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ABSTRACT  
In recent years, brain research has indisputably entered a new epoch, driven by 
substantial methodological advances and digitally enabled data integration and 
modelling at multiple scales – from molecules to the whole brain. Major advances are 
emerging at the intersection of neuroscience with technology and computing. This new 
science of the brain combines high-quality research, data integration across multiple 
scales, a new culture of multidisciplinary large-scale collaboration and translation into 
applications. As pioneered in Europe’s Human Brain Project (HBP), a systematic 
approach will be essential for meeting the coming decade’s pressing medical and 
technological challenges. The aims of this paper are to: develop a concept for the 
coming decade of digital brain research, discuss this new concept with the research 
community at large, to identify points of convergence, and derive therefrom scientific 
common goals; provide a scientific framework for the current and future development 
of EBRAINS, a research infrastructure resulting from the HBP’s work; inform and 
engage stakeholders, funding organisations and research institutions regarding future 
digital brain research; identify and address the transformational potential of 
comprehensive brain models for artificial intelligence, including machine learning and 
deep learning; outline a collaborative approach that integrates reflection, dialogues and 
societal engagement on ethical and societal opportunities and challenges as part of 
future neuroscience research.  
Keywords: human brain, digital research tools, research roadmap, brain models, data 
sharing, research platforms. 

 
1. INTRODUCTION 
Research in the last decades has yielded impressive progress in our understanding of 
the human brain. In confronting brain complexity, researchers have studied the brain 
at different levels of organisation, from the processes at the level of single molecules 
and genes, synapses, cells and local circuits to the level of the brain as a whole organ 
with areas, nuclei and their networks, involved in a variety of brain functions as well as 
dysfunction.  
Neurological disorders are today the second leading cause of death after heart disease 
with 276 million DALYS106 (Disability-Adjusted Life-Years; Global Burden of Disease 
2019) (Feigin et al., 2019). In 2010, the total cost of brain disorders in Europe came to 
€798 billion (Olesen et al., 2012). To address such a challenge, and to develop more 
effective, causal therapies, we need to better understand the fundamentals of how the 
brain works. Hereby, we are inevitably confronted with the complexity of the organ and 
its sheer size but also with legitimate ethical and methodological limitations that do not 
allow all of the necessary datasets to be acquired directly from human material. This 
poses challenges for both empirical and digital research. Addressing such a challenge 
requires insights into the underlying structure of the brain, physiological phenomena in 
the organ and a theoretical understanding of neural mechanisms. 
Combinations of different methods, such as structural and functional magnetic 
resonance imaging (fMRI), magnetoencephalography (MEG) or 
electroencephalography (EEG) have successfully been applied to identify biological 
                                                
106 https://www.thelancet.com/gbd/about 
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correlates of sensation, motor control and executive function. However, closing the 
loops of understanding between cellular mechanisms and system-level effects requires 
multiscale neuroscience. Others emphasise that we also need to understand the 
‘semantics’ of how the various brain regions converse with each other (Douglas & 
Martin, 2007). As one example, according to (Buzsáki, 2019), global and local 
oscillations constitute the ‘syntax’ for communication within the brain. 
For many brain diseases, genetic mechanisms have been elucidated, with concrete 
relevance for diagnostics and therapy. Further, molecular and cellular mechanisms of 
several signal transduction pathways have been deciphered. Nevertheless, we are still 
lacking important insights into brain organisation, the relationship between brain 
structure, function, dynamics and behaviour, its reorganisation during learning and 
sleep, as well as the conditions that underlie cognition. Simulation and the potential of 
AI to decipher the organisation of consciousness are already part of neuroscience 
discourse (see e.g., (Dehaene et al., 2017; Graziano, 2019)). The arrival of machines 
with capacity to simulate consciousness could mean that the ‘hard problem’ of 
consciousness can be addressed by simulating the ‘easy problem’ of consciousness 
(Chalmers, 1995).  
While the multiscale architecture of the brain enables its resilience, adaptive capacity 
and computational power, this property also significantly contributes to the inter-
individual variability found at all levels of brain organisation. The degree of variability 
itself varies depending on the level, brain region and other factors (Zilles & Amunts, 
2013; Croxson et al., 2018). Understanding variability will contribute to improved 
diagnostics and personalised therapies and will facilitate elucidation of the 
mechanisms of cognitive functions. In terms of basic science, this is a prerequisite for 
understanding both evolution and divergent cognitive profiles (Thiebaut de Schotten & 
Forkel, 2022). 
Innovative neuroimaging, advances in microelectronics and optical methods have 
opened a window onto brain function at ever-higher spatial and temporal resolution 
and over ever-longer periods of time, resulting in large amounts of data. Cohorts of 
thousands of participants have been enrolled with large numbers of data sets, but at 
lower resolution; these have facilitated the identification of factors determining brain 
health and aging such as lifestyle, environmental factors, genetic makeup as well as 
the interplay between these variables. Such empirical research has resulted in 
significant volumes of highly structured data, a large amount of meta-data and the 
increasing need for data integration. 
So, what questions can already be answered based on the current data and where is 
additional work needed? Sydney Brenner stated during his 2002 Nobel lecture, 
‘Nature’s Gift to Science’(Brenner, 2003): ‘We are drowning in a sea of data and 
starving for knowledge. The biological sciences have exploded, largely through our 
unprecedented power to accumulate descriptive facts ... We need to turn data into 
knowledge, and we need a framework to do it’. Although a large amount of data exists, 
the research aims and methods used in individual laboratories are generally very 
diverse and data often cannot be directly compared with each other. Moreover, multi-
dimensional data, with high-quality, rigorous quality control and provenance tracking 
(e.g., functional imaging data with simultaneously high spatial and temporal resolution 
and broad coverage including omics data), are sparse.  
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Such data do usually not come from one lab, but from many. Therefore, it has become 
clear that defining and achieving ambitious scientific goals will require close 
collaboration between laboratories with expertise in different areas of neuroscience 
and complementary technical expertise, for example, specialists in image analysis, 
neuroanatomy, data analysis, computation, physiology, biomedicine, modelling, theory 
and computing. Several (neuro)ethical issues and questions regarding societal needs 
and value are relevant when studying the brain and brain diseases – recognition of this 
fact is leading to closer interaction between neuroscientists and researchers from 
humanities. Taken together, these developments enhance multidisciplinary 
collaboration, which needs to be appropriately organised and valued. 
Such close collaboration across different domains of brain research is a defining 
feature of big international projects like the HBP107. The HBP is a European Flagship 
project in the field of Future and Emerging Technologies that started in 2013 and 
concluded in 2023. In 2013, the HBP was launched with the aim of achieving a deeper 
understanding of the brain, a goal that aligned with the remarkable advancements in 
computing and digital technologies during that time (Markram et al., 2011; Amunts et 
al., 2016; Amunts et al., 2019). The HBP was one of the first large-scale brain research 
projects worldwide and played a pioneering role in transforming digital brain research 
into a discipline that is more collaborative, reproducible and ethically and socially 
responsible (Amunts et al., 2022). 
The HBP has developed foundations for scientific workflows that enable a FAIR 
(findable, accessible, interoperable and reusable; (Wilkinson et al., 2016)) comparison 
among multi-scale, multi-species experimental data and theoretical and data-driven 
models (Eriksson et al., 2022; Schirner et al., 2022). To give a few examples, research 
in the project has led to new insights into the mechanisms of learning (Bellec et al., 
2020; Cramer et al., 2020; Manninen et al., 2020; Göltz et al., 2021; Jordan et al., 2021; 
Masoli et al., 2021; Stöckl & Maass, 2021; Deperrois et al., 2022; van den Bosch et al., 
2022), visuo-motor control (Abadía et al., 2021; Pearson et al., 2021), vision (van Vugt 
et al., 2018; Chen et al., 2020; Svanera et al., 2021),  consciousness (Demertzi et al., 
2019; Lee et al., 2022), sleep (Le Van Quyen et al., 2016; Rosanova et al., 2018; 
Capone et al., 2019), spatial navigation (Bicanski & Burgess, 2018; Stoianov et al., 
2018; Northoff et al., 2020; van Beest et al., 2021), predictive coding and perception 
(Oude Lohuis et al., 2022) as well as language (Dehaene et al., 2015) and has  resulted 
in new theoretical concepts and analysis methods. A special issue of the journal 
Neuron108 was devoted to cognitive architectures in 2015. The aim was to bundle 
together research that is key for understanding and modelling human brain function, 
with many of the featured publications resulting from collaboration in the ramp-up 
phase of the HBP (Dehaene et al., 2015). 
The neuroscience community has been empowered to take advantage of the most 
recent developments in computing, simulation and artificial intelligence. Experimental 
data, computational models and tools, instruments and dedicated hardware such as 
neuromorphic systems have been created in the project and made available with the 
intention of significantly speeding up developments in brain medicine and research as 
well as providing a model for low-energy consumption for the semiconductor industry 
("Big data needs a hardware revolution," 2018). The consortium has developed 
                                                
107 https://www.humanbrainproject.eu/en/ 
108 https://www.cell.com/neuron/issue?pii=S0896-6273%2814%29X0043-7 
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EBRAINS as a collaborative research platform with the aim of bringing brain research 
to the next level through digital tools and computation and of further developing 
applications in medicine and neuro-inspired technologies. EBRAINS is now part of the 
European Strategy Forum on Research Infrastructures (ESFRI) Roadmap. ESFRI 
aims to support a coherent and strategy-led approach to policy-making on research 
infrastructures in Europe and to facilitate multilateral initiatives leading to the better use 
and development of research infrastructures, at the EU and transcontinental levels. 
EBRAINS is being developed as a sustainable research infrastructure – by scientists 
for scientists.  
To address ethical and societal questions, the HBP has incorporated principles and 
practices of Responsible Research and Innovation (RRI) into EBRAINS at the 
governance and research levels. The goal is to anticipate, reflect on and undertake 
network-wide action on these and future neuroethical, philosophical and societal and 
legal challenges  and proactively addressing issues on dual-use research of concern, 
misuse and commercialisation of EBRAINS research and its outcomes (Stahl et al., 
2021). Looking to the next decade, we here identify gaps in our knowledge of the brain 
based on what has been achieved and articulate research goals for the future. We 
believe that efforts towards achieving these goals will benefit from progress in digital 
brain research as well as recent developments at the interface of technology and 
computing. Digital brain research takes advantage of fields such as data science, 
artificial intelligence, computing, modelling and simulation, atlasing to enable progress 
in brain research, and to translate it into medicine and technology. These aims will also 
profit from the integration of neuroscience with neuroethics and multidisciplinary 
collaboration that engages with ethical and societal questions of need, acceptability 
and desirability. 
This manuscript has been developed in a participatory process. The work has been 
initiated by the HBP, and the entire research community was invited to contribute to 
shaping the vision by submitting comments. This more than two-years process resulted 
in substantial changes of the original document, a broader representation of research 
concepts, sometimes controversially discussed, and a focused discussion, e.g. with 
regard to the role of modeling and simulation. The authors converged in their 
formulation of common goals and steps to achieve them. While we do not claim that 
there is a ‘one-size-fits-all’ approach to addressing these aspects, we are convinced 
that discussions around the theme of digital brain research will help drive progress in 
the broader field of neuroscience.  
 
 

2. NEUROSCIENCE: STATE OF THE ART  
To understand what is missing and to motivate our approach for digital brain 

research, it is critical to consider where we have come from. To illustrate a few key 
steps on this path: modern neuroscience was born in the last two decades of the 19 th 
century, when the brain, hitherto basically regarded as an unstructured mass, became 
recognised as an intricate network of individual cells, the neurons (DeFelipe, 2009; 
Mazzarello, 2010; Shepherd, 2015). New concepts on the segregation of the brain into 
areas, which are relevant for a certain function, gave rise to microstructural brain maps 
at the beginning of the 20th century (e.g., (Brodmann, 1909; Vogt & Vogt, 1919)). 
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Systematic neuropathological studies contributed to a deeper understanding of the 
brain both in health and disease. The full-brain electroencephalograms of the 1930s 
paved the way for intracellular electrophysiological recordings in the 1950s and to a 
basic understanding of the physiology of neurons and synapses. The discovery of the 
concept of chemical neurotransmission in the 1930s and the subsequent 
pharmacological revolution in the 1950s had great implications for neurology and 
psychiatry (Dale et al., 1936; Vogt, 1954; Carlsson et al., 1957)  as well as for our basic 
understanding of how distributed computing networks like our brain can adapt flexibly 
to our changing world (Dayan, 2012). The Hodgkin–Huxley model was introduced in 
the 1950s to describe in mathematical terms action potentials (Hodgkin & Huxley, 
1952). Explorations of the physiology of the sensory (mainly visual) and motor systems 
in the 1960s and 1970s, and parallel advances in their anatomy, provided valuable 
insights, giving rise to an updated view of the brain that we nevertheless now 
understand was somewhat naïve and simplistic (Shepherd MD, 2009). The 1980s saw 
great advances in our understanding of neuronal membrane biophysics and the 
functioning of receptors and ion channels (Sakmann & Neher, 1984), while in the 1990s 
the advent of full-brain imaging techniques kickstarted a period of intense progress in 
understanding brain organisation, its relation to genes and environment as well as 
individual variability. Novel techniques, including molecular biology, genetics, 
pharmacology, psychophysics, neuroimaging and computational neuroscience, in 
combination with electronics and computing, have progressively enriched brain studies 
(Finger, 1994). 
The beginning of the 21st century saw the development of new tools to manipulate and 
study brain circuits such as optogenetics, which, through activation or silencing, for the 
first time allowed investigation of the role of specific neuronal types (Südhof, 2017; 
Deubner et al., 2019; Häusser, 2021; Emiliani et al., 2022). Novel high-resolution 
imaging techniques, such as two-photon calcium imaging employed in animal 
experiments, have vastly improved our understanding of cellular and subcellular 
physiology (Yang & Yuste, 2017; Toi et al., 2022). In parallel with two-photon imaging, 
wide-field calcium imaging emerged as a powerful tool in systems neuroscience, 
allowing recording from multiple brain regions simultaneously with a sufficient spatio-
temporal resolution to resolve behaviourally relevant information (Cardin et al., 2020; 
Ren & Komiyama, 2021b). The recent development of single-cell transcriptomics 
together with electrophysiological characterisation and morphological reconstructions 
have enabled researchers to obtain a solid basis of knowledge concerning the neuronal 
types in the mammalian brain (Fuzik et al., 2016; Gouwens et al., 2020; Chartrand et 
al., 2023; Lee et al., 2023).  
It has been proposed that the global properties of stimuli could be encoded by neuronal 
synchronisation (Brama et al., 2015). For example the ‘binding by synchrony’ (Gray et 
al., 1989) theory held that features, like the colour and motion of visual objects, are 
consolidated into coherent perceptions when the neurons encoding these features fire 
at the same time, with millisecond precision. Later studies found that binding by 
synchrony does not occur (Lamme & Spekreijse, 1998; Thiele & Stoner, 2003; 
Roelfsema et al., 2004); rather, features of objects are bound into coherent entities by 
object-based attention which, at a neuronal level, increases neuronal firing rates 
(Roelfsema et al., 1998; Poort et al., 2012). Morphological and high-density recording 
tools for millisecond characterisation of brain circuits in animals carrying out specific 
tasks may be within reach in a few years for hippocampo-cortical networks 
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(Klausberger & Somogyi, 2008; Lisman et al., 2017), motor cortex (Li et al., 2015), the 
barrel cortex (Staiger & Petersen, 2021), the basalo-cortical network (Gombkoto et al., 
2021)) and for some hypothalamic networks that organise sexual behaviours (Karigo 
et al., 2021).   
At the same time, our theoretical and conceptual understanding of particular brain 
functions has also become richer and more complex. Links between anatomy and 
function can be investigated at various scales (Zaborszky, 2021). Microscale 
morphological features include myelo-, cyto-, receptor architecture, cell density, 
synapses, single neuron spike pattern, axonal and dendritic arborisation patterns, 
spine density and gene expression, while physiological features range from ion 
channel biophysics to synaptic potentials or neuronal spike patterns. Studies have 
revealed area-specific synaptic organisation, receptor architecture and arborisation 
patterns that show a surprising complexity of connections, though it is often unclear 
how these features contribute to specific processing differences within and between 
cortical layers and areal differences (Palomero-Gallagher & Zilles, 2019; Amunts et al., 
2020; Haueis, 2021; Rockland, 2022).  
At the macroscale, researchers, using MRI, describe the brain in terms of  
interconnected cortical areas, such as the macroscale connectional pattern that 
underlies hierarchical processing in the visual system (Felleman & Van Essen, 1991). 
At this scale, the brain exhibits spontaneous and systematic patterns of slow, low-
frequency fluctuations in the blood oxygenation level-dependent (BOLD) signal 
measured in part in resting state functional connectivity studies (Raichle et al., 2001). 
However, the precise relationships between BOLD imaging and details of 
electrophysiological patterns are yet to be determined. Architectural types are 
hypothesised to determine hierarchical processing (Barbas, 2015; Bastos et al., 2015; 
Mejias et al., 2016; Vezoli et al., 2021). The connectivity of transmodal areas allows 
them to integrate multiple unimodal sensory representations into categorical and rule-
based areas (Mesulam, 1998; Pandya et al., 2015). Progress has been made in 
bridging connectivity between areas and the neuronal complexity of components within 
areas. Specifically, the functional imaging BOLD signal used in many human studies 
correlates best with local energy consumption (Viswanathan & Freeman, 2007), likely 
reflecting dendritic activity and interneurons mapped onto layer-spanning neurons and 
cortical layers. Such local microcircuit and dendritic activities serve important cognitive 
functions involving the comparison of internal models and top-down expectations with 
bottom-up information flow. These local computations might make a crucial 
contribution to the cellular mechanisms of conscious processing (Aru et al., 2020) and 
be missed in other electrical recording techniques measuring neuronal outputs. The 
understanding of layer-specific computation will be an important computational 
breakthrough that can be achieved by combining recording techniques sensitive to 
local microcircuit activity and dendritic activity (Larkum et al., 2018) with corresponding 
theoretical models of cortical computation (Sacramento et al., 2018; Haider et al., 
2021). 
The so-called mesoscale has been defined at the level of microcircuits, where 
researchers describe the brain in terms of different cell types and their connectivity and 
emergent dynamics. However, the relevant units remain a matter of debate. While in 
the 1970s, cortical columns of various sizes (minicolumns, hypercolumns, etc.) were 
thought to be functional modules (Szentágothai, 1978; Jones, 1983; Mountcastle, 
1997; Rockland, 2010), continued discussions propose a combination of basic circuitry 
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types, including feed-forward excitatory, recurrent feedback excitatory, feed-forward 
inhibitory, recurrent feedback inhibitory and inhibitory–inhibitory types (Nadasdy et al., 
2006). These circuits have been shaped through evolutionary pressure. Thus, it is 
important to understand the logic of evolving and maturing cortical circuits in order to 
identify specific circuits across species; this will tell us to what extent discrete 
anatomical features carry similar or dissimilar functions. An understanding of 
mesoscale circuits is important for properly linking micro- and macroscale descriptions 
of brain organisation, in order to properly infer macroscale behaviour from microscale 
features (Haueis, 2021). To this aim, wide-field fluorescence imaging can bridge the 
gap between neural activity at micro and macro spatial scales and provide 
understanding regarding how local circuits relate to larger neural networks (Cardin et 
al., 2020; Ren & Komiyama, 2021a). The limitations of individual techniques can be 
mitigated by combining different recording modalities (Allegra Mascaro et al., 2015); 
e.g., recent studies used wide-field calcium imaging with other imaging methods, such 
as two-photon calcium imaging and fMRI (Barson et al., 2020; Lake et al., 2020). In 
order to rigorously map the complexity of meso-scale architecture, as well as its 
relation to (cross-scale) connectivity (Axer & Amunts, 2022), it is now possible to image 
molecularly defined cell types in the same (full) human brain section as cellular 
architecture (Kooijmans et al., 2020). Such an approach allows for a better 
understanding of how different cell types connect, at a local, as well as at a global level.  
In parallel, a recent trend has been to focus on the geometry and dynamics of neural 
populations (Saxena & Cunningham, 2019; Ebitz & Hayden, 2021). One hypothesis 
motivating this approach is that (the most meaningful) neural activity takes place in 
low-dimensional state spaces or manifolds that capture a significant fraction of neural 
variability, and which can be identified by using dimensionality reduction techniques on 
high-dimensional neural recordings. Studying the geometry and dynamics of low-
dimensional state spaces is suggesting novel mechanistic hypotheses about how the 
brain controls movements (Churchland et al., 2012) and how it supports perceptual 
and cognitive tasks (Chung & Abbott, 2021). 
In order to connect the different scales and understand the rules of transition from one 
scale to the next, detailed models linking these spatial and temporal scales are 
necessary. In addition, biophysical models are needed that describe how physiological 
processes are captured by the measurement devices. For example, such models can 
be used to combine invasive electrophysiology that probes multi-unit activity and local 
field potentials of a neuronal population across cortical depths with high-resolution 
laminar fMRI (Havlicek et al., 2015): consisting of a microcircuit model including layer-
specific distribution of excitatory and inhibitory neuronal subpopulations describing 
electrophysiology, which then provides the input to the fMRI signal model, and 
generative models of the fMRI signal consisting of models of neurovascular coupling, 
haemodynamic response and physics of the BOLD signal. 
The increasing understanding of this complexity in brain organisation went hand in 
hand with the rise of computational conceptualisation of mental phenomena and the 
success of artificial neural networks. David Marr (Marr, 1982) recognised that, in 
addition to the level of neural implementation, there are two further levels of 
organisation: the algorithmic and the computational levels. The need to involve 
computational neuroscience has grown in parallel with computational capabilities, 
which have expanded in the 21st century to the point where computational 
neuroscience has become an essential companion of both experimental and clinical 
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studies. Apart from the modelling of concrete processes or computations, we can now 
consider more ambitious, larger, and integrative models. These models will inevitably 
shed light on the brain’s cognitive architecture and contribute to the development of 
more general artificial intelligence. Brain theories integrate the computational models 
within conceptual frameworks and formulate principles of their functioning grounded in 
information theoretical frameworks such as the Free Energy Principle (Friston et al., 
2006; Parr et al., 2022) or dynamical systems theory such as Structured Flows on 
Manifolds (Jirsa & Sheheitli, 2022)). In addition to modelling biological information 
processing, computational approaches enable large and complex data sets to be 
analysed efficiently, supported by artificial neural networks, theory, modelling and 
simulation, allowing the linking of brain structure and function. Simulation at cellular-
molecular-level and/or in system models can facilitate the testing of specific 
hypotheses or prediction of properties of brain structures, dynamics and even 
behaviour, while integrating findings from different researchers and obtained with 
various techniques. The integration of all experimental findings (models, texts, images 
and other data) into a unified knowledge framework is still necessary. This, in turn, is 
critical for translating findings from neuroscience into digital medicine, for proposing 
new strategies of intervention and for empowering neuro-inspired technologies that 
take advantage of a growing body of insights into perception, plasticity, learning and 
memory.  
Current state-of-the-art technologies to study processes across the entire spatio-
temporal spectrum are typically tailored to a specific species, genus, family, order, 
class or phylum. Methods developed at different branches of the phylogenetic tree 
(e.g., invertebrates) are only slowly being adapted for usage at other levels, e.g., 
rodents, and primates. Recently, an annotated atlas of all cells and cell types has been 
released for Drosophila (Li et al., 2020), and genetic specification of circuit changes 
have been studied that result in functional changes at the macro level (Handler et al., 
2019). This information may be important for understanding how macro-level state 
transitions may relate to individual differences in connectivity strengths (Taylor et al., 
2022). Integrating this knowledge from model animals and translating it to humans by 
accounting for the effects of evolutionary diversification through statistical integration 
of phylogenetic knowledge (e.g., (Felsenstein, 1985); for an early mention of the need 
for this approach), would allow researchers to bridge scales in the human brain 
noninvasively. 
Other examples of successful research in invertebrates are the exquisite reversible 
perturbation tools to dissect the functioning of micro- and macro-circuits (e.g., 
optogenetics, chemogenetics, pathway-selective perturbations), which were first 
developed in algae and further refined in invertebrates. These tools have gone on to 
revolutionise rodent research (Kim et al., 2017) but have only recently begun to be 
integrated in primate studies (Han et al., 2009; Gerits et al., 2012; Klink et al., 2021). 
Other species like zebrafish are being selectively employed to understand genetic or 
ontogenetic mechanisms that cannot be properly tested in mammals e.g.(Rastegar & 
Strähle, 2016). Targeted perturbations can also be introduced by CRISPR/Cas9 into 
induced pluripotent stem cell models of neurons or brain organoids.  
Currently, neuroscience references phylogeny (evolutionary history) when a trait is 
compared across two or more representative species. The identification of 
evolutionarily convergent traits in two distantly related species can be used to 
triangulate evidence of associations between related features (e.g., a brain structure 
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and its associated behavioural function). The identification of evolutionarily divergent 
traits that differ between closely related species is used to pinpoint the origin of 
species-specific specialisations, (e.g., a brain feature found in humans but not in other 
primates). In recent decades, genomic sequences for diverse species have formed the 
basis for an explosion of phylogenetic information, and with this has arisen a whole 
new statistical toolset for comparing traits across different species, called phylogenetic 
comparative methods.  
Phylogenetic comparative methods have risen with the availability of digital datasets 
and the possibilities of comparative neuroimaging (Friedrich et al., 2021). They will 
certainly provide new opportunities to computationally analyse the ever-growing body 
of comparative neuroscientific data. They can provide statistical tests for inferences of 
homology; they can model how well a trait is conserved in evolution and they allow the 
convergence of traits to be examined quantitatively in a larger group of taxa. As more 
complex brain data become available in digital form and for more species, it will be 
possible to model the evolution of brain organisation, neural circuits and cellular 
biology, along with genomic, epigenetic and transcriptomic mechanisms. For example, 
structural brain connectomes have now been investigated in 125 mammalian species 
in comparison to phylogenetic distances (Faskowitz et al., 2022). In addition, new 
possibilities are arising through studies of ancient DNA, which have so far been used 
to connect human-specific features of gene expression to neuroanatomy by 
investigating Neanderthal contributions to human DNA (Gunz et al., 2019). Some of 
the alleles that are at present associated with human neuropsychiatric disorders might 
have previously been linked to these adaptations that arose when Homo sapiens – and 
the groups we recently admixed with – adapted to different environments around the 
world over time (Benton et al., 2021). As extant data and comparative fossil records 
about neuroanatomy, genomes, physiology and behaviour continue to accumulate, 
new opportunities will continue to arise. Comparative data and evolutionary models 
could be used to develop AI by ‘reverse engineering’ the minds of humans (Sendhoff 
et al., 2009), as well as other species, by documenting the changes that occurred 
during their natural histories. 
Besides this evolutionary approach, neuroscientists study various model species at the 
systems level to understand specific principals of brain structure and function, aside 
from classic primate and rodent models. While there is much reliance on mouse 
models to understand the neurobiology of diseases and although mice are instrumental 
in tackling some diseases in humans, there are many human disorders for which they 
are not suitable models (Brenowitz & Zakon, 2015). For example, mice are commonly 
used to understand aging, but aged mice lack many of the biological features 
characteristic of human aging and diseases. Some model organisms do age in ways 
that resemble humans. Notably, cats and dogs recapitulate many aspects of human 
aging, and exhibit brain atrophy and cognitive decline with age (Gunn-Moore et al., 
2007; Landsberg et al., 2012; Youssef et al., 2016). Neural pathologies in the brains of 
some cats and dogs share similarities with those observed in Alzheimer’s disease 
(Head et al., 2000; Head et al., 2005). Broadening the range of model systems used 
to understand human health and disease could help us address challenging problems 
in human medicine. 
Although their brains are vastly different to those of mammals, avian models have 
become popular for investigating the fundamentals of complex cognition. This includes 
functions like memorisation of spatial routes or hundreds of food caches, problem-
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solving, social altruism, theory-of-mind and multi-tasking (Emery, 2006; Güntürkün & 
Bugnyar, 2016; Balakhonov & Rose, 2017). Birds have outstanding cognitive 
capabilities, and songbirds possess a song system that is comparable to the human 
speech system. This means that birds are so far the only animal model for studying 
the development and processing of speech information in the brain, which has greatly 
stimulated research within the field of comparative neuroanatomy and pallial evolution 
(Brenowitz et al., 1997; Brainard & Doupe, 2002; Jarvis, 2004; Nottebohm, 2005; 
Jarvis, 2019). Further, after more than 365 million years of separate evolution birds 
have evolved a different pallial (neocortical) brain organisation compared to mammals 
but show similar connectivity between relevant brain areas, neurochemical features, 
neuron numbers and gene expression profiles of cells that are functionally related to 
cognition (Herold et al., 2011; Shanahan et al., 2013; Herold et al., 2014; Colquitt et 
al., 2021; Kverková et al., 2022; Ströckens et al., 2022). Such comparisons can yield 
basic insights into the links between brain structure and function and offer the 
unprecedented chance of gaining deep conceptual insights into fundamental brain 
functions. These studies could potentially identify a core of identical neural 
mechanisms in the brains of birds and mammals that constitute hard-to-replace 
components of advanced cognition (Stacho et al., 2020). Large-scale comparative 
research is key to understanding cognition and provides unique tools for deciphering 
the neuronal mechanisms underlying normal and pathological human brain 
functioning.  
However, to what extent humans/primates evolved unique structural properties 
remains an open question. For example, the number and complexity of pyramidal cells, 
interneurons and glial cells as well as specific brain network properties may vary 
between human and non-human mammals (Benavides-Piccione et al., 2020; Berg et 
al., 2021; Fang et al., 2022). Those studies included only a small selection of 
mammalian species, and it is not foreseeable if these differences will persist when 
additional species and/or parameters are considered. Furthermore, although 
previously thought to be unique to humans (Balsters et al., 2010), the neocerebellum 
likely expands predictably in all primates (Magielse et al., 2023). Methods have now 
been developed that allow us to examine human brain organisation and function at a 
level of detail close to what we can obtain with animal models (Eyal et al., 2018; 
Montero-Crespo et al., 2020).  
Although by far not comprehensive, this overview of modern neuroscience illustrates 
several important points: 1) Advances in neuroscience are not only the result of 
conceptual advances but are tightly linked to new methods and technologies; 2) New 
techniques allow a better understanding of the brain, but at the same time open the 
door to a new level of complexity and open up new questions; 3) There is an increasing 
need for integration of knowledge and collaboration across different domains, scales, 
species and models.  

 

3. INSTRUMENTATION  
Many new tools are facilitating profound insights into the brain’s structure and function; 
further, researchers also have at their disposal new capabilities and considerable 
computational power to analyse data and simulate brain function. Such tools are 
provided by different platforms and consortia world-wide.  
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We here focus on EBRAINS: a dedicated distributed digital research infrastructure for 
neuroscience. EBRAINS109 gives access to data, tools, methods and theories that 
were previously fragmented and distributed between different labs, in a joint, digital, 
open, interoperable platform. It has been developed in the HBP and operates 
according to FAIR data principles (Wilkinson et al., 2016). EBRAINS encompasses 
services for the sharing of neuroscience data and models, the multi-level atlas of the 
human, atlases of rodent and non-human primate brains, simulation, brain-inspired 
technologies, medical data analytics as well as dedicated tools for collaboration. In 
addition, it incorporates innovative neuromorphic computing and allows for the 
execution of experiments in virtual robots. Fenix110, an infrastructure coordinated by 
experts from leading European centres for high-performance computing, greatly 
facilitates research with high computing and storage demands. Through Fenix, 
neuroscientists can also collaborate with other research communities to jointly develop 
new software and solutions in the broader domains of data- and computationally-
intensive research. This is important because it creates synergies where different 
communities have similar questions (e.g., visualisation of large data sets, fast and 
interactive access to data), and it helps to use resources more efficiently.  
The EBRAINS research infrastructure attracts a broad and very heterogeneous 
community of users, ranging from experienced application/service developers and 
senior neuroscientists to young researchers and students. Collaborative work and co-
creation among stakeholders and users will be an essential part of the EBRAINS 
community and guide its development. The platform puts significant emphasis on the 
ease of use of its tools, and the interface complexity is balanced with user needs. This 
facilitates collaborative work, by combining tools to form computational workflows that 
seek solutions to diverse problems (e.g., (Fothergill et al., 2019; Eriksson et al., 2022; 
Wagner et al., 2022)). In that sense, EBRAINS is changing the research paradigm 
scientists use to study the brain, both for large-scale neuroscience and for individual 
projects. 
Computational workflows should be characterised by accessibility, shareability, 
automation, reproducibility, interoperability, portability and openness. In this context, 
of particular importance is the use of the Knowledge Graph111 , which   includes a multi-
modal information representation as well as the following ‘independence’ features of 
EBRAINS workflows: 

 Independence of tools and services from the workflows in which they are used. 
The inputs of tools and services are parameterised so that they may produce 
different outputs depending on other tools and services with which they are (re-
)used in diverse workflows.  

 Independence of workflows from the underlying infrastructure in which they are 
executed:  the Common Workflow Language (CWL)112 is being adopted for 
describing workflows in a common, standard fashion, offering transparent 
execution in infrastructures with different requirements, dependencies and 
configurations. 

                                                
109 EBRAINS: https://ebrains.eu/ 

110 Fenix: https://fenix-ri.eu/  
111 https://search.kg.ebrains.eu/112 https://www.commonwl.org/ 

112 https://www.commonwl.org/ 
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 Independence of workflows from the underlying workflow management system. 
Several such systems are compatible with CWL for executing workflow steps, 
monitoring their execution, handling failures, automatically fetching logs and 
outputs and other relevant actions. 

This provides a technological basis for a new approach to international, collaborative 
neuroscience and represents a large-scale interface for collaborative projects, e.g., 
organised in the International Brain Initiative (IBI)113 and the NIH BRAIN Initiative 
(Litvina et al., 2019). Along the same lines, the European EBRA consortium developed 
a Shared European Research Agenda to increase the impact of brain research, 
advance basic, translational and clinical brain research, improve the lives of persons 
with brain disorders, enable brain innovation and address societal and economic 
challenges in Europe and globally 114 . Others have used the term Knowledge 
Representation (KR) to emphasise the need for a correct, robust, and verifiable 
representation of the vast neuroscience corpus (Di Maio, 2021).  
To provide another example: recognising the importance of digital brain research and 
the potential benefits and value-driven impact for cognition, behaviour and mental 
health, Malaysia has established the Malaysia Open Science Platform (MSOP)115 as 
an initiative to strengthen science, technology and innovation in Malaysia itself as well 
as outside the country’s borders. Going beyond the brain, on an even broader scale, 
the Human Reference Atlas (Borner et al., 2021) and the European Commission’s 
Virtual Human Twin (VHT) initiative (driven by the EDITH coordination and support 
action; https://www.edith-csa.eu/) aim to develop the necessary infrastructure to 
facilitate the creation of integrated multiscale multi-organ twins of the whole human 
body. Such twins may benefit from the lessons learned and the tools developed in 
EBRAINS.  
 

4. WHAT IS MISSING?  
Deeper insights into brain function and dysfunction are not only now possible but are 
also urgently needed. Neurological and psychiatric diseases create a significant 
burden for those directly affected, carers, relatives and society. Achieving progress in 
these areas is additionally motivated by philosophical questions of knowing and 
understanding our own nature, consciousness and cognition. These different 
perspectives have to come together for a better understanding of the basis of brain 
health and the border between brain life and death. Ethical, philosophical, legal and 
regulatory, cultural and political challenges, which are intertwined, will need to be 
addressed concomitantly.  
Progress in brain medicine is tightly linked to advances in basic research, but some 
fundamental questions remain open. To name a few examples, the formation of 
memories and the basis of conscious perception, the interplay of electrical and 
molecular-biochemical mechanisms of signal transduction at synapses, the role of glial 
cells in signal transduction and metabolism, the role of different brain states in the life-
long reorganisation of the synaptic structure, the relationship between dynamical and 
cognitive models or the mechanism of how cell assemblies generate a concrete 
                                                
113 International Brain Initiative: https://www.internationalbraininitiative.org/ 

114 https://www.ebra.eu/sebra/ 

115https://www.akademisains.gov.my/mosp/ 
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cognitive function are all important aspects that remain to be characterised. Moreover, 
the specific, dynamic consequences of variations in brain organisation, including cyto-
, myelo-, chemoarchitecture and interregional connectivity, are not yet well understood, 
but ultimately influence the local ratio of excitatory to inhibitory cell activity, resulting in 
a variable balance across different brain regions 
2019; Kringelbach et al., 2020; Barbero-Castillo et al., 2021; Jancke et al., 2022).  
Our current understanding of the mechanistic operations which subserve cognitive 
functions such as memory or decision making, is limited by the scale and precision of 
existing technologies – simultaneous microscopic recordings are limited to a few brain 
regions, while full-brain imaging lacks the spatial and/or temporal resolution needed. 
Computational models, which could help to fill this gap, are likewise at an impasse: 
mechanistic models of cognitive functions focus almost exclusively on microscopic 
scales (Amit & Brunel, 1997; Wang, 2002; Mante et al., 2013), while full-brain models 
are largely oriented to replicating large-scale neural dynamics (Deco et al., 2011; 
Breakspear, 2017). Novel modeling approaches must be developed to close this 
schism in the field, either by introducing simplified cognitive functionalities in large-
scale brain models (Mejías & Wang, 2022), by extending cognitive models such as 
recurrent neural networks to multi-region frameworks (Yang & Molano-Mazón, 2021) 
or by increasing the biological plausibility of existing cognitive multi-region models 
(Dora et al., 2021). 
The need for interaction with the brain (both ‘reading’ and stimulation/manipulation) 
originally driven by clinical requirements, has opened novel and expanding fields such 
as the assessment of awareness in disorders of consciousness (e.g., unresponsive 
wakefulness syndrome, locked-in syndromes), brain-machine interfaces, cognitive 
enhancement, sensory restoration and sense-expanding technologies, which have 
relevance beyond the medical sector for society at large. There is also a need for brain 
recordings of high temporal and spatial resolution and activity control that are at the 
same time minimally or non-invasive. These technological advances require 
interdisciplinary work from neuroscience and areas such as micro- and 
nanoelectronics, optics, light-controlled drugs, nanorobotics, new materials (e.g., 
graphene), etc. It is to be anticipated that advances in security, biocompatibility, 
reactive changes in the brain (e.g., gliosis, cell death), signal-to-noise ratio, problems 
related to invasiveness (surgical, infections) and closed-loop control of brain function 
will be made soon; these advances will bring with them consequences in terms of legal 
and ethical issues. 
While progress in these fields has been impressive, a comprehensive understanding 
of underlying processes requires an integration of each system (e.g., visual, 
sensorimotor) with the rest of the brain, with the body and with the environment. 
Furthermore, it requires integration of molecular, subcellular, cellular and systems 
levels, to reach a ‘multiscale’ understanding that incorporates the emergent properties 
of all these complex relationships. These levels cannot be fully understood by 
considering only parts of the system. Each level, when it malfunctions, may result in a 
large variety of neurological and neuropsychiatric diseases. In order to understand the 
process holistically, one needs to understand all the individual steps, which is today in 
many cases difficult or impossible. It is necessary to approach the individual steps at 
the relevant level of abstraction and to develop a theory, and, in addition, to have 
access to the relevant data at the different levels of brain organisation through a multi-
level structural and functional atlas. 
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The newest computational bottom-up models are now able to integrate microscopic 
features, such as those of specific ion channels, synaptic receptors and 
neuromodulators and evaluate their impact at the level of cellular subpopulations. 
Recently, this approach was even extended to the whole brain-level, by studying the 
effect of molecular targets of anaesthetics such as propofol, and their impact at the 
level of large-scale activity. For example, changing K+ conductance (Dalla Porta et al., 
2023), or the kinetics of inhibitory (GABA-A) synaptic receptors, can induce a switch of 
brain activity to synchronised slow-waves, similar to the effect of anaesthetics116. This 
is an example of an area where computational models can contribute.  
A full causal understanding of how behaviour and cognition are produced through 
cortical computation requires the combination of both bottom-up and top-down 
approaches. The paradigmatic example is the ventral visual stream. While deep neural 
networks for object recognition have been inspired by the architecture of the visual 
system, these networks also provide an improved functional model of the visual system 
itself.  In fact, the statistical properties of model neurons in the deep networks are 
closest to those of real neurons recorded in the brain (Yamins & DiCarlo, 2016; Zhuang 
et al., 2021). It remains a challenge to reproduce this functionality of the top-down 
models with more detailed bottom-up models. 
This type of interplay between experimental measurements and modelling predictions 
is very powerful and has led to impressive advances in understanding network-level 
phenomena such as oscillations, waves. (Breakspear, 2017; Tort-Colet et al., 2021; 
Marder et al., 2022). The extension of such an approach to the level of the whole brain, 
however, is more challenging because of the high level of complexity involved, as well 
as the still-insufficient temporal and spatial resolution of non-invasive human imaging 
and recording techniques. Linking these models with imaging requires a deep 
biophysical understanding of the different signals involved. This is particularly relevant 
when computational models are used to quantitatively predict cognitive function and 
aging (Jonsson et al., 2019; Charvet, 2021; Charvet et al., 2022; Heckner et al., 2023), 
e.g., based on imaging data of patients and healthy subjects and for building precise 
loops between computational models and clinical data, which should ultimately lead to 
a better understanding of neurological diseases. 
Network and other models are also tools to investigate how physiological mechanisms 
can be perverted in pathological conditions, e.g., where microscopic changes down to 
modifications at the protein level can lead to aberrant behaviour or clinical symptoms 
(Mäki-Marttunen et al., 2019). Among the best understood cases are epilepsy 
disorders, where several microscopic targets have been identified, leading to 
abnormally high excitability. Another example comes from a multifactorial causal model 
that included neurotransmitter receptor data and enabled the prediction of variance in 
the clinical severity of Alzheimer’s disease symptoms, thus further supporting the value 
of creating personalised brain models, as well as the importance of their enrichment 
with data arising from multiple modalities (Khan et al., 2022). In contrast, the tissue 
pathologies and brain signals of many other pathologies such as schizophrenia are not 
well understood, and computational models may have an important role in identifying 

                                                
116work in progress in showcase 3 of the HBP: https://www.humanbrainproject.eu/en/follow-
hbp/news/2022/06/20/how-ebrains-used-investigate-disorders-consciousness/  
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mechanisms and also in predicting potentially informative macroscopic and/or 
behavioural features.  

Box 1: Technological, methodical and computational challenges  
Brain research poses enormous technological and computational challenges for brain 
interfacing, analysis and mechanistic understanding, data interpretation and modelling 
of brain processing. To cite but some examples: 

 The complexity of data (multi-level brain organization, hierarchies, parallel 
information processing, redundancy, electrochemical processing, etc.). A key 
aspect of this complexity is the relationship between different scales that speaks to 
the level of granularity (and accompanying data) that is most apt for elucidating 
these relationships. One approach from physics is the notion of ‘renormalisation’; 
namely, the conservation of laws from one scale to the next (sparse coupling, 
hierarchical dynamics, computational principles, etc.). In addition, measurements 
at all relevant scales are required to obtain information on how low-level states 
combine to generate states at higher levels, and to account for neurodegeneracy, 
i.e., the propensity for different system configurations to support the same or similar 
functions.  

 The multitude of data formats and data models arising from the use of diverse 
hardware, software, and analytical approaches. Data sourced from various 
researchers and laboratories often display disparities, creating hurdles for 
integration and interoperability. Promoting the adoption of standards and 
harmonisation procedures, including the utilisation of standardised brain atlases for 
spatial referencing, is essential. These measures play a pivotal role in facilitating 
data reuse and the combination and utilisation of data across different contexts.  

 Brain data derived from human subjects can undergo de-identification but may not 
achieve anonymisation (rendered impossible to trace back to the individual). 
Consequently, there is a demand for secure data storage services that offer 
controlled or restricted access to facilitate data reuse. In these protected storage 
systems, making data discoverable involves openly sharing anonymous metadata, 
a practice currently employed by EBRAINS. 

 Many behaviours and some mechanisms are unique to humans, but a large 
proportion of data is not directly accessible and remains unknown (e.g., chemical 
reaction kinetics at the cellular level cannot be measured in the living human brain). 
Comparative approaches studying animal brains as well as modelling and 
simulation are strategies to overcome this problem. 

 Intersubject variability and diversity. It is necessary to integrate information from 
diverse human populations for personalised medicine into atlases, databases and 
research. 

 The specific spatial and temporal resolution of data sets, given the multi-scale 
nature of brain spatial and temporal activity. Scale integration is challenging (from 
micro- and nanometre scales, through meso- to macroscale) as is the capture of 
brain dynamics. This requires representation of different scales in a common 
framework according to the topography of the findings, i.e., in multi-level and multi-
scale atlases and models that account for the temporal domain. 

 The large size of ‘subsystems’ (e.g., large molecules such as neurotransmitter 
receptors with many atoms and complex, dynamic structures, large networks, 
whole-brain perspective as compared to regions of interest, large cohorts). 
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 The wide spectrum of response patterns, dynamics, plasticity and behaviour of the 
system in pathological conditions. 

 The changing nature of the system, which manifests plasticity at different spatial 
scales (from dendritic spines to large networks; processes such as spike 
adaptation, long-term potentiation, long-term depression) or neurodegeneration 
after lesions.  

 The accuracy and reliability of predictions and analyses, applicable to individual 
subjects, which is particularly critical for translating applications into brain medicine. 

 The lack of a comprehensive brain theory, or a selection of competing theories.  
 The lack of integrability and documentation of extensive brain collections using 

modern experimental approaches, including those over 100 years old in Europe 
and worldwide, to make better use of historical brain preparations and data. These 
number in the many tens and hundreds of thousands of specimens and, for the 
most part, are not yet digitised and/or available via web-based tools. Some of them 
include rare species or brains obtained under conditions that cannot be reproduced 
any more (e.g., untreated patients with brain disorders). Making this digitally 
accessible for researchers worldwide would be of significant benefit to evolutionary, 
comparative and also clinical research; however, this aspiration is linked to 
significant challenges in data exchange, storage and security. First attempts are 
underway to combine post-mortem brain dissections with in vivo imaging in a digital 
framework, e.g., https://bradipho.eu/ . 
 

5. ETHICAL AND SOCIETAL QUESTIONS AS DRIVERS OF 
RESPONSIBLE DIGITAL BRAIN RESEARCH   

Digital brain research should be driven by scientific curiosity and a desire to promote 
society’s best interests; further, it should reflect societal priorities, including a better 
understanding of the brain, the development of better diagnostic tools and more 
effective treatment of brain diseases. In this section, we briefly suggest how we can 
ensure that societal concerns are addressed and reflected in the research and its 
outcomes and describe approaches for guaranteeing that research and innovation 
processes are carried out responsibly. Future research programmes must integrate 
anticipatory practices, neuroethical reflection, multi-stakeholder and citizen 
engagement and support ongoing compliance with current legislation, regulation and 
good research practice. This includes careful consideration of the role of gender and 
diversity in data generation and governance of research, attention to potential dual-
use research of concern or misuse of neuroscientific findings as well as reflection on 
the ethical sustainability of the research, its impact on human rights and its long-term 
societal and political implications. Additional social and legal issues to be considered 
in relation to digital brain research include those raised by data protection and the 
European Commission’s General Data Protection Regulation-compliant data 
governance (GDPR), social desirability, acceptability and sustainability of digital brain 
models and issues raised by the possibility of advanced artificial cognition, brain-
inspired computing and neurorobotics research, among others. In one example, the 
intersection of neuroscience and technology is likely to lead to new approaches to AI. 
In digital brain research, the emphasis should not only be on amassing vast amounts 
of data but also on ensuring a diverse representation, encompassing factors such as 
sex, age, and ethnicity. This inclusivity extends to researchers, practitioners, and 
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stakeholders involved. By embracing diversity, the field can effectively address issues 
related to biases in AI and proactively engage with emerging concerns arising from 
innovative approaches, technologies, and applications. 
The framework of Responsible Research and Innovation (RRI) defines a 
multidisciplinary approach to tackling the ethical, philosophical, societal and regulatory 
challenges that accompany the vision of future digital brain research. Furthermore, 
RRI-inspired research and practices can be useful in building a future where 
responsible digital brain research is proactive in its recognition of existing and 
emerging societal and ethical challenges.  
Digital brain models are a key concept and model for future brain research. They raise 
significant philosophical questions (e.g., what are the limits of access of brain–machine 
interfaces to other brains?) (Evers & Sigman, 2013) and ethical and social issues (e.g., 
are there potentially problematic applications of the technology? Who is involved in the 
analysis and decisions on potential applications? How would we like to use such 
models in society?) (Evers & Salles, 2021). Conceptual clarity is a prerequisite for 
informed debates on the ethical issues raised by digital brain research. Approaching 
such questions through the framework of RRI includes reflection on the meaning and 
adequacy of the concepts involved, engagement and dialogue between different 
disciplines in neuroscience research, including philosophers, ethicists and social 
scientists with societal stakeholders like policymakers, interest organisations and the 
public.  
 

Box 2: Ethical questions 

 

Acknowledgement of ethical questions that arise as a consequence of digital brain 
research, especially by digital twins. 

 Privacy. Digital twins are constantly updated with real-world data. This data can be 
identifying, particularly when imaging, genetic and clinical data is combined. Even 
‘siloed’ sources of information, in great enough quantity, can prove identifying, 
especially in cases of rare diseases. Increasingly, it appears that promising de-
identification may not be possible in the face of big data (Choudhury et al., 2014). 
It is crucial that individuals be informed of privacy considerations during the 
consent process and that they understand that the identification risk may increase 
over time (White et al., 2022). As a community, and in collaboration with governing 
agencies, policies will need to be established regarding these aspects in the future. 

 ‘Mind-reading’. Concerns about privacy are amplified given that much of digital 
brain research investigates emotion, perception, memory and mental states: 
realms that are often considered sacrosanct aspects of inner life. Already, brain 
imaging (alongside various physiological measurements) has been shown to be 
predictive of behaviour at the population level (Bell et al., 2019; Talozzi et al., 
2023). Digital brain models have the potential to be even more powerful: for 
instance, they may suggest how to enhance particular brain states, in addition to 
merely classifying them (Ligthart et al., 2021) . 

 Malfeasance. It is increasingly recognised that digital brain research can be ‘dual 
use’. It may equally cause harm and bring benefits. 
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6. GLOBALISATION OF BRAIN RESEARCH 
 

The proliferation of digital technologies in brain research has expanded since the dawn 
of the 21st century and analysing multi-modal data from many thousands of brains, 
made openly available through public repositories (e.g., UK Biobank) or global 
networks (e.g., ENIGMA, HCP) is possible. Of course, access to dizzying amounts of 
data means nothing without the means to convert these data into knowledge and, 
ultimately, into a better understanding of the brain’s complex machinery in normal 
behaviour, in development or aging and in brain disease. Accordingly, we have seen 
the rise of complex generative models that track the spatiotemporal progression of 
brain states (Iturria-Medina et al., 2018; Young et al., 2018; Vogel et al., 2021) by 
combining genetic and phenotypic information across multiple time points. AI 
strategies are playing an increasingly important role in classifying massive cohort data 
into rationally defined sub-groups that may be amenable to customised interpretation, 
e.g., polygenic risk scores of behavioural predisposition or stratification of 
pharmaceutical clinical trials. Finally, such approaches offer the potential for 
personalised management or medical intervention. 
However, the search for ever more subtle and early biomarkers of incipient changes in 
brain state often demands ever larger aggregates of data to tease out the factors that 
are associated with, or perhaps cause, those changes. This search brings with it the 
perennial conflict of homogeneity versus representation. While there is little doubt that 
‘big data’ approaches applied to large public data repositories, e.g., ADNI, PPMI, UK 
Biobank etc., have provided us with hitherto unmatched insight into the general nature 
of the human brain’s mechanisms and circuits, such cohorts are largely drawn from 
Western countries and are not representative of the global population.  
The effectiveness of data repositories requires sufficiently rich and diverse data to 
ensure that outcomes of research and the innovations informed by these outcomes 
can be generalisable to diverse populations and contexts globally. Sex differences, 
age, socioeconomic status, ethnicity and other factors contribute to individual 
differences in neural structure, function and cognitive performance (Dotson & Duarte, 
2020) as well as differences in disease prevalence, recovery and survival rates 
between demographic groups (Zahodne et al., 2015; Sterling et al., 2022). Moreover, 
differences worldwide exist regarding the reporting of racial demographic information 
in studies (Goldfarb & Brown, 2022). At the same time, initiatives in Low- and Middle-
Income Countries (LMICs) have steadily grown for the diagnosis and prevalence of 
brain disorders and mental health issues, e.g., the ASEAN region. There is a need for 
global collaboration including the collection, dissemination and analysis of well curated, 
deeply phenotyped and genotyped datasets from LMICs to identify similarities and 
differences among different global sub-populations. It is not possible to obtain 
statistically reliable inference about such comparisons without access to nationally 
representative cohorts from different countries, a requirement beyond the reach of 
individual laboratories. As the repeated use of existing datasets leads to their inevitable 
decay (Thompson et al., 2020), the problem of representation cannot be addressed 
merely as an afterthought but requires urgent prioritisation. 
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In the coming decade, as open data-sharing initiatives (UK Biobank, OpenNeuro, 
CONP, EBRAINS, etc.) expand globally, scientists' evolving views on data 
management and sharing (Donaldson & Koepke, 2022), along with shifting 
expectations from funders and journals (see, e.g., Editorial in Nature Neuroscience 
("How we promote data sharing," 2023)), will likely result in a significantly increased 
availability of diverse data for the global community. This will bring a new level of 
awareness of the associated and causal factors that give rise to brain and behavioural 
differences among global populations. Such data-sharing platforms, many of which 
have now been in existence for over a decade, have reached a level of technical 
advancement such that they already support open data-sharing across many 
countries. 
However, there is work to be done in developing a clear and seamless interoperability 
across diverse platforms, ensuring that end-users can engage without delving into 
intricate technical underpinnings. The challenge is not merely about providing 'data'; 
the emphasis lies on delivering data that is both valuable and interpretable, complete 
with provenance that adheres to FAIR data-sharing principles (Wilkinson et al., 2016). 
Technically, achieving data interoperability, providing data descriptors and protocols, 
and adhering to metadata standards not only enhance the value and usefulness of the 
data but also contribute to building a stronger, collaborative, and more efficient 
research ecosystem. However, the imperative for access to meaningful and actionable 
data also introduces a myriad of challenges related to data governance and ethics. 
These practices are still evolving across different constituencies, with diverse and 
sometimes incompatible frameworks globally (Eke et al., 2022). Differences also exist 
regarding the reporting of racial demographic information in studies (Goldfarb & Brown, 
2022), and the technical capacity to generate and process data, funding for data 
collection and other socio-cultural factors. So far, datasets from regions in Africa and 
Latin America are often not part of global brain research and innovation discourse. 
The next decade will see a pressure to harmonise the different data governance and 
ethics frameworks in Europe (e.g., GDPR), North America, Asia, Australia and Africa, 
to foster the wider dissemination of brain data within an Open Neuroscience global 
community. More attention should be paid to capacity building, increased reporting of 
demographic information, funding programs and finally awareness campaigns focused 
on data generation, processing and sharing in low- and middle-income countries. 
Arguably the most important aspect of the globalisation of brain research will be the 
‘democratisation’ of brain research. Rather than being simply sources of cohort data 
that are analysed and published by scientists in High-Income Countries, we anticipate 
a growing presence of LMIC scientists in the brain research enterprise. This 
democratisation is a natural evolution from the increasing access to advanced analytic 
workflows that are available through current data analytic portals (e.g. CBRAIN 
(https://cbrain.ca/), EBRAINS (https://ebrains.eu/), BrainLife (https://brainlife.io/). Such 
portals allow researchers anywhere in the world to run complex analyses on large 
datasets that are resident elsewhere and remove the logistical, administrative and 
technical barriers that have hindered LMIC scientists from participating fully in the brain 
research community. Further, the redistribution of derived data becomes possible by 
combining data sharing and analysis platforms. The sharing of results is essential to 
minimise scientific redundancy, maximise reproducibility and foster accessibility of 
scientific analyses to LMIC environments. With growing awareness of the role, that 
analytic decisions play in learned models of the brain (Botvinik-Nezer et al., 2020), the 
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dissemination of derived data allows for both iterative and collaborative approaches to 
scientific exploration and removes key barriers to entry. Such a vision also brings with 
it a host of administrative factors to be worked through, e.g., academic recognition, 
promotion, mentorship, etc., but these issues are already topics within the current 
Open Neuroscience debate. Adding a globalisation component introduces scaling and 
logistical challenges, e.g., language, local governance regulations, but does not 
change the fundamental issue, which is the tension between data privacy and open 
science. We anticipate that, as the technical challenges are resolved, the vision of 
global neuroscience integration will become a reality over the next ten years. 
 

7. BRAIN MODELS AS ENABLES OF FUTURE BRAIN RESEARCH 
The accelerated development of information and communication technologies in the 
past two decades has not only supported the development of simulation and machine 
learning technologies but has also made data and models interoperable within a 
common ecosystem leading to novel types of brain models. Directly tapping into the 
results stemming from basic research on the brain, brain simulation is expected to play 
a key role in elucidating essential aspects of brain processes (by demonstrating the 
capacity to reproduce them in silico), such as decision-making, sensorimotor 
integration, memory formation, etc. While mindful of some of the ethical and 
philosophical issues they raise, one may also envision the potential use of such models 
and simulations to address specific questions in brain research. From there, it is easy 
to envision how generic brain models can be customised to capture some of the distinct 
features of a given patient’s brain. For example, an individual’s structural and functional 
brain imaging data may constrain a generic digital brain model and render it subject-
specific, thus enabling its use as a personalised analysis template or in silico simulation 
platform.  
A concrete instance of such an approach is the Virtual Epileptic Patient, wherein 
neuroimaging data inform in silico simulations of an epileptic patient’s brain to support 
diagnostic and therapeutic interventions, clinical decision-making and prediction of 
consequences (Wendling, 2008; Jirsa et al., 2017; El Houssaini et al., 2020). With the 
overall trend in computational neuroscience, various models of epileptic activity are 
being built based on knowledge regarding the relevant underlying neural circuits. The 
models often explain the network-level observation of epileptic seizures as an 
emergent hyper-synchronous/high amplitude rhythmic state of network of neurons or 
neural population. Multilevel atlas data represent another data source that can further 
inform personalised brain models in instances where data cannot be directly obtained 
from that subject (Amunts et al., 2022). 
Such personalised ‘virtual brains’ can be seen as a stepping-stone towards something 
even more theoretically and technically, and possibly ethically challenging, but also 
better adapted to the ever-changing nature of brain activity across all time scales. The 
logical culmination of personalised brain simulation can be seen in a model that is 
continuously informed and updated by real-world data, a type of model referred to as 
a ‘digital twin’. The concept of the ‘digital twin’ in this context needs to be carefully 
defined to avoid obscuring the limitations of the approach and to avoid creating 
unrealistic expectations of exact fidelity or even counterproductive hype (Evers & 
Salles, 2021). Historically, the concept of the digital twin originated in the realm of 
industry and manufacturing (Grieves & Vickers, 2017; Grieves, 2019), and comprises 
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three components: the physical object, its virtual counterpart and the data flow back 
and forth between the two. Empirical data measured for the physical object are passed 
to the model, and information and processes from the model are passed to the physical 
object. Today, the term ‘digital twin’ is widely used beyond its origins in the industrial 
domain and is now applied in many areas of research, including in biological and 
medical fields, although the concepts behind this term may differ.  
In manufacturing, the digital twin is more than a general simulation model. It is the 
specific instance of the general model for an individual object fed with empirical data 
from that specific object, e.g., an airplane engine in the industrial domain (Tao et al., 
2019). Recently and in the same context, ‘digital shadows’ have been proposed as an 
improved approach to provide task- and context-dependent, purpose-driven, 
aggregated and persistent datasets that can encompass different complex realities 
from multiple perspectives in a more versatile fashion and with better performance than 
a fully integrated digital twin (Becker et al., 2021; Brauner et al., 2022). 
One reading of a digital twin speaks to the dialectic between machine learning and 
generative modelling in AI. Generative models underwrite interpretability and 
explainability. Furthermore, they enable the move from ‘big data’ to ‘smart data’ (or 
more precisely selecting and integrating data features to maximise expected 
information gain). A generative model is a probabilistic specification of the mapping 
from (latent) causes to (measurable) consequences. In this sense, a digital twin can 
be taken as a formal specification of a model that is apt for generating the responses 
of a cell, subject or cohort in question. Crucially, getting the generative model right 
affords an interpretable and mechanistic account of empirical data. Coincidentally, it 
casts the distinction between bottom-up and top-down modelling in terms of model 
fitting (i.e., inversion) and model selection (i.e., hypothesis), respectively. 
In constructing a ‘digital twin’ of a living organ, one is confronted by important 
challenges over and above those encountered when constructing the digital twin of an 
inanimate object. The brain is by far the most complex and multi-facetted organ. To 
what extent, then, can the digital twin concept be applied to neuroscience and the 
brain? The term digital twin, if applied 1:1 to the brain, could trigger major 
misunderstandings. Here, we want to contribute to the discussion by clearly defining 
the term in the specific context of brain science. We distinguish purpose-driven digital 
twins from the abstract idea of a full digital replica (or duplicate/copy) of the brain, the 
latter being the complete representation of all aspects of the brain at all levels (see Box 
2). A full replica of the brain is neither achievable nor does it seem of clear practical 
use. When we speak of digital twins in what follows, we mean purpose-driven digital 
models generated for specific questions, unless explicitly indicated otherwise. The 
digital twin as discussed here should be understood as a virtual model designed to 
adequately represent an object or process that is constrained by data from its physical 
counterpart and that provides simulation data to guide choices and anticipate their 
consequences. The digital twin is thus a copy in the practical sense, usually associated 
with a model of a function or process, and its power lies in its usefulness in dealing 
with relevant problems faced by its physical counterpart at an appropriate level of 
abstraction. The aim is thus not to resemble the biological brain in as much detail and 
on as many levels as possible but rather to selectively reduce the amount of 
information to those data that have proven predictive for a specific (research) question 
– keeping the model as simple as possible but ensuring it is as complex as necessary.  
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Even for a specialised model that aims to understand specific aspects of brain structure 
and dynamics or predict the progression of disease in a specific patient, one still needs 
a comprehensive source of data to draw from in order to generate sufficiently 
information-rich, complex Virtual Brain models. Such curated data systems have been 
created, for example in the form of the Human Brain Project’s high-resolution multi-
level human brain atlas on EBRAINS. These serve as an interface for integration of 
structural and functional data modalities. With each model, it must be demonstrated 
whether more data makes the model more powerful or not, i.e., do the added data 
enable more accurate, testable predictions? There needs to be a continuous, question-
related monitoring of the trade-off between the inclusion of more parameters or 
measurements for better predictions and the feasibility and associated costs of 
collecting these data. This also serves as an ongoing loop for testing whether the data 
selection is suitable for the question at hand, i.e., whether it reflects the major 
determining factors (Box 3: Categories of digital brain models). 
 

Box 3: Categories of digital brain models  

 Brain models 
Brain models are digital representations of the brain. The term is used in different 
contexts; common examples include digital atlases, artificial neural networks, 
anatomical models, biophysical models, network models, cognitive and behavioural 
models and mathematical and data-driven models.  

 Personalised brain models 
Personalised brain models are special types of models that are personalised by 
integrating specific data of one individual into a more general model (e.g., as enabled 
by the Virtual Epileptic Patient).  

 Digital twins 
Next-generation personalised brain models that continuously evolve by being informed 
with real-world data. They are designed in a purpose-driven way, integrating data 
relevant for a specific research question.  

 Full replica 
The idea of a complete digital representation of all aspects of a brain at all levels 
(hypothetical concept), eventually including the interpretation with the digital twin body 
 
An important distinction between the digital twin and other personalised virtual brain 
models is that the digital twin constantly receives new information from the real world 
to immediately adjust to its environment. In a neuroscience context, a ‘digital twin’ of a 
brain in the above sense holds much promise as an approach for continuously adapting 
interventions in functional neurorehabilitation or for tailoring neurotechnology-based 
interventions. Applications making use of a high-fidelity digital twin of a human brain 
updated in quasi-real time will require technical developments (e.g., ecological 
immersion of that twin brain in simulated environments, high-bandwidth, stable brain-
machine interfaces, very high computational power), in areas where breakthroughs 
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have yet to be made; as such, they remain a long-term objective for a rather distant 
future. This is not to say, however, that digital twins cannot already be applied in 
neuroscience and medicine today, provided they adequately address the intrinsic 
limitations of current brain models, of available personalisation processes and those 
faced by current technologies in updating them at the required frequency. The twin 
thus defines the current horizon of our digital neuroscience roadmap and must be 
appropriately taken into account as a driver for future developments. 
While the use of digital twins of the brain in concrete applications may still seem some 
way off, the era of digital brain research has, without question, already started, both in 
real world settings and research alike. Digital brain research is an umbrella concept 
under which data, models, theory, methods and computational technology are 
integrated for all research and development efforts undertaken in the framework of the 
HBP. Its value rests upon a successful demonstration of internal and external validity 
(features of experimental results) as well as ecological and construct validity (features 
of interpretative claims). It enables researchers to address some of the major 
challenges that have hindered progress in neuroscience for decades. These 
challenges include our understanding of intra- and inter-subject variability, non-
identifiability of mechanisms and multiscale complexity. EBRAINS provides an 
infrastructure and user interfaces to allow interoperation of the required components 
of data, models and methods; in doing so, it de facto establishes the operational basis 
for the concept of the digital brain to take centre stage in neuroscience research. 
We propose that there are three areas where digital brain models of all kinds (see Box 
3) could be fruitfully applied in the short-to-medium term: (1) basic brain research, (2) 
applications in medicine, and (3) brain-derived technologies. 
 

(1) Basic brain research  
Digital brain models and their simulation will not replace basic research and knowledge 
accumulation but can be rather thought of as a useful ‘engineering’ tool that functions 
currently as an in-progress predictive model with a dual purpose: (1) putting current 
knowledge to the test, and (2) anticipating the effect of interventions. The latter can be 
appealing as the number of interventional methods is expanding (deep brain 
stimulation (DBS), transcranial magnetic stimulation (TMS), transcranial direct current 
stimulation (tDCS), transcranial focused ultrasound stimulation (tFUS), drugs, 
optogenetics, photopharmacology). Although there are already various studies where 
computational brain models make predictions, drive the design of and explain effects 
observed in interventional research (Frank et al., 2004; Frank et al., 2007), these 
methods are currently often applied ‘semi-empirically’ with the available information 
about electrode location; circuit connectivity, function, and electrical models; genetic 
promoters of neuronal types; expression patterns of neuroreceptors and their signalling 
pathway models, etc. The digital twin may allow rational decision-making regarding 
these parameters, the testing of outcomes, followed by re-evaluation of the model and 
so forth.  
In order to be successful, underlying models must be biologically realistic, i.e., 
anatomically adequate and functionally comprehensive. Ultimately, they should be 
capable of linking brain structure and function with behaviour and allow the study of 
cognition, language, consciousness or emotions. This requires the integration of highly 
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heterogeneous data across scales, including in vivo and ex vivo, in the same spatial 
reference framework. In an alternative, complementary approach, the Cell Atlas 
Network (BICAN) will extend to the whole human brain the approach used in the US 
Cell Census Network (BICCN), undertaking in-depth characterisation of (small-scale) 
components of the mammalian brain, e.g., the most detailed and comprehensive multi-
modal model of the primary motor cortex including single-cell transcriptomes and 
proteomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell 
transcriptomes, morphological and electrophysiological properties and cellular 
resolution input-output mapping (Callaway et al., 2021).  
Based on this concept, brain simulation plays a key role in elucidating brain complexity 
by allowing the testing of hypotheses about the brain’s multi-level organisation and its 
functions that control the surrounding body (see also next paragraph). Clearly, 
following this line of research, it will become more and more important to interconnect 
simulations executed at different spatial levels (e.g., the EBRAINS simulation engines 
Gromacs at the molecular level, Arbor and NEURON at the cellular level, NEST at the 
systems level, The Virtual Brain at the whole-brain level and the neurorobotics platform 
at the level of the embodied organism and its environment (see Brain-derived 
technologies); for an overview see Einevoll et al., 2019.  
Unlike with the real living brain, the embedded simulated brain can be sampled at any 
point in space and time. It will be possible to look at all the processes in such a brain 
(provided those processes are modelled in the simulation, based on real-world data 
and/or on physics/chemistry) and make this observation with simulated measurement 
devices, e.g., multi-array electrodes, fMRI scanners. Then, in principle, all kinds of 
functional hypotheses can be tested in a full-body and closed-loop environment; 
further, it will also be possible to build dynamic anatomical atlases, e.g., atlases that 
allow for the observation of the changes and processes in a brain section under a 
specific stimulus – in real simulation time. 
The multiscale complexity of the living brain, the limited accessibility for measurements 
and our incomplete understanding of brain processes makes the realisation of the 
digital twin approach difficult to say the least. The BigBrain as an anatomical model 
may serve as the scaffold for the integration of twin data in a strict sense (Amunts et 
al., 2013), data from other sources such as dynamic cellular data and those from 
experimental population studies as well as synthetic data simulated by models and 
different brains. Such an approach also determines the limitations and ranges of 
validity of the digital twin strategy, which is crucial for the responsible use of and 
subsequent trust in the technology. Nevertheless, such data-driven models may 
represent the closest digital representation of a living human brain that is achievable 
at any given point in time. New insights from mathematics will be necessary to speed 
up simulations and analyse models (Lehtimäki et al., 2017; Lehtimäki et al., 2019; 
Lehtimäki et al., 2020).  
Therefrom, the following goals can be derived:  

 Develop multi-level brain atlas and high-resolution brain models.  
 Enable multi-level brain models and simulation.  
 Elucidate the mechanisms of cognition and behaviour.  
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(2) Brain medicine  
From such digital twins, personalised twins can be derived with the aim of improving 
diagnostics and therapy for patients in a new and powerful way and therefore 
supporting strategies towards brain health such as that recently published by the 
European Academy of Neurology (Bassetti, 2022). Analogous to cardiac digital twins 
(Gillette et al., 2021), i.e., digital replicas of patient hearts derived from clinical data 
that match all available clinical observations, human electrophysiological replicas have 
great potential for informing clinical decision-making and also for facilitating the cost-
effective, safe and ethical testing of novel device therapies. Digital twins in medicine 
address a defined spatial scale, with a defined granularity, consider a defined time 
interval and serve a dedicated purpose. An application of the digital twin approach for 
Alzheimer’s disease has been proposed recently (Stefanovski et al., 2021), and while 
careful consideration of data privacy, security and safety aspects will be required, 
personalised twins might also offer a uniquely powerful strategy for treating such 
conditions. 
The Virtual BigBrain (TVB) enables construction of individual connectomes based on 
neuroimaging and EEG data of a subject and anatomical data from the BigBrain model 
(Jirsa et al., 2017). The ongoing EPINOV clinical trial employing the TVB represents a 
major step forward in this regard; scientists have developed individual models of the 
brains of patients undergoing epilepsy surgery to guide and predict the best seizure 
outcome (Proix et al., 2017; Jirsa et al., 2023; Wang et al., 2023). Here again, the 
strategy is to combine population data with data from an individual brain to develop a 
Virtual Brain model, a twin, that is realistic enough to allow simulation of the 
intervention prior to surgery. Patients with super-refractory seizures, i.e., seizures 
which persist over periods of anaesthesia, often require prolonged intensive care and 
are at a very high risk of permanent neurological damage and death. For such patients, 
a digital twin might be used to examine a vast array of models, with ongoing feedback 
from EEG, responses to drugs and blood ion and gas concentrations, all readily 
available in intensive care environments. 
The utility of digital brain modelling is illustrated by DBS, a well-established surgical 
therapy for several treatment refractory neurological disorders. Currently, clinical-use 
DBS most often implements an ‘open-loop’ system, meaning that stimulation is 
delivered continuously according to fixed parameters. These parameters can be 
adjusted after implantation, but adjustments are manual, infrequent and driven by 
observation of patients’ visible symptoms. In contrast, ‘closed-loop’, adaptive DBS has 
been developed to overcome limitations of traditional DBS and to modulate neuronal 
circuits based on clinically relevant biofeedback signals in real-time (Marceglia et al., 
2021).  To apply them successfully, however, requires understanding mechanisms of 
plasticity and learning.  
Applications following localised brain lesion, such as stroke or traumatic brain injury 
would have similar requirements. Beyond invasive therapeutic interventions, a digital 
twin would be a powerful tool for predicting the consequences of brain lesions, 
pathophysiology and plasticity, which is sometimes described in terms of 
computational neuropsychology, namely, characterising lesion-deficit relationships in 
silico, using synthetic lesions (Parr et al., 2018). This could significantly change our 
capacity to personalise neurorehabilitation, while integrating complex information 
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generated by virtual reality and robot-based therapies together with fine measurements 
of patients’ responses and progress. 
Other applications could employ simulations to test a ‘clinical’ simulated population that 
could be far larger than a real one, therefore providing data amplification by creating 
cohorts of ‘digital patients’. This could be particularly interesting for evaluating rare 
diseases, for studying the influence of gender or for predicting disease progression 
(Maestú et al., 2021). Moreover, the more diverse (and heterogeneous) the sources of 
data used for training, the better the performance of the model on other datasets, 
resulting in good generalisability. This is one of the most interesting features provided 
by federated systems, which facilitate increasing the diversity of data sources (e.g., 
(Dayan et al., 2021)).  
Recently, the AlphaFold system developed by DeepMind (Jumper et al., 2021), an 
application of deep learning methods, has enabled prediction of protein 3D structure. 
This could be generalised to test the drug-protein or drug-protein-system interactions 
at a systems level. Another perspective would evolve from testing the effect of drugs 
in a virtual environment to uncover the mechanisms of the drug not only at molecular 
but also systemic levels. Considering that quantum mechanics/molecular mechanics 
are computationally highly demanding, such an approach at a systems level would 
require highly scalable tools run on the most powerful supercomputers. For example, 
fine-grained models of local microcircuits with molecular or cellular resolution, like 
those constructed and simulated using NEURON and Arbor, can be directly used to 
map the local distribution of some molecules (e.g., ion channels, receptors) and then 
be used to simulate the impact of drugs on this system. These low-scale models can 
be tuned according to a given pathological condition and then transformed into patient-
specific mean field models, advancing the precision of digital twins. 
More generally, increased cross-talk between the neuroscience fields addressing the 
human brain as compared to those focusing on non-human brains could work 
synergistically to solve long-standing problems in biomedical sciences (Devinsky et al., 
2018). Humans and companion animals suffer from overlapping diseases (e.g., 
epilepsy, cancer, obesity). Similar to humans, dogs suffer from epilepsy and are 
subjected to brain scans when they are sick. The overlap in diseases and care offered 
by human and veterinary medicine means that there are untapped opportunities to test 
the effectiveness of personalised medicine and digital twins in companion animals 
before implementing them in humans. 
Finally, it would be expected that brain twins contribute to ‘human body twins’. This 
perspective goes beyond merely adding another organ, because it would allow 
modelling the interactions of nervous system activity with those of other organs at the 
systems level, e.g., heart-brain couplings and linking the brain with stomach and 
intestines. These interactions are pervasive and bidirectional. For example, recent 
research has identified an intrinsic allostatic and interoceptive system in the human 
brain, which includes visceromotor regions that provide cortical control of the body’s 
internal milieu and support allostasis (Kleckner et al., 2017). Furthermore, bodily 
processes such as respiration are powerful drivers of rhythmic neural activity (Tort et 
al., 2018). Capturing these bidirectional interactions would help us understand how the 
brain supports vital bodily functions – and possibly how to restore them when they are 
impaired.  
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The challenge of bidirectionally and systemically linking multiple single-organ or single-
scale digital twins is a key element of the European Commission’s roadmap for the 
Virtual Human Twin that is currently under development (https://www.edith-csa.eu/). 
Therefrom, the following goals can be derived:  

 Obtain detailed insights into brain plasticity, learning, adaption, during the 
lifespan. 

 Accelerate digital brain medicine.   
 Explore and model the brain as part of the body. 

 

(3) Brain-derived technologies  
A fundamental challenge is to establish what level of granularity in brain modelling, 
what transitional computations and what kind of simulated development is required to 
support the emergence of a variety of cognitive and sensorimotor functions. Models of 
the human brain, simulated in embodied settings, i.e., having the ability to control 
virtual or physical bodies interacting with realistic virtual or actual physical 
environments, and receiving time-dependent input streams to produce behavioural 
outputs, represent a uniquely attractive platform for investigating the links between 
brain structure, brain activity and cognitive and functional performance. 
How such bottom-up assembly and the emergent behaviour of the digital twin system 
can be evaluated against biological data remains an ongoing challenge, because 
typical synthetic development environments do not match the natural environment. Ed 
Yong (2019) argued in his feature article ”The Human Brain Project Hasn’t Lived Up to 
Its Promise” in The Atlantic 117  that “large-scale simulations are useful for 
understanding weather and galaxies, but ‘planetary systems are not about anything 
other than themselves. A brain is built to be about other things.’ …. Simulating the 
tissue is do-able, but meaningless.” 
The previous paragraphs provide several examples where simulation has led to 
progress in basic neuroscience and brain medicine for well-defined research 
questions. Additionally, the HBP from its start aimed to develop technologies enabling 
the study of brain-environment interactions ("Booklet | Brain-inspired intelligent 
robotics: The intersection of robotics and neuroscience sciences," 2016). In other 
words: a simulation of certain processes occurring in the brain is embedded in a real 
or simulated body with all its sensors and actuators connected to the simulation. In 
principle, these sensors and actuators can just as well be real or simulated or a 
combination thereof. Likewise, this body is embedded in a real or virtual world. Once 
we have these elements, simulated or real, we can combine them in any sensible way. 
Obviously, this approach is heavily dependent on models representing the physics of 
the real world, and it also requires sophisticated software that can simulate spatial 
environments in high fidelity and that can provide adequate physics of environments, 
sensors and actuators, connection to brain simulators, facilities for storing the results 
of simulations, graphical rendering and the orchestration of these complex software 

                                                
117 https://www.theatlantic.com/science/archive/2019/07/ten-years-human-brain-project-simulation-
markram-ted-talk/594493/ 
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modules. All of these (co-)simulations can be run at different time scales (ideally of 
course in real time), in closed-loop or open-loop scenarios and with entities modelled 
at different granularities.  
The neurorobotics platform of the HBP118 is a software environment that was designed 
to perform all these steps, run simulations based on diverse sets of data from biological 
experiments as well as input from real world robots, and integrate machine learning on 
top of those simulations. While this platform was originally conceived of for the purpose 
of designing neurorobots, i.e., robots that are controlled by biologically inspired models 
of the brain, over time it has evolved into a software environment that can be used to 
connect and integrate all types of entities ranging from simulated mouse bodies by way 
of sophisticated sensor models to various neuron and brain simulators. Today, the 
neurorobotics platform can be considered to be both an environment for robot design, 
and at the same time, an execution platform for neuroscientific experiments. It is 
therefore a powerful vehicle for virtualising neuroscience, up to the point where system-
level in vivo experiments can be replaced with in silico experiments that run completely 
inside this platform. 
In addition, the neurorobotics platform allows for training the ‘brain’ (AI-based 
controller) of embodied robots with real neuroscientific data, even before they are built. 
It is also conceivable that a simulated copy of the real environment in which they will 
be used serves as the reference basis for the training, so that they can be pre-trained 
before they are shipped to the end user, who will only need to make small adaptations 
to (emergent) behaviour to ensure that the robot performs its tasks in a perfect manner. 
We will refer to approaches following this paradigm as brain-derived technologies, as 
they are directly based and built on findings from brain research. Importantly, these 
findings can be implemented at different levels of organisation. In neuromorphic 
engineering, the main components, i.e., biological neurons, are emulated by 
functionally equivalent electrical circuitry to construct highly energy-efficient, possibly 
analogue, processors and sensors. Likewise, the neural models running on these 
systems can be derived from specific types of neurons, microcircuits or brain regions 
that have been identified in biological brains. When connecting these systems to 
robotic embodiments (both simulated and/or physical) or to biological organisms, it 
becomes possible to replicate some aspects of the full closed loop of perception, 
cognition and action. Modelling can thereby be extended to the complete organism and 
address all aspects of complex cognitive processes at the behavioural level. Brain-
derived technologies are therefore not limited to approaches that mimic structural 
features of the brain but can also encompass cognitive models and architectures along 
with their underlying neural dynamics. These technologies will represent new tools for 
brain research and enable innovations in computing, robotics and AI. 
One field expected to benefit greatly from this approach is neurorehabilitation, where 
realistic models of brain-body interactions will be useful in elucidating the neural 
mechanisms at play (Rowald & Amft, 2022). The combination of highly detailed brain 
models with models of the spinal cord and of the musculoskeletal system indeed 
affords special opportunities, such as allowing investigation of the relationship between 
neural activity and resulting motor behaviour in a detailed, quantitative manner. 
Personalised models could thus be integrated into decision-support systems to guide 
the choice and combination of rehabilitation strategies by a physician or a therapist. 
                                                
118 https://www.neurorobotics.net/ 



 
30 

 
 

They may also support breakthrough developments in central nervous system 
(including spinal cord) stimulation technology and functional electrical stimulation, 
improving the efficacy of these techniques and expanding their relevance to a greater 
breadth of conditions. A very promising recent application reported successful epidural 
electrical stimulation to treat spinal cord injury (Rowald et al., 2022). 
Similarly, the combination of high-fidelity models of both the human musculoskeletal 
and central nervous systems is also expected to support the emergence of in silico 
technologies for so-called electroceuticals, i.e., medical devices that provide 
neurostimulation for therapeutic purposes (e.g., in Parkinson’s disease, epilepsy, etc.). 
There is little doubt that the medical device industry would have a fundamental interest 
in tools guiding their product design, generating predictions regarding efficacy and 
overall de-risking of the whole product development process. With the brain atlases 
and the multiscale brain simulators created by the HBP, it thus seems timely to 
consider the collection and integration of new data (e.g., dielectric properties) as a 
prelude to the development of simulation tools and services geared towards the 
evaluation of electroceuticals. Simulating the effect of such electroceuticals seems to 
be overdue, given that DBS is already being widely used. 
The HBP has supported the SpiNNaker many-core and BrainScaleS physical 
emulation neuromorphic computing platforms in establishing the first open 
neuromorphic computing services and has contributed to the further development of 
these technologies (Furber & Bogdan, 2020). Neuromorphic technologies, where both 
data transfer and processing are event- i.e., spike-based, provide a multitude of 
opportunities for edge computing, mobile robotics and neuroprosthetics. Considering 
current trends in automation of mobile systems and deployment of ‘always-on’ sensor 
arrays, in particular, neuromorphic devices are expected to deliver enhanced, low-
latency capacities for perception, cognition and action, while reducing the impact of 
onboard operations on the system’s energy consumption (Göltz et al., 2021; Cramer 
et al., 2022). For example, combining spike-driven processing units with spike-
generating sensors (e.g., dynamic vision sensors, dynamic audio sensors) into 
complete neuromorphic systems (sensors and processing units) will make it easier to 
perform data fusion and overcome constraints related to the heterogeneity of data 
sources. Advances in the neurocomputational understanding of learning by neuronal 
circuits, especially through synaptic plasticity, will also provide new ways of endowing 
neuromorphic circuits with ever-more complex functionalities at a lower training cost 
(e.g., one-shot and continuous on-line learning). In particular, the restriction to local 
plasticity constitutes a manifest advantage over conventional von Neumann 
architectures.  
The circuitry of analogue neuromorphic processing systems such as BrainScaleS 
emulates the ion flows in biological neurons by electrical currents. Unlike traditional 
microprocessors that are based on the classic von Neumann architecture, every silicon 
neuron is physically incorporated into the chip with dedicated components. Like in the 
brain, these neurons exchange information based on spikes, which allows for an 
extremely efficient implementation and is one of the reasons why neuromorphic 
systems are a promising technology for a new generation of real-time-capable and 
extremely energy-efficient computers. An important consequence of their direct 
derivation from the brain’s structure is that neuromorphic processors are typically not 
well suited for loading external data but instead support learning online in real-time. 
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This unique feature enables new types of learning rules that do not require large data 
sets but adapt dynamically as required. 
Learning rules based on spike timing-dependent plasticity are a remarkable success 
story of brain-derived systems (Diamond et al., 2019; Kreutzer et al., 2022). They are 
directly rooted in experimental results and have become a cornerstone for research on 
learning algorithms in both theoretical neuroscience and neuromorphic engineering. 
Importantly, traditional machines have also benefited considerably from brain 
research. One of the most prominent examples are arguably convolutional neuronal 
networks, precursors of which have originally been derived from the architecture of the 
visual cortex. 
Another important area where basic brain research has fostered the emergence of new 
technologies is that of neuromorphic sensors, particularly dynamic vision sensors and 
dynamic audio sensors. The former mimic the functioning of the retina and, like 
neuromorphic processors, encode information with spikes. The characteristics of these 
are completely different from their traditional counterparts. Since they only signal 
changes rather than capturing full image frames, they can operate extremely efficiently, 
give rise to new types of image processing algorithms and ideally complement 
neuromorphic processors. 
From a technological perspective, the human brain is also the most promising ‘Rosetta 
Stone’ for the implementation of advanced cognitive abilities in artificial systems. 
Modern artificial agents are characterised by limited levels of intelligence, difficulty in 
generalising beyond provided training sets and an often-superficial understanding of 
their environment. The lack of generalisability implies either the necessity for large data 
sets (the resource-intensive big data paradigm), continuous human supervision 
(remotely controlled systems) or extensive, rigid mission planners accounting for any 
allowable occurrence (for planetary or ocean exploration). The superficiality of 
perception and lack of explainability imply a lack of robustness of and trust in artificial 
perception systems, a known obstacle to the emergence of, e.g., effective driving 
automation. To mitigate against such limitations, brain-inspired multi-area model 
architectures must be developed in conjunction with new embodied and incremental 
learning algorithms, with a view to finding those that best emulate the functional 
mechanisms underlying human perceptual cognition. Harnessing such mechanisms 
and understanding the emergence of cognitive functions will be essential for creating 
explainable, reliable and eventually more general AI. 
The functional architecture of the brain with its different regions is the basis for many 
types of cognitive architectures that have been defined for technical systems. This is 
especially true for robotics, where brain-derived approaches are studied extensively. 
Examples include the research on phenomena related to embodiment or the 
development of novel perception and sensing systems such as artificial whiskers, 
inspired by the actual somatosensory system in rodents. 
Future developments in neural networks for artificial intelligence applications will see 
a convergence between mainstream AI and neuromorphic technologies. Multiscale 
brain models can make a critical contribution to the construction of advanced robotic 
controllers. These could embed plastic rules and autonomously adapt through their 
interaction with the environment. Thus, basic brain science will be key in informing the 
development of these technologies. Moreover, neuromorphic computing might help 
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reduce the substantial carbon footprint of large deep learning models (Strubell et al., 
2019). 
Therefrom, the following goals can be derived:  

 Bridge the gap between human and machine intelligence. 
 Build neuromorphic brain models and bio-inspired artificial intelligence. 

 

8. CONCLUSION 
An improved understanding of brain function depends on a deeper understanding of 
brain organisation and a better appreciation of the fundamental mechanisms – the 
actual biological processes, their relationships and the rules that govern them. This is 
prerequisite to more efficiently target prevention, therapies and mechanism-based 
diagnoses. A promising approach for the coming decade of digital brain research 
consists in developing digital twins of individual brains that afford personalised 
simulations. Although now feasible, digital twins of the brain are still at an early stage 
and once developed have to undergo rigorous testing and validation before they can 
meaningfully address brain disorders and become the basis for disruptive new health 
technologies. Therefore, we need to understand the computational goals and 
algorithms of the systems and subsystems to be able to see the limitations and 
possibilities of implementation in individual cases. Further, brain twins raise ethical 
questions that we will need to address in an open dialogue with society. Twins can be 
seen as a kind of endpoint for ongoing developments of brain models and analytics.  
With this goal in mind, a digital infrastructure that can host such digital brain twins may 
foster progress in understanding the rules and refining our digital brain twins to a point 
where they pass validation testing and become useful for clinical translation. Further, 
such an infrastructure should ideally provide interoperability, information security, 
multi-level data, access to knowledge-based computing resources including high-
performance computing and other relevant technologies. EBRAINS is an infrastructure 
that is capable of hosting such developments. To make that successful, training of 
younger generations in working with such infrastructures and leveraging the potential 
of new digital tools is key.  
Structuring data and knowledge such that they can easily be recombined and 
integrated towards a plethora of digital brain twins by the research community – 
together with delivering the powerful technology with which complex simulations of 
these twins can be performed – may in itself represent a disruptive technology for 
generating scientific insight. 

 

9. SCIENTIFIC GOALS – A ROADMAP  
The ‘roadmap’ below outlines goals within eight intersecting areas of research in the 
coming decade, each ranging from 1. near-term or current work, 2. middle-term, to 3. 
long-term. It is derived from the input provided above.  
 
Develop multi-level brain atlas and high-resolution brain models   

1. Integrate data, from the whole-brain level to cells, into a comprehensive, high-
resolution brain atlas as a basis to get a deeper understanding of general 
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principles of brain organisation, to enable the prediction of missing features, 
where the atlas is incomplete, and to guide comparative studies about 
interspecies similarities and differences. 

2. Generate detailed, data-driven, multi-scale models to study the role of variability 
in human brain organisation during lifespan, under different conditions. 

3. Elucidate those aspects of brain organisation and structure that are responsible 
for complex behaviors, intelligence and consciousness. 

Enable multi-level brain models and simulation  
1. Multiscale integration of models, from local biophysical properties to whole-brain 

models, including detailed bottom-up and top-down models. Models are driven 
and tuned by data and their predictions tested.  

2. Model biologically realistic, complex brain functions using multi-scale, whole-
brain models – approaching digital brain twins for concrete use cases. 

3. Apply model predictions to larger-scale use cases in basic science, medicine 
and AI, which in turn drive model testing and sophistication (‘productive loop’). 

Elucidate the mechanisms of cognition and behaviour  
1. Develop a coherent framework describing the mechanisms of cognitive 

functions using a multi-scale perspective, from sensory- and visuomotor to more 
complex cognitive functions. 

2. Formulate a coherent framework for language, as a uniquely human complex 
cognitive function, integrating insights from linguistics and neuroscientific 
research using multi-level brain approaches, using development as a window to 
brain specialisation, and providing the backbone for development of language 
models and artificial intelligence. 

3. Link concepts of different hypotheses and self-consciousness to each other and 
to mechanisms at the cellular, molecular and genetic levels. 

Obtain detailed insights into brain plasticity, learning, adaption, during lifespan 
1. Identify and integrate the rules of plasticity, learning and adaptation, into existing 

multi-level brain models.  
2. Identify constraints of brain plasticity, and tools to modulate it for the benefit of 

patients. 
3. Reveal mechanisms of memory consolidation and translate this to medicine and 

technology. 
Accelerate digital brain medicine   

1. Develop and apply personalised models, informed by brain atlases and 
individual patient data, for diagnosis and treatment of a broad range of brain 
disorders (e.g., epilepsy, tumours, movement disorders, stroke, psychiatric 
disorders). 

2. Construct and apply data-driven models of development and aging to brain 
medicine in different age groups (from children to the elderly).  

3. Develop and apply digital body twins, continually amenable to new real-life 
sensor data, to brain medicine (e.g., diagnostics, rehabilitation, intensive care 
and surgery).  

Explore and model the brain as part of the body 
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1. Link advanced digital brain models to spinal cord models based on multi-level 
atlases and derive therefrom new approaches for stimulation. 

2. Model sensorimotor integration and coordination for interaction, task 
performance and navigation. 

3. Integrate somatic and autonomic regulation in combined, multi-organ models to 
construct patient twins, which reflect nervous system, organ and body 
regulatory functions. Develop and apply cellular-level body twins, which model 
nervous system, endocrine/hormone, immune regulatory and homeostatic 
mechanisms. 

Bridge the gap between human and machine intelligence 
1. Simulate complex behaviour using robots interacting with rich environments; 

promote convergence of deep learning AI and event-based (spiking) neural 
networks facilitated by neuromorphic technology; democratise and develop 
complex (brain-inspired) AI models, including large language models in an 
open, transparent approach. 

2. Apply insights into brain mechanisms behind cognitive functions, such as 
perception and decision-making to emulate learning and developmental 
processes in the fields of AI and neuromorphic technology and test the potential 
role of organoids and organoid intelligence (OI).     

3. Apply fundamentally new concepts and algorithms to machine learning 
and novel engineering applications (e.g., new materials, artificial life, replacing 
and enhancing brain function).  

Neuromorphic brain models and bio-inspired artificial intelligence 
1. Develop training methods for spike-based deep neural networks using leaky-

integrate-and-fire-based neuron models. Integrate complex hardware neuron 
models in simulation environments. 

2. Develop hardware and training methods for large-scale and highly performant 
spiking network models using complex neuron models. 

3. Integrate results from plasticity research to develop large-scale spiking 
networks with built-in learning capabilities. 

 

SUPPORTERS 
The following individuals express their support of the contents of this manuscript: Pietro 
Avanzini, Marc Beyer, Maria Del Vecchio, Jitka Annen, Maurizio Mattia, Steven 
Laureys, Rosanne Edelenbosch, Rafael Yuste, Jean-Pierre Changeux, Linda 
Richards, Hye Weon Jessica Kim, Chrysoula Samara, Luis Miguel González de la 
Garza, Nikoleta Petalidou, Vasudha Kulkarni, Cesar David Rincon, Isabella O'Shea, 
Munira Tamim Electricwala, Bernd Carsten Stahl, Bahar Hazal Yalcinkaya, Meysam 
Hashemi, Carola Sales Carbonell, Marcel Carrère, Anthony Randal McIntosh, Hiba 
Sheheitli, Abolfazl Ziaeemehr, Martin Breyton, Giovanna Ramos Queda, Anirudh 
NIhalani Vattikonda, Gyorgy Buzsaki, George Ogoh, William Knight, Torbjørn V Ness, 
Michiel van der Vlag, Marcello Massimini, Thomas Nowontny, Alex Upton, Yaseen 
Jakhura, Ahmet Nihat Simsek, Michael Hopkins, Addolorata Marasco, Shamim Patel, 
Jakub Fil, Diego Molinari, Susana Bueno, Lia Domide, Cosimo Lupo, Mu-ming Poo, 
George Paxinos, Huifang Wang. 



 
35 

 
 

 

DATA AND CODE AVAILABILITY  
No additional datasets or code are associated with this paper. 
 

AUTHOR CONTRIBUTIONS  
All authors have contributed to writing, reviewing, and editing of the manuscript, the 
progress on how the paper has evolved can be found on Zenodo 119 . The 
conceptualisation of the paper has been initiated by the Science and Infrastructure 
Board of the Human Brain Project. 
 

DECLARATION OF COMPETING INTERESTS 
The authors declare the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest. 

 
ACNOWLEDGEMENTS 
The coordination of the discussion leading to this paper has been supported by funding 
of the European Union’s Horizon 2020 Framework Programme for Research and 
Innovation (Specific Grant Agreement No. 945539, HBP SGA3 and No. 101147319, 
EBRAINS 2.0 Project). The Human Brain Project is a collaborative, interdisciplinary 
effort including groups from more than 20 countries. This work would not have been 
possible without the abiding commitment, scientific curiosity and hard work of the entire 
HBP consortium and the support of their research institutions. We thank Peter Zekert 
for his assistance with the preparation of this manuscript. This manuscript has been 
edited for spelling, grammar, consistency and legibility by Neysan Donnelly.  
 

 
 
 
 
 
 
 
 
 
 
 
                                                
119 https://zenodo.org/records/10035197 



 
36 

 
 

ANNEX 1  
White paper: Participatory process and timeline 
 

 
 
ANNEX 2 
Statements of support 
 
Rafael Yuste: “As a European working in the US, I strongly support this initiative, it 
could help put European neuroscience in a leadership position and help European 
countries capitalize on the benefits of working together towards the same goal.” 
 
Linda Richards: “Overall, this manuscript presents novel ways of moving the field 
forward and is extremely exciting.”  
 
Alexandra A. de Sousa: “As founder of the European Network for Brain Evolution 
Research I strongly support this initiative and in particular its reference to the 
importance of comparative and evolutionary neuroscience.” 
 
Mu-ming Poo: "Understanding the structure and function of the human brain and 
developing effective approaches in diagnosis and intervention of brain disorders are 
both long-term goals of all societies. The tasks are enormous, requiring global 
collaboration in promoting rapid progress and sharing knowledge and 
technology.  China Brain Project is now fully funded by the Chinese government for 
the coming decade.  Chinese scientists, many of them have close ties with scientists 
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in the Europe and US, are hoping to establish international collaborative projects, and 
to set up effective mechanisms to facilitate collaboration." 
 
George Paxinos "It is exciting to observe the progress that has been made in the 
development of multi-level brain atlases. The advanced digital tools that have emerged 
in recent years offer entirely new possibilities for studying brain structure in different 
species.”  
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