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ABSTRACT
The hypothalamus plays a crucial role in the regulation of a broad range of physiological, behavioral, and cognitive 
functions. However, despite its importance, only a few small-scale neuroimaging studies have investigated its sub-
structures, likely due to the lack of fully automated segmentation tools to address scalability and reproducibility issues 
of manual segmentation. While the only previous attempt to automatically sub-segment the hypothalamus with a 
neural network showed promise for 1.0 mm isotropic T1-weighted (T1w) magnetic resonance imaging (MRI), there is 
a need for an automated tool to sub-segment also high-resolutional (HiRes) MR scans, as they are becoming widely 
available, and include structural detail also from multi-modal MRI. We, therefore, introduce a novel, fast, and fully 
automated deep-learning method named HypVINN for sub-segmentation of the hypothalamus and adjacent struc-
tures on 0.8 mm isotropic T1w and T2w brain MR images that is robust to missing modalities. We extensively validate 
our model with respect to segmentation accuracy, generalizability, in-session test-retest reliability, and sensitivity to 
replicate hypothalamic volume effects (e.g., sex differences). The proposed method exhibits high segmentation per-
formance both for standalone T1w images as well as for T1w/T2w image pairs. Even with the additional capability to 
accept flexible inputs, our model matches or exceeds the performance of state-of-the-art methods with fixed inputs. 
We, further, demonstrate the generalizability of our method in experiments with 1.0 mm MR scans from both the 
Rhineland Study and the UK Biobank—an independent dataset never encountered during training with different 
acquisition parameters and demographics. Finally, HypVINN can perform the segmentation in less than a minute 
(graphical processing unit [GPU]) and will be available in the open source FastSurfer neuroimaging software suite, 
offering a validated, efficient, and scalable solution for evaluating imaging-derived phenotypes of the hypothalamus.
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1.  INTRODUCTION

1.1.  Motivation

The hypothalamus consists of a group of interconnected 
neuronal nuclei located at the base of the brain (Saper & 

Lowell, 2014). It is the body’s principal homeostatic cen-
ter and plays a crucial role in the regulation of a broad 
range of physiological, behavioral, and cognitive func-
tions, both through direct control of endocrine and  
autonomic nervous system outflow, as well as through 
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extensive projections to cortical and limbic regions (Saper 
& Lowell, 2014). Neuropathological studies have demon-
strated extensive involvement of the hypothalamus in a 
range of neurodegenerative diseases, including Alzhei-
mer’s disease (Liguori et al., 2014; Roh et al., 2014), Par-
kinson’s disease (Fronczek et  al., 2007), Huntington’s 
disease (van Wamelen & Aziz, 2021), frontotemporal 
dementia, and amyotrophic lateral sclerosis (Ahmed 
et al., 2021; Bocchetta et al., 2015). However, the associ-
ation between hypothalamic integrity and physiological, 
behavioral, and cognitive outcomes has not been studied 
in large clinical or population-based studies for lack of a 
reliable high-throughput automatic imaging procedure.

The majority of studies on hypothalamic imaging-
derived phenotypes use manual annotations of mag-
netic resonance imaging (MRI) scans as the gold 
standard. Manual segmentation of the hypothalamus 
and its substructures is commonly done on T1-weighted 
images (Makris et  al., 2013; Schindler et  al., 2013). 
Nonetheless, the use of multi-modal structural informa-
tion during the manual annotation process has also 
been proposed to increase especially the visibility of 
the lateral hypothalamus boundaries (Baroncini et  al., 
2012; Bocchetta et al., 2015). These multi-modal proto-
cols recommend segmenting the hypothalamus using 
simultaneous visualization of registered T1-weighted 
(T1w) and T2-weighted (T2w) MR images. Manual delin-
eation of the hypothalamus, however, is a very time-
consuming process that relies highly on the user’s 
expertise due to the small size and low boundary MR 
contrast in the hypothalamus region, regardless of the 
available MRI modalities.

Automated methods have been proposed to segment 
the whole hypothalamus (Greve et al., 2021; Orbes-Arteaga 
et al., 2015; Rodrigues et al., 2020, 2022; Thomas et al., 
2019) and its sub-regions (Billot, Bocchetta, et al., 2020) 
quickly and reliably. However, even though automated 
tools are available, they only focus on segmenting 1.0 mm 
isotropic T1w scans, ignoring the detailed structural infor-
mation available in sub-millimeter resolution datasets. 
High-resolutional (HiRes) MR scans are becoming more 
common across studies (even in clinical settings) due to 
rapid advancements in MR technology (e.g., accelerated 
acquisition schemes) and are increasingly employed as 
the new standard for large studies (e.g., the Rhineland 
Study (Breteler et al., 2014; Stöcker, 2016), Human Con-
nectome Project (HCP) datasets (Bookheimer et al., 2019; 
Harms et al., 2018; Van Essen et al., 2012), Autism Brain 
Imaging Data Exchange II (ABIDE-II) (Di Martino et  al., 
2017), and TRACK-PD (Wolters et  al., 2020)). Thus, the 

need for neuroimaging tools that can handle sub-millimeter 
resolutions (e.g., 0.8 mm isotropic) has increased.

Moreover, current automated hypothalamic segmenta-
tion methods have neglected the inclusion of multi-modal 
structural information. One reason for this is that simulta-
neous access to T1w and T2w images is not always pos-
sible due to constraints in scanning time or poor image 
quality in one of the modalities due to reduced image res-
olution or acquisition artifacts. Therefore, the introduction 
of an accurate automated method for segmenting hypo-
thalamic structures on high-resolutional T1w and T2w MRI 
scans, which is also robust to handle missing modalities, 
is of significant interest to clinicians and researchers.

1.2.  Related work

Automated hypothalamic segmentation methods utilizing 
multi-atlas-based techniques (Orbes-Arteaga et  al., 
2015; Thomas et al., 2019) were initially proposed. How-
ever, these methods are slow and demand considerable 
computational resources. Newer techniques such as fully 
convolutional neural networks (F-CNNs) can tremen-
dously speed up computation time by utilizing graphical 
processing units (GPUs) and have become the preferred 
method for solving supervised semantic segmentation 
problems in the medical computer vision community 
(Estrada et al., 2020, 2021; Faber et al., 2022; Henschel 
et al., 2020; Kamnitsas et al., 2017; Milletari et al., 2016; 
Ronneberger et al., 2015; Roy et al., 2019).

Hypothalamus segmentation using F-CNNs has mainly 
focused on identifying the hypothalamus as one whole 
structure in the brain (Greve et al., 2021; Rodrigues et al., 
2020, 2022). Recently, Billot, Bocchetta, et al. (2020) pro-
posed a method to segment five sub-regions of the hypo-
thalamus using an encoder-decoder 3D F-CNN with 
extensive data augmentation. They followed the hypotha-
lamic parcellation protocol introduced by Makris et  al. 
(2013) on standard 1.0  mm isotropic resolution T1w 
images. Their proposed method illustrates the capabilities 
of F-CNNs to segment hypothalamic compartments with 
promising results on datasets acquired at 1.0 mm isotropic 
resolution (Billot, Bocchetta, et  al., 2020; Shapiro et  al., 
2022). However, F-CNNs are known to have issues gener-
alizing to resolutions that differ from the training one 
(Estrada et al., 2021; Henschel et al., 2022; Iglesias et al., 
2021), rendering HiRes images out-of-distribution and 
unsuitable for methods designed for lower resolutions. A 
common approach for this problem is to down-sample the 
input image to the desired lower resolution in a pre-
processing step (Billot, Bocchetta, et  al., 2020; Greve 
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et al., 2021; Henschel et al., 2020). This process, however, 
reduces image details and information, forfeiting the 
investment already made when acquiring the higher reso-
lution in the first place. Furthermore, HiRes information 
could help address inter-class inconsistencies between 
voxels at a local and global level and alleviate the partial 
volume effect problem (Glasser et al., 2013).

HiRes segmentation of brain structures has mostly 
been tackled by training with manual annotations created 
at the desired resolution (Beliveau et al., 2021; Estrada 
et  al., 2021; Kamnitsas et  al., 2017; Rushmore et  al., 
2022) or training models using 1.0 mm data with scale 
augmentations—an established deep-learning technique 
to improve the generalizability of a model. Recently, mod-
els capable of segmenting scans at different resolutions 
have been introduced. Billot, Colin, et  al. (2023) and 
Billot, Greve, et  al. (2023) proposed SynthSeg, a tech-
nique for generating segmentations at a fixed resolution 
(1.0 mm), regardless of the resolution of the input scan, 
which are interpolated to the fixed resolution as a pre-
processing step. During training, SynthSeg relies on a 
generative model that produces “unrealistic synthetic 
images” (Billot, Greve, et  al., 2023). These synthetic 
images are created from ground truth label maps at the 
pre-defined fixed resolution. This approach simulates 
domain variability by incorporating multiple random 
parameters for the generator, such as spatial, intensity, 
contrast, and resolution variability. While providing input 
flexibility, the model’s output resolution, however, remains 
confined to the fixed resolution.

Before SynthSeg, we introduced the Voxel-Size Inde-
pendent Neural Network (VINN) for resolution-independent 
segmentation tasks (Henschel et  al., 2022). The VINN 
approach enables training and inference using images at 
multiple resolutions within a single network. In brief, 
instead of interpolating input images, VINN integrates the 
resolution change into the network, replacing a regular 
scale transition with an interpolation layer that maps the 
latent space at native input resolution to a pre-defined 
internal resolution at lower layers of the network and vice 
versa. As a result, rich HiRes information is retained with-
out image or label interpolation, and segmentations are 
provided at the desired native input resolution.

Finally, as has already been shown in manual segmen-
tation of hypothalamic structures, exclusively utilizing 
T1w images as input forfeits the significant potential pre-
sented by the inclusion of multi-modal information (T1w 
and T2w) (Baroncini et al., 2012; Bocchetta et al., 2015). 
Common multi-modal F-CNN architectures, however, 
require all input modalities to always be present. The 

absence of any modality introduces a computational bias 
that the network is not trained to handle. To overcome 
missing modalities, proposed solutions include training a 
specific network for each of the input combinations or 
providing the segmentation model with a synthesized 
version of unavailable modalities (Hofmann et al., 2008; 
Van Tulder & de Bruijne, 2015). Alternatively, training net-
works with synthetic image contrast has also been sug-
gested (Billot, Greve, et  al., 2020, 2023). Even though 
these techniques have shown promising results, a more 
suitable model should be capable of extracting the most 
salient information for solving the given task from the 
available modalities without the need for artificial images 
or multiple modality-specific networks. With this in mind, 
shared latent space models were introduced on the chal-
lenging task of multi-modal brain tumor segmentation 
(Dorent et al., 2019; Havaei et al., 2016; Varsavsky et al., 
2018). This approach first translates modalities into inde-
pendent latent spaces; afterwards, the modalities’ 
embedded information is merged inside the network into 
a shared latent representation. The shared latent space is 
then forwarded to the remaining network to solve the 
desired task. At inference time, the shared representation 
is computed from the available modalities, thus being 
robust to all input-modality combinations (i.e., hetero-
modal) included in training.

To address the missing modalities challenge in an 
HiRes scenario, we suitably include the shared latent 
space concept into our voxel-size independent network 
(VINN). Hetero-modal VINN (HM-VINN) introduces a 
fusion module that linearly combines the modalities 
inside the network. After passing the available scans 
through a separate modality-specific convolutional block, 
the network weighs and merges the feature maps based 
on the best available information using a learnable 
weighted sum. As the output of the fusion module is nor-
malized, missing one modality can be tackled by assign-
ing zero to its respective weight.

1.3.  Contribution

To our knowledge, we are the first to tackle automated 
hetero-modal sub-segmentation of the hypothalamus and 
adjacent structures on high-resolutional brain MRI. The 
contributions of this work are the following: Firstly, we 
introduce a new hypothalamic labeling protocol adapted 
to the higher spatial resolution offered by 3 T 0.8 mm iso-
tropic MR images. The proposed protocol presents a more 
fine-grained parcellation of the hypothalamus and includes 
usually ignored brain structures, such as hypophysis, 
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epiphysis, the optic nerve, optic chiasm, and optic tract, 
as illustrated in Figure 1. Secondly, we present HypVINN, a 
novel automated hypothalamic parcellation tool with a 
novel hetero-modal VINN (HM-VINN) architecture at its 
core, providing a solution to the multi-resolution and the 
missing modality challenge in a single model. We exten-
sively show that the model’s input flexibility does not  
compromise performance compared to state-of-the-art 
methods with fixed inputs in terms of segmentation accu-
racy, test-retest reliability, and generalizability. Moreover, 
our method replicates hypothalamic volume effects (e.g., 
age and sex) on subsets of the 0.8 mm (HiRes) Rhineland 
Study (n  =  463) and the 1.0  mm UK Biobank (n  =  535) 
(Alfaro-Almagro et al., 2018; Miller et al., 2016). Last but 
not least, and to the benefit of the research community, we 
will integrate the HypVINN tool into the user-friendly, open 

source FastSurfer framework (Henschel et al., 2020) avail-
able at: https://github​.com​/Deep​-MI​/FastSurfer (code will 
be released upon acceptance).

2.  METHODS

2.1.  Datasets

We used MR images from two population studies, namely 
the Rhineland Study (RS) (Breteler et  al., 2014; Stöcker, 
2016) and the UK Biobank (UKB) (Alfaro-Almagro et  al., 
2018; Miller et al., 2016), with resolutions of 0.8 mm (HiRes) 
and 1.0 mm, respectively. Participants from both studies 
gave written informed consent in accordance with the  
ethical guidelines of the individual studies. Furthermore, 
ethics approval and regulations can be accessed on their 

Fig. 1.  T1-weighted (T1w) and T2-weighted (T2w) images and ground truth (GT) from two participants. The proposed 
manual segmentation scheme is composed of twenty-four structures divided into three major regions: 1) hypothalamic 
(anterior, middle, and posterior), 2) optic, and 3) others. The color lookup table* for all structures is presented on the left, 
and a detailed overview of the three regions is presented in Table 1. *Structures are not visible in the presented snapshots.

https://github.com/Deep-MI/FastSurfer
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respective webpages. For this work, we compiled four dis-
tinct datasets from the population studies: a manually 
annotated dataset (from RS), a generalizability dataset 
(from RS and UKB), a test-retest dataset (from RS), and a 
case-study dataset (from RS and UKB). The manually 
annotated dataset (referred to as ”in-house dataset”) was 
initially split into two non-overlapping sets, one for training 
and validation, and the other for testing. The remaining 
datasets were exclusively used for evaluations to assess 
different aspects of our hetero-modal method.

The Rhineland Study is an ongoing population-based 
cohort study located in Bonn, Germany, which enrolls 
participants aged 30  years and above (www​.rheinland​
-studie​.de). MR scans were collected at two different sites 
using identical 3  T Siemens MAGNETOM Prisma MRI 
scanners equipped with 64-channel head-neck coils. The 
core MRI acquisition protocol for every participant in the 
Rhineland Study includes the following MR contrast: T1w, 
T2w, FLAIR, diffusion-weighted, susceptibility-weighted, 
resting-state functional, and abdominal Dixon MRI with a 
total net scan time of around 45 minutes. Furthermore, an 
optional extra acquisition time (maximum 10 minutes) is 
available for a free protocol.

This paper utilized the 0.8 mm isotropic T1w and T2w 
MR scans. The T1 protocol consists of a multi-echo mag-
netization prepared rapid gradient echo (MPRAGE) 
sequence (van der Kouwe et al., 2008) with 2D accelera-
tion (Brenner et al., 2014), while the T2 protocol uses a 3D 
Turbo-Spin-Echo (TSE) sequence with variable flip angles 
(Busse et al., 2008). Both sequences also utilize elliptical 
sampling (Mugler III, 2014) and parallel imaging (PI) 
(Griswold et al., 2002) to expedite the imaging process. 
For this work, all protocol versions from the Rhineland 
Study were considered, and sequence parameters are 
presented in Appendix Table A1.

We compiled the Rhineland Study datasets by first 
randomly selecting a subset (n  =  534) of participants 
with available T1w and T2w scans from sex and age 
strata to ensure a balanced population distribution. The 
sample presents a mean age of 54.9 years (range 30 to 
95), and 59.4% were women. We then further assigned 
participants to the in-house dataset and all its subse-
quent splits adhering to the age and sex-stratification 
scheme. All T2w scans were registered to their corre-
sponding T1w scan using FreeSurfer’s mri_robust_regis-
ter tool (Reuter et al., 2010).

Table 1.  Summary of the hypothalamic sub-regions and adjacent structures included in the proposed labeling scheme 
with its corresponding name, anatomical designation, and region.

Hypothalamic sub-regions Adjacent structures

Label name
Anatomical  
designation

Region  
group Label name

Anatomical  
designation

Region  
group

L-Ant-Hypothalamus Anterior Hypothalamus (lh),  
Supraoptic Nucleus (lh)

Anterior

3rd-Ventricle 3rd-Ventricle, 
Superior-Border

L-Fornix Fornix (lh)
R-Ant-Hypothalamus Anterior Hypothalamus (rh),  

Supraoptic Nucleus (rh)
R-Fornix Fornix (rh)

Epiphysis Epiphysis Others
L-Med-Hypothalamus Medial Hypothalamus* (lh) Hypophysis Hypophysis,  

Neurohypophysis
R-Med-Hypothalamus Medial Hypothalamus* (rh)

Middle

Infundibulum Infundibulum
L-Lat-Hypothalamus Lateral-Hypothalamus (lh) Ant-Commisure Anterior Commisure

R-Lat-Hypothalamus Lateral-Hypothalamus (rh) L-N-Opticus Optic Nerve (lh)
Tuberal-region Median-eminence,  

Tuberomammillary Region,  
and Arcuate-nucleus

R-N-Opticus Optic Nerve (rh)

Optic
L-Chiasma-Opticus Optic Chiasm (lh)
R-Chiasma-Opticus Optic Chiasm (lh)

L-Post-Hypothalamus Posterior Hypothalamus (lh)

Posterior

L-Optic-tract Optic Tract (lh)
R-Post-Hypothalamus Posterior Hypothalamus (rh) R-Optic-tract Optic Tract (rh)
L-C-Mammilare Corpus Mammillare (lh)
R-C-Mammilare Corpus Mammillare (rh)

*Including the Paraventricular Nucleus (PVN), the Ventromedial Nucleus (VMN), and the Dorsomedial Nucleus (DMN).

http://www.rheinland-studie.de
http://www.rheinland-studie.de
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MRI scans of the in-house training and testing dataset 
(n = 50) were manually annotated by an experienced rater 
and split into training/validation (n = 44) and testing (n = 6) 
sets. Training data were further split into four groups for 
cross-validation. Finally, the testing data were manually 
annotated for a second time by our main rater to evaluate 
intra-rater variability. The rater was blind to the scans’ iden-
tification to avoid bias and overestimating performance.

For evaluating within-session test-retest reliability, we 
utilized the RS subset (n = 21) with two in-session T1w 
scans. The additional scan for this participant was 
acquired during the time slot allocated for a free protocol 
inside the Rhineland study’s MRI acquisition protocol. 
Due to the time constraint of the free protocol, a second 
T2w scan could not be acquired. Before starting the free 
protocol, participants were asked to move their head 
inside the head-neck coil. It is important to note that T1w 
scans were not acquired back-to-back, but with a time 
gap of almost 30 minutes.

The MRI scans of the remaining participants (n = 463) 
were compiled into the RS case-study dataset to evaluate 
the sensitivity to known hypothalamic volume effects 
(e.g., age and sex). For a detailed description of the pop-
ulation characteristics of all the aforementioned RS sub-
sets, see Appendix Tables A2 and A3.

We used data from the UK Biobank study to test the 
generalizability of our method to isotropic 1.0 mm scans 
from an unseen cohort with different acquisition parame-
ters. An initial subset (n  =  544) of random participants 
was selected from sex and age strata to ensure a bal-
anced population distribution. The chosen sample pres-
ents a mean age of 58.7 years (range 45 to 82), consisting 
of 52.6% women. Subsequently, the scans of nine ran-
dom participants were manually labeled by our expert 
rater to evaluate segmentation accuracy at 1.0 mm (gen-
eralizability dataset). The remaining UKB participants 
(n = 535, UKB case-study dataset) were also used in the 
hypothalamic volumes effects sensitivity analysis. A sum-
mary of the population characteristic of the UKB subsets 
is presented in Appendix Table A4.

2.2.  Manual reference standard

An experienced rater manually annotated the sub-regions 
of the hypothalamus and adjacent structures on regis-
tered T1w and T2w images, except for the UK Biobank 
cases where only T1w scans were available. The annota-
tion was performed using Freeview, a visualization tool of 
FreeSurfer (Fischl, 2012; Fischl et  al., 2002), which 
allowed simultaneous viewing of the available modalities. 

Summarizing the labeling process, the borders of the  
unilateral hypothalamus were defined as follows (Makris 
et al., 2013): a) anteriorly: coronal plane passing through 
the most rostral tip of the anterior commissure and con-
taining the optic chiasm, b) posteriorly: coronal plane 
through the most caudal tip of the mammillary bodies, c) 
superiorly: third ventricle with the diencephalic fissure, d) 
inferiorly: junction to the optic chiasm rostrally and the 
hemispheric margin more caudally, e) medially: wall of the 
third ventricle and the interhemispheric fissure, and f) lat-
erally: rostrally at the medial border of the optic tract and 
more caudally at the internal capsule, globus pallidus, 
and cereberal penduncle. A detailed definition of the seg-
mentation procedure for all different substructures is pro-
vided in Appendix C. Adjacent small hypothalamic nuclei 
were grouped into subunits according to Table  1. An 
example of the manual segmentation scheme is illus-
trated in Figure 1, and an overview of all twenty-four seg-
mented structures is presented in Table 1.

2.3.  Hypothalamic hetero-modal segmentation tool—HypVINN

2.3.1. Hetero-modal segmentation network—HM-VINN

To accurately segment the hypothalamic sub-regions and 
adjacent structures, we employ VINN (Henschel et  al., 
2022) as the foundation for our network design. VINN is a 
resolution-independent extension of the successful multi-
network approach FastSurferCNN (Estrada et  al., 2021; 
Faber et al., 2022; Henschel et al., 2020). Both methods 
are 2.5D approaches, that is, they aggregate predictions 
of three 2D F-CNNs (one per anatomical view) with multi-
slice input (Henschel et al., 2020). The F-CNNs follow a 
UNet-type layout with an encoder and decoder arm of five 
competitive-dense blocks (CDB) separated by an addi-
tional bottleneck CDB (see Fig. 2). In FastSurferCNN, all 
scale transitions between the CDBs are implemented via 
fixed-scale down- or up-sampling operations (i.e., (un)
pooling). VINN, on the other hand, replaces the first and 
last scale transition with a flexible network-integrated 
resolution-normalization. Here, the native image resolu-
tion is explicitly integrated into the network and utilized to 
interpolate the feature maps to a common pre-defined 
network base resolution (1.0 mm). In turn, network capac-
ity in the inner layers is available for the segmentation task 
while retaining voxel size-dependent information outside 
of it. Lastly, the view-aggregation step ensembles the 
resulting probabilities maps through a weighted average 
(axial = 0.4, coronal = 0.4, and sagittal = 0.2). The weights 
of the sagittal predictions are reduced compared to  
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the other predictions, as structures with left and right  
hemispheres labels are unified into one due to missing 
lateralization information in the sagittal view (Henschel 
et al., 2020). For the current segmentation task, we also 
unify lateralized structure labels into one for the sagittal 
view, consequently reducing the number of classes in the 
sagittal F-CNN from 24 to 15. Therefore, the VINN view-
aggregation weighting scheme is also suitable for our 
application.

In this work, we extend VINN into a hetero-modal seg-
mentation scenario (referred to as HM-VINN) by embed-
ding the input modalities into a shared latent space 
(Dorent et al., 2019; Havaei et al., 2016; Varsavsky et al., 
2018). Following this direction, we modify the standard 
F-CNNs from VINN to initially process T1w and T2w 
images independently of each other by replacing the first 
encoder CDB with modality-specific CDBs (Fig. 2, e.g., 
T1-CDB* and T2-CDB*). After the independent stage, fea-
ture maps are merged inside the network by a fusion 
module and fed into the following convolutional pipeline.

The implemented fusion module weights and merges the 
feature maps from the T1 and T2 branches based on the 
best available information using a learnable weighted sum. 
Let us denote the output feature map from the T1-CDB* as 
FT1 ε R

C×H×W and the T2-CDB* output as FT 2  ε R
C×H×W, 

where C,H,W  represent the channel, height, and width 

dimensions, respectively. Then, the output of fusion module 
Ffused is

	 Ffused =
WT1

WT1 + WT 2
× FT1+

WT 2

WT1 + WT 2
× FT 2, 	 (1)

where WT1 and WT 2 are global learnable scalar parame-
ters initialized both at 0.5. The introduction of WT1 and 
WT 2 allows the network to gradually learn the importance 
of each modality. If a modality is more informative, its fea-
ture maps will have a higher weight. Additionally, as the 
output of the fusion module is normalized, missing one 
modality can be tackled by assigning zero to its respec-
tive weight. Thus, the fusion features are identical to the 
encoder block output of the existing modality.

In detail, all three F-CNNs followed the abovemen-
tioned layout (see Fig. 2). Within F-CNNs, the CDB lay-
out is kept mostly the same as the one from VINN, where 
the CDB consists of four layers of parametric rectified 
linear unit (PReLU), convolution (Conv - kernel size of 
3× 3), and batch normalization (BN) except for the first 
two encoders blocks. In the first two encoder blocks 
from VINN, the first PReLU is replaced with a BN to nor-
malize the inputs (see Fig. 2, CBD*). The modified CBD 
construction is also utilized for modality-specific CDBs 
as they are our initial first encoder CDB. To keep the 

Fig. 2.  Hetero-Modal VINN (HM-VINN) architecture in HypVINN. Input modalities are first independently processed 
by modality-specific competitive dense blocks (T1-CDB* and T2-CDB*). Afterward, modality-specific feature maps are 
merged inside the network by our proposed fusion module (dark green) to create a shared latent space. During inference 
time, the shared latent space can be computed over the available modalities and fed into the remaining network. 
Furthermore, HM-VINN incorporates flexible transitions in the first and last scale transition by utilizing the network-
integrated resolution-normalization (light blue). Each CDB is composed of four sequences of parametric rectified linear 
unit (PReLU), convolution (Conv), and batch normalization (BN). In the modality-specific CDBs and second encoder block 
(CBD*), the first PReLU is replaced with a BN to normalize the inputs.
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comparison fair in light of an effective parameter count 
of approximately 4.5  M parameters (three dedicated, 
modality-specific models with approx. 1.5  M parame-
ters each), we increase the number of channels (fea-
tures) of all layers from 64 to 80 inside CDBs, and from 
32 to 64 in the first and last CDB blocks (i.e., the first 
scale level). This change raises the parameter count to 
approximately 2.6 M, which is still significantly less than 
three (≈ 4.5 M parameters) or even two (≈ 3.0 M) dedi-
cated, modality-specific networks.

2.3.2.  Hetero-modal training procedure

Introducing additional variations by data augmentation 
during training helps neural networks to be more robust. 
Here, we make HM-VINN robust to missing modalities by 
sometimes randomly dropping either the T1w or T2w 
image for a given training example with a uniform distribu-
tion between all input combinations (modality dropout). 
The modality weights in the fusion module are adjusted as 
follows: i) When the two modalities are available, the net-
work automatically assigns the weights (see Eq. 1). ii) If a 
modality is dropped, its corresponding fusion weight is set 
to zero as described in the previous section. By starting 
this modality dropout procedure only after 10 epochs, the 
proposed training procedure first establishes general seg-
mentation capabilities (with all modalities available) before 
pivoting to more difficult scenarios with different combina-
tions and missing modalities.

2.3.3.  Model learning

All F-CNN are implemented in PyTorch (Paszke et  al., 
2017) using a docker container (Merkel, 2014). Indepen-
dent models for axial, coronal, and sagittal views are 
trained for 100 epochs with a batch size of 16 using two 
NVIDIA Tesla V100 GPU with 32 GB RAM. We use the 
AdamW (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) 
optimizer with a weight decay of 10−4 and an initial learn-
ing rate of 0.05, which is decreased to 0.005 after 70 
epochs. The networks are trained by optimizing a com-
bined loss function of a median frequency-weighted 
cross-entropy loss and Dice loss (Roy et al., 2019). This 
loss function encourages correct segmentation along 
anatomical boundaries and counters class imbalances 
by increasing the weights of less frequent classes.

To increase the generalizability of our model, we apply 
several spatial and intensity data augmentations during 
training. Spatial augmentations on the inputs images are 
limited to random affine transformations such as transla-

tion (range: from −15 mm to 15 mm), rotation (range: from 
−10° to 10°), and uniform scaling (factor: from 0.85 to 
1.15) (Pérez-García et al., 2020). Furthermore, we include 
internal scale augmentations of the feature maps as 
introduced by FastSurferVINN to improve the segmenta-
tion performance (Henschel et al., 2022).

Intensity augmentations are carried out to address two 
challenges: 1) intensity inhomogeneities due to scan 
parameters (Pérez-García et  al., 2020) and 2) artefacts 
introduced by defacing algorithms in regions of interest 
(e.g., optic region). The first problem is tackled by apply-
ing a random bias field (Sudre et al., 2017; Van Leemput 
et al., 1999) transformation on the input images (coeffi-
cients range: from -0.5 to 0.5). For the second issue, we 
improve the network’s robustness to handle defaced 
scans by including scans with or without face features as 
part of the training set. For creating the modified scans, 
three common open-source algorithms are used 
(PyDeface (Gulban et  al., 2019), MiDeFace from Free-
Surfer (Fischl, 2012), and HCP face masking (Milchenko 
& Marcus, 2013)). In contrast to all above-mentioned 
transformations, defacing is performed statically before 
training (”offline”) due to the high computation time to 
deface a scan (more than 1 minute per method).

2.4.  Evaluation metrics

We compute three standard segmentation metrics (dice 
similarity coefficient, volume similarity, and Hausdorff dis-
tance) to assess the similarity between the predicted label 
maps and manual annotations (Taha & Hanbury, 2015). We 
first evaluate the dice similarity coefficient (Dice) (Dice, 
1945; Sorensen, 1948) as it provides spatial overlap con-
sensus. Let M (manual annotations) and P (prediction) 
denote binary label maps, then Dice is defined as:

	 Dice = 2 ⋅ M∩P
M + P 	 (2)

where M∩P  represent the number of common elements 
(intersection) and M  and P  the number of elements in 
each label map; therefore, Dice values range from 0 to 1, 
and a higher Dice represents a better segmentation 
agreement. Afterwards, we compute volume similarity 
(VS) as volume measurements are usually the desired 
image-derived phenotype for downstream statistical 
analysis. VS is defined as:

	 VS = 1−
M − P

M + P
. 	 (3)
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VS has the same range as Dice; however, it can have its 
maximum value even when the spatial overlap is zero, as 
this metric does not consider spatial localization informa-
tion. Additionally, a spatial distance-based metric is used 
to evaluate the quality of segmentation boundary delin-
eation (contour). Here, we use the 95% Hausdorff dis-
tance (HD95), a Hausdorff distance (HD) as it is less 
sensitive to outliers (Huttenlocher et al., 1993). HD95 is 
considered as the 95th percentile of the ordered distance 
measures, and it is defined as:

	

d95 M,P( ) = 95m∈M
th min 

p∈P
d m,p( )⎛

⎝⎜
⎞
⎠⎟

dHD95 M,P( ) =max d95 M,P( ),d95 P,M( )( ) 	 (4)

where d  is the Euclidean distance. In contrast to the 
Dice and VS, HD95 is a dissimilarity metric so a smaller 
value indicates a better boundary delineation with a value 
of zero being the minimum (perfect match).

Finally, statistical significant differences in segmenta-
tion performance are confirmed throughout this work by 
a non-parametric paired two-sided Wilcoxon signed-rank 
test (Wilcoxon, 1992) after correcting for multiple testing 
using Bonferroni correction (referred to as corrected p).

For accessing the test-retest reliability of predicted 
volume measurements between two repeated scans of 
the same participant, we use the intra-class correlation 
(ICC). The ICC is a commonly used metric to assess the 
degree of agreement and correlation between measure-
ments. The ICC values range from 0 to 1, with higher val-
ues representing better reliability. Here, we compute a 
two-way fixed, absolute agreement and single measures 
with a 95% confidence interval (ICC(A,1)) (McGraw & 
Wong, 1996).

3.  EXPERIMENTS AND RESULTS

This section is divided into four parts with the aim to thor-
oughly validate our hetero-modal method for hypotha-
lamic sub-regions and adjacent structures segmentation 
(referred to as HypVINN). The HypVINN model is com-
posed of the HM-VINN architecture and learning strate-
gies introduced in Sections 2.3.2 and 2.3.3. i) Initially, we 
evaluate the segmentation accuracy of HypVINN’s pre-
dictions against manual annotations. For this purpose, 
we benchmark the network based on the performance in 
the unseen test-set against multi- and uni-modal models, 
including the only other contemporary method for hypo-
thalamus parcellation (Section  3.1.1), and manual rater 
variability (Section 3.1.2). ii) We assess the generalizabil-

ity of our method to a different image resolution—1.0 mm 
isotropic MRI scans (Section 3.2). iii) We test the reliabil-
ity of the predicted volumes in a within-session test-
retest scenario (Section 3.3). iv) Finally, we measure the 
sensitivity of the proposed pipeline to replicate known 
hypothalamic volume effects with respect to age and 
sex. In order to ensure that all experiments are carried out 
under the same testing conditions, all inference analyses 
are evaluated in a Docker container with a 12 GB NVIDIA 
Titan V GPU. Model inference can also run on the CPU at 
reduced speeds.

3.1.  Accuracy

In this section, we benchmark and evaluate the accuracy 
of the hetero-modal HypVINN. All implemented networks 
are trained using the scheme mentioned in Section 2.3.3.

To show a proof-of-concept for our proposed HypVINN 
in segmenting hypothalamic sub-regions and adjacent 
structures with missing input modalities, we benchmark 
our method against segmentation scenarios where all 
modalities are always available (i.e., uni-modal and multi-
modal models). For this purpose, we implement the clas-
sic VINN with three different inputs: i) only T1w (T1-VINN), 
ii) only T2w (T2-VINN), and iii) T1w & T2w (multi-modal 
(MM)-VINN). For the multi-modal model, the input passed 
to the network consists of a multi-channel image created 
by stacking T1w and T2w image slices on top of each 
other. Additionally, we compare our HypVINN against the 
method proposed by Billot, Bocchetta, et  al. (2020)—a 
3D-UNet with extensive data augmentation for hypotha-
lamic sub-segmentation on T1w images. Direct compari-
son of our predicted outcomes with the results from the 
already trained model from Billot et al. is not possible as 
our annotation protocol segments more structures and 
uses a different hypothalamic parcellation. Therefore, we 
utilize the implementation provided by the authors to 
retrain their T1w model from scratch with our manual 
annotations. It is important to notice that we do not fine-
tune the implementation from Billot et al., and any optimi-
zation of their tool is outside this paper’s scope. 
Furthermore, all comparative VINN baselines follow the 
same 2.5D scheme as mentioned in Section 2.3.1, and 
inference in HypVINN is done per input combination. The 
difference between results in the following two sections is 
in the data used for training: For Section 3.1.1 and Table 2, 
all networks are trained in a 4-fold cross-validation 
scheme to also generate validation performance on the 
holdout validation split (see Appendix B for ablation 
results). For all other results, we used the full training set 
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(n = 44). Finally, performance is assessed on the unseen 
test-set by the three metrics (Dice, HD95, and VS).

3.1.1.  Comparison with the state-of-the-art

In Table 2, we present the similarity scores for the global 
segmentation performance of all evaluation metrics as well 
as significance indicators (corrected p < 0.05). Here, we 
observe that HypVINN performs as well as the modality-
specific models. In the T1w-only inference scenario, the 
T1-VINN outperforms HypVINN in Dice and HD95; how-
ever, there is no statistical difference between them. On 
the other hand, when T1w and T2w are available, HypVINN 
outperforms the multi-modal model in all evaluation met-
rics with statistical significance in VS. Furthermore, input-
ting only a T2w yields the lowest segmentation results 
from all benchmark models, and the T2w specialized net-
work outranks the HypVINN with statistical significance. 
Additionally, we observe that for HypVINN the inclusion of 
both modalities improves segmentation performance 
compared to its single modality counterparts with statisti-
cal significance for all metrics in T2w and for T1w only in 
Dice. For the modality-specific models, MM-VINN and T1-
VINN perform equally well with no statistical significance 
between them. Finally, our models (both T1 and multi-
modal variants) outperform the T1 3D-UNet in our seg-
mentation task with statistical significance.

We additionally observe that the global results are not 
driven by any particular structure, as the per-structure 
results from HypVINN and the comparison models align 

with their respective global outcomes. Furthermore, 
using a T2w scan as the only source for inferring informa-
tion is consistently underperforming, at both the global 
and per-structure levels. For detailed per-structure per-
formance results, see Appendix Figure A1.

Moreover, the contribution of T2-derived features can 
also be visualized in HypVINN’s learned global fusion 
weights where the T2-block weight (≈ 0.25) has a much 
lower value than the T1-block weight (≈ 0.75) starting 
already in early stages of training in all implemented net-
works as shown in Appendix Figure A2. Thus, perfor-
mance is mainly driven by the T1-derived information, 
with T2w being only a support modality. For this reason, 
in the remaining experiments, we only use a T2w image in 
combination with a T1w image and not as a standalone 
modality.

3.1.2.  Intra-rater reproducibility

In this section, we compare the performance of the auto-
mated methods against our main rater variability (i.e., 
intra-rater variability). The intra-rater variability puts the 
accuracy results into context, where it can be seen as the 
ideal automated method performance. We assess this 
variability by computing the similarity between the two 
sets of manual segmentations of the main rater in the in-
house test-set. Note, in contrast to Section 3.1, all mod-
els are retrained on the full training dataset. It is important 
to note that the testing-set is still unseen for these mod-
els and is only used for final performance. These “final” 

Table 2.  Mean (and standard deviation) segmentation performance of the cross-validated F-CNN models on the unseen 
test-set.

Experimental setup Dice↑ VS↑ HD95 (mm)↓

Model Mean (SD) Signif. Mean (SD) Signif. Mean (SD) Signif.

Only T1w input
a: T1-VINN (Henschel et al., 2022) 0.7937 (0.0926) c,d,e 0.9030 (0.0785) c,e 1.1262 (0.5443) c,d,e

b: HypVINN (Ours) 0.7905 (0.0968) c,d,e 0.9053 (0.0757) c,d,e 1.1312 (0.5683) c,d,e

c: 3D-UNET (Billot, Bocchetta,  
et al., 2020)

0.7481 (0.1516) d,e 0.8753 (0.1325) e 1.4088 (2.235) e

Only T2w input
d: T2-VINN (Henschel et al., 2022) 0.7457 (0.1059) e 0.8967 (0.0877) c,e 1.2275 (0.5525) e

e: HypVINN (Ours) 0.7224 (0.1120) 0.8683 (0.1074) 1.4315 (1.7678)

Multi-modal (MM) input (T1w & T2w)
f: MM-VINN (Henschel et al., 2022) 0.7918 (0.0924) c,d,e 0.9033 (0.0774) c,e 1.1350 (0.5819) c,d,e

g: HypVINN (Ours) 0.7936 (0.0956) b,c,d,e 0.9068 (0.0743) c,d,e,f 1.1207 (0.5563) c,d,e

The proposed hetero-modal HypVINN performs as well as the modality-specific models. Furthermore, HypVINN with multi-modal and 
standalone T1w input outperforms the 3D-UNet proposed by Billot, Bocchetta, et al. (2020)—the only other contemporary method for 
hypothalamus parcellation. Note: the statistical significance column (Signif.) indicates which other models the model outperforms (paired 
Wilcoxon signed-rank test, corrected p < 0.05 ).
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HD95 = 1.1638 mm; MM-VINN: Dice = 0.7937, VS = 0.9036, 
HD95 = 1.0723 mm; HypVINN with T1 input: Dice = 0.7905, 
VS = 0.8980, HD95 = 1.1103 mm; HypVINN with MM input: 
Dice = 0.7950, VS = 0.9008, HD95 = 1.0857 mm). Addi-
tionally, the 3D-UNet presents the lowest segmentation 
performance from all final models (Global →  Dice = 
0.7435, VS = 0.8763, HD95 = 1.2347 mm).

The intra-rater scores outperform all the implemented 
automated methods in Dice and VS, with significant sta-
tistical differences present in the hypothalamic region 
structures (corrected p < 0.01). Moreover, the HD95 
inter-rater hypothalamic region results are significantly 
better than the ones of the 3D model. On the other hand, 
MM-VINN and HypVINN outperform the intra-rater results 
in recognizing tissue boundaries (HD95), even if no statis-
tical significance can be inferred from the statistical test. 
We additionally observe that manually replicating the 
boundary outline in the structures from the others and 
optic regions is more challenging. Furthermore, we visu-
ally notice that all automated methods generate similar 
predictions to the manual ones, with the most consider-
able discrepancies in identifying the hypothalamus con-
tour (outside boundaries), as illustrated in Figure  4. 
Moreover, the 3D model generates the noisiest hypotha-
lamic edges from all implemented methods.

Finally, when comparing accuracy results between 
2.5D automated methods, statistically significant differ-
ences are only present in Dice and VS for the optic region 
between HypVINN inference setups (corrected p < 0.05 ) 
with the multi-modal input variation having a better per-
formance (Dice: 0.8329 vs. 0.8238 and VS: 0.9119 vs. 
9021). Nonetheless, we also observe improvements with-
out statistical significance in hypothalamic region local-
ization (Dice) and boundary detection (HD95) in structures 
from the others and optic regions. These results follow 
the previous section (Section  3.1.1), where HypVINN 
shows better segmentation results when all modalities 
are available. Moreover, the T1 and multi-modal 2.5D 
counterparts outperform the 3D model, aligning with pre-
vious findings.

3.2.  Generalizability

In this section, we evaluate the robustness of the pro-
posed hetero-modal model (HypVINN) to generalize to 
brain MRI scans with a different image resolution 
(1.0 mm isotropic) than the training one (0.8 mm isotro-
pic). For this purpose, we utilize the MRI scans from the 
Rhineland Study (RS) in-house test-set (n  =  6) and a 
random subset (n = 9) of the UK Biobank (UKB) dataset 

models are additionally used for the generalizability (Sec-
tion  3.2), reliability (Section  3.3), and sensitivity (Sec-
tion 3.4) analyses.

In Figure 3, we present box plots for the three accuracy 
metrics (Dice, VS, and HD95) in the test-set for the three 
major regions (hypothalamic, optic, and others, see Sec-
tion 2.2). We observe that our main rater has an overall 
good intra-rater agreement between annotation sessions 
(Global → Dice = 0.8210, VS = 0.9100, HD95 = 1.1277 mm). 
Furthermore, all automated 2.5D methods perform equally 
well (Global →  T1-VINN: Dice  =  0.7869, VS = 0.9017, 

Fig. 3.  Segmentation performance comparison on the 
in-house test-set between manual intra-rater scores 
vs. our proposed HypVINN and benchmark F-CNNs. 
HypVINN (dark red and dark blue) produces comparable 
results to the manual intra-rater agreement (gray). Note: 
similarity scores are presented for the hypothalamic, 
others, and optic regions. Additionally, a letter directly on 
top of a box plot indicates which other models the model 
significantly outperforms (paired Wilcoxon signed-rank 
test, corrected p < 0.05).
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that is manually annotated (see Section  2.1). For the 
Rhineland Study, as the MR scans and respective 
ground truth are at 0.8  mm isotropic resolution, we 
down-sample the pre-registered T1w and T2w scans 
from their native resolution to the desired 1.0 mm iso-
tropic resolution. After the 1 mm scans are processed 
by the segmentation model, the resulting probability 
maps (i.e., soft-labels) are up-sampled to the original 
0.8  mm resolution. Thereafter, hard labels are gener-
ated. This strategy prevents the down-sampling of 
manual labels to 1.0 mm, which introduces interpola-
tion artefacts that could potentially decrease accuracy 
along boundaries, thereby impacting the analysis. On 
the other hand, no re-sampling is needed for the UK 
Biobank scans as this dataset is acquired and labeled 
at 1.0 mm resolution. However, multi-modal evaluation 
is not done for this dataset as T2w scans are not avail-
able. Therefore, we limit the generalizability analysis in 
the UK Biobank dataset to the performance of the 
standalone T1w input models. Finally, generalizability 
performance is assessed by the three similarity metrics 
(Dice, HD95, and VS) at the native resolution of the cor-
responding manual reference, except for volume simi-
larity (VS) in the 1.0 mm Rhineland Study predictions. 
VS does not require spatial overlap between label 

maps; thus, it can be computed without the need for 
re-sampling to the same resolution.

Henschel et al. (2022) demonstrated generalizability 
of VINN, HM-VINN’s parent architecture, to unseen res-
olutions. Their results, however, were achieved training 
with multi-resolution data, which is a different scenario 
to ours, where only 0.8 mm data is available. Therefore, 
here we further compare generalizability of our HM-
VINN architecture to segment 1.0  mm MR scans to 
F-CNNs without resolution-independence mechanisms 
(HM-CNN). In HM-CNN, we replace the flexible network-
integrated resolution-normalization step inside HM-
VINN with a fixed scale transition. Furthermore, to 
isolate the contributions of the proposed resolution-
independence scheme, we train both HM-VINN and 
HM-CNN with and without external scale augmentation 
(exSA). It is important to note that the HM-VINN +exSA 
(proposed HypVINN) used in this analysis is the one 
trained in Section 3.1.2. Therefore, to ensure a fair com-
parison, all benchmarked networks are trained using the 
same procedure. We limited this analysis to only T1 
input models as T1 is the primary MRI sequence for our 
segmentation task. Finally, in order to validate the 
robustness of HypVINN in both inference scenarios, we 
compare our method against the modality-specific 

Fig. 4.  Comparison of the ground truth vs. predictions from the proposed HypVINN and comparison baselines for four 
participants of the in-house test-set. (A-D) All automated methods generate similar segmentation to the manual ones. 
However, differences are observed in the delineation of the hypothalamic contour. Furthermore, the 3D-UNet presents 
the least smooth transitions between hypothalamic structures from all automated methods (red arrows). Note: each row 
represents a different participant with corresponding MRI modalities (T1-weighted (T1w) and T2w-weighted (T2w)), manual 
ground truth (GT), and automated generated segmentations on the coronal view. The color scheme for the visible structures 
is presented on the right.
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model from the previous section (i.e., T1-VINN, MM-
VINN, and 3D-UNet).

In Figures 5 and 6, we present the generalizability results 
for the segmentation evaluation metrics in the hypotha-
lamic, optic, and others regions for both datasets. For the 
first comparison analysis (Fig. 5), the inclusion during train-
ing of exSA in both HM-VINN (proposed HypVINN, Fig. 5 
blue) and HM-CNN (Fig. 5 green) architectures shows bet-
ter segmentation performance compared to their respec-
tive comparative baseline without exSA (Fig. 5 orange and 
purple). Furthermore, we observe that the proposed 
HypVINN (HM-VINN +exSA) yields the best segmentation 
scores among all benchmark networks across different 
regions and metrics for both datasets, except for HD95 in 
the optic and hypothalamic structures for UKB. However, 
the differences in HD95 performance between our HypVINN 
and the HM-VINN (optic region) and HM-CNN +exSA 
(hypothalamic region) baselines in the UKB dataset are  
not statistically significant (corrected p > 0.1). Lastly, as 
expected, the vanilla HM-CNN (no exSA or resolution-
independence) fails in both datasets for all regions, show-
casing the expected generalizability issues of a standalone 
F-CNN to out-of-distribution resolutions.

Analyzing the generalizability results between input 
modalities, we observed that even though models have 
not been trained at 1.0 mm resolution, they can general-
ize remarkably well, as illustrated in Figures 6 and 7. For 
RS, no significant differences are found between 2.5D 
models except for the optic area where both multi-modal 
models outperform the T1-input HypVINN with statistical 
significance (corrected p < 0.02 ; metric significance: 
Dice and VS both methods, and HD95 only MM-VINN). In 
UKB scans, the T1-input HypVINN outperforms the T1-
specialized model in all metrics for the hypothalamic 
region. On the other hand, T1-VINN outranks our hetero-
modal model in the others and optic regions. However, 
none of the above differences are statistically significant 
(corrected p > 0.1). Finally, when comparing against the 
3D-UNet (which has been trained with external scale 
augmentation), the 2.5D models show in RS significantly 
better Dice scores for the hypothalamic and optic regions 
(corrected p < 0.02 ). For UKB, the 2.5D models signifi-
cantly outperform the 3D-UNet in Dice and HD95 for the 
hypothalamic and others regions (corrected p < 0.01).

3.3.  Test-retest reliability

Assuming that brain anatomy does not change within the 
same MR session, a reliable method should generate the 
same (or very similar) volume estimates from repeated 

in-session scans acquired under the same conditions 
(e.g., machine, acquisition protocol, region of interest). 
Here, we benchmark and evaluate the reliability of our 
proposed hetero-modal F-CNN to predict hypothalamic 
sub-regions and adjacent structure volumes in a test-rest 
scenario. For this purpose, we process the T1w and T2w 
scans from the test-retest dataset (n = 21) not only with 
HypVINN but also with the benchmark models used in 
the previous sections (see Sections 3.1.2 and 3.2) except 
for the 3D-UNet as it is the model with the lowest seg-
mentation accuracy results. Since the test-retest dataset 
includes two T1w scans per participant and only a single 
T2w scan, the T2w is independently registered two times, 
each time using a different T1w as reference. Afterwards, 
we assess the reliability of the methods by computing 
volume similarity (VS) and intra-class correlation (ICC) 
between volume predictions across sequences. Finally, 
we compare the methods’ volume similarity performance 
with a paired two-sided Wilcoxon signed-rank test.

All methods have an excellent agreement (ICC(A,1) 
> 0.95) between volume predictions across sequences for 
all regions, as can be seen in Appendix Table A5. Further-
more, all implemented methods perform equally well for 
VS in all regions (VS > 0.98 ). Finally, we observe a statisti-
cally significant difference in the structures from the others 
region between HypVINN with multi-modal input and T1-
VINN (VS: 0.9960 vs. 9927, corrected p < 0.05 ).

3.4.  Sensitivity to age and sex effects

Previous studies have shown that men have a larger 
hypothalamus volume than women not only at a global 
level (Isıklar et  al., 2022) but also at a sub-unit level 
(Makris et al., 2013; Thomas et al., 2019). Therefore, in 
this section, we aim to use the automated hypothalamic 
volume estimates to replicate these findings and explore 
volume-age correlations in a general population, repre-
senting a feasible scenario in which our method will be 
used as the post-processing analysis pipeline. To this 
end, we process the T1w scans from the Rhineland Study 
(n = 463) and UK Biobank (n = 535) case-study datasets 
(see Section 2.1) with our proposed HypVINN. To further 
evaluate the robustness of our hetero-modal model to 
handle different modalities, we also assess the effects in 
the Rhineland cases when both pre-registered T1w and 
T2w scans are available at inference. Ideally, the direction 
of the effects should not be modified by the input scenar-
ios (only T1w or T1w & T2w). We note that joint T1w & 
T2w analysis in the UK Biobank is not possible due to the 
absence of T2w scans.
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All generated predictions are visually inspected by an 
experienced rater. A total of 6 participants (1.29%) from 
the Rhineland Study (RS) and 15 participants (2.80%) from 
the UK Biobank (UKB) are excluded from the analysis 
sample due to segmentation errors (see, e.g., Appendix 
Fig. A3). For the remaining participants (RS: n = 457, UKB: 
n = 520), bias field correction is performed for all T1w and 

T2w scans as a pre-processing step, and structure volume 
estimates are compensated for partial volume effects 
using FastSurfer’s optimized Python re-implementation of 
FreeSurfer’s mri_segstats command (segstats.py). Finally, 
for the total hypothalamus as well as for each of the hypo-
thalamic sub-regions, we calculate the association per 
dataset of age and sex with the respective volumes using 

Fig. 6.  Segmentation performance comparison between 
our proposed HypVINN, with multi-modal input (MM) and 
uni-modal T1 input (T1), vs. modality-specific models 
for segmenting 1.0 mm MR scans from the Rhineland 
Study and UK Biobank. HypVINN (dark red and dark 
blue) can generalize remarkably well to 1.0 mm MR scans 
independent of the provided MRI input. Note: similarity 
scores are presented for the hypothalamic, others, and 
optic regions. Additionally, a letter directly on top of a box 
plot indicates which other models the model significantly 
outperforms (paired Wilcoxon signed-rank test, corrected 
p < 0.05 ).

Fig. 5.  Retrospectively benchmarking of single resolution 
(0.8 mm) trained networks to segment 1.0 mm T1w MR 
scans from the Rhineland Study and UK Biobank. Our 
proposed approach (HypVINN) consisting of the HM-VINN 
architecture plus external scale augmentation (+exSA, blue) 
outperforms other comparison baselines in both manually 
labeled datasets. Note: similarity scores are presented for 
the hypothalamic, others, and optic regions. Additionally, 
a letter directly on top of a box plot indicates which 
other models the model significantly outperforms (paired 
Wilcoxon signed-rank test, corrected p < 0.05 ).

https://github.com/Deep-MI/FastSurfer/blob/8d6e7ee4ee24dc24754ece97a10b76745315eddb/FastSurferCNN/segstats.py
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independent multi-variable linear regression models. All 
models are further adjusted for head-size (estimated total 
intracranial volume, eTIV), and RS models are also cor-
rected for the T1w sequence version (T1seq) and T2w 
sequence version (T2seq). Furthermore, de-meaned ver-
sions of age (aĝe) and eTIV (eTÎV ) are used in the associa-
tion analysis (UKB-Model: Volume ~ aĝe + sex + eTÎV , 
RS-Model: Volume ~ aĝe + sex + eTÎV +T1seq +T2seq ). All 
statistical analyses are performed in R (R Core Team, 
2020), and eTIV estimations are computed using Free-
Surfer (Buckner et al., 2004). It is important to note that 
automated segmentations can be carried out without 
needing bias field corrected scans. Here, we correct the 
bias field in a pre-processing step primarily for the partial 
volume estimation, which is a post-processing step to the 
segmentation.

The predicted volumes for the total hypothalamus follow 
the results from smaller studies (Bocchetta et  al., 2015; 
Chen et  al., 2019; Makris et  al., 2013; Rodrigues et  al., 

Fig. 7.  Segmentation examples on the coronal view from our proposed HypVINN with T1 input and manual ground truth 
(GT) for one labeled 1.0 mm scan from the UKBiobank (a) and one 1.0 mm scan from the Rhineland Study unseen test-
set (b). Even though our proposed method is not trained with 1.0 mm scans, it can generate accurate predictions at this 
resolution. Note: the color scheme for the visible structures is presented on the right.

2022; Schindler et al., 2013) with a similar global anatomi-
cal definition (from 910 mm3 to 1580 mm3 ) as can be seen 
in Figure 8a. For the sub-regions, we observe that the tubu-
lar region is the smallest segmented hypothalamic struc-
ture ( ±45.9 mm3) and the posterior hypothalamus the 
biggest one (±379.3 mm3). However, a direct comparison 
in size of our hypothalamic sub-regions with other studies 
is not possible due to the different segmentation protocols.

For both RS and UKB subsets, the total hypothalamus 
volumes significantly decreased ( p < 0.001) with age (see 
Fig. 8b). This negative association is also observed in the 
sub-regions except for the middle structures (e.g., 
tuberal-region, medial and lateral hypothalamus), where 
the volumes are positively correlated with age. However, 
this positive correlation in all middle structures is not 
observed in the UKB, where a significant increase is not 
found for the lateral hypothalamus. Furthermore, all struc-
tures independent of the dataset, except for the medial 
hypothalamus in UKB, show statistically significant sex 
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differences ( p < 0.05) even after correcting for head-size, 
with men having larger hypothalamic volumes than women 
(see Fig. 8 c). These results are in line with previous find-
ings (Isıklar et al., 2022; Makris et al., 2013; Thomas et al., 
2019). Moreover, as expected, all inferred volumes are 
positively associated with eTIV ( p < 0.01).

Independent of the provided MRI input, age and sex 
effects on hypothalamic volume estimates in the 
Rhineland Study using our HypVINN exhibit the same 
directional trends. Moreover, even though HypVINN is 
trained with all RS sequence versions, we observe dif-
ferences between sequences; however, none of them 
are significant (p > 0.05 ). Nevertheless, controlling for 
MRI sequences in any downstream statistical analysis 
is recommended when including image biomarkers 
obtained from multiple MRI sequences.

Fig. 8.  Hypothalamic volumes estimates (a) and volume associations with age (b) and sex (c) in participants from 
the Rhineland Study (n = 457) and UK Biobank (N = 520) for HypVINN. Age and sex effects on hypothalamic volume 
estimates in the Rhineland Study from HypVINN, independent of the provided MRI input, follow the same direction trend. 
Furthermore, our model replicates previous sex findings in both datasets corroborating the stability and sensitivity of our 
method. Note: *Effects are obtained after accounting for head-size (eTIV) and modality sequence (only Rhineland Study).

From the visual quality assessment, we observe that our 
tool performed very well in two different datasets; exam-
ples of correct segmentations for four random male partic-
ipants with different ages can be observed in Figure 9. For 
the failing cases, we note that segmentation errors are 
mainly present when there is an unclear boundary of the 
hypothalamus due to severe enlargements of the third ven-
tricle as illustrated in Appendix Figure A3.

4.  DISCUSSION

In this paper, we present the first hetero-modal model for 
automated sub-segmentation of the hypothalamus and 
adjacent structures on T1w and T2w brain MRI at isotro-
pic 0.8  mm or 1  mm resolutions. The proposed model 
can generate accurate segmentations of the 24 different 
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Fig. 9.  Examples of correct predictions in the Rhineland Study (a-b) and Uk Biobank (c-d) from our proposed HypVINN 
with multi-modal [MM] or T1w only [T1] input for four unseen random male participants with different ages. Note: for 
each participant, T1w, T2w (only Rhineland Study participants), and HypVINN outcomes are presented. Furthermore, in 
each participant’s row, the first three images display the different hypothalamic structures on the coronal view, and the 
remaining three images show all remaining structures on the axial view. The color lookup table for all visible structures is 
presented on the right.
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structures in less than a minute from a standalone T1w 
image or by including an additional co-registered T2w 
image, without requiring multiple input-specific models, 
thus providing a robust, quick, and reliable solution for 
assessing hypothalamic volumes in small and large 
cohorts.

Firstly, we introduce a different segmentation protocol 
of the hypothalamus compared to the one proposed  
by Makris et  al. (2013). Therefore, we re-train the only 
other contemporary method for hypothalamus sub-
segmentation of 1  mm T1w images (Billot, Bocchetta, 
et al., 2020). The parcellation method of Makris et al. was 
developed for in-vivo semi-automatic hypothalamic seg-
mentation using 1.5  T isotropic 1  mm MR images and 
was therefore necessarily less detailed than the one pre-
sented in this work. In general, we define the boundaries 
of the hypothalamus as a whole according to the same 
anatomical definitions and landmarks used by them. Yet, 
for sub-segmentation of the different hypothalamic sub-
regions, we use a more fine-grained approach to take 
optimal advantage of the higher spatial resolution offered 
by the available 3 T 0.8 mm isotropic MR images. Conse-
quently, our approach results in the sub-segmentation of 
more hypothalamic structures as detailed in Table 1. For 
example, whereas both the posterior hypothalamus and 
mammillary bodies were included under the label “poste-
rior hypothalamus” in the parcellation scheme of Makris 
et al., our method provides separate volumetric estimates 
for each of these structures, which is of clinical relevance 
given that these structures operate in a functionally inde-
pendent manner. Another noteworthy difference between 
the two parcellation schemes concerns the subdivision of 
the medial part of the hypothalamus: in contrast to Makris 
et al. who subdivided this region into a superior and an 
inferior tuberal region, we follow the more conventional 
neuroanatomical subdivision of this region into the medial 
and the lateral hypothalamus—using the fornix as the 
boundary between these two structures—and tubular 
region. For the tubular region, we group the tuberomam-
millary region, the median eminence, and the arcuate 
nucleus. Again, we opt for this approach to gain more 
detailed anatomical information about the various sub-
structures of the hypothalamus. In addition, our method 
also provides automatic segmentation of several other 
important structures in the vicinity of the hypothalamus, 
for which, until now, no automated segmentation proce-
dure has been available. Notably, these adjacent hypo-
thalamic structures include the hypophysis (i.e., the 
pituitary gland), which is the body’s principal and most 
versatile endocrine gland responsible for the central 

regulation of most other endocrine tissues throughout 
the body; the epiphysis, the site where the “sleep hor-
mone” melatonin is synthesized; as well as all major 
structures of the central optic system, including the optic 
nerves, the optic chiasm, and the optic tracts.

Despite the small size of different sub-structures and 
low contrast on MR images, our novel deep-learning 
technique (HypVINN) can accurately segment all 24 
structures even when input modalities are missing at 
inference time. HypVINN performs as well as state-of-
the-art modality-specific F-CNNs. Passing a T2w scan as 
standalone input to HypVINN or to a specialized T2w 
model generates the lowest performance from all input 
variations (see Section  3.1.1). For our hetero-modal 
model, the difference in contribution between T1- and 
T2-derived information is quantifiable in the modality 
weights from the fusion module, with the weight of the 
T1-block (WT1 ) tripling the T2 one. Thus, an available 
T1w scan is more important for the current segmentation 
task than a T2w scan. Nonetheless, we demonstrate that 
including a T2 can still be beneficial for some structures 
as models with multi-modal information yield generally 
better segmentation performance.

Unequal performance between inference setups (i.e., 
available input modalities) was also reported in other 
hetero-modal deep-learning segmentation tasks, with 
higher results achieved when the primary modality was 
available (Dorent et  al., 2019; Havaei et  al., 2016; 
Varsavsky et al., 2018). In our case, preference for the T1 
modality could be explained by the inherent modality 
bias from the manual annotation process. Our labeling 
protocol is mainly performed on the T1w scans, and the 
T2w scans are only used as a support modality as most 
anatomical boundaries are visible in T1. Hence, evaluat-
ing segmentation performance with the current manual 
labels is not entirely neutral across the various inference 
configurations. A more fair evaluation will require training 
and validation using manual annotations explicitly tai-
lored to a structure’s visible anatomical characteristics  
in each input combination. However, generating 2m −1 
manual labels per participant, where m represents the 
number of modalities, is not feasible as creating manual 
annotations for a single configuration is already expen-
sive and time-consuming. Therefore, based on our find-
ings, we recommend utilizing a T2w scan accompanied 
by a T1w scan (i.e., multi-modal input) and not as a 
standalone input for the current segmentation task.

Our hetero-modal model, when including a T1w 
image, exhibits segmentation performance in the range 
of the main rater variability (see Section  3.1.2). The 
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intra-rater variability can be seen as the ideal performance 
of the automated method as we use manually annotated 
labels from the main rater to train our F-CNNs. Therefore, 
it is challenging for an automated approach to outperform 
the intra-rater scores. Considering this, the accuracy in 
the hypothalamic region of our hetero-modal model and 
all benchmark methods is lower than the intra-rater agree-
ment on all evaluation metrics. Yet, the underperformance 
in this region can also be attributed to the low MR con-
trast between neighboring structures, especially for the 
medial and lateral hypothalamus. Nonetheless, the seg-
mentation results are en-par with other deep-learning 
techniques on similar brain segmentation tasks (i.e., small 
size and low contrast across anatomical boundaries) 
(Billot, Bocchetta, et al., 2020; Estrada et al., 2021).

HypVINN not only performs well on segmenting isotro-
pic 0.8 mm T1w and T2w MR scans, but it also exhibits 
generalizability to isotropic 1  mm MR scans from the 
Rhineland Study and UK Biobank dataset (see Sec-
tion  3.2). We demonstrate that utilizing the resolution-
independence mechanism performs as well as external 
scale augmentations to handle unseen resolution when 
training with a single (0.8  mm) resolution. Furthermore, 
we show that resolution-independence combined with 
external scale augmentations (proposed) outperforms all 
other comparative baselines.

Furthermore, HypVINN performs equally well as 
modality-specific models in both 1  mm datasets. As 
expected, performance on the Rhineland Study data is 
higher than on the UK Biobank. The UK Biobank dataset 
consists of scans from a different cohort and is acquired 
with a different MRI acquisition protocol. Due to these 
dissimilarities, segmentation performance is not directly 
comparable. Nevertheless, the proposed HypVINN gen-
eralizes quite well to this external dataset. Finally, even 
though our model supports both 0.8 mm and 1 mm reso-
lutions, we recommend to process 0.8 mm MR scans at 
their native resolution to obtain more detailed and precise 
predictions by leveraging the additional information pres-
ent in the higher resolution. Note, our proposed model 
also shows promising results in the high-resolutional MRI 
scans from the Human Connectome Project (HCP) young 
adult and lifespan pilot project datasets (Bookheimer 
et al., 2019; Harms et al., 2018; Van Essen et al., 2012); 
see Appendix Figure A4 for prediction examples of our 
tool in HCP scans.

Throughout this work, we compare our HypVINN 
against the re-trained version of the 3D-UNet with exten-
sive data augmentations proposed by Billot, Bocchetta, 
et al. (2020a) for hypothalamus sub-segmentation. Our 

results demonstrate that our method not only outper-
forms the 3D-UNet in terms of segmentation accuracy 
(see Sections  3.1.1 and 3.1.2) but also exhibits better 
generalizability across both comparative datasets (see 
Section  3.2). Additionally, the training process for the 
3D-UNet using the authors’ released implementation 
and recommended training parameters takes approxi-
mately 100  hours per model using the GPU setup 
described in Section  2.3.3. In contrast, back-to-back 
training of the three F-CNNs that compose our HypVINN 
takes around 19  hours (roughly 6  hours per F-CNN). 
Therefore, besides outperforming the contemporary 
method, our approach can be (re)trained more efficiently 
with a lower carbon footprint.

As demonstrated in the Rhineland Study data, all 
automated methods exhibit excellent test-retest agree-
ment between in-session volume estimates (see Sec-
tion  3.3). Additionally, our HypVINN shows high 
robustness and generalizability across the general popu-
lation of the Rhineland Study and UK Biobank case-study 
datasets, with only 21 cases (2.10%) between the two 
datasets being excluded from the age and sex analysis 
due to segmentation errors (see Section 3.4). The most 
common factor for our pipeline to fail is a severe defor-
mation of the third ventricle (i.e., out-of-distribution 
cases), which generates unclear hypothalamic boundar-
ies, as illustrated in Appendix Figure A3. Therefore, care-
ful inspection is recommended when using our tool in 
aging populations and clinical cohorts, as the prevalence 
of large ventricles increases with age and certain dis-
eases (e.g., Alzheimer’s disease, Parkinson’s disease, 
etc.). We recommend visually inspecting the predictions 
from scans with pathological changes and from volumet-
ric outliers within the cohort before including them in any 
downstream analysis, particularly outliers from the third 
ventricle and medial/lateral hypothalamus. Although vol-
umetric outlier detection can help identify predictions 
with significant failures, more robust quality control tools 
are desirable. However, developing these tools is outside 
this paper’s scope and will be future work.

In line with previous studies on smaller datasets 
(Isıklar et  al., 2022; Makris et  al., 2013; Thomas et  al., 
2019), we also find that the volume of the total hypothal-
amus is larger in men compared to women. However, our 
analyses in two substantially larger population-based 
cohorts revealed that the volumes of virtually all hypo-
thalamic substructures are significantly larger in men 
independent of head size. Our findings thus warrant 
further detailed association studies to investigate the 
clinical relevance of these pronounced sex differences in 
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the human hypothalamus. On the other hand, the derived 
age effects from small-scale studies present inconsis-
tent results for the different hypothalamic substructures, 
except for the total hypothalamus whose total volume 
decreases with age (Billot, Bocchetta, et  al., 2020; 
Bocchetta et al., 2015; Isıklar et al., 2022; Makris et al., 
2013). Our method’s total hypothalamic volume esti-
mates also replicate this negative correlation with age. 
Furthermore, although most hypothalamic regions atro-
phy with increasing age, the volume of the middle/tuberal 
region of the hypothalamus significantly increases with 
age. This finding is novel and could imply that specific 
hypothalamus regions could be resistant to age-
associated atrophy. Indeed, the paraventricular nucleus 
contained within the medial hypothalamic region exhib-
its a striking stability in terms of neuronal numbers, both 
with age and in the context of common neurodegenera-
tive diseases such as Alzheimer’s disease (Lucassen 
et al., 1994). These findings thus underscore the need for 
further large-scale studies into the differential effects of 
age on different hypothalamic substructures.

In conclusion, we demonstrate that HypVINN can suc-
cessfully identify the desired structures with similar or bet-
ter performance than state-of-the-art modality-specific 
models regarding segmentation accuracy, generalizability, 
and test-retest reliability. Furthermore, the fact that 
HypVINN replicates previous age and sex findings on large 
unseen subsets of the Rhineland Study and the UK Bio-
bank corroborates the stability and sensitivity of our 
method. Moreover, our hypothalamic sub-segmentation 
tool generates accurate segmentations regardless of 
whether both T1w and T2w images are available or just a 
single T1w image. However, utilizing both modalities 
results in slightly improved segmentation outcomes.

Future work will focus on supporting a wider range of 
resolution by training our HypVINN with multi-resolution, 
thus fully exploiting the advantages of using a voxel-size 
independent F-CNN (VINN) (Henschel et al., 2022). More-
over, we will also focus on improving the robustness of 
our tool to out-of-distribution cases (e.g,. severe defor-
mation of the third ventricle). Since HypVINN is based on 
deep learning, boosting the robustness to these cases 
can potentially be achieved by retraining with manual 
annotations created on participants with low segmenta-
tion quality or by applying realistic non-linear deforma-
tions as an additional data augmentation during the 
training process (Faber et  al., 2022). Finally, extending 
the input flexibility of our tool to scenarios where input 
scans are at different resolutions (mixed resolutions) is 
also of interest, as it could allow the deployment of our 

tool in more scenarios where HighRes data are unavail-
able in all modalities.

Overall, we introduce HypVINN—the first hetero-modal 
deep-learning method for hypothalamic sub-segmentation 
and segmentation of other adjacent structures, such as the 
hypophysis, epiphysis, and major structures of the central 
optic system. The proposed method offers a more detailed 
parcellation of the hypothalamus compared to the only 
other contemporary automated method (Billot, Bocchetta, 
et  al., 2020). Additionally, it can generate accurate seg-
mentations from T1w and T2w MR images at isotropic 
0.8 mm or 1 mm resolutions. Finally, HypVINN will be incor-
porated into the FastSurfer neuroimaging software suite, 
thus providing an easy-to-use alternative for more reliable 
assessment of hypothalamic imaging-derived phenotypes.
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Appendix Table A2.  Demographics of the Rhineland Study participants for all different datasets.

Case study Test-retest In-house Total

p-value(N = 463) (N = 21) (N = 50) (N = 534)

Sex 0.801
Women 276 (59.6%) 11 (52.4%) 30 (60.0%) 317 (59.4%)
Men 187 (40.4%) 6 (47.6%) 20 (40.0%) 217 (40.6%)
Age 0.805
Mean (SD) 54.9 (14.2) 56.4 (9.3) 54.0 (15.2) 54.9 (14.1)
Range 30.0 - 95.0 40.0 - 74.0 31.0 - 79.0 30.0 - 95.0
T1w version 0.061
a 71 (15.3%) 0 (0.0%) 4 (8.0%) 75 (14.0%)
b 392 (84.7%) 21 (100.0%) 46 (92.0%) 459 (86.0%)
T2w version < 0.001
a 71 (15.3%) 0 (0.0%) 4 (8.0%) 75 (14.0%)
b 14 (3.0%) 0 (0.0%) 2 (4.0%) 16 (3.0%)
c 269 (58.1%) 0 (0.0%) 27 (54.0%) 296 (55.4%)
d 109 (23.5%) 21 (100.0%) 17 (34.0%) 147 (27.5%)

Descriptive data were expressed as mean (SD) or count (percentage) for continuous or categorical variables, respectively. Inter-group 
differences were compared with the Student’s t-test for continuous variables and with the Pearson’s chi-square test for categorical variables.

Appendix Table A1.  Sequence parameters for the T1-weighted and T2-weighted versions in the Rhineland Study.

T1w sequence T2w sequence

Version Version

Parameters T1wa T1wb Parameters T2wa T2wb T2wc T2wd

Repetion time (TR) 2560 ms Repetion  
time (TR)

2800 ms

Inversion time (TI) 1100 ms Echo time (TE) 405 ms
Flip angle 7 ! Matrix size 320 × 320 ×224
Matrix size 320 × 320 ×224 Phase-encoding 

direc.++

A>P R>L A>P A>P

PI acc. Factor 1×3 1×2 PI acc. factor 3×1 2×1 1×2+

Readout bandwith 240 Hz/pixel 740 Hz pixel PI ref. scan Integrated External
Echo time (TE) 2.94 ms* 1.68 ms to 

6.51 ms**

Acquisition  
time (TA)

3:57 minutes 4:30 minutes 4:47 minutes

Acquisition time (TA) 3:43 minutes 6:35 minutes

To date, there have been two versions of the T1w sequence (T1wa−b) and four versions of the T2w sequence (T2wa−d )—care was taken 
to preserve the image contrast between versions for both sequences.
*1 echo, **4 echoes combined to 1.
+with one CAIPIRINHA shift (Breuer et al., 2006), ++ A: anterior, P: posterior, R: right, and L: Left.

APPENDIX A
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Appendix Table A3.  Demographics for the training and testing in-house dataset.

Trainset Testset Total

p-value
Split_1  
(N = 11)

Split_2  
(N = 11)

Split_3  
(N = 11)

Split_4 
(N = 11) (N = 6) (N = 50)

Sex 0.857
Women 6 (54.5%) 7 (63.6%) 8 (72.7%) 6 (54.5%) 3 (50.0%) 30 (60.0%)
Men 5 (45.5%) 4 (36.4%) 3 (27.3%) 5 (45.5%) 3 (50.0%) 20 (40.0%)
Age 0.439
Mean (SD) 46.7 (14.8) 53.5 (16.0) 56.5 (15.3) 58.5 (15.0) 55.2 (14.9) 54.0 (15.2)
Range 31.0 - 69.0 31.0 - 77.0 32.0 - 79.0 35.0 - 76.0 35.0 - 71.0 31.0 - 79.0

Descriptive data were expressed as mean (SD) or count (percentage) for continuous or categorical variables, respectively. Inter-group 
differences were compared with the Student’s t-test for continuous variables and with the Pearson’s chi-square test for categorical 
variables.

Appendix Table A4.  Demographics for the UK Biobank participants for all different datasets.

Case Study Generalizability Total

p-value(N = 535) (N = 9) (N = 544)

Sex 0.857
Women 281 (52.5%) 5 (55.6%) 286 (52.6%)
Men 254 (47.5%) 4 (44.4%) 258 (47.4%)
Age 0.050
Mean (SD) 63.9 (7.7) 58.7 (11.3) 63.8 (7.8)
Range 46.0 - 82.0 45.0 - 77.0 45.0 - 82.0

Descriptive data were expressed as mean (SD) or count (percentage) for continuous or categorical variables, respectively. Inter-group 
differences were compared with the Student’s t-test for continuous variables and with the Pearson’s chi-square test for categorical 
variables.

Appendix Table A5.  Test-retest reliability: Intra-class correlation (ICC) with a 95% confidence interval and volume 
similarity (VS) between volume estimates across sequences in a test-retest scenario for the 21 cases of the test-retest 
dataset.

Model

Hypothalamic Others Optic

ICC(A,1) VS ICC(A,1) VS ICC(A,1) VS

ICC [95% CI]
Mean 
(SD) Signif. ICC [95% CI]

Mean 
(SD) Signif. ICC [95% CI]

Mean 
(SD) Signif.

Only T1w input
a: T1-VINN 0.984  

[0.959 - 0.994]
0.990 
(0.011)

0.997  
[0.993 - 0.999]

0.993 
(0.006)

0.982  
[0.953 - 0.993]

0.994 
(0.005)

b: HypVINN 
(Ours)

0.982  
[0.953 - 0.993]

0.987 
(0.025)

0.999  
[0.997 - 1.000]

0.996 
(0.003)

0.985  
[0.955 - 0.994]

0.994 
(0.005)

Multi-modal (MM) input (T1w & T2w)
c: MM-VINN 0.990  

[0.975 - 0.996]
0.990 
(0.010)

0.998  
[0.995 - 0.999]

0.994 
(0.006)

0.972  
[0.879 - 0.990]

0.992 
(0.006)

d: HypVINN 
(Ours)

0.984  
[0.957 - 0.994]

0.989 
(0.015)

0.999  
[0.998 - 1.000]

0.996 
(0.003)

 a 0.986  
[0.955 - 0.995]

0.994 
(0.004)

All automated methods exhibit excellent test-retest agreement between in-session volume estimates. Note: the statistical significance 
column (Signif.) indicates which other models the model outperforms (Wilcoxon signed-rank test, corrected p < 0.05).
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Appendix Fig. A1.  Per structure segmentation performance of the F-CNN models on the unseen in-house test-set. We 
observe that models with a T1w image as part of its input have comparable results in all structures to the global ones. 
However, there is a slight decrease in Dice performance in the medial and lateral hypothalamus (Dice < 0.75) compared 
to the other hypothalamic structures for the 2.5D models. For the 3D model, a similar trend is also observed in the 
medial hypothalamus; however, in the lateral hypothalamus, performance drastically diminishes in all evaluation metrics 
(Dice < 0.5, VS < 0.8, and HD95 > 1.2 mm). Furthermore, for the adjacent hypothalamic structures, all 2.5D models present 
difficulties in localizing the epiphysis and recognizing its boundaries (Dice ≤ 0.75, VS ≤ 0.8, and HD95 ≥ 2 mm). Moreover, 
the epiphysis is the only structure from the 24 segmented ones where the 3D model outperforms the T1 and multi-modal 
comparative baselines (Dice = 0.7558, VS = 0.8571, and HD95 = 1.6386 mm). Finally, using a T2w scan as the only source 
for inferring information is consistently underperforming in all structures, especially in the optic region (e.g., optic nerve) 
and middle hypothalamic region (e.g., medial and lateral hypothalamus and tubular region). Nonetheless, the inclusion of 
T2w into the current segmentation task appears to be beneficial as HypVINN with multi-modal input outperforms its T1w-
only counterpart in most structures (Dice: 16/24, VS: 14/24, and HD95: 18/24).
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Appendix Fig. A2.  T1-Block learnable modality weight during training. The T1-block has a much higher value (≈ 0.75)  
than the T2-block weight (≈ 0.25) in HypVINN’s fusion module, starting in the early training steps in all four cross-validation 
training splits (i.e., S1, S2, S3, and S4). Thus, performance is mainly driven by the T1-derived information, with T2w being 
only a support modality.

Appendix Fig. A3.  Examples of excluded cases from the Rhineland Study (RS) and UK Biobank (UKB) after visual quality 
assessment. (A-E) Unclear boundary of the hypothalamus due to severe enlargements of the third ventricle (i.e., out-of-
distribution cases) producing segmentation errors. Note: each row represents a different participant with corresponding 
MRI modalities (T1-weighted (T1w) and T2w-weighted (T2w)—if available), and automated generated segmentations on 
the coronal view. The color scheme for the visible structures is presented on the right.
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Appendix Fig. A4.  Examples of correct predictions in the Human Connectome Project (HCP) young adults (HCP-
YA, A-C) and HCP lifespan pilot project (HCP-LPP, D-E) datasets (Bookheimer et al., 2019; Harms et al., 2018; Van 
Essen et al., 2012) from our proposed HypVINN with multi-modal input (MM) for six random participants. We observe 
that our tool shows promising results in both available HCP resolutions (0.7 mm and 0.8 mm). Furthermore, our tool 
seems to generalize well across age categories inside the training age range (training data started at age 30). However, 
all the above observations are only qualitative, and no accuracy segmentation metrics can be computed as manual 
annotations are unavailable for this dataset. Note: T1w, T2w, and HypVINN outcomes are presented for each participant. 
Furthermore, in each participant’s row, the first three images display the different hypothalamic structures on the coronal 
view, and the remaining images show the structures on the axial view. The color lookup table for all visible structures is 
presented on the right.
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APPENDIX B.  ABLATION ANALYSIS

We execute ablation analysis to optimize the fusion mod-
ule weighting scheme inside the HM-VINN architecture 
by training the model with global and per-channel modal-
ity weights. First, all networks are trained from scratch 
using the four data-splits from the in-house training-set in 
a leave-one-out cross-validation approach. Afterwards, 
the best model is chosen based on the cross-validation 
performance in the hold-out validation-sets. The three 
evaluation metrics (Dice, VS, HD95) are computed per 
input modality combination (i.e., only T1w or only T2w, or 

both) between the predicted maps after view aggregation 
and manuals labels. Finally, improvements in segmenta-
tion performance are confirmed by statistical testing (cor-
rected p < 0.05 ).

We observe that utilizing global weights outperforms 
per-channel weights in all comparative metrics and all 
inference scenarios with statistical significance for the 
standalone T2w input in all three metrics and for the T1w 
& T2w input only in Dice, as presented in Appendix Table 
B1. Therefore, we utilize the global weighting scheme as 
the fusion module configuration for this work.

Appendix Table B1.  Fusion module weighting scheme optimization: Mean (and standard deviation) of segmentation 
performance metrics per input modality of the ablative hetero-modal VINN (HM-VINN) architectures on the validation set.

Only T1w input

Experimental setup Dice↑ VS↑ HD95 (mm)↓

Model Weighting Scheme Mean (SD) Signif. Mean (SD) Signif. Mean (SD) Signif.

a: HM-VINN Global 0.8068 (0.0841) 0.9164 (0.0748) 1.0916 (0.8579)
b: HM-VINN Per Channel 0.8042 (0.0864) 0.9160 (0.0753) 1.0953 (0.7277)

Only T2w input

Experimental setup Dice↑ VS↑ HD95 (mm)↓

Model Weighting scheme Mean (SD) Signif. Mean (SD) Signif. Mean (SD) Signif.

a: HM-VINN Global 0.7354 (0.1115)  b 0.8753 (0.1166)  b 1.4154 (1.3291)  b

b: HM-VINN Per Channel 0.7119 (0.1236) 0.8424 (0.1424) 1.700 (2.3105)

T1w & T2w input

Experimental Setup Dice↑ VS↑ HD95 (mm)↓

Model Weighting scheme Mean (SD) Signif. Mean (SD) Signif. Mean (SD) Signif.

a: HM-VINN Global 0.8128 (0.0814)  b 0.9202 (0.0706) 1.0508 (0.6965)
b: HM-VINN Per Channel 0.8079 (0.0869) 0.9187 (0.0754) 1.0678 (0.7445)

Global weights outperform per-channel weights in all comparative metrics and all inference scenarios. Note: the statistical significance 
column (Signif.) indicates which other models the model outperforms (Wilcoxon signed rank test, corrected p < 0.05), and bold values 
represent the best model per input modality combination.

APPENDIX C.  CRITERIA FOR MANUAL ANNOTATION  

OF HYPOTHALAMIC ADJACENT STRUCTURES

In Appendix Tables C1 and C2, we present the criteria 

for manual annotation of hypothalamic adjacent struc-

tures and sub-regions in T1w and T2w images. The sup-

port of a T2w image was omitted for segmenting UK 
Biobank data as these data were unavailable. Further-
more, no protocol modification was carried out due to 
the differences in data resolution—Rhineland Study 
0.8 mm isotropic resolution and UK Biobank 1 mm iso-
tropic resolution.
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Appendix Table C1.  Criteria for manual annotation of hypothalamic adjacent structures.

Structure Bilateral* Labeling** Note

Optic system Yes The optic system is composed of the optic 
nerves, tracts, and chiasms. The optic  
chiasm was separated from the optic nerves 
and tracts at an angle orthogonal to the 
chiasm at the optic nerve–chiasm and optic 
tract–chiasm junctions, respectively (Avery 
et al., 2016).

Using axial T1-weighted  
images.

Anterior commissure No A thick fiber bundle above the 3rd ventricle 
and underneath the anterior horns of the 
lateral ventricles. It can easily be identified 
using the brain ventricles and optic tracts as 
landmarks (Güngör et al., 2017).

Labeling on coronal sections in 
the rostro-caudal direction on 
T1-weighted images.

Fornices Yes Thick white matter fiber bundles that were 
labeled in the area where they touch the 
anterior commissure rostrally and merge 
with the mammillary bodies caudally; this 
part of the fornix is generally referred to as 
the “columna fornicis.”

Using coronal sections of  
T1-weighted sequences.

Hypophysis (i.e.,  
the pituitary gland)

No A relatively round structure inferior to the 
3rd ventricle and rostral to the brain stem, 
occupying the sella turcica.

Using sagittal, axial, and 
coronal sections of T1- and T2-
weighted images.

Infundibulum (i.e., 
the pituitary stalk)

No The stalk-like structure that connects the 
hypophysis to the hypothalamus.

Epiphysis (i.e.,  
the pineal gland)

No A low-intensity (on T1-weighted images), 
pine-shaped unpaired midline brain  
structure that lies between the caudal  
recess of the third ventricle and the  
quadrigeminal cistern (Park et al., 2020).

Labeling was done on coronal 
sections by moving caudally 
from the posterior commissure, 
with its contours demarcated 
by its pine-like shape and the 
surrounding cerebrospinal fluid.

3rd ventricle No Anterior border: lamina terminalis. Using sagittal, axial, and 
coronal sections of T1- and T2-
weighted images.

Lateral border: hypothalamus and thalamus.
Superior border: the roof of the third ventri-
cle starts anteriorly at the foramen of Monro 
and ends posteriorly in the suprapineal 
recess.
Posterior border: the posterior commissure, 
the pineal body, the habenular commissure, 
and the suprapineal recess above (Patel 
et al., 2012).
Inferior border: formed from anterior to  
posterior by the optic recess, the  
infundibular recess, the tuber cinereum,  
the mammillary bodies, and the  
posterior perforated substance  
(Chaichana & Quinones-Hinojosa, 2019).

*Bilateral structures were defined as those regions that could be separated into a (non-contiguous) left and right half with respect to the 
mid-sagittal plane.
**Labeling was mainly done using T1-weighted images, unless specified otherwise.



32

S. Estrada, D. Kügler, E. Bahrami et al.	 Imaging Neuroscience, Volume 1, 2023

Appendix Table C2.  Criteria for manual annotation of hypothalamic sub-regions.

Structure Bilateral* Labeling** Note

Anterior  
hypothalamus

Yes Medial border: 3rd ventricle. The supraoptic 
nuclei were 
included in this  
region and were 
not labeled 
separately as 
the spatial  
resolution 
was too low 
for accurate 
segmentation 
of these small 
structures.

Lateral border: lateral border of the optic tract and the other adjacent white 
matter tracts (Lemaire et al., 2011).
Anterior border: lamina terminalis attached to the optic chiasm.
Posterior border: vanishment of the anterior commissure on coronal 
sections in the rostro-caudal direction (coinciding with the coronal plane 
through the posterior border of the anterior commissure and the anterior tip 
of the infundibulum).
Superior border: horizontal plane through the anterior commissure.
Inferior border: optic chiasm and infundibulum (Dudás, 2021).

Medial  
hypothalamus

Yes Medial border: 3rd ventricle.
Lateral border: fornices.
Anterior border: vanishment of the anterior commissure on coronal sections 
in the rostro-caudal direction.
Posterior border: appearance of the mammillary bodies on coronal sections 
in the rostro-caudal direction.
Superior border: the diencephalic fissure.
Inferior border: the boundaries of the tuberal region underneath (Makris 
et al., 2013).

Lateral  
hypothalamus

Yes Medial border: fornices.
Lateral border: optic tract and the other adjacent white matter tracts.
Anterior border: vanishment of the anterior commissure on coronal sections 
in the rostro-caudal direction.
Posterior border: appearance of the mammillary bodies on coronal sections 
in the rostro-caudal direction.
Superior border: the diencephalic fissure.
Inferior border: the boundaries of the tuberal region and basal cistern 
underneath.

Posterior  
hypothalamus

Yes Medial border: 3rd ventricle.
Lateral border: white matter tracts.
Anterior border: appearance of the mammillary bodies on coronal sections 
in the rostro-caudal direction.
Posterior border: vanishment of the mammillary bodies on coronal sections 
in the rostro-caudal direction.
Superior border: horizontal plane through the diencephalic fissure.
Inferior border: boundaries with the mammillary bodies below.

Tubular region No The area was defined as the region underneath the 3rd ventricle and en-
closed by the mammillary bodies caudally and the anterior hypothalamus 
rostrally, with its superior and inferior borders on each side defined by the 
horizontal planes going through the superior border of the floor of the third 
ventricle and the interpeduncular cistern, respectively.
Median eminence: the protuberant region between the unpaired infundib-
ular nucleus and the mammillary bodies that had a low intensity on the 
sagittal view on T2-weighted sequences.
Infundibular nucleus: dorsocaudal to the junction of the infundibulum (i.e., 
the pituitary stalk) and the hypothalamus, and was labeled on the sagittal 
view using T1 (high-intensity) and T2 (low-intensity) weighted images.
Tubero-mammillary nucleus: the remaining areas in the tuberal region.

Mammillary 
bodies

Yes Two small, rounded structures at the caudal end of the 3rd ventricle. These 
structures were labeled using both coronal sections in the rostro-caudal direc-
tion and axial sections in the dorso-medial direction on T1-weighted images.

*Bilateral structures were defined as those regions that could be separated into a (non-contiguous) left and right half with respect to the 
mid-sagittal plane.
**Labeling was mainly done using T1-weighted images, unless specified otherwise.


