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Abstract
Trans-activation response DNA binding protein of 43 kDa (TDP-43) regulates a great

variety of cellular processes in the nucleus and cytosol. In addition, a defined subset
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of neurodegenerative diseases is characterized by nuclear depletion of TDP-43 as well
as cytosolic mislocalization and aggregation. To perform its diverse functions TDP-43
can associate with different ribonucleoprotein complexes. Combined with transcrip-
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spliceosome machinery, polysomes and RNA granules. Moreover, the highly dynamic,
low-valency interactions regulated by its low-complexity domain calls for innovative
proximity labeling methodologies. In addition to protein partners, the analysis of post-
translational modifications showed that they may play a role in the nucleocytoplasmic
shuttling, RNA binding, liquid-liquid phase separation and protein aggregation of TDP-
43. Here we review the various TDP-43 ribonucleoprotein complexes characterized
so far, how they contribute to the diverse functions of TDP-43, and roles of post-
translational modifications. Further understanding of the fluid dynamic properties
of TDP-43 in ribonucleoprotein complexes, RNA granules, and self-assemblies will
advance the understanding of RNA processing in cells and perhaps help to develop

novel therapeutic approaches for TDPopathies.
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1 | INTRODUCTION

The trans-activation response DNA binding protein of 43 kDa (TDP-
43) is a nucleic acid binding protein with many diverse functions.
Although originally cloned as a protein that binds to the trans-
activation response DNA element within the human immunodeficiency
virus long terminal repeat [1], very few DNA-binding functions have
been described for TDP-43. For example, TDP-43 binds to the SP-
10 insulator, acting as a repressor for this acrosomal gene product
in somatic tissues [2]. TDP-43 is enriched in euchromatin domains
where transcriptional events take place [3], but the mechanisms by
which TDP-43 regulates global transcription are poorly understood
[4]. In cells exposed to genotoxic stress, TDP-43 was recruited to
sites of DNA damage where it participated in non-homologous end
joining DNA repair [5, 6]. Moreover, TDP-43 conferred DNA pro-
tection and genome stability by alleviating the co-transcriptional
formation of R-loops that promote transcription/replication conflicts
[7,8].

Beyond DNA binding, far more studies established the RNA bind-
ing roles of TDP-43 (Figure 1). TDP-43 was initially discovered as a
splicing factor mediating exon 9 exclusion of the cystic fibrosis trans-
membrane conductance regulator transcript [9]. By binding to mostly
intronic GU-rich sequences, TDP-43 regulates splicing of canonical as
well as cryptic exons [10-12]. By alternative splicing of cryptic exons
TDP-43 regulates the use of alternative poly-adenylation sites, thus
affecting the expression of its own transcript [13] or that of stathmin-
2 [14]. In fact, TDP-43 binds to thousands of transcripts, not only
pre-mRNAs (coding and non-coding) but also microRNA (miRNA) pre-
cursors [15, 16]. In addition to the regulation of alternative splicing,
TDP-43 also mediates mRNA stability, as exemplified for the tran-
scripts of neurofilament L [17] and the histone deacetylase (HDAC) 6
[18]. TDP-43 can form a complex with the fragile X mental retardation
protein (FMRP) and the Staufen homolog STAU1, promoting stabiliza-
tion of the HDAC1 transcript [19]. Moreover, TDP-43 can enhance
mRNA translation via association with ribosomes [20]. Finally, TDP-43
participates in RNA transport processes in axons [21] and during the
assembly of stress granules (SGs) [22].

The manyfold diverse functions of TDP-43 in all these steps of
RNA processing are not only fascinating from a basic cell biology
point of view, but also bear great disease relevance. Neuropatho-
logical TDP-43 inclusions [23, 24] constitute defining lesions of spe-
cific subtypes of the neurodegenerative dementia frontotemporal
lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS),
a motoneuron degeneration [25]. Moreover, mutations in the TDP-
43 gene are linked to ALS [26-29]. During pathogenesis, TDP-43
must partition from its physiological complex sites to phase-separate
into liquid droplets and further solidify into pathological aggregates.
The challenge is to identify all these physiological complex composi-
tions and the assemblies formed in disease course. Another essential
issue is the regulation of TDP-43 targeting into the respective protein
complexes, possibly involving post-translational modifications. Pro-
teomic investigations continue to provide insight into this important

topic.
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2 | PROTEOMIC METHODOLOGIES TO STUDY
TDP-43 COMPLEXES

As the majority of proteins do not act as single element but rather carry
out distinct cellular functions in form of cell-type and context-specific
protein complexes, the systematic dissection of protein-protein inter-
action networks gained importance in the past decades. In particular,
the availability of fast and sensitive mass spectrometers fueled this
process. The classical way to analyze protein complexes is the co-
purification of interacting proteins with a bait protein, either by the
recombinant expression of tagged proteins or IP using primary anti-
bodies against the target protein. The precipitated proteins are then
analyzed by MS. Originally tandem-affinity purification has been used
to get highly pure protein complexes allowing to identify specific inter-
actomes. Initially used for the investigation of protein complexes in
yeast, protocols have been developed for the analysis of interactomic
networks in mammalian cells [30-33]. A tandem-affinity purification
MS approach using an extended HIS-tag system in combination with
a custom-made antibody has recently been applied to TDP-43 [34],
revealing interactions related to protein stabilization and protein fold-
ing upon oxidative stress stimulation. In addition, pull-downs with a
recombinant protein or protein domain have widely been used to study
protein-protein interactions [35, 36]. However, one major drawback
of these approaches is its bias for rather stable protein interactions,
given stringent washing conditions. As an alternative strategy to cope
with unspecific background quantitative MS, either label-free of label-
based, has been established to identify specific interactions. SILAC
has widely been used for this purpose. IP combined with SILAC and
a knock-down control emerged as a powerful tool to investigate pro-
tein complexes at their native expression levels [37, 38]. Affinity based
methods have also been applied to TDP-43, in particular to the TDP-
25 fragment (see below), to assign interactomic networks [39]. Another
study uncovered binding of TDP-43 and arelated ALS-associated RNA-
binding protein FUS (fused-in-sarcoma) to several factors important
to DNA repair mechanisms by affinity proteomics [40]. Furthermore,
an ALS-linked mutation in TDP-43 has recently been shown to alter
protein interactions involved in the motor neuron response to oxida-
tive stress [41]. One of the most comprehensive studies so far to
elucidate TDP-43 complexes for wild-type and two disease-causing
variants (A315T and M337V) was an IP-based approach following
the recombinant expression of FLAG-tagged TDP-43 bait proteins.
This study revealed to clusters of distinct interaction networks, a
nuclear/splicing cluster and a cytoplasmic/translation cluster while no
alterations by the disease-causing variants were observed, most likely
as the identification of co-precipitated proteins was relying on a qual-
itative, identification-based approach, not considering quantitative
changes of the interactome [42]. Finally, a study, combining tandem-
affinity purification with SILAC-based quantitative proteomics not only
revealed expected interactions with heterogeneous nuclear ribonu-
cleoproteins (hnRNPs) but also identified components of the Drosha
complexes in the TDP-43 interactome, which is consistent with
roles for TDP-43 in both mRNA processing and miRNA biogenesis
[43].
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FIGURE 1 TDP-43 and main partners. While mostly nuclear, TDP-43 performs several vital functions both in the nucleus and in the cytoplasm
of cells, interacting with distinct partners. The main functions are (1) RNA transcription, (2) miRNA processing, (3) mRNA splicing, (4) IncRNA
processing, (5) stress granule formation, (6) nuclear-cytoplasmic shuttling, (7) mRNA transport, and (8) translation.

While these techniques certainly represent powerful tools to inves-
tigate large interactomic networks, they do not necessarily identify
direct protein interactions. One method developed three decades ago
is the yeast two hybrid system which emerged, thanks to the mating
system, to a powerful screening tool of a large set of bait proteins
[44]. By this approach, large protein interaction networks associated
with neurodegenerative diseases have been described [45]. TDP-43
was one of the 500 bait proteins tested in this study. A more focused
yeast two hybrid screen identified enzymes involved in the regulation
of TDP-43 ubiquitinylation [46].

Despite of the significant achievements possible due to the sys-
tematic application of this methods, there is still an unmet need for
the identification of weaker, transient interactions at physiological
conditions and within intact cells. This is especially important for
TDP-43 with its low-complexity domain that engages in fluid dynamic
protein assemblies rather than rigid stable complexes. Recent devel-
opments of proximity-based methods allowing the direct or indirect
proximity biotinylation of proteins in a considerable small distance
to the bait protein might help to close this gap [47]. Proximity-
dependent biotin identification involves bait protein fusion to enzymes
based on bacterial BirA biotin ligases that have been subject of con-

tinuous optimization, now allowing a very efficient biotinylation at

low biotin concentrations and in a short time. Alternatively, proxim-
ity labeling can be achieved by oxidative activation of biotin-phenol
using ascorbate peroxidase. Both methods offer a great opportu-
nity to gain more insight into the spatial organization of protein
complexes orchestrated by TDP-43, in particular following specific
interactions associated with RNA and/or liquid-liquid phase separa-
tion (LLPS). Consequently, a recent study has applied biotin prox-
imity labeling to identify novel interaction partners of detergent-
insoluble TDP-43 aggregates. The identified proximity-proteome was
enriched for components of the nuclear pore complex and nucleo-
cytoplasmic transport machinery which strongly implicate TDP-43-
mediated nucleocytoplasmic transport defects as a common disease
mechanism in ALS/FTLD [48]. The achievements of the interac-
tomic studies and their impact on the current understanding of the
TDP-43 (patho-)physiology is discussed in greater detail in the next
section.

3 | TDP-43 INTERACTOMES

While unbiased approaches searching for TDP-43 partners have pro-

vided a wealth of information, we can now use these data to focus
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TABLE 1 List of TDP-43 protein interactors detected in at least 2
independent studies, sorted by function in RNA processing.

mRNA splicing and nuclear

export
FUS/TLS [17, 34,40, 41, 84]
hnRNPA1 [36,42,43,56]
hnRNPA2/B1 [19,42,43,56]
hnRNPA3 [42,43,56]
hnRNPDL [36,43]
hnRNPH1 [36,42,43]
hnRNPK [19,42,43]
hnRNPQ [19,42,43]
hnRNPU [36,42,43]
hnRNPUL1 [36,42,43]
hnRNPUL2 [36,42,43]
PTBP1 [42,43,117]
PABPC1 [42,43,187]
CELF1 [42,43,117]
snRNP70 [43, 58]
Matrin-3 [42,43,117,188]

Cytosolic mRNA transport and
translation control/SG

STAU1 [19,42,189]

FMRP [19,190]

RACK1 [44,101]

TIA1 [36,189]

G3BP (42, 88]

PABPC1 [42,187]
miRNA processing

Drosha [16,191]

DGCR8 [16,191]

Dicer [16,192]

DDX17 [36,42,43]

Ago2/EIF2C2 [16,42]
Transcription

DDX3X [36,42,43]

DDX5 [36,42,43,193]
Nucleocytoplasmic shuttling

KPNA2 [42,121,194]

NUP62 [126,195]

KPNB1 [121, 126, 194]

on TDP-43 functions and attempt to describe in detail the nature of
TDP-43 interactions in relation to the function and complex where
it is found (Table 1). In the following sections this review will try to
identify specific roles of TDP-43 in the different ribonucleoprotein
complexes where it is found and describe the nature of its interactions

there.
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3.1 | miRNA processing

MiRNAs are small, non-coding RNAs with an average size of 22
nucleotides, which can regulate gene expression by affecting mRNA
stability and protein expression. They can be encoded in intergenic
regions of the genome or in introns of related or unrelated genes [49].
Most of the miRNA transcripts are produced as pri-miRNA, which is
processed in the nucleus by the Drosha complex into pre-miRNA. After
that, pre-miRNA is exported via the exportin 5 system to the cytoplasm
[50], where it is further processed by the Dicer complex, producing
mature miRNAs. This mature miRNA can then alter expression of its
targets [50]. Interestingly, TDP-43 is involved in both the nuclear and
cytoplasmic portions of the miRNA maturation process.

The clearest evidence that shows an involvement of TDP-43 in the
miRNA maturation process is the direct interaction it has with Drosha,
Dicer and argonaute-2 [16, 42]. TDP-43 can bind to both Drosha and
Dicer via its C-terminal domain, and the Drosha interaction seemed to
be affected by TDP-43 phosphorylation at 5409/410 [16, 51]. A closer
inspection of TDP-43 role in both complexes shows that it can directly
bind to some pri-miRNAs via the consensus poly (UG) sequence, such
as pri-miRNA-574, pri-miRNA-578 and increase the binding affinity of
the Drosha complex to those sequences [16]. This data is supported
by the fact that silencing TDP-43 triggers a nuclear accumulation of
unprocessed pri-miRNA let-7b, pri-R-181c, pri-miRNA-574 and pri-
miRNA-578 [15, 16, 52], suggesting that a lack of TDP-43 reduces the
pri-miRNA cleavage efficiency of the Drosha complex. Because of this,
it is not surprising that a reduction in TDP-43 levels can alter the levels
of several miRNAs [52, 53].

Interestingly, some of the gene targets of these miRNAs have been
found to be altered in TDP-43 depletion models, which offers a mecha-
nism linking both datasets [15, 53]. To link these results to disease, the
effect of TDP-43 on miRNA biogenesis has been investigated in differ-
entiating neurons and in ALS and FTLD-TDP patients. A knockdown of
TDP-43 in differentiating neurons causes reduction in Drosha levels,
however Drosha mRNA levels do not change and the exact mechanism
for this change is not clear [53]. In addition, several miRNAs have been
reported to be altered in patients with TDP-43 pathology, but the dis-
ease relevance of this finding remains unknown [54]. Finally, it is worth
noting that the results of the studies seem to be very cell-type spe-
cific and suggest a highly complex and dynamic regulation of miRNAs
by TDP-43.

3.2 | RNA splicing

The splicing of thousands of RNAs have been linked to the presence
of TDP-43, both in terms of exon splicing and in the suppression of
cryptic exons [10-12]. The role of TDP-43 in splicing it is further
supported by its interactions with several spliceosome and splicing-
related proteins. For instance, TDP-43 has been found associated
with proline/glutamine-rich and serine/arginine-rich splicing factors
and many hnRNPs [42]. Indeed, TDP-43 functions in conjunction with
hnRNPs to promote splicing [55-57].
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More directly, TDP-43 interacts with the small nuclear ribonucle-
oprotein of 70 kDa (snRNP70) [58], a component of the U1 snRNP
complex that stabilizes the interaction between the snRNA U1 and the
5’ splice site of a processed pre-mRNA [59]. TDP-43 was also detected
by MS among the proteins co-immunoprecipitated with FLAG-tagged
C90ORF78, a natively unfolded protein that acts within the U5 snRNP
[60]. As the C9ORF78 interaction partner snRNP200/BRR2 helicase
was enriched in TDP-43 IPs [42], integration of TDP-43 into the 3’
splice site helicase activity could in part explain the alternative splic-
ing functions of TDP-43, in addition to a potential role for pre-mRNA
5’ splice initiation at the U1 snRNP complex.

“Like Smith antigen” (LSm)é was identified as a TDP-43 partner in
a yeast two-hybrid study [46]. LSmé together with LSm5 and LSm7
organizes the formation of LSm heteroheptameric rings [61]. In the
nucleus, the LSm2-8 complex is engaged in the assembly of the pre-
catalytic spliceosomal B complex by binding to the 3’ end of U6 snRNA,
and is part of the structural reorganizations that occur in the sub-
sequent spliceosome activation step involving the aforementioned
helicase snRNP200/BRR2 that unwinds the U4/U6 snRNAs [62]. Inter-
estingly, there is a second LSm complex in the cytoplasm (LSm1-7)
that is part of the mRNA degradation machinery [63-65]. Likewise,
there are dual functions of the LSm associated “protein associated with
topoisomerase II” (Pat)1b in the nucleus and in the cytoplasm [66].
Because TDP-43 can also shuttle between the nucleus and the cyto-
plasm, such interactions are particularly noteworthy. Moreover, Pat1
can enhance LLPS of mRNA decay factors in processing bodies [67, 68],
membraneless organelles that are sites of mMRNA degradation, storage
and repression. Taken together, TDP-43 with its intrinsically disor-
dered domains might be involved in structurally dynamic assemblies
that mediate RNA splicing in the nucleus as well as mRNA regulation
in RNA granules (see also below).

Coupling of RNA splicing and decay underlies the mechanism of
TDP-43 autoregulation through a negative feedback loop [11, 69, 70].
TDP-43 autoregulation has been confirmed in vivo both in mouse mod-
els [71] and in an FTLD patient with a mutation in the 3’-untranslated
region (UTR) of TDP-43 mRNA, resulting in higher TDP-43 levels [72].
TDP-43 binds to a conserved region in the 3’-UTR of its own transcript.
The binding to this sequence promotes TDP-43 oligomerization and
assembly into dynamic ribonucleoprotein granules [73]. Two autoreg-
ulation mechanisms involving alternative splicing have been described,
one dependent on nonsense-mediated RNA decay and the other one
exosome-dependent. In the nonsense-mediated decay model, TDP-43
binding favors alternative polyadenylation signals pA2 and pA4, lead-
ing to RNA degradation [70]. The second proposed mechanism involves
inclusion of a cryptic exon 7. This alternatively spliced mRNA is highly
unstable, and it is degraded via the exosome system [69, 74]. By a simi-
lar mechanism targeting a cryptic exon TDP-43 regulates expression of
the autophagy gene product ATG4B [10, 75].

In addition to its own transcript, TDP-43 binds to 3’-UTR regions
of many more mRNAs [12, 76, 77]. For example, TDP-43 binding to
the 3’-UTR stabilizes the neurofilament L mRNA [17], which can be
affected by TDP-43 mislocalization and relieved by autophagy induc-
tion [78]. Likewise, TDP-43 binds to the 3’-UTR of the transcript

encoding GTPase-activating protein binding protein (G3BP) to pro-
mote its expression [79, 80]. Moreover, binding of TDP-43 within the
coding region of HDAC6 mRNA stabilized its protein expression [18,
81]. On the other hand, overexpression of TDP-43 destabilized the
mMRNA coding for the FTLD-linked gene product progranulin and hence
reduced its protein levels [77]. As this interaction was detected in the
cytosol, TDP-43 affects mRNA levels not only at the level of alterna-
tive pre-mRNA splicing in the nucleus, but also controls mRNA stability
in the cytosol.

3.3 | mRNA transport

After splicing, capping and polyadenylation, mature RNA is transported
to the cytoplasm for further translation at the ribosome. Several RNA-
binding proteins are known to play a role in this process, being TDP-
43 one of them. While the mRNA transport takes place in every cell,
in large cells with complex morphology such as neurons it is a critical
process that allows for local translation of proteins that are needed at
neurites or distal segment of the axons. It is in this context where TDP-
43 has been found to interact with several other RNA-binding proteins
and play an important role.

The previously mentioned serine/arginine-rich splicing factors [42]
could couple splicing with nuclear export of mMRNA [82]. Once in the
cytosol of neurons, TDP-43 colocalizes with mRNA granules in axons
[83], where it can interact with FMRP and STAU1 [19, 42, 84]. A
closer look at these interactions showed that TDP-43 can mediate both
anterograde and retrograde transport depending on the protein part-
ner. TDP-43 is engaged in anterograde transport when interacting with
FMRP, while interaction with STAU1 mediates retrograde transport
[84]. Interestingly, pathological mutants M337V and A315T impaired
RNA granule transport along axons [21]. Since both of these mutations
are located in the C-terminal domain (Figure 2A), linked with protein-
protein interaction, it is possible that the defect in mRNA transport
comes not from a change in mRNA binding affinity, as much as a
change in protein binding affinity to other partners, such as FMRP and
STAU1. Specifically, substitutions at W334 in TDP-43 C-terminal low-
complexity domain impact both the number of mRNA granules found in
axons and mRNA anterograde transport [85].

When involved in axonal transport, TDP-43 forms liquid droplets
that, interestingly, change their biophysical properties as they circu-
late along the axon [86]. As TDP-43 granules move from proximal to
distal sections of the axons the liquid phase becomes more fluid and
dynamic. This transition is affected by pathological mutations (M337V
and G298S). The reasons behind this transition and its significance in

TDP-43 pathophysiology remains to be uncovered.

3.4 | Stress granules

In addition to processing bodies and transport granules (see above),
cytosolic mRNA can also be packaged into SGs [87], along with promi-

nent recruitment of TDP-43 [22]. SGs are membrane-less organelles
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FIGURE 2  Structure and domains of TDP-43. A) TDP-43 is composed by a well-structured N-terminal region, containing a nuclear localization
sequence (NLS) and two RNA recognition motifs (RRM1 and RRM2). The low complexity domain at the C-terminal part contains a
glutamine/asparagine-rich region (Q/N). In the upper part of the image, the most prominent pathogenic mutations are annotated. In the lower part
of the image the post-translational modifications that are referred to in the text are color-coded. Blue, yellow and red stand for ubiquitination,
acetylation and phosphorylation, respectively. Residues with more than one annotated PTM are marked with two colors. B) Structural model of
TDP-43 provided by AlphaFold [186]. Protein domains are annotated, including the disordered C-terminal tail.

that form upon different cell stressors, such as oxidative stress or
heat shock. They are formed by an inner stable core and a fluid shell,
and they are composed by a mixture of RNAs, RNA-binding proteins,
ribosomes and scaffold proteins [88]. Their canonical function is to
store stalled ribosomes during stress and continue translation after the
stress has disappeared, however this hypothesis has been questioned
in recent years. While translational repression elements are enriched
in SGs [89], they are not entirely essential for translational repres-
sion as single molecule imaging has revealed active translation within
SGs [90]. It is at present unclear what the ultimate function of these
organelles are, or even if they are a mere epiphenomenon triggered by
stress without a specific function [91].

Over 200 proteins have been found to be enriched in SGs from
stressed cells, and several of those, such as G3BP and T cell restricted
intracellular antigen-1 (TIA-1), have been identified as members of the
SG core [88]. Interestingly, TDP-43 has been found to interact with
both of them in an RNA-independent manner [92] and it is recruited
to SGs upon cell stress [22, 80]. However, the role of TDP-43 in SGs is
less clear. Knockdown of TDP-43 causes a reduction in G3BP mRNA

and protein levels, while on the other hand the same depletion can

increase TIA-1 amounts in cells [80, 93]. These modulations of SG core
components do not prevent their formation, but they do change the
engagement and disengagement dynamics. A closer look at the inter-
action between G3BP and TDP-43 shows that upon artificial G3BP SG
formation via an optogenetic system, TDP-43 and TIA-1 are recruited
to the initial G3BP1 granules [94]. These results support the idea
that G3BP is an early core element of SGs and that TDP-43 is per-
haps a recruiter of RNA targets to SGs. The impact in SGs dynamics
caused by TDP-43 knockdown could be due to the modulation of SG
members’ mRNAs, and not via direct action of TDP-43 at the SGs.
In SG-inducing cellular stress conditions TDP-43 still forms insolu-
ble aggregates when SG formation proper is blocked [95, 96]. Thus,
although TDP-43 clearly participates in SGs, the (patho)physiological

significance remains obscure.

3.5 | Protein translation

Beyond translational stalling in SGs TDP-43 may generally affect pro-

tein translation via a cytosolic translation interactome cluster [42].
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Particularly when the predominantly nuclear TDP-43 is mislocalized
in the cytoplasm it can cause a decrease in global protein syn-
thesis [97, 98]. Overexpression of TDP-43 did not seem to cause
changes in total translation but rather affected translation of select
neurodegeneration-relevant mRNAs identified by ribosome profiling
[20]. TDP-43 binding to such mRNAs caused altered translation in
overexpression or cytoplasmic mislocalization models [99-101]. Asso-
ciation of TDP-43 with polysomes [20, 98] may not only occur by
binding to RNA but also proteins, such as the receptor for activated C
kinase 1[42, 46, 98], a multifunctional scaffold protein present in ribo-
somes. Also, TDP-43 mediated alternative splicing of the exon junction
complex protein ribosomal Sé kinase 1 Aly/REF-like target (also known
as polymerase delta interacting protein 3) has been shown to affect
global translational yield [102]. Moreover, TDP-43 is involved in the
axonal transport of ribosomal proteins and reduced levels of TDP-43
can cause a reduction in local translation in the axons [100, 103]. Thus,
in addition to its functions in RNA processing, TDP-43 may also affect
the (patho)physiological proteome via protein translation regulation
[104].

3.6 | Non-coding RNAs

In addition to the RNA species mentioned above, TDP-43 also inter-
acts with long non-coding RNAs (IncRNAs) [12]. The level of metastasis
associated lung adenocarcinoma transcript 1 (MALAT1) (aka noncoding
nuclear-enriched abundant transcript 2, NEAT2) is regulated by TDP-
43, with overexpression of TDP-43 causing an increase in MALAT1
RNA levels, and TDP-43 knockdown causing the opposite [105]. A
detail examination of the MALAT1 elements identified a short inter-
spersed nuclear element to be involved in the localization of the
molecule, whose deletion would cause mislocalization to the cytoplasm
and sequester TDP-43 into liquid droplets [106].

In the context of NEAT1 interaction, it has been reported that TDP-
43 can colocalize with it in paraspeckles [107]. Specifically, the isoform
NEAT1_2 seems to act as a scaffold and recruits TDP-43 into these
nuclear bodies, triggering TDP-43 LLPS [108, 109]. Interestingly, the
disease-linked mutation D169G interfered with the NEAT1-mediated
TDP-43 LLPS [109]. On the other hand, silencing of TDP-43 increased
levels of the stress-induced long isoform NEAT1_2 and stimulated
paraspeckle assembly [110, 111]. Conversely, upon accumulation of
TDP-43 the major long isoform NEAT1_1 was found up-regulated
and appeared to counteract pathological effects of TDP-43 [112].
TDP-43 interplay with NEAT1 therefore seems to be an important
regulatory mechanism influencing cellular viability via paraspeck-
les, nuclear domains mediating RNA processing and metabolism
[113].

MALAT1 and NEAT1 are among the strongest TDP-43 binding RNAs
[12]. In addition, a IncRNA called growth-arrested DNA damage-
inducible gene 7 was found to compete with TDP-43 binding to the
mRNA encoding cyclin-dependent kinase 6, thereby interfering with
its mMRNA decay and thus controlling cell cycle progression in Chi-
nese hamster ovary cells [114]. Binding of TDP-43 to neuroLNC in this

case selectively stabilized mRNAs encoding synaptic vesicle proteins
to ensure presynaptic function and neuronal excitability [115]. Last but
not least, SILAC profiling found TDP-43 enriched in chromatin with the
X-inactive specific transcript [116] where it participates in a conden-
sate required for gene silencing [117]. The relevance of specific TDP-43
interacting hnRNPs in this process [118] remains to be elucidated. It
emerges that TDP-43 regulates cellular proteomes not only by inter-
actions with and partitioning of protein-coding mRNAs and miRNA
processing, but also via IncRNAs.

3.7 | Nucleocytoplasmic shuttling

The manyfold functions of TDP-43 in the nucleus and cytoplasm
obviously require nucleocytoplasmic shuttling, which is mediated by
active nuclear import through a bipartite nuclear localization sequence
(NLS) between K82-K98 and probably passive, exportin-independent
nuclear export [119, 120]. Importin-a1 recognizes the TDP-43 NLS
and forms a heteromeric importin-a1/8 complex with TDP-43, and
this interaction can be modulated by three phosphorylations at the
NLS (T88, S91 and S92) [121]. In addition, the key NLS residue K84
can be ubiquitinated as well as acetylated, with both modifications
altering TDP-43 nucleocytoplasmic shuttling [122, 123] (see below).
In FTLD and ALS this balance is altered and cytoplasmic mislocaliza-
tion of TDP-43 is considered a clear marker of its proteinopathy [23,
24]. Because of this, it has been the focus of a considerable amount of
research.

The deletion mutant ANLS-TDP-43 mislocalizes to the cytoplasm,
where it can become less soluble [124]. In addition, under arsenite
stress TDP-43 shifts into the cytoplasm where it may become less
soluble and phase-separates into SGs and eventually turns into pro-
tein inclusions similar to those found in patients [125]. In addition,
cytoplasmic aggregates of C-terminal truncated TDP-43 can recruit
nuclear import elements such as importin-a and nuclear pore com-
ponents such as the nuclear pore glycoprotein of 62 kDa (NUP62),
disrupting general nuclear import and the nuclear lamina structure
[48, 125]. Interestingly, NUP62 co-aggregated with cytoplasmic TDP-
43 can recruit karyopherin-1, which in turn interacts with aggregated
TDP-43 C-terminal fragment (CTF) to reduce aggregation [126]. This
newly reported interaction hints to a complex network of interac-
tions between TDP-43 and nuclear transport elements that is not
limited to the importin system and opens new ways to reduce TDP-43

aggregation.

4 | POST-TRANSLATIONAL MODIFICATIONS OF
TDP-43

It was evident already at the time of discovery that TDP-43 in disease
is altered by modifications including phosphorylation, ubiquitinyla-
tion, and truncation leading to CTFs commonly referred to according
to their approximate molecular masses as TDP-35 and TDP-25 [23,

24]. Moreover, under oxidative stress TDP-43 cysteine residues C173-
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C175 can form disulfide bonds [127] and in the concomitant presence
of nitric oxide these residues become S-nitrosylated [128], leading to
oxidation-mediated TDP-43 aggregation and neuropathology. Thus,
the investigation of TDP-43 PTMs may provide important clues for
the regulation of (patho)physiological functions and disease-promoting
processing of TDP-43.

4.1 | TDP-43 phosphorylations

The most commonly detected pathological modification of TDP-43
is phosphorylation of serines —409 and —410 [129, 130] (Figure 2A).
It is of note that although potential phospho-acceptor threonine and
serine residues are spread across the entire sequence of TDP-43,
immunoreactivity with post-mortem disease tissue was only detected
with antibodies selective for serine residues in the C-terminus [131,
132]. Consistently, phospho-sites were clustered in the TDP-43
C-terminus in a small LC-MS analysis of insoluble material extracted
from the brains of 2 ALS patients [133]. Similar to other intracellular
amyloidogenic proteins [134, 135], the broadly acting casein kinases
were capable of phosphorylating TDP-43 in vitro. Casein kinase 1
(CK1) strongly phosphorylated TDP-43 at serines 379, 403/404,
and 409/410 and appeared to promote TDP-43 aggregation in vitro
[131]. The CK1e homolog doubletime in Drosophila enhanced TDP-43
toxicity in a fly model [136]. Expression of a constitutively active
form of CK18§ promoted TDP-43 pathology in SH-SY5Y neuroblas-
toma cells [137]. Endoplasmic reticulum stress might be a trigger
for CK1-dependent TDP-43 phosphorylation and aggregation in
motor neuron-like cells [138]. Inhibition of CK18 showed protective
effects in [A315T]TDP-43 transgenic mice and in lymphoblasts of
ALS patients [139]. However, Gruijs da Silva et al. recently reported
on the contrary that CK1§ phosphorylation as well as phospho-
mimic mutagenesis did not affect TDP-43 functions but rather
suppressed TDP-43 aggregation, rendering TDP-43 condensates more
liquid-like and dynamic [39]. It remains to be further established if
CK1 inhibitors are a viable therapeutic option for the treatment of
ALS [140].

Screening for TDP-43 kinases in C. elegans, Liatchko et al. found
cell division cycle 7-related protein kinase (CDC7) to phosphorylate
TDP-43 S409/410 and promote toxicity in worms [141]. CDC7 inhi-
bition decreased TDP-43 phosphorylation in a variety of models and
restored TDP-43 function in human patient lymphoblasts [142, 143].
Moreover, the tau-tubulin kinases 1 and 2 (TTBK1/2) were identified as
putative disease promoting pS409/410 TDP-43 kinases [144]. Unlike
other putative TDP-43 kinases, TTBK1 is expressed predominantly in
the CNS and thus localized to neurodegeneration-relevant areas [145].
TTBK1 was confirmed to phosphorylate TDP-43 at disease-relevant
sites S409/410 and S403/404 in vitro and in arsenite-stressed cells and
to induce pathological TDP-43 effects including cytoplasmic mislocal-
ization [146]. As more effective TTBK1 inhibitors are being developed
[147], it will become interesting to explore the therapeutic potential
and relative contribution of TTBK1 and 2 for FTLD-TDP and FTLD-TAU
[148].

Proteomics and Systems Biology

4.2 | TDP-43 ubiquitinylations and SUMOylations

The attachment of ubiquitin moieties in post-mortem brain tissue of
TDPopathy patients was evident already from the first study [23].
Formation of diverse ubiquitin chains on lysine residues of target pro-
teins are most important PTMs that regulate a large variety of cellular
fates, including protein trafficking and turnover [149]. Specifically, the
attachment of poly-ubiquitin chains linked via lysine-48 targets pro-
teins to proteasomal breakdown while ubiquitin binding motifs couple
ubiquitinylated cargo to the autophagy machinery. Thus, initial studies
dealt with the question of proteasomal and autophagic breakdown of
TDP-43. Cells treated with proteasome inhibitor showed accumulation
of poly-ubiquitinylated, insoluble TDP-43 [124, 150]. The proteasome
appears to act synergistically with the autophagy machinery in the
catabolism of aggregating TDP-43[151, 152].

MS analyses assessing the characteristic DiGly-shifts indicated
several lysine residues within TDP-43 as putative ubiquitin anchor
sites [123, 153]. Site-directed mutagenesis revealed not a single lysine
residue to account for TDP-43 ubiquitinylation effects, indicating con-
siderable redundancy of the TDP-43 lysine-ubiquitin system. The RNA
binding region harbored one cluster of ubiquitinylated TDP-43 lysine
residues (K102, K114, K145, K181) [153], which were also detected
in global ubiquitylome surveys [154, 155]. Explicit investigation of
DiGly motifs in pulled-down TDP-43 once more confirmed ubiquitiny-
lation at K181, which appeared constitutive in all conditions [123].
Interestingly, a second cluster of putative TDP-43 ubiquitinylation
sites was detected after proteasome inhibition at the NLS residue
K84 and K95 [123], as well as K160 that had been previously found
in proteome-wide screens of ubiquitinylation sites of proteasome-
inhibited cells [154, 155]. Site-directed mutagenesis confirmed K95
as a potential proteasome-targeting ubiquitinylated residue [123] and
was a major residue mediating TDP-43 mislocalization upon protea-
some inhibition by administration of poly-GA protein [156] that can be
produced from pathogenic repeat expansions of the FTLD/ALS gene
C9ORF72.

Taken together, TDP-43 can be ubiquitinylated at several lysine
residues (Figure 2A), and not a single site confers proteasome or
autophagy targeting except for possibly K95 under special condi-
tions. Moreover, any influences of non-classical ubiquitinylations on
RNA binding, subcellular localization, LLPS and aggregation remain
to be further explored. It is noteworthy that ubiquitinylated TDP-43
tends to be shifted into mislocalized insoluble aggregates, for example
after expression of the ubiquitin ligase parkin [157], UBE2E ubiquitin-
conjugating enzymes [46], the von Hippel-Lindau cullin-2 substrate
binding component [158] or FTLD/ALS-linked mutant cyclin F depen-
dent ubiquitin ligase complex [159]. Conversely, the zinc finger protein
179 [160] and the ubiquitin ligase Prajal [161] enhanced ubiquitin-
dependent clearance of TDP-43. Clearly ubiquitinylations of TDP-43
are highly complex and the outcomes likely depend on cellular context
and ubiquitin code written be distinct ubiquitin ligases. As for de-
ubiquitinating enzymes, only the rather general ubiquitin isopeptidase
Y has been described so far, counteracting ubiquitinylated TDP-43
pathology in cell and fly models [46].
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TDP-43 is also a target for the small ubiquitin-related modifier
(SUMO) [162, 163]. A SUMOylation consensus site comprises K136
within the RNA binding domain. Inhibition of SUMOQylation with
anacardic acid treatment of K136R substitution reduced TDP-43
aggregation and cytotoxicity [162]. Mutant [K136R]TDP-43 showed
reduced binding and splicing activity towards several target mRNAs
[163]. However, it should be noted that K136 is also subject to
lysine acetylation (see below), so it has to be carefully determined if
SUMOylation or acetylation account for effects observed by K136

mutagenesis.

4.3 | TDP-43 lysine acetylations

In addition to ubiquitin modifications, protein lysine residues can also
be acetylated (Figure 2A). TDP-43 acetylation at K145 and K192 was
first described by Cohen et al. [164]. It was found that stress-induced
K145 modification directly alters RNA binding activities and aggrega-
tion propensity of TDP-43. Histone deacetylase 6 removed this poten-
tially pathogenic modification. Similar effects were found for TDP-43
K136 acetylation, in this case sirtuin-1 acted as a relieving deacetylase
[122]. Importantly, in this study amber suppression expansion of the
genetic code was established for the first time to introduce the authen-
tic modified amino acid into defined sites. Although site-directed
mutagenesis is a powerful tool to stimulate small post-translational
modifications of amino acids such as serine/threonine phosphoryla-
tion and lysine acetylation, respectively, the aspartate/glutamate and
glutamine substitutions are not identical to the phosphorylated or
acetylated residues. Although molecular dynamics simulations sug-
gested little impact of the K136R substitution on the local structure
within the RNA-binding domain [163], subtle clashes with bound RNA
cannot be ruled out [122]. Nevertheless, amber suppression confirmed
the results of site-directed mutagenesis, showing that K136 acetyla-
tion reduced RNA binding and splicing activity. Importantly, the K145
or K136 acetylation-mediated disengagement of TDP-43 from native
RNA-binding protein complexes led to LLPS and subsequent patho-
logical aggregation of TDP-43 in the nucleus, or when combined with
nuclear import deficiency, formation of modified TDP-43 inclusions in
the cytosol, the most common hallmark of TDPopathies [122, 165].
Demixing of RNA binding deficient TDP-43 into liquid droplets and
conversion into gel/solid is controlled by chaperone proteins, such as
HSP70 in the nucleus [166] or HSPB1 in the cytosol [167], likely as part
of an HSF1-induced chaperone response system [165].

Moreover, K84 was identified as another acetylated residue in TDP-
43. As this is a key determinant of the nuclear import sequence [123,
124], K84 acetylation affected the nucleocytoplasmic distribution of
TDP-43 [122]. Taken together, it is noteworthy that similar to the
lysine ubiquitin modifications also the acetylated lysine residues are
primarily located in the nuclear import sequence and the RNA binding
domain. These essential aspects of TDP-43 (patho)biology are at least
in part regulated by lysine modifications, with acetylations in the RNA-
binding region (Figure 2B) apparently having the most straightforward
pathogenic potential [168].

4.4 | TDP-43 truncations

The presence of TDP-43 CTFs is a conspicuous feature discovered in
FTLD and ALS patient brain [23, 24] but not as prominent in spinal cord
[41, 169]. There is considerable CTF heterogeneity in patient isolates
[133, 170, 171], making it hard to pinpoint a defined protease cleav-
age mechanism. Nonaka et al. found putative cleavage sites between
M218-D219 and E246-D247 in a MS analysis of insoluble TDP-43 from
FTLD brain and reported that such transfected CTF-GFP fusion pro-
teins caused aggregation and interfered with TDP-43 splicing activity
in neuroblastoma SH-SY5Y cells [172]. Caspases can cleave TDP-43 to
roughly appropriately sized CTFs [173-176]. Although apoptotic cas-
pase stimulation caused some CTF formation it did not appear to be
an indispensable factor for TDP-43 aggregation and cytotoxicity and
might even protect against full-length TDP-43 pathology [177, 178]. It
has to be noted that CTFs may not only be formed by post-translational
proteolytic processing, but can also arise from alternative splicing
[179, 180]. Less is known about the N-terminal fragment counterparts,
which appear to be more short-lived [181] but do have aggregation
propensity [182, 183]. While it is clear that truncated TDP-43 species
exist, their production mechanisms and (patho)physiological relevance
needs to be further established [184, 185].

5 | CONCLUSIONS AND OUTLOOK

TDP-43 is a multifaceted protein with crucial roles RNA translation
and processing and, in addition, it is the main component of protein
aggregates in both ALS and FTLD-TDP. The knowledge about TDP-
43 pathophysiology has exploded in the years after its identification
as a pathological marker of these diseases, but even now it is chal-
lenging to establish the effect of TDP-43 dysfunction in the different
cellular loci where it is involved. Traditional interaction studies iden-
tified several TDP-43 partners and thus helped understanding some
of its functions. New techniques such as proximity labeling are now
able to identify partners in highly dynamic contexts. The proliferation
of such studies, in combination with the already published interactome
studies, will expand enormously our knowledge of membrane-less
organelles and identify how TDP-43 impacts the dynamics of RNA
granules.

In addition to proximity labeling, the knowledge about protein
structures and molecular grammar of low valency interactions have
been expanded to a point where we can predict and to a certain
extent influence LLPS in cells. Future studies could establish how
different membrane-less organelles are organized, and how the inter-
action of their components can alter the physical characteristics. The
understanding of this process could prove extremely valuable for the
description of the molecular causes of TDP-43 proteinopathies and

could open the door to new therapies and diagnostic tools.
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