
1German Center for Neurodegenerative Diseases (DZNE), CRFS-LAT, Bonn, Germany
2German Center for Neurodegenerative Diseases (DZNE), CRFS-LIS, Bonn, Germany
3German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
4Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
5Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
6Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
7German Center for Neurodegenerative Diseases (DZNE), TTO, Bonn, Germany
8German Center for Neurodegenerative Diseases (DZNE), CRFS, Bonn, Germany
#Corresponding Authors

Gain efficiency with streamlined and

automated data processing: Examples

from high-throughput monoclonal

antibody production
Malwina Kotowicz1, Sven Fengler1, Birgit Kurkowsky1, Anja Meyer-Berhorn1, Elisa Moretti1,
Josephine Blersch1, Magdalena Shumanska1, Gisela Schmidt2, Jakob Kreye3,4,5,6, Scott van
Hoof3,5, Elisa Sánchez-Sendín3,5, S. Momsen Reincke3,5,6, Lars Krüger7, Harald Prüss3,5, Philip
Denner1, Eugenio Fava8# & Dominik Stappert1#

Abstract

Data management and sample tracking in complex biological workflows are essential steps to

ensure necessary documentation and guarantee the reusability of data and metadata. Currently,

these steps pose challenges related to correct annotation and labeling, error detection, and

safeguarding the quality of documentation. With growing acquisition of biological data and the

expanding automatization of laboratory workflows, manual processing of samples is no longer

favorable, as it is time- and resource-consuming, is prone to biases and errors, and lacks

scalability and standardization. Thus, managing heterogeneous biological data calls for efficient

and tailored systems, especially in laboratories run by biologists with limited computational

expertise. Here, we showcase how to meet these challenges with a modular pipeline for data

processing, facilitating the complex production of monoclonal antibodies from single B-cells. We

present best practices for development of data processing pipelines concerned with extensive

acquisition of biological data that undergoes continuous manipulation and analysis. Moreover, we

assess the versatility of proposed design principles through a proof-of-concept data processing

pipeline for automated induced pluripotent stem cell culture and differentiation. We show that our

approach streamlines data management operations, speeds up experimental cycles and leads to

enhanced reproducibility. Finally, adhering to the presented guidelines will promote compliance

with FAIR principles upon publishing.

Keywords: -throughput antibody

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

2

1. Introduction

Over the last few decades, technological advancements in fields such as imaging, laboratory

automation, computing, and data analysis have revolutionized the way biologists work and handle

data (1 4). High-throughput (HT) and high-content (HC) studies are no longer exclusive to large,

specialized labs but are gaining popularity in research conducted by smaller, independent teams

(4 6). This trend is expected to continue, as smaller biology labs increasingly adopt HT/HC

techniques due to decreasing costs, thereby generating large amounts of biological data.

Additionally, many funding agencies and scientific journals have emphasized the value of HT/HC

techniques in producing reliable and comprehensive data, which will further incentivize individual

groups to incorporate HT/HC methods to generate high-quality research and stay competitive (7

10).

Biological data is heterogeneous by nature and often includes experimental readouts, curated

annotations, and metadata, among other type of data. The increasing size and complexity of

biological datasets call for effective means to manage data in its complete life cycle throughout a

workflow, and the generation, processing, analysis, and management of heterogeneous biological

data require tailored systems to improve data governance (11 13).

The increasing use of laboratory automation and the generation of experimental workflows with

complex structures pose a unique challenge in backtracking and identifying samples and their

related metadata. Each step of the workflow impacts the final data, and if problems arise, it can

be difficult to backtrack and pinpoint where errors occurred. Likewise, the reproducibility of

complex biological workflows is closely tied to precise record-keeping, especially as new

techniques are introduced. As wet lab experiments are often complex, time-sensitive, and involve

many researchers, the quality of documentation can be compromised. Moreover, manual data

curation is time-consuming, labor-intensive, prone to human error, and at risk of biases, as it relies

on the individual expertise of the curator. Any error in data curation compromises data integrity

and can lead to incorrect conclusions, inefficient workflows, and the inability to reuse the data.

Similarly, manual integration of data from multiple sources lacks standardization, has limited

scalability, and can hinder the early detection of errors (14).

To ensure data integrity in workflows and prevent potential data loss, strict quality control

measures and careful monitoring of workflow steps are necessary. Although many systems exist

for managing large datasets in biology (15), they are mainly implemented in larger, specialized

facilities with teams trained in computer science. In smaller, individual labs, dedicated informatics

staff may not be available and biologists are required to learn complex tools and technologies for

data processing, despite lacking prior experience and facing severe time and resource

constraints. Overall, there is an urgent need for design guidance for data processing solutions in

biology workflows.

Here, we present the recently established pipeline for modular data processing that facilitates and

documents the complex production of monoclonal antibodies (mABs) derived from individual B-

cells. Implementing our data management system reduced the time spent on data processing by

over one-third and improved data reliability. Our strategy proves that, with moderate effort,

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

3

biologists can set up an efficient, rewarding, systematic approach to routine data processing

tasks. This approach will: i) simplify documentation; ii) facilitate reproducibility and improve

accuracy by eliminating errors related to manual data handling; iii) speed up data processing,

accelerating the generation of reliable insights and freeing hands for other tasks; iv) standardize

data processing procedures, enabling comparison of results across series of experiments or labs;

and v) support scalability, as modules of data processing pipelines can be up- or down-scaled to

handle varied data amounts, adapting to changing research needs. Finally, and to demonstrate

the versatility and transferability of our approach, we apply it to the development of a data

processing pipeline for automated stem cell culture. We show that our design guidelines can serve

as best practice recommendations for other biologists and be a step towards greater

reproducibility, efficiency, and standardization of workflows in biology.

Box 1. Terminology

This box provides definitions for selected terms throughout the text.

Data curation the process of cleaning, organizing and standardizing data towards greater

quality, utility and long-term preservation. Data curation is part of data processing.

Data processing all tasks that are performed on acquired data to prepare it for analysis,

especially curation, formatting, transposition, joining, sub-setting and summarizing, but

excluding data acquisition and storage. Data processing is a broad term, encompassing all

data manipulation and transformation steps that facilitate extracting meaningful insights and,

in the long term, knowledge.

Data processing pipeline the sum of all data processing modules for one workflow, aimed

at converting raw input data into usable information.

Data repository storage space to catalog and archive data. Data is curated prior to deposit.

Ideally, the storage space and contained data are managed by a database software that allows

efficient retrieval of related data points.

Knime module a workflow in Knime performing a series of related tasks or operations,

unit of Knime.

Metadata data that describes other, associated data. In the context of this work, metadata

includes, but is not limited to: i) donor data associated with a sample (e.g., date of donation,

cell number); ii) experimental settings and conditions (e.g., protocols, reagents, equipment);

iii) association of experimental results with the original sample; iv) location of a given sample

or its derivate.

Module or data processing module an individual Python script or Knime workflow.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

4

2. Workflow for mAB production and data processing challenges

We have recently established a wet lab workflow that enables the production of over one thousand

mABs per year from patient-derived single B-cells. An antibody is composed of two protein chains,

the heavy (H) and the light (L) chain, where th

enables in vitro generation of mABs with the same specificity as in the originating B-cell. The wet

lab protocols have been outlined with minor deviations elsewhere (16 18). The procedures

consist primarily of the following steps: cDNA is generated from individual B-cells. The cDNA

it is necessary to perform three parallel PCR reactions (see Figure S1). The PCR amplicons are

analyzed for correct size by electrophoresis and sequenced upon positive evaluation. Primer pairs

specific for the sequenced H and L chains, and equipped with overhangs for Gibson Assembly,

are selected for a final PCR reaction (for a complete primer set, see Table S1 in Supplementary

Material). The final PCR products, covering the specificity-determining variable regions of

antibodies, are cloned by Gibson Assembly into plasmids encoding the constant regions of H or

L chains. The assembled plasmids are amplified in bacteria, purified, and sequenced to confirm

sequence identity, i.e., that no mutations causing failures on the protein level have been

introduced (19). HEK cells are then transfected with pairs of plasmids encoding matching H and

L chains. After transfection, mABs produced by HEK cells are secreted into the cell media, and

their concentrations are measured.

Due to the complexity of the workflow, the production of mABs in a time- and resource-efficient

manner implies a considerable data processing effort, as the following challenges must be

addressed:

1. Wet lab experiments represent a selection funnel, wherein not all samples that enter the

workflow proceed to the end. This is because they involve a series of steps that progressively

narrow down the selection of samples, i.e., not all B-cells will give rise to functional antibodies.

Optimization of resource usage, therefore, requires the selection of successful samples after

each analysis step. The next wet lab step is only executed when a significant number of

successful samples have accumulated after a set of wet lab experiments (e.g., one full plate

of 96 samples).

2. A specific challenge to mAB production is their composition of H and L chains. As antibodies

are composed of plasmid pairs, quality analysis requires the matching of heavy and light

chains cloned from the same cDNA. Only if both heavy and light chains are positively

evaluated are the chains pushed to the next step. If one chain of a pair is missing, several

Wet lab experiment or experimental procedure workflow steps that are conducted

physically in the laboratory.

Workflow systematic series of interconnected steps designed to achieve specific research

objectives , including wet lab work, data processing and data storage.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

5

workflow steps must be repeated for the missing chain, increasing the complexity of both data

processing and documentation.

3. Another challenge to mAB production is the variability of H and L chains derived from somatic

recombination of V(D)J gene segments (20,21). The specificity-determining region of an H

chain is composed of several V (variable), D (diversity), and J (joining) gene segments. The

specificity-determining region of an L chain is similarly composed of several V (variable) and

J (joining) gene segments. In order to clone H and L chains, a three-step PCR strategy is

implemented (see Figure S1 and Table S1). First, forward and reverse primer mixes for each

chain are used to amplify a given chain from cDNA. Then, a second PCR with primer mixes

is performed to analyze the first amplicon by sequencing. Obtained sequences are analyzed

for the specific V(D)J gene alleles, and based on this analysis, a specific primer pair is selected

from a set of 69 primers to perform a final PCR step (19). Significant effort is required for

processing the data, curating the data sets, and developing pipetting schemes for performing

the final specific PCR.

4. The key to a time-efficient workflow is to shorten the data processing effort between two wet

lab experiments. Due to the complexity of our workflow, data processing is time-consuming

-on time for mABs production from cDNA).

Analysis of samples, creation of pipetting schemes, and relating initial cDNA samples to

experimental readouts are a challenge, as different machines use varying plastic ware layouts

(e.g., 96- or 384-well plates column- or row-wise, individual culture plates or individual tubes).

5. Data generated on each mAB production step needs to be curated and documented before

you can proceed to subsequent steps, analysis, troubleshooting, hypothesis formulation, and

publication.

An organized and standardized approach to data processing and analysis can help address these

and similar challenges in complex biological workflows. In this work, we propose a set of design

guidelines for data processing pipelines, based on our experience with automated mAB

production.

3. Getting started

When designing a workflow, it is crucial to conceptualize it in advance by defining the tasks,

identifying their dependencies and contingencies, and determining data processing operations.

This can be done in a few steps:

1. Start by outlining a series of step-by-step experiments (tasks) that constitute the workflow,

specifying data to be retrieved, analyzed, and stored at each step. Determine the workflow

endpoint to guide the design process. Visualizing the entire workflow helps to understand the

experimental sequence and anticipate potential workflow expansion.

2. ls, including

protocols and data analysis procedures to ensure reproducibility and enable collaboration.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

6

3. Consider the repetitions that may occur in case of experiment failure and how to handle them

with respect to data storage.

4. Implement the ways to document the workflow runs and the results for quality control, error

checking, data analysis and interpretation.

By defining these components, it becomes easier to identify the data processing operations that

are required at each workflow step to form a functional pipeline (see Figure 1). In the next

sections, we present design principles that guided the development of our data processing

pipeline. We start with principles that give rise to functional pipelines, such as choosing the right

technologies, applying modular design, ensuring interoperability between modules, and more. We

cover the implementation of dedicated databases and further design guidelines that go beyond

developing functional pipelines, but improve existing ones towards better efficiency, organization,

and reproducibility.

Figure 1. An example of a twostep wet lab workflow, demonstrating data processing needs. Data generated

in wet lab experiments (experimental work, blue background, top) undergoes processing (data processing,

yellow background, middle) for analysis and storage (data repository, green background, bottom).

Biological samples and accompanying metadata are collected and must be curated and documented.

Based on the metadata, subsets of samples are selected for analysis, such as those from wild-type or

diseased subjects (1). The workflow starts with a wet lab experiment that is then documented (2) and

analyzed (3). Next, the wet lab experiment is conducted on a subset of samples based on the analysis of

the first experiment (4). The analysis of the second experiment closes the workflow cycle (5). Analyzing the

results of the second experiment in the context of data (and metadata) gathered in the workflow cycle allows

for supporting or refuting the hypotheses and yields novel insights (6).

When designing the pipeline, we considered some recommendations for analysis scripts in

neuroimaging already present in the literature, grounded in software development (22). The

design decisions made during development of our data processing modules offer a potentially

valuable resource for other biologists in designing their own workflows. It is important to note that

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

7

guidelines presented here do not always follow the sequential order of wet lab experiments;

instead, they are presented in a non-chronological manner to better explain individual pipeline

operations.

We provide a link to the GitHub repository housing the data processing pipeline1. As in daily work

we use GitLab to host our code, the GitHub repository is a replica of it and contains sample (mock-

up) data and metadata necessary to run the pipeline steps implemented in Python. Building upon

the work of van Vliet and colleagues (22), we use examples from our workflow to illustrate each

3.1 Choose the right technologies

The choice of technologies for pipeline implementation is largely dependent on the skills of team

members. Teams are often diverse when it comes to expertise and preferred way of working;

building upon this diversity can significantly enhance overall performance and problem-solving

capabilities (23,24). While computational skills are becoming more prevalent among biologists

(16), not all researchers are proficient in programming. Software with a graphical user interface

(GUI) may help implement complex operations by eliminating the need to learn programming and

has a shorter adoption period than code-based solutions (25).

3.2 Translate Tasks to Modules

Workflow tasks, once defined, are then converted to modules. Modules are the building blocks of

a data processing pipeline, whether they be individual Python scripts or Knime workflows. By

design, a module should perform a simple, singular task. To prevent scripts from becoming

difficult to understand, complex tasks should be divided into smaller tasks across multiple

modules. The general principle is to have each module be self-contained and run with minimum

dependence on other modules. This way, any changes or issues can be addressed without

disrupting other modules in the pipeline.

1 https://github.com/CRFS-BN/mABpy

Examples from the workflow

Our modules are implemented in Knime and Python, but designed in a manner to ensure

interoperability (refer to section 3.4 for further explanation). Knime is among one of the most

user-friendly workflow management systems and offers a wide array of learning resources (4);

Python is currently considered the most popular programming language (19), well-suited for

biology applications (20) and easy to learn. However, other technologies can be used with

similar success when designing custom pipelines. The skills and preferences of team members

should guide the selection of an appropriate technology solution.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

8

Our pipeline follows the logic of the wet lab experiments it is organized in modules that

correspond to experimental flow on the bench (see Figure 2). Since the workflow is hierarchical

(i.e., each wet lab step relies on the results of the previous step(s)), we alternate wet lab

experiments with data processing, rather than running the entire pipeline when all experiments

are completed. Thus, the modularity of each data processing step is defined by related wet lab

experiments. For example, a module can: i) analyze experimental readouts, ii) prepare pipetting

schemes for the next experiment, iii) perform sample selection based on predefined criteria, iv)

assemble machine-readable files for automated wet lab experiments, and v) generate a file for

data storage in the database. Our experience shows that, for hierarchical pipelines, following the

wet lab criterion is the optimal way to organize modules.

Examples from the workflow

To determine whether samples were successfully amplified in the final PCR step (PCR3, see

Figure 2), we perform capillary electrophoresis (cELE2). The results of cELE2 are parsed by

the module 06_cELE2.py. The module loads experimental readouts and selects a set of

samples for further processing based on a band size threshold (in base pairs). The next module,

07_GiAS.py, takes up successfully amplified samples to prepare a pipetting protocol for cloning

by Gibson Assembly (GiAs) and a database import file (see Figure 2). For reference, we provide

examples of raw experimental readout after capillary electrophoresis, pipetting protocols (for

automated liquid handling) and a database import file. Although our workflow is semi-automated

and we often deal with machine-readable files, the modules are adaptable to manual workflows.

For example, the number of samples to be handled in the next workflow step can be easily

modified by defining the size of chunks in which samples are processed further. Since this

workflow step operates on multiple 96-well plates, we set the number of samples to the batches

of 96, but a lower number can be chosen for manual, low-throughput workflows.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

10

3.3 Allocate separate computational space to modules

Each module should run in a separate computational space; that is, the input and output files

generated by modules should be saved in dedicated directories. Ideally, script files (.py) reside in

a separate directory, too. This computational environment needs to be accessible to all team

members, must be backed up for data security, and should allow for seamless integration with

different modules. These requirements are fulfilled by simple Network Attached Storage (NAS)

drives, institutional set-up servers or cloud services. Within allocated computational space, the

folder structure ideally reflects the architecture of the data processing pipeline.

3.4 Define input and output files

Interoperability between modules (i.e., the ability of modules to work together seamlessly) should

be given high priority when designing a pipeline. This ensures that data is passed between

modules without loss of information or format, and each module can be developed and maintained

independently while still functioning cohesively within the larger workflow system.

To achieve this, we defined input and output files that exchange data between modules. We refer

to these as intermediate files, as they are created as part of a larger process and are not a final

output of the workflow. Intermediate files provide standardized structure and syntax for exchanged

data; they also serve as interfaces, i.e., files generated as output by one module can be then used

as input by subsequent modules.

Storing intermediate files has several advantages: i) when errors occur, it is possible to rerun only

the modules that failed, instead of running the entire pipeline again; ii) manual inspection of data

Examples from the workflow

We created a dedicated computational workspace with a folder structure that resembles data

processing steps. Keeping modules physically separated in dedicated directories allows i)

deciding on and adhering to rigorous organization of both wet lab and data processing steps,

resulting in better discipline; ii) easily accessing the resources (input files) required by each

module without interfering with other modules; iii) demarcating Python from Knime modules.

The published GitHub repository preserves the folder structure of Python modules in our

pipeline. For example, directories 05_PCR3_Out to 09_MINI_Out are dedicated to wet lab

steps from specific PCR (PCR3) to plasmid isolation (MINI), while the directory

01_Ab_Quant_Out is reserved for quantification of produced mABs (wet lab steps mABs and

quant, see Figure 2). There is a separate folder for modules manipulating bacterial colony

information for repicking or for input files used by modules. For reference, we also provide an

image representation of an in-depth listing of directories and files for Python modules.

We implemented a backup rotation scheme that involves daily (with a retention period of one

week), monthly and yearly backups on external server. To safeguard against data loss in case

of the server failure, the database is also backed up on a dedicated database server twice a

day.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

11

is possible, which helps track the progress of the workflow and troubleshoot issues as they arise;

iii) the autonomy of each module is maintained, which decreases the complexity of the pipeline

and guarantees that modules run independently without relying on data saved in memory by other

modules (22).

4. Dedicated databases allow solid data documentation and

efficient sample tracing

The complexity of workflows determines the demands for its documentation and sample

traceability. While simple workflows that handle some dozens of samples can likely be

documented using spreadsheets, complex workflows that run multistep wet lab experiments for

over a hundred samples require more advanced documentation, ideally in dedicated databases.

A customized database facilitates retrieval of correct information between workflow end-points

and saves significant time and effort otherwise spent on sample backtracking.

We chose FileMaker Pro Advanced (FM) as the database backend. FM is a low-code relational

database management system that enables fast database creation and modification through

drag-and-drop functionality (26). Since the database engine can be accessed through a GUI,

querying the data is straightforward and queries are easily modifiable. Although FM may require

some initial effort to become proficient, it remains an intuitive and user-friendly tool for biologists

without prior experience in database design (27 29).

FM also provides scripting functionality which we used to automate the import and export of data

for further processing in downstream applications. Customizable data exports facilitate quick

quality control of the samples. This, in turn, is crucial for troubleshooting and for making decisions

on the sample's fate at key workflow steps.

Examples from the workflow

Modules in our pipeline rely on one or more intermediate files, which are generated and saved

by preceding modules. Intermediate files are often used by modules jointly with database

export files, pipetting schemes or experimental readouts. For example, the module 08_PLA.py,

which links the information on cloning by Gibson Assembly (GiAs, see Figure 2) with

transformation and plating of bacteria samples (TRFO and PLA), starts by loading the pipetting

schemes (carried out by an automated colony picker) and database export file to generate the

intermediate file. The latter is taken up by the next module, 09_MINI.py, which links bacteria

with isolated plasmids. The module loads the intermediate file and creates the import for the

database.

Although these steps are automated in our workflow, similar logic can be applied to manual

workflows. For example, the module 08_PLA.py can take up any list of samples handled in low

throughput. The number of samples to be processed is automatically deducted by the module

from the list of samples, and the subsequent module would infer the number of samples from

the intermediate file.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

12

5. Further guidance

It is important to consider design decisions that extend beyond building functional pipelines, and

which can also enhance efficiency, organization and reproducibility of existing ones. These

include using configuration files, optimizing sample handling by processing in batches, and more.

Here, we discuss additional guidelines that can be applied to improve the performance and

management of workflows beyond basic functionality.

5.1 Configuration files to reduce repetitive code

zing

code duplication (22). Parameters (e.g., file or directory paths, hardware-specific parameters) are

often shared between modules, and one way to make them available is to create a configuration

file that consolidates all defined parameters in a single location. Modules that require the

parameters can import them from the configuration file by calling the unique variable name. There

are several advantages to this approach not only is it consistent with good programming

practices, but it also reduces errors and saves time, as modifications to parameters need to be

Examples from the workflow

Our database is built around a concept of multiple, interconnected tables that store sets of

unique records (here: information about sample state in the workflow). Records are connected

through a series of relationships between individual tables; their uniqueness is guaranteed by

a Universally Unique Identifier, a unique, 16-byte string assigned automatically to each record

a previous table, allowing the retrieval of sample information at any workflow step (see Figure

S2). The data is stored in 19 distinct, interrelated tables.

Structuring the data model in multiple, interrelated tables minimizes the storage of redundant

data. Information about a particular sample state is entered into the database only once, and

then linked to other related data points as needed. This can help to reduce errors associated

with redundant data entry, and save time and effort. Additionally, it ensures data consistency

across multiple experiments, as the same sample information can be reused across different

projects and analyses.

For example, we keep the information of bacteria plating separate from picking information.

This allows picking of a new bacteria colony without the need to enter the same bacteria plate

again to the database. Since bacteria plates are already linked to other information about the

samples on previous wet lab steps (see Figure 2, steps from FACS to TRFO), connecting a

repicked colony to plating information automatically handles the connection to other data in the

backend (see Figure S3). Finally, our database provides relative flexibility, allowing the addition

of new tables and seamless integration of experimental readouts. For example, the structure

can be extended by adding the results of functional antibody assays to the information on

harvested antibodies and linking a new table through shared IDs (see Figure S4).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

13

made only in the configuration file, rather than in multiple locations throughout the code (22). To

minimize the possibility of variable duplication, we check whether a variable has already been

defined in the configuration file before assigning it a value in a module. This way, we ensure that

variables are used consistently, preventing unintended overwriting of data. Adhering to DRY

principles makes the modules relatively resistant to modifications. All in all, using configuration

files can streamline the process of adjusting parameters and settings across multiple modules.

Examples from the workflow

For Python modules, we provide the configuration file (config.py file) that contains file and

directory paths, experimental parameters, spreadsheet metadata, and more. Each module

imports only configuration parameters required for its run. For example, module 13_Repick.py

imports the paths and metadata necessary for creation of a list of bacteria colonies to be re-

selected for further processing.

To define file and directory paths, we employed the built-in os Python module. During the

00_Ab_Traf.py starts by importing necessary paths from the config file and determines the

location of directories and files relative to the current (working) directory of the module. This

makes the entire pipeline operating system-independent. Although we run the modules from a

hiera

modifying the variables in the configuration file.

Similarly, any changes made to metadata of intermediate or database files can be updated in

the configuration file, eliminating the need to modify multiple locations. As an example,

modifying the metadata of the files required by an acoustic liquid dispenser to prepare samples

for the final PCR run (PCR3) can be done easily by updating the configuration file, which is

useful in case of changes in software.

A similar principle applies to Knime modules, where a separate configuration file specifies file

and directory root paths for all the local machines that have access to Knime workflow. A

custom Knime node reads the configuration file and adapts the path as necessary.

In adherence to the DRY principles, we have organized the utility functions those that can be

utilized by multiple modules for similar tasks into Python files that contain only function

definitions (i.e., no executable code). This approach allows for greater organization, reusability,

and maintainability of code. The function files reside in a designated folder and are organized

thematically. For example, the file microbiology_supporters.py contains the functions to assist

with data processing on microbiology workflow steps, while the file plt_manipulators.py

contains functions handling manipulations of the plate grids and processing samples in

batches, among others.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

14

5.2 Efficient sample batching

Grouping samples together for batch processing is crucial for efficient use of resources, be it

reagents, equipment or manpower. Sample batching can save the overall time and cost of the

production process while reducing variability between samples and improving quality control and

scalability of the workflows.

The production of mABs from individual B-cells is a multistep process, with quality assessment

being performed after each wet lab step. Samples that do not meet the quality criteria are

excluded from further processing, and only successful samples are selected for the next step of

the workflow. Since batches of samples for each wet lab step are constantly updated, it is

essential to keep track of batches already pushed forward in the workflow and of those still waiting

for their turn.

In our workflow, wet lab experiments are conducted in batches of either 96 or 384 samples. To

accommodate samples that cannot be processed due to limited space on the 96- or 384-plate

grid, we implemented store lists to keep track of the leftover samples. Store list files are updated

every time new samples are advanced in the workflow, with the priority given to older samples.

This ensures that the ones that have been waiting the longest are processed first.

5.3 Getting feedback from modules

Because detecting errors that arise during module execution in complex workflows can be

challenging, the modules should provide feedback whenever possible. Getting feedback from

modules refers to collecting information from each step of the workflow to assess its performance

Examples from the workflow

An example of a store list for sample batching is created by the module 05_PCR3.py that

prepares batches of samples for the final PCR step (PCR3). The module starts by loading the

current store list file (updated previously by Knime module) and automatically calculates the

number of 96-sample batches to be processed in PCR3 step. Then, the batches of selected

samples are pushed forward to the next workflow step, and the leftover samples are saved as

a new store list file.

Computing the number of sample batches automatically is beneficial, as it minimizes user

input, reducing the risk of human error. Additionally, we use argparse, a Python library for

parsing command-line arguments, to get the plate barcodes for wet lab experiments (here:

PCR3, cELE and GiAs, see Figure 2). The user inputs the latest plate numbers used on that

workflow step as command-line arguments; the module parses those as arguments and

automatically assigns new barcodes to current sample batches.

While our workflow is semi-automated and machine-dependent, similar principles can be

applied to manual workflows. The number of samples to be processed in a single experiment

can be adjusted as needed by modifying the size of a batch.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

15

and identify potential issues as they occur (22). Providing feedback enables collaborative usage

of the pipeline, including by team members who may not be as familiar with all the individual

operations performed by modules.

Feedback strategies can be satisfied by user interface features within the software. Most software

offers visual cues and pop-up messages to inform users about their actions. For example, FM

provides import log files and notifications on the import execution. Knime allows real-time

assessment of computing operations through icons, indicating whether the run was successful.

The result of each node's operation can also be displayed upon request, enabling interactive

troubleshooting. Another feedback strategy to consider is input validation; FM provides options of

validating the IDs to be unique, non-empty and unmodifiable, and retrieves the messages on

failed import if these conditions are not met. Similar validation can be implemented in Python,

went

wrong and suggest possible solutions. Additionally, a good approach to automated and recurring

feedback is saving custom files that include run parameters or any other information helpful for

potential troubleshooting or documentation. As a minimum requirement though, in case of scripted

modules, simple printout messages help to orient the users about the status of the run.

5.4 Organizing the pipeline

To maintain the organization of the pipeline, we recommend introducing a system that is user-

friendly and not too complex, so that the users are encouraged to adhere to continuous

documentation. It is a good practice to separate modules that are part of the main computational

pipeline from auxiliary ones or those that represent work in progress. Regular inspections and a

simple cleaning strategy for modules can ensure workflow maintenance with minimal effort (21).

A manual should be provided for each module in the pipeline to ensure proper usage and minimize

the likelihood of errors due to incorrect execution. Ideally, all factors that could affect the pipeline

execution should be documented. This allows for replication of the analysis in the future by

Examples from the workflow

We have included printout messages for key steps in Python modules. For example, module

05_PCR3.py provides information on the total number of samples (and 96-well plates) to

process in final PCR step, number of leftover samples saved as a store list file, together with

the directory and filename of the store list. Further, the argparse module is employed in most

Python scripts. It automatically generates help, usage and error messages, which prevents

incorrect input from being passed during the run.

For Knime modules, we implemented self-documenting features, where a custom file is

generated upon the module run, containing the metadata such as run parameters, generated

input and output files, user data, timestamps or messages. Together with the intermediate files

saved at workflow steps, self-documentation features provide frequent feedback on the

progress of data processing steps.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

16

yourself or others. Each module should have a designated champion who understands the

module's architecture and logic and can assist with troubleshooting and implementing the

changes. In addition to a well-defined folder structure for hosting the modules, we recommend

implementing a Version Control System (VCS) to track modifications to modules that are part of

the main pipeline. Finally, adhering to a comprehensive documentation scheme aids in the

maintenance of the workflow.

Writing detailed manuals, documenting module logic, and implementing version control require

discipline, but contributes to efficient maintenance of complex pipelines. Even routine operations

can require consulting the documentation; in our experience, the effort of creating manuals and

adhering to version control pays off in sustaining the pipeline.

6. Proof of Concept Tailored Data Processing Pipeline and

Database for Automated Stem Cell Culture (ASCC)

To showcase the versatility of our design, we applied the design principles to develop a data

processing pipeline and a database for automated stem cell culture. Recently, we have

established an automated cell culture platform that integrates a robotic liquid handling workstation

for cultivation and differentiation of human induced pluripotent stem cells (hiPSCs). The hiPSCs

are expanded and differentiated into brain microvascular endothelial cells (BMECs) for generation

of an in vitro blood-brain barrier (BBB) model (30). Mature BMECs are seeded on TransWell

plates for a 2D permeability BBB model. Trans-endothelial electrical resistance (TEER) is then

measured to assess the integrity of the barrier (for a detailed protocol, refer to the work published

by Fengler et al. (30)). BBB models generated in high-throughput scale with close-to-physiological

characteristics can facilitate the screening of BBB-penetrating drugs, aiding the development of

targeted drug delivery systems for neurological disorders (31).

 Examples from the workflow

Distinguishing between the main and auxiliary Python modules is achieved by keeping a

coherent naming convention and shared directory. Python modules hold names starting with a

sequential, two-digit number. The outputs of module runs are kept in separate directories,

suffixed with _Out. Git is used as VCS to track changes to main Python modules, allowing for

rkflow step are

also tracked by VCS.

We keep a documentation strategy for wet lab workflow and database imports by using

Electronic Lab Notebook (ELN) software. Wet lab experiments, data imports, and modifications

of database structure are recorded as separate entries in the ELN, which serves as a reliable

record-keeping tool. Finally, we emphasize comprehensive code documentation, recognizing

that code is read much more often than it is written (24). This approach helps us create well-

documented modules.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

17

Here, we present a proof-of-concept pipeline focused on hiPSCs differentiation into BMECs that

is flexible and can be expanded to implement generation of other hiPSCs-derived cell types,

including astrocytes, neurons, microglia or monocytes. The pipeline consists of Python scripts,

FM database and FM scripts; below, we discuss the design process and how it aligns with the

design principles.

6.1 Getting started ASCC

We started the design by outlining:

1. The wet lab experiments (cycles of thawing, seeding and harvest of cells, see Figure S5).

2. The methods to document metadata, such as: i) hiPSCs batch information provided by a

supplier; ii) culture conditions (including medium batch information and supplements); iii) the

v) equipment settings (parameters controlled by automation); and vi) user annotations.

3. The repetitions or pausing steps in the workflow, i.e., interruptions of the differentiation

process, including freezing of cells on differentiation stages for future experiments or on

expansion stages to allow differentiation into other cell types.

4. The methods of documenting the workflow for human supervision and potential error

detection.

6.2 Translate tasks to modules ASCC

We then translated tasks to modules by following the wet lab criteria, making sure that each

module performs a singular task and has little dependence on other modules (other than logical

dependence that results from hierarchical nature of the workflow). Modules execute the following

tasks: i) analyzing the experimental readouts (machine- or manually-generated), ii) parsing

metadata, and iii) generating an import file for database storage.

During expansion and differentiation, iPSCs undergo seeding and harvest cycles across various

plate formats (for example, 4-, 6- or 12-well plate grid for TransWell plates). Cell count and viability

assays are performed on each harvest cycle or whenever an assessment of cell confluency is

required. Module 00_cellcount_parser.py and processes

the file with cell count and viability information (generated by the automated cell viability analyzer,

ViCell). During the entire process of cultivation, cells are imaged daily for quality control. Module

01_img_parser.py parses the images generated by a spinning disk confocal microscope and

creates a .json file with metadata of all images linked to a given plate. On final WF steps, cells

are seeded on TransWell plates for TEER measurements. Module 02_teer_parser.py parses the

experimental readouts and creates an import file for database storage.

We also implemented the config.py file to store file and directory paths, spreadsheet metadata

and configuration parameters. The utility functions are grouped thematically:

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

18

cellcount_img_tools.py handles .txt files generated by ViCell and input_readers.py parses the

user input.

6.3 Allocate separate computational space to modules ASCC

We created a designated computational space for modules, input files (including metadata,

experimental readouts and files exported from the database) and output files, with an automated

backup rotation scheme of daily, monthly and yearly backups. There are designated directories

for database export files for cell count and image parsing. Confocal microscopy images (per plate)

and files generated by the automated cell viability analyzer are kept in individual folders. Scripts,

.json files and output files generated at each workflow step also have separate directories.

6.4 Define input and output files ASCC

We defined input and output files to share data between modules. Depending on the plate format

and whether cells are in expansion or differentiation stage, the modules access different input

files. For example, in an early expansion stage, the module 00_cellcount_parser.py takes up the

database export file (automatically generated by a FM script) and experimental readout file to

generate the import file for database storage (saved with a timestamp). To facilitate the automatic

imports to the database, records processed at the time are saved as separate files, updated after

each script run. Modules 01_img_parser.py and 02_teer_parser.py follow similar logic when

processing confocal microscopy images and TEER measurement files, respectively.

6.5 Dedicated Database ASCC

While conceptualizing ASCC database structure, we considered several factors:

1. The information should not be redundant, i.e., it should only be entered in the database once.

If the same information is entered more than once, there is probably a need to restructure the

database and keep the redundant information in a separate table. For example, the

information on the culture medium batch is registered only once and stored in a distinct table.

Upon a medium change event, this information is populated by fetching the ID of the medium

batch and adding it to the table storing the plate information (see Figure S6 (A)).

2. The tables are organized following the thawing, seeding, harvesting or freezing events, as

they imply the initiation of a new process: e.g., change of the barcode or plate format, storing

frozen cells in tanks, or collecting metadata, such as cell viability assays and cell count. For

example, the information on harvesting differentiated BMECs from 6-well plates by pulling and

seeding on multiple 12-well TransWell plates is kept in separate tables linked through a one-

to-many relationship. This ensures that: i) any manipulations performed with the 6-well plate

(medium change or cell count) are independent from those performed with the 12-well

TransWell plates (TEER measurements or a well treatment); and ii) no redundant information

is entered in the database, i.e., only the IDs of the 6-well plates are populated in the TransWell

plate table (see the Figure S6 (B)).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

19

3. We implemented separate tables also due to the different hiPSCs differentiation methods,

each requiring distinct processes. Although the current ASCC database assumes BMECs

differentiation, other cell types (e.g., astrocytes) will be considered in the future. In the current

structure, new tables for astrocytes differentiation can easily be linked to existing ones (see

the Figure S7).

Discussion

The ability to document, process and analyze large datasets to identify new patterns and

relationships has become increasingly important in modern biology. In the evolving landscape of

biology research, it is not only large specialized laboratories that are embracing HT/HC

techniques, but smaller biology labs are also progressively implementing similar methods.

However, dealing with data generated in HT/HC schemes poses challenges related to sample

backtracking, quality control, record keeping, and data curation and storage, among others. This

can lead to compromised data integrity, potential data loss, and ineffective workflows. These

challenges can be addressed by implementing modular data processing pipelines, which help to

make substantial progress toward optimizing data management practices.

We employed the computational pipeline for data processing in a complex, semi-automated,

multistep workflow for the production of mABs to tackle similar challenges and monitor all

workflow steps, ultimately aiming to enhance data governance in our experimental setup. The

design principles presented here can serve as guidance for the development of data processing

pipelines in biology. The versatility of our approach allows for its application to diverse biological

problems concerned with intensive data collection activities in a variety of settings, in which data

undergoes continuous processing, analysis and modification before reaching the endpoint.

We showed how our design can help minimize the reliance on error-prone and resource-intensive

manual data handling, significantly reducing errors and optimizing both time and resource usage.

The modular nature of the design allows for flexibility to handle samples in high- and low-

throughput settings. While the modules are designed to function in isolation, we combine them

into a custom pipeline that operates on the mAB production workflow.

Our approach also helps streamline data processing and documentation, leading to faster

generation of insights (allowing more time for other tasks), improving data reusability and

promoting seamless data exchange. Additionally, we showed how deploying the dedicated

database facilitates the standardization of data processing procedures. By implementing the

tailored database, we established consistent and structured approaches to storing and organizing

data, allowing us to efficiently track the samples throughout the workflow. Overall, adhering to the

design principles outlined in this work can assist in enhancing the accuracy and fostering the

reproducibility of data analysis by combining standardization, documentation, scalability, and

error detection, and is a step towards more robust frameworks for data processing in biology.

Although our modules are tailored for mABs production, we foresee that our approach can support

other biologists in building their own small-scale data processing pipelines for individual use. This

approach is different from large-scale pipelines developed by bioinformaticians to manage

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

20

massive volumes of data (32). Given that our team primarily consists of biologists, we do not have

ready access to specialized support from computer scientists in our daily work. Thus, we focused

our design efforts on feasibility for biologists with limited programming experience by employing

software with GUI, such as Knime and FM, besides Python.

With some modifications, individual modules presented here can also be adapted by other

biologists and incorporated into their own workflows. To that end, we provide a GitHub repository2

containing the mock-up data and the simplified pipeline, together with detailed instructions on how

to download, install, and run it. Furthermore, we demonstrate how the code can be customized to

accommodate data processing routines based on individual requirements3. This can serve as a

starting point for experimental researchers in constructing their pipelines by reusing and modifying

the provided code.

To test the applicability of our design to other settings, we applied the design principles to

automated hiPSCs culture, proving that it was possible to adapt the framework to stem cell-related

research. In the long run, we expect that this approach will be beneficial for ASCC, as it can help

to: i) standardize and automate relevant data storage; ii) facilitate data-centric conclusions to gain

novel insights; iii) make informed decisions for potential troubleshooting; iv) use data to optimize

approaches. As pipelines for continuous data processing and analysis are now essential in

domains such as multi-omics data integration (33,34), HT/HC screening (35), data-driven

modeling (36), as well as long-term environmental monitoring (37), evolutionary biology (38 40)

or plant phenotyping (41), among others, we believe that design recommendations proposed here

can find their target audience and be a source of inspiration to other researchers in developing

their own data processing modules.

In the context of data-intensive science, there is a growing demand from various stakeholders,

such as the scientific community, funding agencies, publishers and industry, for data to meet the

standards of being Findable, Accessible, Interoperable, and Reusable (FAIR) over the long-term.

This also concerns research processes beyond data, including analytical workflows and data

processing pipelines. Many projects have already adopted different elements of FAIR principles

into their data (and non-data) repositories (42).

Our data processing pipelines align with FAIR principles in several ways. First, we satisfy the

findability facet of FAIR by making the mAB4 and the ASCC5 pipelines publicly available via

GitHub and assigning a persistent identifier. Clear documentation in the current paper and in the

GitHub repository provide the necessary information to understand the design decisions, data

and processes involved in running the pipelines. To satisfy the accessibility facet, we include

contact information and apply an open access policy to the code, granting unrestricted access to

both the mock-up data and pipeline modules. Standardized file formats and clear naming

2 https://github.com/CRFS-BN/mABpy/tree/main/simplified_pipeline
3 https://github.com/CRFS-BN/mABpy/tree/main/simplified_pipeline - adjusting-the-pipeline-to-your-own-
needs
4 DOI: 10.5281/zenodo.8229164
5 DOI: 10.5281/zenodo.10106688

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

21

conventions throughout the pipelines aid interoperability by keeping a consistent and organized

approach to data representation. Moreover, using standardized data formats enables

compatibility and facilitates data exchange across pipelines. To account for the reusability aspect

of FAIR, we design modular pipelines, emphasizing the granularity of the modules. Published

documentation defines how modules work and how they interact with input and output data.

Finally, adhering to the outlined principles for data processing may foster compliance with FAIR

principles during publication. This approach ensures that both data and metadata are well-

structured, minimizing the effort to achieve data accessibility and findability upon publication.

One limitation of the system is partial reliance on licensed software, such as FM and GitLab.

Nevertheless, open-source alternatives can be employed instead. For example, LibreOffice Base

is an open-source, no-code database management software and offers similar functionality to that

of FM, allowing users to create and manage databases using a graphical interface with features

for creating tables, queries, and reports (43), making it a suitable option for researchers with little

to no programming experience. Alternatively, if team members have some level of SQL

knowledge, they can consider alternatives like MySQL for building and managing databases.

MySQL Workbench offers a user-friendly interface to simplify database creation (44), and there

are numerous resources available online to learn the fundamentals of SQL and get started.

Another interesting alternative to transform existing, code-based databases into interactive

applications is NocoDB an open-source, no-code platform that turns databases into

spreadsheets with intuitive interfaces, making it possible for teams to create no-code applications.

It supports MySQL, SQLite or PostgreSQL databases, among others, but it also provides the

functionality of building databases from scratch (45). NocoDB is becoming popular within the

community as an alternative to non-open-source solutions. As the platform gained attention from

users seeking efficient and customizable data management solutions, there are plenty of online

learning materials available, including tutorials, documentation and community forums.

Although we use the GitLab for Enterprise as a VCS to host the pipeline, the free GitLab version

offers essential features for individual users and provides enough functionality to implement data

processing pipelines (despite some storage and transfer limits). Alternatively, GitHub can be used

as a VCS, as it has traditionally been more widely recognized and utilized in the developer

community due to its extensive user base and integration options (46).

Finally, labs can also consider existing Laboratory Information Management Systems (LIMS)

when automating the workflows to efficiently handle samples and their related data. LIMS are

software applications used to streamline laboratory operations, sample tracking, data

management and reporting, offering integration with various lab instruments (47). Although these

systems provide several advantages over custom-designed pipelines, investing in a full-fledged,

commercial LIMS can be expensive. LIMS are also lab-centric, that is, they are designed to cater

to the overall needs of the laboratory as a whole and thus require tailoring to each individual lab.

As the goal of LIMS is to create a centralized system that manages all laboratory activities and

data, a significant effort has to be spent on specifying requirements for the LIMS systems.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

22

Workflow-centric custom pipelines, on the other hand, are designed with a focus on optimizing

and automating a particular laboratory workflow or a set of interconnected processes. Thus, our

custom approach to modular pipeline development offers several benefits: it is cost-effective; can

be tailored to specific needs; and allows rapid, iterative prototyping and experimenting with

maintain and can grow organically, adapting to changing requirements of individual projects. They

can also be designed to integrate better with other custom systems already used by labs. Finally,

with a custom pipeline the labs retain full control and ownership of the process, allowing for

flexibility in response to changing needs and pro

intellectual property.

Acknowledgments

We thank the Helmholtz Association for funding HIL-A03. All figures were created with

BioRender.com

Contributions

Conceptualization, methodology and software: M.K., D.S.; Data curation and investigation: S.F.,

M.K., B.K., A.M., D.S., M.S.; Resources: J.K., M.R., E.S., S.vH.; Validation: M.K., M.S., G.S.;

Project administration and supervision: P.D., E.F., D.S.; Visualization: M.K. E.M. D.S.; Writing:

J.B., E.F., M.K., D.S., G.S.; Funding Acquisition: P.D., E.F., J.K., L.K., H.P., D.S.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

23

Bibliography

1. Dueñas ME, Peltier-Heap RE, Leveridge M, Annan RS, Büttner FH, Trost M. Advances in

high-throughput mass spectrometry in drug discovery. EMBO Mol Med. 2023 Jan

11;15(1):e14850.

2. Shen X, Zhao Y, Wang Z, Shi Q. Recent advances in high-throughput single-cell

transcriptomics and spatial transcriptomics. Lab Chip. 2022 Dec 6;22(24):4774 91.

3. Jia Q, Chu H, Jin Z, Long H, Zhu B. High-throughput single-

research. Signal Transduct Target Ther. 2022 May 3;7(1):145.

4. Wratten L, Wilm A, Göke J. Reproducible, scalable, and shareable analysis pipelines with

bioinformatics workflow managers. Nat Methods. 2021 Oct;18(10):1161 8.

5. Steel H, Habgood R, Kelly CL, Papachristodoulou A. In situ characterisation and

manipulation of biological systems with Chi.Bio. PLoS Biol. 2020 Jul 30;18(7):e3000794.

6. Alpern D, Gardeux V, Russeil J, Mangeat B, Meireles-Filho ACA, Breysse R, et al. BRB-

seq: ultra-affordable high-throughput transcriptomics enabled by bulk RNA barcoding and

sequencing. Genome Biol. 2019 Apr 19;20(1):71.

7. DFG, German Research Foundation. DFG Consolidates the Impetus of its High-Throughput

Sequencing Funding Initiative [Internet]. 2022 [cited 2023 Mar 21]. Available from:

https://www.dfg.de/en/service/press/press_releases/2022/press_release_no_11/index.htm

l

8. Nature Methods. Nature Methods: Aims & Scope [Internet]. Aims & Scope. 2022 [cited 2023

Mar 21]. Available from: https://www.nature.com/nmeth/aims

9. National Institutes of Health. Common Fund High-Risk, High-Reward Research Program

[Internet]. 2022 [cited 2023 Mar 21]. Available from: https://commonfund.nih.gov/highrisk

10. European Commission. Breakthrough Innovation Programme for a Pan-European

Detection and Imaging Eco-System Phase-2 [Internet]. 2021 [cited 2023 Mar 21].

Available from: https://cordis.europa.eu/project/id/101004462

11. Gonçalves RS, Musen MA. The variable quality of metadata about biological samples used

in biomedical experiments. Sci Data. 2019 Feb 19;6:190021.

12. Birkland A, Yona G. BIOZON: a system for unification, management and analysis of

heterogeneous biological data. BMC Bioinformatics. 2006 Feb 15;7:70.

13. Wittig U, Rey M, Weidemann A, Müller W. Data management and data enrichment for

systems biology projects. J Biotechnol. 2017 Nov 10;261:229 37.

14. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten simple rules for reproducible

computational research. PLoS Comput Biol. 2013 Oct 24;9(10):e1003285.

15. Kuhn Cuellar L, Friedrich A, Gabernet G, de la Garza L, Fillinger S, Seyboldt A, et al. A data

management infrastructure for the integration of imaging and omics data in life sciences.

BMC Bioinformatics. 2022 Feb 7;23(1):61.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

24

16. Tiller T, Meffre E, Yurasov S, Tsuiji M, Nussenzweig MC, Wardemann H. Efficient

generation of monoclonal antibodies from single human B cells by single cell RT-PCR and

expression vector cloning. J Immunol Methods. 2008 Jan 1;329(1 2):112 24.

17. Kreye J, Wenke NK, Chayka M, Leubner J, Murugan R, Maier N, et al. Human cerebrospinal

fluid monoclonal N-methyl-D-aspartate receptor autoantibodies are sufficient for

encephalitis pathogenesis. Brain. 2016 Oct;139(Pt 10):2641 52.

18. Gieselmann L, Kreer C, Ercanoglu MS, Lehnen N, Zehner M, Schommers P, et al. Effective

high-throughput isolation of fully human antibodies targeting infectious pathogens. Nat

Protoc. 2021 Jul;16(7):3639 71.

19. Reincke SM, Prüss H, Kreye J. Brain antibody sequence evaluation (BASE): an easy-to-

use software for complete data analysis in single cell immunoglobulin cloning. BMC

Bioinformatics. 2020 Oct 8;21(1):446.

20. Boyd SD, Gaëta BA, Jackson KJ, Fire AZ, Marshall EL, Merker JD, et al. Individual variation

in the germline Ig gene repertoire inferred from variable region gene rearrangements. J

Immunol. 2010 Jun 15;184(12):6986 92.

21. Collins AM, Watson CT. Immunoglobulin Light Chain Gene Rearrangements, Receptor

Editing and the Development of a Self-Tolerant Antibody Repertoire. Front Immunol. 2018

Oct 8;9:2249.

22. van Vliet M. Seven quick tips for analysis scripts in neuroimaging. PLoS Comput Biol. 2020

Mar 26;16(3):e1007358.

23. Rowlett J, Karlsson CJ, Nursultanov M. Diversity strengthens competing teams. R Soc

Open Sci. 2022 Aug 10;9(8):211916.

24. Yang Y, Tian TY, Woodruff TK, Jones BF, Uzzi B. Gender-diverse teams produce more

novel and higher-impact scientific ideas. Proc Natl Acad Sci USA. 2022 Sep

6;119(36):e2200841119.

25. Sufi F. Algorithms in Low-Code-No-Code for Research Applications: A Practical Review.

Algorithms. 2023 Feb 13;16(2):108.

26. Claris FileMaker Tackle any task [Internet]. [cited 2023 Mar 28]. Available from:

https://www.claris.com/filemaker/

27. Automated generation of CONSORT

diagrams using relational database software. Appl Clin Inform. 2019 Jan 23;10(1):60 5.

28. Conforti A, Marci R, Moustafa M, Tsibanakos I, Krishnamurthy G, Alviggi C, et al. Surgery

and out-patient data collection and reporting using Filemaker Pro. Eur Rev Med Pharmacol

Sci. 2018 May;22(10):2918 22.

29. Ruth CJ, Huey SL, Krisher JT, Fothergill A, Gannon BM, Jones CE, et al. An electronic data

capture framework (connedct) for global and public health research: design and

implementation. J Med Internet Res. 2020 Aug 13;22(8):e18580.

30. Fengler S, Kurkowsky B, Kaushalya SK, Roth W, Fava E, Denner P. Human iPSC-derived

brain endothelial microvessels in a multi-well format enable permeability screens of anti-

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

25

inflammatory drugs. Biomaterials. 2022 Jul;286:121525.

31. -

edge advances in modeling the blood-brain barrier and tools for its reversible

permeabilization for enhanced drug delivery into the brain. Cell Biosci. 2023 Jul

27;13(1):137.

32. Djaffardjy M, Marchment G, Sebe C, Blanchet R, Bellajhame K, Gaignard A, et al.

Developing and reusing bioinformatics data analysis pipelines using scientific workflow

systems. Comput Struct Biotechnol J. 2023 Mar 7;21:2075 85.

33. Planell N, Lagani V, Sebastian-Leon P, van der Kloet F, Ewing E, Karathanasis N, et al.

STATegra: Multi-Omics Data Integration - A Conceptual Scheme With a Bioinformatics

Pipeline. Front Genet. 2021 Mar 4;12:620453.

34. Conesa A, Beck S. Making multi-omics data accessible to researchers. Sci Data. 2019 Oct

31;6(1):251.

35. Cohen-Boulakia S, Belhajjame K, Collin O, Chopard J, Froidevaux C, Gaignard A, et al.

Scientific workflows for computational reproducibility in the life sciences: Status, challenges

and opportunities. Future Generation Computer Systems. 2017 Oct;75:284 98.

36. Minnich AJ, McLoughlin K, Tse M, Deng J, Weber A, Murad N, et al. AMPL: A Data-Driven

Modeling Pipeline for Drug Discovery. J Chem Inf Model. 2020 Apr 27;60(4):1955 68.

37. Yenni GM, Christensen EM, Bledsoe EK, Supp SR, Diaz RM, White EP, et al. Developing

a modern data workflow for regularly updated data. PLoS Biol. 2019 Jan

29;17(1):e3000125.

38. Lürig MD. Phenopype: A phenotyping pipeline for Python. Methods Ecol Evol. 2021 Nov

19;

39. Eisen KE, Powers JM, Raguso RA, Campbell DR. An analytical pipeline to support robust

research on the ecology, evolution, and function of floral volatiles. Front Ecol Evol. 2022

Oct 20;10.

40. Ebmeyer S, Coertze RD, Berglund F, Kristiansson E, Larsson DGJ. GEnView: a gene-

centric, phylogeny-based comparative genomics pipeline for bacterial genomes and

plasmids. Bioinformatics. 2022 Mar 4;38(6):1727 8.

41. Kar S, Garin V, Kholová J, Vadez V, Durbha SS, Tanaka R, et al. SpaTemHTP: A Data

Analysis Pipeline for Efficient Processing and Utilization of Temporal High-Throughput

Phenotyping Data. Front Plant Sci. 2020 Nov 20;11:552509.

42. Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, et al. The FAIR

Guiding Principles for scientific data management and stewardship. Sci Data. 2016 Mar

15;3:160018.

43. LibreOffice. LibreOffice Base [Internet]. LibreOffice Base a powerful manager for all

databases. 2014 [cited 2023 Jul 13]. Available from:

https://www.libreoffice.org/discover/base/

44. MySQL Workbench. MySQL Workbench [Internet]. MySQL Workbench Enhanced data

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

26

migration. 2013 [cited 2023 Jul 13]. Available from:

https://www.mysql.com/products/workbench/

45. NocoDB. NocoDB Open Source Airtable Alternative [Internet]. 2021 [cited 2023 Jul 20].

Available from: https://nocodb.com

46. here [Internet]. 2011 [cited 2023 Jul 13]. Available from:

https://github.com

47. Argento N. Institutional ELN/LIMS deployment: Highly customizable ELN/LIMS platform as

a cornerstone of digital transformation for life sciences research institutes. EMBO Rep.

2020 Mar 4;21(3):e49862.

48. Khatri I, Berkowska MA, van den Akker EB, Teodosio C, Reinders MJT, van Dongen JJM.

Population matched (pm) germline allelic variants of immunoglobulin (IG) loci: Relevance

in infectious diseases and vaccination studies in human populations. Genes Immun. 2021

Jul;22(3):172 86.

49. Mikocziova I, Greiff V, Sollid LM. Immunoglobulin germline gene variation and its impact on

human disease. Genes Immun. 2021 Aug;22(4):205 17.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

27

Supplementary Material

Figure S1. Cloning strategy for variable antibody regions. After cDNA generation, three parallel PCR

reactions are performed to amplify the heavy chain variable region (light blue) and either the Kappa (light

green) or Lambda (pink) variable region. Upon verification by sequencing, the variable regions are cloned

into plasmids encoding the constant part of the respective antibody chain (dark blue: heavy constant part;

dark green: Kappa light constant part; purple: Lambda light constant part). See Figure 2 for a

comprehensive overview. For an overview on B-cell receptor and antibody variability refer to Figure 1 by

Khatri et al (48) and Figure 1 by Mikocziova et al. (49).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

31

Figure S5. Wet lab steps of ASCC workflow: thawing, expansion and differentiation of iPSCs into BMECs

in functional BBB model. Wet lab steps and timepoints (relative to the start of the differentiation day 0:

D0) are indicated by blue rectangles. Cycles of thawing (D-6), possible freezing (D-1, D6), harvest and

seeding (D-3, D8) of cells. Count and viability assays are carried out on D-3, D0 and D8. Media used at

each timepoint are indicated by ellipses gray: mTSER plus medium with/without rock inhibitor; violet:

Unconditioned Medium (UM); green: Endothelial Cell Medium with/without supplements (EC +/+, EC -/-,

respectively). The TEER measurement timepoints (D10, D11) are indicated by a purple circle. For detailed

protocol, refer to Fengler et al (30).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

34

Table S1. Primers

chains. Three PCR reactions are performed per chain. PCR1 and PCR2 are performed with forward and

reverse primer mixes. PCR3 is performed with specific primer pairs selected from 69 individual primers.

The selection is based on sequencing results of the second PCR amplification and identification of used

V(D)J alleles. See the attached Table S1.xlsx file.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571214doi: bioRxiv preprint

