the variability of H and L chains derived from somatic 

recombination of V(D)J gene segments (20,21). The specificity-determining region of an H 

chain is composed of several V (variable), D (diversity), and J (joining) gene segments. The 

specificity-determining region of an L chain is similarly composed of several V (variable) and 

J (joining) gene segments. In order to clone H and L chains, a three-step PCR strategy is 

implemented (see Figure S1 and Table S1). First, forward and reverse primer mixes for each 

chain are used to amplify a given chain from cDNA. Then, a second PCR with primer mixes 

is performed to analyze the first amplicon by sequencing. Obtained sequences are analyzed 

for the specific V(D)J gene alleles, and based on this analysis, a specific primer pair is selected 

from a set of 69 primers to perform a final PCR step (19). Significant effort is required for 

processing the data, curating the data sets, and developing pipetting schemes for performing 

the final specific PCR. 

4. The key to a time-efficient workflow is to shorten the data processing effort between two wet 

lab experiments. Due to the complexity of our workflow, data processing is time-consuming 

-on time for mABs production from cDNA). 

Analysis of samples, creation of pipetting schemes, and relating initial cDNA samples to 

experimental readouts are a challenge, as different machines use varying plastic ware layouts 

(e.g., 96- or 384-well plates column- or row-wise, individual culture plates or individual tubes). 

5. Data generated on each mAB production step needs to be curated and documented before 

you can proceed to subsequent steps, analysis, troubleshooting, hypothesis formulation, and 

publication. 

An organized and standardized approach to data processing and analysis can help address these 

and similar challenges in complex biological workflows. In this work, we propose a set of design 

guidelines for data processing pipelines, based on our experience with automated mAB 

production. 

3. Getting started 

When designing a workflow, it is crucial to conceptualize it in advance by defining the tasks, 

identifying their dependencies and contingencies, and determining data processing operations. 

This can be done in a few steps: 

1. Start by outlining a series of step-by-step experiments (tasks) that constitute the workflow, 

specifying data to be retrieved, analyzed, and stored at each step. Determine the workflow 

endpoint to guide the design process. Visualizing the entire workflow helps to understand the 

experimental sequence and anticipate potential workflow expansion. 

2. ls, including 

protocols and data analysis procedures to ensure reproducibility and enable collaboration. 
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3. Consider the repetitions that may occur in case of experiment failure and how to handle them 

with respect to data storage. 

4. Implement the ways to document the workflow runs and the results for quality control, error 

checking, data analysis and interpretation. 

By defining these components, it becomes easier to identify the data processing operations that 

are required at each workflow step to form a functional pipeline (see Figure 1). In the next 

sections, we present design principles that guided the development of our data processing 

pipeline. We start with principles that give rise to functional pipelines, such as choosing the right 

technologies, applying modular design, ensuring interoperability between modules, and more. We 

cover the implementation of dedicated databases and further design guidelines that go beyond 

developing functional pipelines, but improve existing ones towards better efficiency, organization, 

and reproducibility. 

Figure 1. An example of a twostep wet lab workflow, demonstrating data processing needs. Data generated 

in wet lab experiments (experimental work, blue background, top) undergoes processing (data processing, 

yellow background, middle) for analysis and storage (data repository, green background, bottom). 

Biological samples and accompanying metadata are collected and must be curated and documented. 

Based on the metadata, subsets of samples are selected for analysis, such as those from wild-type or 

diseased subjects (1). The workflow starts with a wet lab experiment that is then documented (2) and 

analyzed (3). Next, the wet lab experiment is conducted on a subset of samples based on the analysis of 

the first experiment (4). The analysis of the second experiment closes the workflow cycle (5). Analyzing the 

results of the second experiment in the context of data (and metadata) gathered in the workflow cycle allows 

for supporting or refuting the hypotheses and yields novel insights (6). 

When designing the pipeline, we considered some recommendations for analysis scripts in 

neuroimaging already present in the literature, grounded in software development (22). The 

design decisions made during development of our data processing modules offer a potentially 

valuable resource for other biologists in designing their own workflows. It is important to note that 
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guidelines presented here do not always follow the sequential order of wet lab experiments; 

instead, they are presented in a non-chronological manner to better explain individual pipeline 

operations. 

We provide a link to the GitHub repository housing the data processing pipeline1. As in daily work 

we use GitLab to host our code, the GitHub repository is a replica of it and contains sample (mock-

up) data and metadata necessary to run the pipeline steps implemented in Python. Building upon 

the work of van Vliet and colleagues (22), we use examples from our workflow to illustrate each 

 

3.1 Choose the right technologies 

The choice of technologies for pipeline implementation is largely dependent on the skills of team 

members. Teams are often diverse when it comes to expertise and preferred way of working; 

building upon this diversity can significantly enhance overall performance and problem-solving 

capabilities (23,24). While computational skills are becoming more prevalent among biologists 

(16), not all researchers are proficient in programming. Software with a graphical user interface 

(GUI) may help implement complex operations by eliminating the need to learn programming and 

has a shorter adoption period than code-based solutions (25). 

 

3.2 Translate Tasks to Modules 

Workflow tasks, once defined, are then converted to modules. Modules are the building blocks of 

a data processing pipeline, whether they be individual Python scripts or Knime workflows. By 

design, a module should perform a simple, singular task. To prevent scripts from becoming 

difficult to understand, complex tasks should be divided into smaller tasks across multiple 

modules. The general principle is to have each module be self-contained and run with minimum 

dependence on other modules. This way, any changes or issues can be addressed without 

disrupting other modules in the pipeline. 

                                                
1 https://github.com/CRFS-BN/mABpy 

Examples from the workflow 

Our modules are implemented in Knime and Python, but designed in a manner to ensure 

interoperability (refer to section 3.4 for further explanation). Knime is among one of the most 

user-friendly workflow management systems and offers a wide array of learning resources (4); 

Python is currently considered the most popular programming language (19), well-suited for 

biology applications (20) and easy to learn. However, other technologies can be used with 

similar success when designing custom pipelines. The skills and preferences of team members 

should guide the selection of an appropriate technology solution. 
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Our pipeline follows the logic of the wet lab experiments  it is organized in modules that 

correspond to experimental flow on the bench (see Figure 2). Since the workflow is hierarchical 

(i.e., each wet lab step relies on the results of the previous step(s)), we alternate wet lab 

experiments with data processing, rather than running the entire pipeline when all experiments 

are completed. Thus, the modularity of each data processing step is defined by related wet lab 

experiments. For example, a module can: i) analyze experimental readouts, ii) prepare pipetting 

schemes for the next experiment, iii) perform sample selection based on predefined criteria, iv) 

assemble machine-readable files for automated wet lab experiments, and v) generate a file for 

data storage in the database. Our experience shows that, for hierarchical pipelines, following the 

wet lab criterion is the optimal way to organize modules. 

 

Examples from the workflow 

To determine whether samples were successfully amplified in the final PCR step (PCR3, see 

Figure 2), we perform capillary electrophoresis (cELE2). The results of cELE2 are parsed by 

the module 06_cELE2.py. The module loads experimental readouts and selects a set of 

samples for further processing based on a band size threshold (in base pairs). The next module, 

07_GiAS.py, takes up successfully amplified samples to prepare a pipetting protocol for cloning 

by Gibson Assembly (GiAs) and a database import file (see Figure 2). For reference, we provide 

examples of raw experimental readout after capillary electrophoresis, pipetting protocols (for 

automated liquid handling) and a database import file. Although our workflow is semi-automated 

and we often deal with machine-readable files, the modules are adaptable to manual workflows. 

For example, the number of samples to be handled in the next workflow step can be easily 

modified by defining the size of chunks in which samples are processed further. Since this 

workflow step operates on multiple 96-well plates, we set the number of samples to the batches 

of 96, but a lower number can be chosen for manual, low-throughput workflows. 
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3.3 Allocate separate computational space to modules 

Each module should run in a separate computational space; that is, the input and output files 

generated by modules should be saved in dedicated directories. Ideally, script files (.py) reside in 

a separate directory, too. This computational environment needs to be accessible to all team 

members, must be backed up for data security, and should allow for seamless integration with 

different modules. These requirements are fulfilled by simple Network Attached Storage (NAS) 

drives, institutional set-up servers or cloud services. Within allocated computational space, the 

folder structure ideally reflects the architecture of the data processing pipeline. 

 

3.4 Define input and output files 

Interoperability between modules (i.e., the ability of modules to work together seamlessly) should 

be given high priority when designing a pipeline. This ensures that data is passed between 

modules without loss of information or format, and each module can be developed and maintained 

independently while still functioning cohesively within the larger workflow system. 

To achieve this, we defined input and output files that exchange data between modules. We refer 

to these as intermediate files, as they are created as part of a larger process and are not a final 

output of the workflow. Intermediate files provide standardized structure and syntax for exchanged 

data; they also serve as interfaces, i.e., files generated as output by one module can be then used 

as input by subsequent modules. 

Storing intermediate files has several advantages: i) when errors occur, it is possible to rerun only 

the modules that failed, instead of running the entire pipeline again; ii) manual inspection of data 

Examples from the workflow 

We created a dedicated computational workspace with a folder structure that resembles data 

processing steps. Keeping modules physically separated in dedicated directories allows i) 

deciding on and adhering to rigorous organization of both wet lab and data processing steps, 

resulting in better discipline; ii) easily accessing the resources (input files) required by each 

module without interfering with other modules; iii) demarcating Python from Knime modules. 

The published GitHub repository preserves the folder structure of Python modules in our 

pipeline. For example, directories 05_PCR3_Out to 09_MINI_Out are dedicated to wet lab 

steps from specific PCR (PCR3) to plasmid isolation (MINI), while the directory 

01_Ab_Quant_Out is reserved for quantification of produced mABs (wet lab steps mABs and 

quant, see Figure 2). There is a separate folder for modules manipulating bacterial colony 

information for repicking or for input files used by modules. For reference, we also provide an 

image representation of an in-depth listing of directories and files for Python modules. 

We implemented a backup rotation scheme that involves daily (with a retention period of one 

week), monthly and yearly backups on external server. To safeguard against data loss in case 

of the server failure, the database is also backed up on a dedicated database server twice a 

day. 
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is possible, which helps track the progress of the workflow and troubleshoot issues as they arise; 

iii) the autonomy of each module is maintained, which decreases the complexity of the pipeline 

and guarantees that modules run independently without relying on data saved in memory by other 

modules (22). 

 

4. Dedicated databases allow solid data documentation and 

efficient sample tracing 

The complexity of workflows determines the demands for its documentation and sample 

traceability. While simple workflows that handle some dozens of samples can likely be 

documented using spreadsheets, complex workflows that run multistep wet lab experiments for 

over a hundred samples require more advanced documentation, ideally in dedicated databases. 

A customized database facilitates retrieval of correct information between workflow end-points 

and saves significant time and effort otherwise spent on sample backtracking. 

We chose FileMaker Pro Advanced (FM) as the database backend. FM is a low-code relational 

database management system that enables fast database creation and modification through 

drag-and-drop functionality (26). Since the database engine can be accessed through a GUI, 

querying the data is straightforward and queries are easily modifiable. Although FM may require 

some initial effort to become proficient, it remains an intuitive and user-friendly tool for biologists 

without prior experience in database design (27 29). 

FM also provides scripting functionality which we used to automate the import and export of data 

for further processing in downstream applications. Customizable data exports facilitate quick 

quality control of the samples. This, in turn, is crucial for troubleshooting and for making decisions 

on the sample's fate at key workflow steps. 

Examples from the workflow 

Modules in our pipeline rely on one or more intermediate files, which are generated and saved 

by preceding modules. Intermediate files are often used by modules jointly with database 

export files, pipetting schemes or experimental readouts. For example, the module 08_PLA.py, 

which links the information on cloning by Gibson Assembly (GiAs, see Figure 2) with 

transformation and plating of bacteria samples (TRFO and PLA), starts by loading the pipetting 

schemes (carried out by an automated colony picker) and database export file to generate the 

intermediate file. The latter is taken up by the next module, 09_MINI.py, which links bacteria 

with isolated plasmids. The module loads the intermediate file and creates the import for the 

database. 

Although these steps are automated in our workflow, similar logic can be applied to manual 

workflows. For example, the module 08_PLA.py can take up any list of samples handled in low 

throughput. The number of samples to be processed is automatically deducted by the module 

from the list of samples, and the subsequent module would infer the number of samples from 

the intermediate file. 
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5. Further guidance 

It is important to consider design decisions that extend beyond building functional pipelines, and 

which can also enhance efficiency, organization and reproducibility of existing ones. These 

include using configuration files, optimizing sample handling by processing in batches, and more. 

Here, we discuss additional guidelines that can be applied to improve the performance and 

management of workflows beyond basic functionality. 

5.1 Configuration files to reduce repetitive code 

zing 

code duplication (22). Parameters (e.g., file or directory paths, hardware-specific parameters) are 

often shared between modules, and one way to make them available is to create a configuration 

file that consolidates all defined parameters in a single location. Modules that require the 

parameters can import them from the configuration file by calling the unique variable name. There 

are several advantages to this approach  not only is it consistent with good programming 

practices, but it also reduces errors and saves time, as modifications to parameters need to be 

Examples from the workflow 

Our database is built around a concept of multiple, interconnected tables that store sets of 

unique records (here: information about sample state in the workflow). Records are connected 

through a series of relationships between individual tables; their uniqueness is guaranteed by 

a Universally Unique Identifier, a unique, 16-byte string assigned automatically to each record 

a previous table, allowing the retrieval of sample information at any workflow step (see Figure 

S2). The data is stored in 19 distinct, interrelated tables. 

Structuring the data model in multiple, interrelated tables minimizes the storage of redundant 

data. Information about a particular sample state is entered into the database only once, and 

then linked to other related data points as needed. This can help to reduce errors associated 

with redundant data entry, and save time and effort. Additionally, it ensures data consistency 

across multiple experiments, as the same sample information can be reused across different 

projects and analyses. 

For example, we keep the information of bacteria plating separate from picking information. 

This allows picking of a new bacteria colony without the need to enter the same bacteria plate 

again to the database. Since bacteria plates are already linked to other information about the 

samples on previous wet lab steps (see Figure 2, steps from FACS to TRFO), connecting a 

repicked colony to plating information automatically handles the connection to other data in the 

backend (see Figure S3). Finally, our database provides relative flexibility, allowing the addition 

of new tables and seamless integration of experimental readouts. For example, the structure 

can be extended by adding the results of functional antibody assays to the information on 

harvested antibodies and linking a new table through shared IDs (see Figure S4). 
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made only in the configuration file, rather than in multiple locations throughout the code (22). To 

minimize the possibility of variable duplication, we check whether a variable has already been 

defined in the configuration file before assigning it a value in a module. This way, we ensure that 

variables are used consistently, preventing unintended overwriting of data. Adhering to DRY 

principles makes the modules relatively resistant to modifications. All in all, using configuration 

files can streamline the process of adjusting parameters and settings across multiple modules. 

 

Examples from the workflow 

For Python modules, we provide the configuration file (config.py file) that contains file and 

directory paths, experimental parameters, spreadsheet metadata, and more. Each module 

imports only configuration parameters required for its run. For example, module 13_Repick.py 

imports the paths and metadata necessary for creation of a list of bacteria colonies to be re-

selected for further processing. 

To define file and directory paths, we employed the built-in os Python module. During the 

00_Ab_Traf.py starts by importing necessary paths from the config file and determines the 

location of directories and files relative to the current (working) directory of the module. This 

makes the entire pipeline operating system-independent. Although we run the modules from a 

hiera

modifying the variables in the configuration file. 

Similarly, any changes made to metadata of intermediate or database files can be updated in 

the configuration file, eliminating the need to modify multiple locations. As an example, 

modifying the metadata of the files required by an acoustic liquid dispenser to prepare samples 

for the final PCR run (PCR3) can be done easily by updating the configuration file, which is 

useful in case of changes in software. 

A similar principle applies to Knime modules, where a separate configuration file specifies file 

and directory root paths for all the local machines that have access to Knime workflow. A 

custom Knime node reads the configuration file and adapts the path as necessary. 

In adherence to the DRY principles, we have organized the utility functions  those that can be 

utilized by multiple modules for similar tasks  into Python files that contain only function 

definitions (i.e., no executable code). This approach allows for greater organization, reusability, 

and maintainability of code. The function files reside in a designated folder and are organized 

thematically. For example, the file microbiology_supporters.py contains the functions to assist 

with data processing on microbiology workflow steps, while the file plt_manipulators.py 

contains functions handling manipulations of the plate grids and processing samples in 

batches, among others. 
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5.2 Efficient sample batching 

Grouping samples together for batch processing is crucial for efficient use of resources, be it 

reagents, equipment or manpower. Sample batching can save the overall time and cost of the 

production process while reducing variability between samples and improving quality control and 

scalability of the workflows. 

The production of mABs from individual B-cells is a multistep process, with quality assessment 

being performed after each wet lab step. Samples that do not meet the quality criteria are 

excluded from further processing, and only successful samples are selected for the next step of 

the workflow. Since batches of samples for each wet lab step are constantly updated, it is 

essential to keep track of batches already pushed forward in the workflow and of those still waiting 

for their turn. 

In our workflow, wet lab experiments are conducted in batches of either 96 or 384 samples. To 

accommodate samples that cannot be processed due to limited space on the 96- or 384-plate 

grid, we implemented store lists to keep track of the leftover samples. Store list files are updated 

every time new samples are advanced in the workflow, with the priority given to older samples. 

This ensures that the ones that have been waiting the longest are processed first. 

 

5.3 Getting feedback from modules 

Because detecting errors that arise during module execution in complex workflows can be 

challenging, the modules should provide feedback whenever possible. Getting feedback from 

modules refers to collecting information from each step of the workflow to assess its performance 

Examples from the workflow 

An example of a store list for sample batching is created by the module 05_PCR3.py that 

prepares batches of samples for the final PCR step (PCR3). The module starts by loading the 

current store list file (updated previously by Knime module) and automatically calculates the 

number of 96-sample batches to be processed in PCR3 step. Then, the batches of selected 

samples are pushed forward to the next workflow step, and the leftover samples are saved as 

a new store list file. 

Computing the number of sample batches automatically is beneficial, as it minimizes user 

input, reducing the risk of human error. Additionally, we use argparse, a Python library for 

parsing command-line arguments, to get the plate barcodes for wet lab experiments (here: 

PCR3, cELE and GiAs, see Figure 2). The user inputs the latest plate numbers used on that 

workflow step as command-line arguments; the module parses those as arguments and 

automatically assigns new barcodes to current sample batches. 

While our workflow is semi-automated and machine-dependent, similar principles can be 

applied to manual workflows. The number of samples to be processed in a single experiment 

can be adjusted as needed by modifying the size of a batch. 
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and identify potential issues as they occur (22). Providing feedback enables collaborative usage 

of the pipeline, including by team members who may not be as familiar with all the individual 

operations performed by modules. 

Feedback strategies can be satisfied by user interface features within the software. Most software 

offers visual cues and pop-up messages to inform users about their actions. For example, FM 

provides import log files and notifications on the import execution. Knime allows real-time 

assessment of computing operations through icons, indicating whether the run was successful. 

The result of each node's operation can also be displayed upon request, enabling interactive 

troubleshooting. Another feedback strategy to consider is input validation; FM provides options of 

validating the IDs to be unique, non-empty and unmodifiable, and retrieves the messages on 

failed import if these conditions are not met. Similar validation can be implemented in Python, 

went 

wrong and suggest possible solutions. Additionally, a good approach to automated and recurring 

feedback is saving custom files that include run parameters or any other information helpful for 

potential troubleshooting or documentation. As a minimum requirement though, in case of scripted 

modules, simple printout messages help to orient the users about the status of the run. 

 

5.4 Organizing the pipeline 

To maintain the organization of the pipeline, we recommend introducing a system that is user-

friendly and not too complex, so that the users are encouraged to adhere to continuous 

documentation. It is a good practice to separate modules that are part of the main computational 

pipeline from auxiliary ones or those that represent work in progress. Regular inspections and a 

simple cleaning strategy for modules can ensure workflow maintenance with minimal effort (21). 

A manual should be provided for each module in the pipeline to ensure proper usage and minimize 

the likelihood of errors due to incorrect execution. Ideally, all factors that could affect the pipeline 

execution should be documented. This allows for replication of the analysis in the future by 

Examples from the workflow 

We have included printout messages for key steps in Python modules. For example, module 

05_PCR3.py provides information on the total number of samples (and 96-well plates) to 

process in final PCR step, number of leftover samples saved as a store list file, together with 

the directory and filename of the store list. Further, the argparse module is employed in most 

Python scripts. It automatically generates help, usage and error messages, which prevents 

incorrect input from being passed during the run. 

For Knime modules, we implemented self-documenting features, where a custom file is 

generated upon the module run, containing the metadata such as run parameters, generated 

input and output files, user data, timestamps or messages. Together with the intermediate files 

saved at workflow steps, self-documentation features provide frequent feedback on the 

progress of data processing steps. 
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yourself or others. Each module should have a designated champion who understands the 

module's architecture and logic and can assist with troubleshooting and implementing the 

changes. In addition to a well-defined folder structure for hosting the modules, we recommend 

implementing a Version Control System (VCS) to track modifications to modules that are part of 

the main pipeline. Finally, adhering to a comprehensive documentation scheme aids in the 

maintenance of the workflow. 

Writing detailed manuals, documenting module logic, and implementing version control require 

discipline, but contributes to efficient maintenance of complex pipelines. Even routine operations 

can require consulting the documentation; in our experience, the effort of creating manuals and 

adhering to version control pays off in sustaining the pipeline. 

 

6. Proof of Concept  Tailored Data Processing Pipeline and 

Database for Automated Stem Cell Culture (ASCC) 

To showcase the versatility of our design, we applied the design principles to develop a data 

processing pipeline and a database for automated stem cell culture. Recently, we have 

established an automated cell culture platform that integrates a robotic liquid handling workstation 

for cultivation and differentiation of human induced pluripotent stem cells (hiPSCs). The hiPSCs 

are expanded and differentiated into brain microvascular endothelial cells (BMECs) for generation 

of an in vitro blood-brain barrier (BBB) model (30). Mature BMECs are seeded on TransWell 

plates for a 2D permeability BBB model. Trans-endothelial electrical resistance (TEER) is then 

measured to assess the integrity of the barrier (for a detailed protocol, refer to the work published 

by Fengler et al. (30)). BBB models generated in high-throughput scale with close-to-physiological 

characteristics can facilitate the screening of BBB-penetrating drugs, aiding the development of 

targeted drug delivery systems for neurological disorders (31). 

 Examples from the workflow 

Distinguishing between the main and auxiliary Python modules is achieved by keeping a 

coherent naming convention and shared directory. Python modules hold names starting with a 

sequential, two-digit number. The outputs of module runs are kept in separate directories, 

suffixed with _Out. Git is used as VCS to track changes to main Python modules, allowing for 

rkflow step are 

also tracked by VCS. 

We keep a documentation strategy for wet lab workflow and database imports by using 

Electronic Lab Notebook (ELN) software. Wet lab experiments, data imports, and modifications 

of database structure are recorded as separate entries in the ELN, which serves as a reliable 

record-keeping tool. Finally, we emphasize comprehensive code documentation, recognizing 

that code is read much more often than it is written (24). This approach helps us create well-

documented modules. 
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Here, we present a proof-of-concept pipeline focused on hiPSCs differentiation into BMECs that 

is flexible and can be expanded to implement generation of other hiPSCs-derived cell types, 

including astrocytes, neurons, microglia or monocytes. The pipeline consists of Python scripts, 

FM database and FM scripts; below, we discuss the design process and how it aligns with the 

design principles. 

6.1 Getting started  ASCC 

We started the design by outlining: 

1. The wet lab experiments (cycles of thawing, seeding and harvest of cells, see Figure S5). 

2. The methods to document metadata, such as: i) hiPSCs batch information provided by a 

supplier; ii) culture conditions (including medium batch information and supplements); iii) the 

v) equipment settings (parameters controlled by automation); and vi) user annotations. 

3. The repetitions or pausing steps in the workflow, i.e., interruptions of the differentiation 

process, including freezing of cells on differentiation stages for future experiments or on 

expansion stages to allow differentiation into other cell types. 

4. The methods of documenting the workflow for human supervision and potential error 

detection. 

6.2 Translate tasks to modules  ASCC 

We then translated tasks to modules by following the wet lab criteria, making sure that each 

module performs a singular task and has little dependence on other modules (other than logical 

dependence that results from hierarchical nature of the workflow). Modules execute the following 

tasks: i) analyzing the experimental readouts (machine- or manually-generated), ii) parsing 

metadata, and iii) generating an import file for database storage. 

During expansion and differentiation, iPSCs undergo seeding and harvest cycles across various 

plate formats (for example, 4-, 6- or 12-well plate grid for TransWell plates). Cell count and viability 

assays are performed on each harvest cycle or whenever an assessment of cell confluency is 

required. Module 00_cellcount_parser.py  and processes 

the file with cell count and viability information (generated by the automated cell viability analyzer, 

ViCell). During the entire process of cultivation, cells are imaged daily for quality control. Module 

01_img_parser.py parses the images generated by a spinning disk confocal microscope and 

creates a .json file with metadata of all images linked to a given plate. On final WF steps, cells 

are seeded on TransWell plates for TEER measurements. Module 02_teer_parser.py parses the 

experimental readouts and creates an import file for database storage. 

We also implemented the config.py file to store file and directory paths, spreadsheet metadata 

and configuration parameters. The utility functions are grouped thematically: 
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cellcount_img_tools.py handles .txt files generated by ViCell and input_readers.py parses the 

user input. 

6.3 Allocate separate computational space to modules  ASCC 

We created a designated computational space for modules, input files (including metadata, 

experimental readouts and files exported from the database) and output files, with an automated 

backup rotation scheme of daily, monthly and yearly backups. There are designated directories 

for database export files for cell count and image parsing. Confocal microscopy images (per plate) 

and files generated by the automated cell viability analyzer are kept in individual folders. Scripts, 

.json files and output files generated at each workflow step also have separate directories. 

6.4 Define input and output files  ASCC 

We defined input and output files to share data between modules. Depending on the plate format 

and whether cells are in expansion or differentiation stage, the modules access different input 

files. For example, in an early expansion stage, the module 00_cellcount_parser.py takes up the 

database export file (automatically generated by a FM script) and experimental readout file to 

generate the import file for database storage (saved with a timestamp). To facilitate the automatic 

imports to the database, records processed at the time are saved as separate files, updated after 

each script run. Modules 01_img_parser.py and 02_teer_parser.py follow similar logic when 

processing confocal microscopy images and TEER measurement files, respectively. 

6.5 Dedicated Database  ASCC 

While conceptualizing ASCC database structure, we considered several factors: 

1. The information should not be redundant, i.e., it should only be entered in the database once. 

If the same information is entered more than once, there is probably a need to restructure the 

database and keep the redundant information in a separate table. For example, the 

information on the culture medium batch is registered only once and stored in a distinct table. 

Upon a medium change event, this information is populated by fetching the ID of the medium 

batch and adding it to the table storing the plate information (see Figure S6 (A)). 

2. The tables are organized following the thawing, seeding, harvesting or freezing events, as 

they imply the initiation of a new process: e.g., change of the barcode or plate format, storing 

frozen cells in tanks, or collecting metadata, such as cell viability assays and cell count. For 

example, the information on harvesting differentiated BMECs from 6-well plates by pulling and 

seeding on multiple 12-well TransWell plates is kept in separate tables linked through a one-

to-many relationship. This ensures that: i) any manipulations performed with the 6-well plate 

(medium change or cell count) are independent from those performed with the 12-well 

TransWell plates (TEER measurements or a well treatment); and ii) no redundant information 

is entered in the database, i.e., only the IDs of the 6-well plates are populated in the TransWell 

plate table (see the Figure S6 (B)). 
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3. We implemented separate tables also due to the different hiPSCs differentiation methods, 

each requiring distinct processes. Although the current ASCC database assumes BMECs 

differentiation, other cell types (e.g., astrocytes) will be considered in the future. In the current 

structure, new tables for astrocytes differentiation can easily be linked to existing ones (see 

the Figure S7). 

Discussion 

The ability to document, process and analyze large datasets to identify new patterns and 

relationships has become increasingly important in modern biology. In the evolving landscape of 

biology research, it is not only large specialized laboratories that are embracing HT/HC 

techniques, but smaller biology labs are also progressively implementing similar methods. 

However, dealing with data generated in HT/HC schemes poses challenges related to sample 

backtracking, quality control, record keeping, and data curation and storage, among others. This 

can lead to compromised data integrity, potential data loss, and ineffective workflows. These 

challenges can be addressed by implementing modular data processing pipelines, which help to 

make substantial progress toward optimizing data management practices. 

We employed the computational pipeline for data processing in a complex, semi-automated, 

multistep workflow for the production of mABs to tackle similar challenges and monitor all 

workflow steps, ultimately aiming to enhance data governance in our experimental setup. The 

design principles presented here can serve as guidance for the development of data processing 

pipelines in biology. The versatility of our approach allows for its application to diverse biological 

problems concerned with intensive data collection activities in a variety of settings, in which data 

undergoes continuous processing, analysis and modification before reaching the endpoint. 

We showed how our design can help minimize the reliance on error-prone and resource-intensive 

manual data handling, significantly reducing errors and optimizing both time and resource usage. 

The modular nature of the design allows for flexibility to handle samples in high- and low-

throughput settings. While the modules are designed to function in isolation, we combine them 

into a custom pipeline that operates on the mAB production workflow. 

Our approach also helps streamline data processing and documentation, leading to faster 

generation of insights (allowing more time for other tasks), improving data reusability and 

promoting seamless data exchange. Additionally, we showed how deploying the dedicated 

database facilitates the standardization of data processing procedures. By implementing the 

tailored database, we established consistent and structured approaches to storing and organizing 

data, allowing us to efficiently track the samples throughout the workflow. Overall, adhering to the 

design principles outlined in this work can assist in enhancing the accuracy and fostering the 

reproducibility of data analysis by combining standardization, documentation, scalability, and 

error detection, and is a step towards more robust frameworks for data processing in biology. 

Although our modules are tailored for mABs production, we foresee that our approach can support 

other biologists in building their own small-scale data processing pipelines for individual use. This 

approach is different from large-scale pipelines developed by bioinformaticians to manage 
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massive volumes of data (32). Given that our team primarily consists of biologists, we do not have 

ready access to specialized support from computer scientists in our daily work. Thus, we focused 

our design efforts on feasibility for biologists with limited programming experience by employing 

software with GUI, such as Knime and FM, besides Python. 

With some modifications, individual modules presented here can also be adapted by other 

biologists and incorporated into their own workflows. To that end, we provide a GitHub repository2 

containing the mock-up data and the simplified pipeline, together with detailed instructions on how 

to download, install, and run it. Furthermore, we demonstrate how the code can be customized to 

accommodate data processing routines based on individual requirements3. This can serve as a 

starting point for experimental researchers in constructing their pipelines by reusing and modifying 

the provided code. 

To test the applicability of our design to other settings, we applied the design principles to 

automated hiPSCs culture, proving that it was possible to adapt the framework to stem cell-related 

research. In the long run, we expect that this approach will be beneficial for ASCC, as it can help 

to: i) standardize and automate relevant data storage; ii) facilitate data-centric conclusions to gain 

novel insights; iii) make informed decisions for potential troubleshooting; iv) use data to optimize 

approaches. As pipelines for continuous data processing and analysis are now essential in 

domains such as multi-omics data integration (33,34), HT/HC screening (35), data-driven 

modeling (36), as well as long-term environmental monitoring (37), evolutionary biology (38 40) 

or plant phenotyping (41), among others, we believe that design recommendations proposed here 

can find their target audience and be a source of inspiration to other researchers in developing 

their own data processing modules. 

In the context of data-intensive science, there is a growing demand from various stakeholders, 

such as the scientific community, funding agencies, publishers and industry, for data to meet the 

standards of being Findable, Accessible, Interoperable, and Reusable (FAIR) over the long-term. 

This also concerns research processes beyond data, including analytical workflows and data 

processing pipelines. Many projects have already adopted different elements of FAIR principles 

into their data (and non-data) repositories (42). 

Our data processing pipelines align with FAIR principles in several ways. First, we satisfy the 

findability facet of FAIR by making the mAB4 and the ASCC5 pipelines publicly available via 

GitHub and assigning a persistent identifier. Clear documentation in the current paper and in the 

GitHub repository provide the necessary information to understand the design decisions, data 

and processes involved in running the pipelines. To satisfy the accessibility facet, we include 

contact information and apply an open access policy to the code, granting unrestricted access to 

both the mock-up data and pipeline modules. Standardized file formats and clear naming 

                                                
2 https://github.com/CRFS-BN/mABpy/tree/main/simplified_pipeline 
3 https://github.com/CRFS-BN/mABpy/tree/main/simplified_pipeline - adjusting-the-pipeline-to-your-own-
needs 
4 DOI: 10.5281/zenodo.8229164 
5 DOI: 10.5281/zenodo.10106688 
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conventions throughout the pipelines aid interoperability by keeping a consistent and organized 

approach to data representation. Moreover, using standardized data formats enables 

compatibility and facilitates data exchange across pipelines. To account for the reusability aspect 

of FAIR, we design modular pipelines, emphasizing the granularity of the modules. Published 

documentation defines how modules work and how they interact with input and output data. 

Finally, adhering to the outlined principles for data processing may foster compliance with FAIR 

principles during publication. This approach ensures that both data and metadata are well-

structured, minimizing the effort to achieve data accessibility and findability upon publication.  

One limitation of the system is partial reliance on licensed software, such as FM and GitLab. 

Nevertheless, open-source alternatives can be employed instead. For example, LibreOffice Base 

is an open-source, no-code database management software and offers similar functionality to that 

of FM, allowing users to create and manage databases using a graphical interface with features 

for creating tables, queries, and reports (43), making it a suitable option for researchers with little 

to no programming experience. Alternatively, if team members have some level of SQL 

knowledge, they can consider alternatives like MySQL for building and managing databases. 

MySQL Workbench offers a user-friendly interface to simplify database creation (44), and there 

are numerous resources available online to learn the fundamentals of SQL and get started. 

Another interesting alternative to transform existing, code-based databases into interactive 

applications is NocoDB  an open-source, no-code platform that turns databases into 

spreadsheets with intuitive interfaces, making it possible for teams to create no-code applications. 

It supports MySQL, SQLite or PostgreSQL databases, among others, but it also provides the 

functionality of building databases from scratch (45). NocoDB is becoming popular within the 

community as an alternative to non-open-source solutions. As the platform gained attention from 

users seeking efficient and customizable data management solutions, there are plenty of online 

learning materials available, including tutorials, documentation and community forums. 

Although we use the GitLab for Enterprise as a VCS to host the pipeline, the free GitLab version 

offers essential features for individual users and provides enough functionality to implement data 

processing pipelines (despite some storage and transfer limits). Alternatively, GitHub can be used 

as a VCS, as it has traditionally been more widely recognized and utilized in the developer 

community due to its extensive user base and integration options (46). 

Finally, labs can also consider existing Laboratory Information Management Systems (LIMS) 

when automating the workflows to efficiently handle samples and their related data. LIMS are 

software applications used to streamline laboratory operations, sample tracking, data 

management and reporting, offering integration with various lab instruments (47). Although these 

systems provide several advantages over custom-designed pipelines, investing in a full-fledged, 

commercial LIMS can be expensive. LIMS are also lab-centric, that is, they are designed to cater 

to the overall needs of the laboratory as a whole and thus require tailoring to each individual lab. 

As the goal of LIMS is to create a centralized system that manages all laboratory activities and 

data, a significant effort has to be spent on specifying requirements for the LIMS systems.  
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Workflow-centric custom pipelines, on the other hand, are designed with a focus on optimizing 

and automating a particular laboratory workflow or a set of interconnected processes. Thus, our 

custom approach to modular pipeline development offers several benefits: it is cost-effective; can 

be tailored to specific needs; and allows rapid, iterative prototyping and experimenting with 

maintain and can grow organically, adapting to changing requirements of individual projects. They 

can also be designed to integrate better with other custom systems already used by labs. Finally, 

with a custom pipeline the labs retain full control and ownership of the process, allowing for 

flexibility in response to changing needs and pro

intellectual property. 
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Supplementary Material 

 
Figure S1. Cloning strategy for variable antibody regions. After cDNA generation, three parallel PCR 

reactions are performed to amplify the heavy chain variable region (light blue) and either the Kappa (light 

green) or Lambda (pink) variable region. Upon verification by sequencing, the variable regions are cloned 

into plasmids encoding the constant part of the respective antibody chain (dark blue: heavy constant part; 

dark green: Kappa light constant part; purple: Lambda light constant part). See Figure 2 for a 

comprehensive overview. For an overview on B-cell receptor and antibody variability refer to Figure 1 by 

Khatri et al (48) and Figure 1 by Mikocziova et al. (49). 
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Figure S5. Wet lab steps of ASCC workflow: thawing, expansion and differentiation of iPSCs into BMECs 

in functional BBB model. Wet lab steps and timepoints (relative to the start of the differentiation  day 0: 

D0) are indicated by blue rectangles. Cycles of thawing (D-6), possible freezing (D-1, D6), harvest and 

seeding (D-3, D8) of cells. Count and viability assays are carried out on D-3, D0 and D8. Media used at 

each timepoint are indicated by ellipses  gray: mTSER plus medium with/without rock inhibitor; violet: 

Unconditioned Medium (UM); green: Endothelial Cell Medium with/without supplements (EC +/+, EC -/-, 

respectively). The TEER measurement timepoints (D10, D11) are indicated by a purple circle. For detailed 

protocol, refer to Fengler et al (30). 
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Table S1. Primers 

chains. Three PCR reactions are performed per chain. PCR1 and PCR2 are performed with forward and 

reverse primer mixes. PCR3 is performed with specific primer pairs selected from 69 individual primers. 

The selection is based on sequencing results of the second PCR amplification and identification of used 

V(D)J alleles. See the attached Table S1.xlsx file. 
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