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ABSTRACT

In recent years, brain research has indisputably entered a new epoch, driven by
substantial methodological advances and digitally enabled data integration and
modelling at multiple scales — from molecules to the whole brain. Major advances are
emerging at the intersection of neuroscience with technology and computing. This new
science of the brain combines high-quality research, data integration across multiple
scales, a new culture of multidisciplinary large-scale collaboration and translation into
applications. As pioneered in Europe’s Human Brain Project (HBP), a systematic
approach will be essential for meeting the coming decade’s pressing medical and
technological challenges. The aims of this paper are to: develop a concept for the
coming decade of digital brain research, discuss this new concept with the research
community at large, to identify points of convergence, and derive therefrom scientific
common goals; provide a scientific framework for the current and future development
of EBRAINS, a research infrastructure resulting from the HBP’s work; inform and
engage stakeholders, funding organisations and research institutions regarding future
digital brain research; identify and address the transformational potential of
comprehensive brain models for artificial intelligence, including machine learning and
deep learning; outline a collaborative approach that integrates reflection, dialogues and
societal engagement on ethical and societal opportunities and challenges as part of
future neuroscience research.

Keywords: human brain, digital research tools, research roadmap, brain models, data
sharing, research platforms.

1. INTRODUCTION

Research in the last decades has yielded impressive progress in our understanding of
the human brain. In confronting brain complexity, researchers have studied the brain
at different levels of organisation, from the processes at the level of single molecules
and genes, synapses, cells and local circuits to the level of the brain as a whole organ
with areas, nuclei and their networks, involved in a variety of brain functions as well as
dysfunction.

Neurological disorders are today the second leading cause of death after heart disease
with 276 million DALYS'%¢ (Disability-Adjusted Life-Years; Global Burden of Disease
2019) (Feigin et al., 2019). In 2010, the total cost of brain disorders in Europe came to
€798 billion (Olesen et al., 2012). To address such a challenge, and to develop more
effective, causal therapies, we need to better understand the fundamentals of how the
brain works. Hereby, we are inevitably confronted with the complexity of the organ and
its sheer size but also with legitimate ethical and methodological limitations that do not
allow all of the necessary datasets to be acquired directly from human material. This
poses challenges for both empirical and digital research. Addressing such a challenge
requires insights into the underlying structure of the brain, physiological phenomena in
the organ and a theoretical understanding of neural mechanisms.

Combinations of different methods, such as structural and functional magnetic
resonance imaging (fMRI), magnetoencephalography (MEG) or
electroencephalography (EEG) have successfully been applied to identify biological

198 https://www.thelancet.com/gbd/about



correlates of sensation, motor control and executive function. However, closing the
loops of understanding between cellular mechanisms and system-level effects requires
multiscale neuroscience. Others emphasise that we also need to understand the
‘semantics’ of how the various brain regions converse with each other (Douglas &
Martin, 2007). As one example, according to (Buzsaki, 2019), global and local
oscillations constitute the ‘syntax’ for communication within the brain.

For many brain diseases, genetic mechanisms have been elucidated, with concrete
relevance for diagnostics and therapy. Further, molecular and cellular mechanisms of
several signal transduction pathways have been deciphered. Nevertheless, we are still
lacking important insights into brain organisation, the relationship between brain
structure, function, dynamics and behaviour, its reorganisation during learning and
sleep, as well as the conditions that underlie cognition. Simulation and the potential of
Al to decipher the organisation of consciousness are already part of neuroscience
discourse (see e.g., (Dehaene et al., 2017; Graziano, 2019)). The arrival of machines
with capacity to simulate consciousness could mean that the ‘hard problem’ of
consciousness can be addressed by simulating the ‘easy problem’ of consciousness
(Chalmers, 1995).

While the multiscale architecture of the brain enables its resilience, adaptive capacity
and computational power, this property also significantly contributes to the inter-
individual variability found at all levels of brain organisation. The degree of variability
itself varies depending on the level, brain region and other factors (Zilles & Amunts,
2013; Croxson et al., 2018). Understanding variability will contribute to improved
diagnostics and personalised therapies and will facilitate elucidation of the
mechanisms of cognitive functions. In terms of basic science, this is a prerequisite for
understanding both evolution and divergent cognitive profiles (Thiebaut de Schotten &
Forkel, 2022).

Innovative neuroimaging, advances in microelectronics and optical methods have
opened a window onto brain function at ever-higher spatial and temporal resolution
and over ever-longer periods of time, resulting in large amounts of data. Cohorts of
thousands of participants have been enrolled with large numbers of data sets, but at
lower resolution; these have facilitated the identification of factors determining brain
health and aging such as lifestyle, environmental factors, genetic makeup as well as
the interplay between these variables. Such empirical research has resulted in
significant volumes of highly structured data, a large amount of meta-data and the
increasing need for data integration.

So, what questions can already be answered based on the current data and where is
additional work needed? Sydney Brenner stated during his 2002 Nobel lecture,
‘Nature’s Gift to Science’(Brenner, 2003): ‘We are drowning in a sea of data and
starving for knowledge. The biological sciences have exploded, largely through our
unprecedented power to accumulate descriptive facts ... We need to turn data into
knowledge, and we need a framework to do it’. Although a large amount of data exists,
the research aims and methods used in individual laboratories are generally very
diverse and data often cannot be directly compared with each other. Moreover, multi-
dimensional data, with high-quality, rigorous quality control and provenance tracking
(e.g., functional imaging data with simultaneously high spatial and temporal resolution
and broad coverage including omics data), are sparse.



Such data do usually not come from one lab, but from many. Therefore, it has become
clear that defining and achieving ambitious scientific goals will require close
collaboration between laboratories with expertise in different areas of neuroscience
and complementary technical expertise, for example, specialists in image analysis,
neuroanatomy, data analysis, computation, physiology, biomedicine, modelling, theory
and computing. Several (neuro)ethical issues and questions regarding societal needs
and value are relevant when studying the brain and brain diseases — recognition of this
fact is leading to closer interaction between neuroscientists and researchers from
humanities. Taken together, these developments enhance multidisciplinary
collaboration, which needs to be appropriately organised and valued.

Such close collaboration across different domains of brain research is a defining
feature of big international projects like the HBP'%’. The HBP is a European Flagship
project in the field of Future and Emerging Technologies that started in 2013 and
concluded in 2023. In 2013, the HBP was launched with the aim of achieving a deeper
understanding of the brain, a goal that aligned with the remarkable advancements in
computing and digital technologies during that time (Markram et al., 2011; Amunts et
al., 2016; Amunts et al., 2019). The HBP was one of the first large-scale brain research
projects worldwide and played a pioneering role in transforming digital brain research
into a discipline that is more collaborative, reproducible and ethically and socially
responsible (Amunts et al., 2022).

The HBP has developed foundations for scientific workflows that enable a FAIR
(findable, accessible, interoperable and reusable; (Wilkinson et al., 2016)) comparison
among multi-scale, multi-species experimental data and theoretical and data-driven
models (Eriksson et al., 2022; Schirner et al., 2022). To give a few examples, research
in the project has led to new insights into the mechanisms of learning (Bellec et al.,
2020; Cramer et al., 2020; Manninen et al., 2020; Goltz et al., 2021; Jordan et al., 2021;
Masoli et al., 2021; Stockl & Maass, 2021; Deperrois et al., 2022; van den Bosch et al.,
2022), visuo-motor control (Abadia et al., 2021; Pearson et al., 2021), vision (van Vugt
et al., 2018; Chen et al., 2020; Svanera et al., 2021), consciousness (Demertzi et al.,
2019; Lee et al., 2022), sleep (Le Van Quyen et al., 2016; Rosanova et al., 2018;
Capone et al., 2019), spatial navigation (Bicanski & Burgess, 2018; Stoianov et al.,
2018; Northoff et al., 2020; van Beest et al., 2021), predictive coding and perception
(Oude Lohuis et al., 2022) as well as language (Dehaene et al., 2015) and has resulted
in new theoretical concepts and analysis methods. A special issue of the journal
Neuron'®® was devoted to cognitive architectures in 2015. The aim was to bundle
together research that is key for understanding and modelling human brain function,
with many of the featured publications resulting from collaboration in the ramp-up
phase of the HBP (Dehaene et al., 2015).

The neuroscience community has been empowered to take advantage of the most
recent developments in computing, simulation and artificial intelligence. Experimental
data, computational models and tools, instruments and dedicated hardware such as
neuromorphic systems have been created in the project and made available with the
intention of significantly speeding up developments in brain medicine and research as
well as providing a model for low-energy consumption for the semiconductor industry
("Big data needs a hardware revolution," 2018). The consortium has developed
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EBRAINS as a collaborative research platform with the aim of bringing brain research
to the next level through digital tools and computation and of further developing
applications in medicine and neuro-inspired technologies. EBRAINS is now part of the
European Strategy Forum on Research Infrastructures (ESFRI) Roadmap. ESFRI
aims to support a coherent and strategy-led approach to policy-making on research
infrastructures in Europe and to facilitate multilateral initiatives leading to the better use
and development of research infrastructures, at the EU and transcontinental levels.
EBRAINS is being developed as a sustainable research infrastructure — by scientists
for scientists.

To address ethical and societal questions, the HBP has incorporated principles and
practices of Responsible Research and Innovation (RRI) into EBRAINS at the
governance and research levels. The goal is to anticipate, reflect on and undertake
network-wide action on these and future neuroethical, philosophical and societal and
legal challenges and proactively addressing issues on dual-use research of concern,
misuse and commercialisation of EBRAINS research and its outcomes (Stahl et al.,
2021). Looking to the next decade, we here identify gaps in our knowledge of the brain
based on what has been achieved and articulate research goals for the future. We
believe that efforts towards achieving these goals will benefit from progress in digital
brain research as well as recent developments at the interface of technology and
computing. Digital brain research takes advantage of fields such as data science,
artificial intelligence, computing, modelling and simulation, atlasing to enable progress
in brain research, and to translate it into medicine and technology. These aims will also
profit from the integration of neuroscience with neuroethics and multidisciplinary
collaboration that engages with ethical and societal questions of need, acceptability
and desirability.

This manuscript has been developed in a participatory process. The work has been
initiated by the HBP, and the entire research community was invited to contribute to
shaping the vision by submitting comments. This more than two-years process resulted
in substantial changes of the original document, a broader representation of research
concepts, sometimes controversially discussed, and a focused discussion, e.g. with
regard to the role of modeling and simulation. The authors converged in their
formulation of common goals and steps to achieve them. While we do not claim that
there is a ‘one-size-fits-all’ approach to addressing these aspects, we are convinced
that discussions around the theme of digital brain research will help drive progress in
the broader field of neuroscience.

2. NEUROSCIENCE: STATE OF THE ART

To understand what is missing and to motivate our approach for digital brain
research, it is critical to consider where we have come from. To illustrate a few key
steps on this path: modern neuroscience was born in the last two decades of the 19t
century, when the brain, hitherto basically regarded as an unstructured mass, became
recognised as an intricate network of individual cells, the neurons (DeFelipe, 2009;
Mazzarello, 2010; Shepherd, 2015). New concepts on the segregation of the brain into
areas, which are relevant for a certain function, gave rise to microstructural brain maps
at the beginning of the 20" century (e.g., (Brodmann, 1909; Vogt & Vogt, 1919)).



Systematic neuropathological studies contributed to a deeper understanding of the
brain both in health and disease. The full-brain electroencephalograms of the 1930s
paved the way for intracellular electrophysiological recordings in the 1950s and to a
basic understanding of the physiology of neurons and synapses. The discovery of the
concept of chemical neurotransmission in the 1930s and the subsequent
pharmacological revolution in the 1950s had great implications for neurology and
psychiatry (Dale et al., 1936; Vogt, 1954; Carlsson et al., 1957) as well as for our basic
understanding of how distributed computing networks like our brain can adapt flexibly
to our changing world (Dayan, 2012). The Hodgkin—Huxley model was introduced in
the 1950s to describe in mathematical terms action potentials (Hodgkin & Huxley,
1952). Explorations of the physiology of the sensory (mainly visual) and motor systems
in the 1960s and 1970s, and parallel advances in their anatomy, provided valuable
insights, giving rise to an updated view of the brain that we nevertheless now
understand was somewhat naive and simplistic (Shepherd MD, 2009). The 1980s saw
great advances in our understanding of neuronal membrane biophysics and the
functioning of receptors and ion channels (Sakmann & Neher, 1984), while in the 1990s
the advent of full-brain imaging techniques kickstarted a period of intense progress in
understanding brain organisation, its relation to genes and environment as well as
individual variability. Novel techniques, including molecular biology, genetics,
pharmacology, psychophysics, neuroimaging and computational neuroscience, in
combination with electronics and computing, have progressively enriched brain studies
(Finger, 1994).

The beginning of the 215t century saw the development of new tools to manipulate and
study brain circuits such as optogenetics, which, through activation or silencing, for the
first time allowed investigation of the role of specific neuronal types (Sudhof, 2017;
Deubner et al., 2019; Hausser, 2021; Emiliani et al., 2022). Novel high-resolution
imaging techniques, such as two-photon calcium imaging employed in animal
experiments, have vastly improved our understanding of cellular and subcellular
physiology (Yang & Yuste, 2017; Toi et al., 2022). In parallel with two-photon imaging,
wide-field calcium imaging emerged as a powerful tool in systems neuroscience,
allowing recording from multiple brain regions simultaneously with a sufficient spatio-
temporal resolution to resolve behaviourally relevant information (Cardin et al., 2020;
Ren & Komiyama, 2021b). The recent development of single-cell transcriptomics
together with electrophysiological characterisation and morphological reconstructions
have enabled researchers to obtain a solid basis of knowledge concerning the neuronal
types in the mammalian brain (Fuzik et al., 2016; Gouwens et al., 2020; Chartrand et
al., 2023; Lee et al., 2023).

It has been proposed that the global properties of stimuli could be encoded by neuronal
synchronisation (Brama et al., 2015). For example the ‘binding by synchrony’ (Gray et
al., 1989) theory held that features, like the colour and motion of visual objects, are
consolidated into coherent perceptions when the neurons encoding these features fire
at the same time, with millisecond precision. Later studies found that binding by
synchrony does not occur (Lamme & Spekreijse, 1998; Thiele & Stoner, 2003;
Roelfsema et al., 2004); rather, features of objects are bound into coherent entities by
object-based attention which, at a neuronal level, increases neuronal firing rates
(Roelfsema et al., 1998; Poort et al., 2012). Morphological and high-density recording
tools for millisecond characterisation of brain circuits in animals carrying out specific
tasks may be within reach in a few years for hippocampo-cortical networks



(Klausberger & Somogyi, 2008; Lisman et al., 2017), motor cortex (Li et al., 2015), the
barrel cortex (Staiger & Petersen, 2021), the basalo-cortical network (Gombkoto et al.,
2021)) and for some hypothalamic networks that organise sexual behaviours (Karigo
et al., 2021).

At the same time, our theoretical and conceptual understanding of particular brain
functions has also become richer and more complex. Links between anatomy and
function can be investigated at various scales (Zaborszky, 2021). Microscale
morphological features include myelo-, cyto-, receptor architecture, cell density,
synapses, single neuron spike pattern, axonal and dendritic arborisation patterns,
spine density and gene expression, while physiological features range from ion
channel biophysics to synaptic potentials or neuronal spike patterns. Studies have
revealed area-specific synaptic organisation, receptor architecture and arborisation
patterns that show a surprising complexity of connections, though it is often unclear
how these features contribute to specific processing differences within and between
cortical layers and areal differences (Palomero-Gallagher & Zilles, 2019; Amunts et al.,
2020; Haueis, 2021; Rockland, 2022).

At the macroscale, researchers, using MRI, describe the brain in terms of
interconnected cortical areas, such as the macroscale connectional pattern that
underlies hierarchical processing in the visual system (Felleman & Van Essen, 1991).
At this scale, the brain exhibits spontaneous and systematic patterns of slow, low-
frequency fluctuations in the blood oxygenation level-dependent (BOLD) signal
measured in part in resting state functional connectivity studies (Raichle et al., 2001).
However, the precise relationships between BOLD imaging and details of
electrophysiological patterns are yet to be determined. Architectural types are
hypothesised to determine hierarchical processing (Barbas, 2015; Bastos et al., 2015;
Mejias et al., 2016; Vezoli et al., 2021). The connectivity of transmodal areas allows
them to integrate multiple unimodal sensory representations into categorical and rule-
based areas (Mesulam, 1998; Pandya et al., 2015). Progress has been made in
bridging connectivity between areas and the neuronal complexity of components within
areas. Specifically, the functional imaging BOLD signal used in many human studies
correlates best with local energy consumption (Viswanathan & Freeman, 2007), likely
reflecting dendritic activity and interneurons mapped onto layer-spanning neurons and
cortical layers. Such local microcircuit and dendritic activities serve important cognitive
functions involving the comparison of internal models and top-down expectations with
bottom-up information flow. These local computations might make a crucial
contribution to the cellular mechanisms of conscious processing (Aru et al., 2020) and
be missed in other electrical recording techniques measuring neuronal outputs. The
understanding of layer-specific computation will be an important computational
breakthrough that can be achieved by combining recording techniques sensitive to
local microcircuit activity and dendritic activity (Larkum et al., 2018) with corresponding
theoretical models of cortical computation (Sacramento et al., 2018; Haider et al.,
2021).

The so-called mesoscale has been defined at the level of microcircuits, where
researchers describe the brain in terms of different cell types and their connectivity and
emergent dynamics. However, the relevant units remain a matter of debate. While in
the 1970s, cortical columns of various sizes (minicolumns, hypercolumns, etc.) were
thought to be functional modules (Szentagothai, 1978; Jones, 1983; Mountcastle,
1997; Rockland, 2010), continued discussions propose a combination of basic circuitry
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types, including feed-forward excitatory, recurrent feedback excitatory, feed-forward
inhibitory, recurrent feedback inhibitory and inhibitory—inhibitory types (Nadasdy et al.,
2006). These circuits have been shaped through evolutionary pressure. Thus, it is
important to understand the logic of evolving and maturing cortical circuits in order to
identify specific circuits across species; this will tell us to what extent discrete
anatomical features carry similar or dissimilar functions. An understanding of
mesoscale circuits is important for properly linking micro- and macroscale descriptions
of brain organisation, in order to properly infer macroscale behaviour from microscale
features (Haueis, 2021). To this aim, wide-field fluorescence imaging can bridge the
gap between neural activity at micro and macro spatial scales and provide
understanding regarding how local circuits relate to larger neural networks (Cardin et
al., 2020; Ren & Komiyama, 2021a). The limitations of individual techniques can be
mitigated by combining different recording modalities (Allegra Mascaro et al., 2015);
e.g., recent studies used wide-field calcium imaging with other imaging methods, such
as two-photon calcium imaging and fMRI (Barson et al., 2020; Lake et al., 2020). In
order to rigorously map the complexity of meso-scale architecture, as well as its
relation to (cross-scale) connectivity (Axer & Amunts, 2022), itis now possible to image
molecularly defined cell types in the same (full) human brain section as cellular
architecture (Kooijmans et al., 2020). Such an approach allows for a better
understanding of how different cell types connect, at a local, as well as at a global level.

In parallel, a recent trend has been to focus on the geometry and dynamics of neural
populations (Saxena & Cunningham, 2019; Ebitz & Hayden, 2021). One hypothesis
motivating this approach is that (the most meaningful) neural activity takes place in
low-dimensional state spaces or manifolds that capture a significant fraction of neural
variability, and which can be identified by using dimensionality reduction techniques on
high-dimensional neural recordings. Studying the geometry and dynamics of low-
dimensional state spaces is suggesting novel mechanistic hypotheses about how the
brain controls movements (Churchland et al., 2012) and how it supports perceptual
and cognitive tasks (Chung & Abbott, 2021).

In order to connect the different scales and understand the rules of transition from one
scale to the next, detailed models linking these spatial and temporal scales are
necessary. In addition, biophysical models are needed that describe how physiological
processes are captured by the measurement devices. For example, such models can
be used to combine invasive electrophysiology that probes multi-unit activity and local
field potentials of a neuronal population across cortical depths with high-resolution
laminar fMRI (Havlicek et al., 2015): consisting of a microcircuit model including layer-
specific distribution of excitatory and inhibitory neuronal subpopulations describing
electrophysiology, which then provides the input to the fMRI signal model, and
generative models of the fMRI signal consisting of models of neurovascular coupling,
haemodynamic response and physics of the BOLD signal.

The increasing understanding of this complexity in brain organisation went hand in
hand with the rise of computational conceptualisation of mental phenomena and the
success of artificial neural networks. David Marr (Marr, 1982) recognised that, in
addition to the level of neural implementation, there are two further levels of
organisation: the algorithmic and the computational levels. The need to involve
computational neuroscience has grown in parallel with computational capabilities,
which have expanded in the 21t century to the point where computational
neuroscience has become an essential companion of both experimental and clinical
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studies. Apart from the modelling of concrete processes or computations, we can now
consider more ambitious, larger, and integrative models. These models will inevitably
shed light on the brain’s cognitive architecture and contribute to the development of
more general artificial intelligence. Brain theories integrate the computational models
within conceptual frameworks and formulate principles of their functioning grounded in
information theoretical frameworks such as the Free Energy Principle (Friston et al.,
2006; Parr et al., 2022) or dynamical systems theory such as Structured Flows on
Manifolds (Jirsa & Sheheitli, 2022)). In addition to modelling biological information
processing, computational approaches enable large and complex data sets to be
analysed efficiently, supported by artificial neural networks, theory, modelling and
simulation, allowing the linking of brain structure and function. Simulation at cellular-
molecular-level and/or in system models can facilitate the testing of specific
hypotheses or prediction of properties of brain structures, dynamics and even
behaviour, while integrating findings from different researchers and obtained with
various techniques. The integration of all experimental findings (models, texts, images
and other data) into a unified knowledge framework is still necessary. This, in turn, is
critical for translating findings from neuroscience into digital medicine, for proposing
new strategies of intervention and for empowering neuro-inspired technologies that
take advantage of a growing body of insights into perception, plasticity, learning and
memory.

Current state-of-the-art technologies to study processes across the entire spatio-
temporal spectrum are typically tailored to a specific species, genus, family, order,
class or phylum. Methods developed at different branches of the phylogenetic tree
(e.g., invertebrates) are only slowly being adapted for usage at other levels, e.g.,
rodents, and primates. Recently, an annotated atlas of all cells and cell types has been
released for Drosophila (Li et al., 2020), and genetic specification of circuit changes
have been studied that result in functional changes at the macro level (Handler et al.,
2019). This information may be important for understanding how macro-level state
transitions may relate to individual differences in connectivity strengths (Taylor et al.,
2022). Integrating this knowledge from model animals and translating it to humans by
accounting for the effects of evolutionary diversification through statistical integration
of phylogenetic knowledge (e.g., (Felsenstein, 1985); for an early mention of the need
for this approach), would allow researchers to bridge scales in the human brain
noninvasively.

Other examples of successful research in invertebrates are the exquisite reversible
perturbation tools to dissect the functioning of micro- and macro-circuits (e.g.,
optogenetics, chemogenetics, pathway-selective perturbations), which were first
developed in algae and further refined in invertebrates. These tools have gone on to
revolutionise rodent research (Kim et al., 2017) but have only recently begun to be
integrated in primate studies (Han et al., 2009; Gerits et al., 2012; Klink et al., 2021).
Other species like zebrafish are being selectively employed to understand genetic or
ontogenetic mechanisms that cannot be properly tested in mammals e.g.(Rastegar &
Strahle, 2016). Targeted perturbations can also be introduced by CRISPR/Cas9 into
induced pluripotent stem cell models of neurons or brain organoids.

Currently, neuroscience references phylogeny (evolutionary history) when a trait is
compared across two or more representative species. The identification of
evolutionarily convergent traits in two distantly related species can be used to
triangulate evidence of associations between related features (e.g., a brain structure

9



and its associated behavioural function). The identification of evolutionarily divergent
traits that differ between closely related species is used to pinpoint the origin of
species-specific specialisations, (e.g., a brain feature found in humans but not in other
primates). In recent decades, genomic sequences for diverse species have formed the
basis for an explosion of phylogenetic information, and with this has arisen a whole
new statistical toolset for comparing traits across different species, called phylogenetic
comparative methods.

Phylogenetic comparative methods have risen with the availability of digital datasets
and the possibilities of comparative neuroimaging (Friedrich et al., 2021). They will
certainly provide new opportunities to computationally analyse the ever-growing body
of comparative neuroscientific data. They can provide statistical tests for inferences of
homology; they can model how well a trait is conserved in evolution and they allow the
convergence of traits to be examined quantitatively in a larger group of taxa. As more
complex brain data become available in digital form and for more species, it will be
possible to model the evolution of brain organisation, neural circuits and cellular
biology, along with genomic, epigenetic and transcriptomic mechanisms. For example,
structural brain connectomes have now been investigated in 125 mammalian species
in comparison to phylogenetic distances (Faskowitz et al., 2022). In addition, new
possibilities are arising through studies of ancient DNA, which have so far been used
to connect human-specific features of gene expression to neuroanatomy by
investigating Neanderthal contributions to human DNA (Gunz et al., 2019). Some of
the alleles that are at present associated with human neuropsychiatric disorders might
have previously been linked to these adaptations that arose when Homo sapiens — and
the groups we recently admixed with — adapted to different environments around the
world over time (Benton et al., 2021). As extant data and comparative fossil records
about neuroanatomy, genomes, physiology and behaviour continue to accumulate,
new opportunities will continue to arise. Comparative data and evolutionary models
could be used to develop Al by ‘reverse engineering’ the minds of humans (Sendhoff
et al., 2009), as well as other species, by documenting the changes that occurred
during their natural histories.

Besides this evolutionary approach, neuroscientists study various model species at the
systems level to understand specific principals of brain structure and function, aside
from classic primate and rodent models. While there is much reliance on mouse
models to understand the neurobiology of diseases and although mice are instrumental
in tackling some diseases in humans, there are many human disorders for which they
are not suitable models (Brenowitz & Zakon, 2015). For example, mice are commonly
used to understand aging, but aged mice lack many of the biological features
characteristic of human aging and diseases. Some model organisms do age in ways
that resemble humans. Notably, cats and dogs recapitulate many aspects of human
aging, and exhibit brain atrophy and cognitive decline with age (Gunn-Moore et al.,
2007; Landsberg et al., 2012; Youssef et al., 2016). Neural pathologies in the brains of
some cats and dogs share similarities with those observed in Alzheimer’'s disease
(Head et al., 2000; Head et al., 2005). Broadening the range of model systems used
to understand human health and disease could help us address challenging problems
in human medicine.

Although their brains are vastly different to those of mammals, avian models have
become popular for investigating the fundamentals of complex cognition. This includes
functions like memorisation of spatial routes or hundreds of food caches, problem-
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solving, social altruism, theory-of-mind and multi-tasking (Emery, 2006; Gunturkin &
Bugnyar, 2016; Balakhonov & Rose, 2017). Birds have outstanding cognitive
capabilities, and songbirds possess a song system that is comparable to the human
speech system. This means that birds are so far the only animal model for studying
the development and processing of speech information in the brain, which has greatly
stimulated research within the field of comparative neuroanatomy and pallial evolution
(Brenowitz et al., 1997; Brainard & Doupe, 2002; Jarvis, 2004; Nottebohm, 2005;
Jarvis, 2019). Further, after more than 365 million years of separate evolution birds
have evolved a different pallial (neocortical) brain organisation compared to mammals
but show similar connectivity between relevant brain areas, neurochemical features,
neuron numbers and gene expression profiles of cells that are functionally related to
cognition (Herold et al., 2011; Shanahan et al., 2013; Herold et al., 2014; Colquitt et
al., 2021; Kverkova et al., 2022; Strockens et al., 2022). Such comparisons can yield
basic insights into the links between brain structure and function and offer the
unprecedented chance of gaining deep conceptual insights into fundamental brain
functions. These studies could potentially identify a core of identical neural
mechanisms in the brains of birds and mammals that constitute hard-to-replace
components of advanced cognition (Stacho et al., 2020). Large-scale comparative
research is key to understanding cognition and provides unique tools for deciphering
the neuronal mechanisms underlying normal and pathological human brain
functioning.

However, to what extent humans/primates evolved unique structural properties
remains an open question. For example, the number and complexity of pyramidal cells,
interneurons and glial cells as well as specific brain network properties may vary
between human and non-human mammals (Benavides-Piccione et al., 2020; Berg et
al.,, 2021; Fang et al., 2022). Those studies included only a small selection of
mammalian species, and it is not foreseeable if these differences will persist when
additional species and/or parameters are considered. Furthermore, although
previously thought to be unique to humans (Balsters et al., 2010), the neocerebellum
likely expands predictably in all primates (Magielse et al., 2023). Methods have now
been developed that allow us to examine human brain organisation and function at a
level of detail close to what we can obtain with animal models (Eyal et al., 2018;
Montero-Crespo et al., 2020).

Although by far not comprehensive, this overview of modern neuroscience illustrates
several important points: 1) Advances in neuroscience are not only the result of
conceptual advances but are tightly linked to new methods and technologies; 2) New
techniques allow a better understanding of the brain, but at the same time open the
door to a new level of complexity and open up new questions; 3) There is an increasing
need for integration of knowledge and collaboration across different domains, scales,
species and models.

3. INSTRUMENTATION

Many new tools are facilitating profound insights into the brain’s structure and function;
further, researchers also have at their disposal new capabilities and considerable
computational power to analyse data and simulate brain function. Such tools are
provided by different platforms and consortia world-wide.
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We here focus on EBRAINS: a dedicated distributed digital research infrastructure for
neuroscience. EBRAINS'® gives access to data, tools, methods and theories that
were previously fragmented and distributed between different labs, in a joint, digital,
open, interoperable platform. It has been developed in the HBP and operates
according to FAIR data principles (Wilkinson et al., 2016). EBRAINS encompasses
services for the sharing of neuroscience data and models, the multi-level atlas of the
human, atlases of rodent and non-human primate brains, simulation, brain-inspired
technologies, medical data analytics as well as dedicated tools for collaboration. In
addition, it incorporates innovative neuromorphic computing and allows for the
execution of experiments in virtual robots. Fenix''%, an infrastructure coordinated by
experts from leading European centres for high-performance computing, greatly
facilitates research with high computing and storage demands. Through Fenix,
neuroscientists can also collaborate with other research communities to jointly develop
new software and solutions in the broader domains of data- and computationally-
intensive research. This is important because it creates synergies where different
communities have similar questions (e.g., visualisation of large data sets, fast and
interactive access to data), and it helps to use resources more efficiently.

The EBRAINS research infrastructure attracts a broad and very heterogeneous
community of users, ranging from experienced application/service developers and
senior neuroscientists to young researchers and students. Collaborative work and co-
creation among stakeholders and users will be an essential part of the EBRAINS
community and guide its development. The platform puts significant emphasis on the
ease of use of its tools, and the interface complexity is balanced with user needs. This
facilitates collaborative work, by combining tools to form computational workflows that
seek solutions to diverse problems (e.g., (Fothergill et al., 2019; Eriksson et al., 2022;
Wagner et al., 2022)). In that sense, EBRAINS is changing the research paradigm
scientists use to study the brain, both for large-scale neuroscience and for individual
projects.

Computational workflows should be characterised by accessibility, shareability,
automation, reproducibility, interoperability, portability and openness. In this context,
of particular importance is the use of the Knowledge Graph'' , which includes a multi-
modal information representation as well as the following ‘independence’ features of
EBRAINS workflows:

e Independence of tools and services from the workflows in which they are used.
The inputs of tools and services are parameterised so that they may produce
different outputs depending on other tools and services with which they are (re-
Jused in diverse workflows.

¢ Independence of workflows from the underlying infrastructure in which they are
executed: the Common Workflow Language (CWL)'"? is being adopted for
describing workflows in a common, standard fashion, offering transparent
execution in infrastructures with different requirements, dependencies and
configurations.

109 EBRAINS: https://ebrains.eu/
110 Fenix: https://fenix-ri.eu/
111 https://search.kg.ebrains.eu/112 https://www.commonwl.org/

112 https://www.commonwl.org/
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¢ Independence of workflows from the underlying workflow management system.
Several such systems are compatible with CWL for executing workflow steps,
monitoring their execution, handling failures, automatically fetching logs and
outputs and other relevant actions.

This provides a technological basis for a new approach to international, collaborative
neuroscience and represents a large-scale interface for collaborative projects, e.g.,
organised in the International Brain Initiative (IBI)'"® and the NIH BRAIN Initiative
(Litvina et al., 2019). Along the same lines, the European EBRA consortium developed
a Shared European Research Agenda to increase the impact of brain research,
advance basic, translational and clinical brain research, improve the lives of persons
with brain disorders, enable brain innovation and address societal and economic
challenges in Europe and globally ''* . Others have used the term Knowledge
Representation (KR) to emphasise the need for a correct, robust, and verifiable
representation of the vast neuroscience corpus (Di Maio, 2021).

To provide another example: recognising the importance of digital brain research and
the potential benefits and value-driven impact for cognition, behaviour and mental
health, Malaysia has established the Malaysia Open Science Platform (MSOP)'"°® as
an initiative to strengthen science, technology and innovation in Malaysia itself as well
as outside the country’s borders. Going beyond the brain, on an even broader scale,
the Human Reference Atlas (Borner et al., 2021) and the European Commission’s
Virtual Human Twin (VHT) initiative (driven by the EDITH coordination and support
action; https://www.edith-csa.eu/) aim to develop the necessary infrastructure to
facilitate the creation of integrated multiscale multi-organ twins of the whole human
body. Such twins may benefit from the lessons learned and the tools developed in
EBRAINS.

4. WHAT IS MISSING?

Deeper insights into brain function and dysfunction are not only now possible but are
also urgently needed. Neurological and psychiatric diseases create a significant
burden for those directly affected, carers, relatives and society. Achieving progress in
these areas is additionally motivated by philosophical questions of knowing and
understanding our own nature, consciousness and cognition. These different
perspectives have to come together for a better understanding of the basis of brain
health and the border between brain life and death. Ethical, philosophical, legal and
regulatory, cultural and political challenges, which are intertwined, will need to be
addressed concomitantly.

Progress in brain medicine is tightly linked to advances in basic research, but some
fundamental questions remain open. To name a few examples, the formation of
memories and the basis of conscious perception, the interplay of electrical and
molecular-biochemical mechanisms of signal transduction at synapses, the role of glial
cells in signal transduction and metabolism, the role of different brain states in the life-
long reorganisation of the synaptic structure, the relationship between dynamical and
cognitive models or the mechanism of how cell assemblies generate a concrete

113 International Brain Initiative: https://www.internationalbraininitiative.org/
114 https://www.ebra.eu/sebra/

1 15https://www.akademisains.gov.my/mosp/
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cognitive function are all important aspects that remain to be characterised. Moreover,
the specific, dynamic consequences of variations in brain organisation, including cyto-
, myelo-, chemoarchitecture and interregional connectivity, are not yet well understood,
but ultimately influence the local ratio of excitatory to inhibitory cell activity, resulting in
a variable balance across different brain regions (Deco et al., 2018; Demirtas et al.,
2019; Kringelbach et al., 2020; Barbero-Castillo et al., 2021; Jancke et al., 2022).

Our current understanding of the mechanistic operations which subserve cognitive
functions such as memory or decision making, is limited by the scale and precision of
existing technologies — simultaneous microscopic recordings are limited to a few brain
regions, while full-brain imaging lacks the spatial and/or temporal resolution needed.
Computational models, which could help to fill this gap, are likewise at an impasse:
mechanistic models of cognitive functions focus almost exclusively on microscopic
scales (Amit & Brunel, 1997; Wang, 2002; Mante et al., 2013), while full-brain models
are largely oriented to replicating large-scale neural dynamics (Deco et al., 2011;
Breakspear, 2017). Novel modeling approaches must be developed to close this
schism in the field, either by introducing simplified cognitive functionalities in large-
scale brain models (Mejias & Wang, 2022), by extending cognitive models such as
recurrent neural networks to multi-region frameworks (Yang & Molano-Mazén, 2021)
or by increasing the biological plausibility of existing cognitive multi-region models
(Dora et al., 2021).

The need for interaction with the brain (both ‘reading’ and stimulation/manipulation)
originally driven by clinical requirements, has opened novel and expanding fields such
as the assessment of awareness in disorders of consciousness (e.g., unresponsive
wakefulness syndrome, locked-in syndromes), brain-machine interfaces, cognitive
enhancement, sensory restoration and sense-expanding technologies, which have
relevance beyond the medical sector for society at large. There is also a need for brain
recordings of high temporal and spatial resolution and activity control that are at the
same time minimally or non-invasive. These technological advances require
interdisciplinary work from neuroscience and areas such as micro- and
nanoelectronics, optics, light-controlled drugs, nanorobotics, new materials (e.g.,
graphene), etc. It is to be anticipated that advances in security, biocompatibility,
reactive changes in the brain (e.g., gliosis, cell death), signal-to-noise ratio, problems
related to invasiveness (surgical, infections) and closed-loop control of brain function
will be made soon; these advances will bring with them consequences in terms of legal
and ethical issues.

While progress in these fields has been impressive, a comprehensive understanding
of underlying processes requires an integration of each system (e.g., visual,
sensorimotor) with the rest of the brain, with the body and with the environment.
Furthermore, it requires integration of molecular, subcellular, cellular and systems
levels, to reach a ‘multiscale’ understanding that incorporates the emergent properties
of all these complex relationships. These levels cannot be fully understood by
considering only parts of the system. Each level, when it malfunctions, may result in a
large variety of neurological and neuropsychiatric diseases. In order to understand the
process holistically, one needs to understand all the individual steps, which is today in
many cases difficult or impossible. It is necessary to approach the individual steps at
the relevant level of abstraction and to develop a theory, and, in addition, to have
access to the relevant data at the different levels of brain organisation through a multi-
level structural and functional atlas.
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The newest computational bottom-up models are now able to integrate microscopic
features, such as those of specific ion channels, synaptic receptors and
neuromodulators and evaluate their impact at the level of cellular subpopulations.
Recently, this approach was even extended to the whole brain-level, by studying the
effect of molecular targets of anaesthetics such as propofol, and their impact at the
level of large-scale activity. For example, changing K* conductance (Dalla Porta et al.,
2023), or the kinetics of inhibitory (GABA-A) synaptic receptors, can induce a switch of
brain activity to synchronised slow-waves, similar to the effect of anaesthetics''®. This
is an example of an area where computational models can contribute.

A full causal understanding of how behaviour and cognition are produced through
cortical computation requires the combination of both bottom-up and top-down
approaches. The paradigmatic example is the ventral visual stream. While deep neural
networks for object recognition have been inspired by the architecture of the visual
system, these networks also provide an improved functional model of the visual system
itself. In fact, the statistical properties of model neurons in the deep networks are
closest to those of real neurons recorded in the brain (Yamins & DiCarlo, 2016; Zhuang
et al., 2021). It remains a challenge to reproduce this functionality of the top-down
models with more detailed bottom-up models.

This type of interplay between experimental measurements and modelling predictions
is very powerful and has led to impressive advances in understanding network-level
phenomena such as oscillations, waves. (Breakspear, 2017; Tort-Colet et al., 2021;
Marder et al., 2022). The extension of such an approach to the level of the whole brain,
however, is more challenging because of the high level of complexity involved, as well
as the still-insufficient temporal and spatial resolution of non-invasive human imaging
and recording techniques. Linking these models with imaging requires a deep
biophysical understanding of the different signals involved. This is particularly relevant
when computational models are used to quantitatively predict cognitive function and
aging (Jonsson et al., 2019; Charvet, 2021; Charvet et al., 2022; Heckner et al., 2023),
e.g., based on imaging data of patients and healthy subjects and for building precise
loops between computational models and clinical data, which should ultimately lead to
a better understanding of neurological diseases.

Network and other models are also tools to investigate how physiological mechanisms
can be perverted in pathological conditions, e.g., where microscopic changes down to
modifications at the protein level can lead to aberrant behaviour or clinical symptoms
(Maki-Marttunen et al., 2019). Among the best understood cases are epilepsy
disorders, where several microscopic targets have been identified, leading to
abnormally high excitability. Another example comes from a multifactorial causal model
that included neurotransmitter receptor data and enabled the prediction of variance in
the clinical severity of Alzheimer’s disease symptoms, thus further supporting the value
of creating personalised brain models, as well as the importance of their enrichment
with data arising from multiple modalities (Khan et al., 2022). In contrast, the tissue
pathologies and brain signals of many other pathologies such as schizophrenia are not
well understood, and computational models may have an important role in identifying

"éwork in progress in showcase 3 of the HBP: https://www.humanbrainproject.eu/en/follow-
hbp/news/2022/06/20/how-ebrains-used-investigate-disorders-consciousness/
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mechanisms and also in predicting potentially informative macroscopic and/or
behavioural features.

Box 1: Technological, methodical and computational challenges

Brain research poses enormous technological and computational challenges for brain
interfacing, analysis and mechanistic understanding, data interpretation and modelling
of brain processing. To cite but some examples:

The complexity of data (multi-level brain organization, hierarchies, parallel
information processing, redundancy, electrochemical processing, etc.). A key
aspect of this complexity is the relationship between different scales that speaks to
the level of granularity (and accompanying data) that is most apt for elucidating
these relationships. One approach from physics is the notion of ‘renormalisation’;
namely, the conservation of laws from one scale to the next (sparse coupling,
hierarchical dynamics, computational principles, etc.). In addition, measurements
at all relevant scales are required to obtain information on how low-level states
combine to generate states at higher levels, and to account for neurodegeneracy,
i.e., the propensity for different system configurations to support the same or similar
functions.

The multitude of data formats and data models arising from the use of diverse
hardware, software, and analytical approaches. Data sourced from various
researchers and laboratories often display disparities, creating hurdles for
integration and interoperability. Promoting the adoption of standards and
harmonisation procedures, including the utilisation of standardised brain atlases for
spatial referencing, is essential. These measures play a pivotal role in facilitating
data reuse and the combination and utilisation of data across different contexts.
Brain data derived from human subjects can undergo de-identification but may not
achieve anonymisation (rendered impossible to trace back to the individual).
Consequently, there is a demand for secure data storage services that offer
controlled or restricted access to facilitate data reuse. In these protected storage
systems, making data discoverable involves openly sharing anonymous metadata,
a practice currently employed by EBRAINS.

Many behaviours and some mechanisms are unique to humans, but a large
proportion of data is not directly accessible and remains unknown (e.g., chemical
reaction kinetics at the cellular level cannot be measured in the living human brain).
Comparative approaches studying animal brains as well as modelling and
simulation are strategies to overcome this problem.

Intersubject variability and diversity. It is necessary to integrate information from
diverse human populations for personalised medicine into atlases, databases and
research.

The specific spatial and temporal resolution of data sets, given the multi-scale
nature of brain spatial and temporal activity. Scale integration is challenging (from
micro- and nanometre scales, through meso- to macroscale) as is the capture of
brain dynamics. This requires representation of different scales in a common
framework according to the topography of the findings, i.e., in multi-level and multi-
scale atlases and models that account for the temporal domain.

The large size of ‘subsystems’ (e.g., large molecules such as neurotransmitter
receptors with many atoms and complex, dynamic structures, large networks,
whole-brain perspective as compared to regions of interest, large cohorts).
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e The wide spectrum of response patterns, dynamics, plasticity and behaviour of the
system in pathological conditions.

e The changing nature of the system, which manifests plasticity at different spatial
scales (from dendritic spines to large networks; processes such as spike
adaptation, long-term potentiation, long-term depression) or neurodegeneration
after lesions.

e The accuracy and reliability of predictions and analyses, applicable to individual
subjects, which is particularly critical for translating applications into brain medicine.

e The lack of a comprehensive brain theory, or a selection of competing theories.

e The lack of integrability and documentation of extensive brain collections using
modern experimental approaches, including those over 100 years old in Europe
and worldwide, to make better use of historical brain preparations and data. These
number in the many tens and hundreds of thousands of specimens and, for the
most part, are not yet digitised and/or available via web-based tools. Some of them
include rare species or brains obtained under conditions that cannot be reproduced
any more (e.g., untreated patients with brain disorders). Making this digitally
accessible for researchers worldwide would be of significant benefit to evolutionary,
comparative and also clinical research; however, this aspiration is linked to
significant challenges in data exchange, storage and security. First attempts are
underway to combine post-mortem brain dissections with in vivo imaging in a digital
framework, e.g., https://bradipho.eu/ .

5. ETHICAL AND SOCIETAL QUESTIONS AS DRIVERS OF
RESPONSIBLE DIGITAL BRAIN RESEARCH

Digital brain research should be driven by scientific curiosity and a desire to promote
society’s best interests; further, it should reflect societal priorities, including a better
understanding of the brain, the development of better diagnostic tools and more
effective treatment of brain diseases. In this section, we briefly suggest how we can
ensure that societal concerns are addressed and reflected in the research and its
outcomes and describe approaches for guaranteeing that research and innovation
processes are carried out responsibly. Future research programmes must integrate
anticipatory practices, neuroethical reflection, multi-stakeholder and citizen
engagement and support ongoing compliance with current legislation, regulation and
good research practice. This includes careful consideration of the role of gender and
diversity in data generation and governance of research, attention to potential dual-
use research of concern or misuse of neuroscientific findings as well as reflection on
the ethical sustainability of the research, its impact on human rights and its long-term
societal and political implications. Additional social and legal issues to be considered
in relation to digital brain research include those raised by data protection and the
European Commission’s General Data Protection Regulation-compliant data
governance (GDPR), social desirability, acceptability and sustainability of digital brain
models and issues raised by the possibility of advanced artificial cognition, brain-
inspired computing and neurorobotics research, among others. In one example, the
intersection of neuroscience and technology is likely to lead to new approaches to Al.
In digital brain research, the emphasis should not only be on amassing vast amounts
of data but also on ensuring a diverse representation, encompassing factors such as
sex, age, and ethnicity. This inclusivity extends to researchers, practitioners, and
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stakeholders involved. By embracing diversity, the field can effectively address issues
related to biases in Al and proactively engage with emerging concerns arising from
innovative approaches, technologies, and applications.

The framework of Responsible Research and Innovation (RRI) defines a
multidisciplinary approach to tackling the ethical, philosophical, societal and regulatory
challenges that accompany the vision of future digital brain research. Furthermore,
RRI-inspired research and practices can be useful in building a future where
responsible digital brain research is proactive in its recognition of existing and
emerging societal and ethical challenges.

Digital brain models are a key concept and model for future brain research. They raise
significant philosophical questions (e.g., what are the limits of access of brain—machine
interfaces to other brains?) (Evers & Sigman, 2013) and ethical and social issues (e.qg.,
are there potentially problematic applications of the technology? Who is involved in the
analysis and decisions on potential applications? How would we like to use such
models in society?) (Evers & Salles, 2021). Conceptual clarity is a prerequisite for
informed debates on the ethical issues raised by digital brain research. Approaching
such questions through the framework of RRI includes reflection on the meaning and
adequacy of the concepts involved, engagement and dialogue between different
disciplines in neuroscience research, including philosophers, ethicists and social
scientists with societal stakeholders like policymakers, interest organisations and the
public.

Box 2: Ethical questions

Acknowledgement of ethical questions that arise as a consequence of digital brain
research, especially by digital twins.

e Privacy. Digital twins are constantly updated with real-world data. This data can be
identifying, particularly when imaging, genetic and clinical data is combined. Even
‘siloed’ sources of information, in great enough quantity, can prove identifying,
especially in cases of rare diseases. Increasingly, it appears that promising de-
identification may not be possible in the face of big data (Choudhury et al., 2014).
It is crucial that individuals be informed of privacy considerations during the
consent process and that they understand that the identification risk may increase
over time (White et al., 2022). As a community, and in collaboration with governing
agencies, policies will need to be established regarding these aspects in the future.

e ‘Mind-reading’. Concerns about privacy are amplified given that much of digital
brain research investigates emotion, perception, memory and mental states:
realms that are often considered sacrosanct aspects of inner life. Already, brain
imaging (alongside various physiological measurements) has been shown to be
predictive of behaviour at the population level (Bell et al., 2019; Talozzi et al.,
2023). Digital brain models have the potential to be even more powerful: for
instance, they may suggest how to enhance particular brain states, in addition to
merely classifying them (Ligthart et al., 2021) .

e Malfeasance. It is increasingly recognised that digital brain research can be ‘dual
use’. It may equally cause harm and bring benefits.
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6. GLOBALISATION OF BRAIN RESEARCH

The proliferation of digital technologies in brain research has expanded since the dawn
of the 215t century and analysing multi-modal data from many thousands of brains,
made openly available through public repositories (e.g., UK Biobank) or global
networks (e.g., ENIGMA, HCP) is possible. Of course, access to dizzying amounts of
data means nothing without the means to convert these data into knowledge and,
ultimately, into a better understanding of the brain’s complex machinery in normal
behaviour, in development or aging and in brain disease. Accordingly, we have seen
the rise of complex generative models that track the spatiotemporal progression of
brain states (lturria-Medina et al., 2018; Young et al., 2018; Vogel et al., 2021) by
combining genetic and phenotypic information across multiple time points. Al
strategies are playing an increasingly important role in classifying massive cohort data
into rationally defined sub-groups that may be amenable to customised interpretation,
e.g., polygenic risk scores of behavioural predisposition or stratification of
pharmaceutical clinical trials. Finally, such approaches offer the potential for
personalised management or medical intervention.

However, the search for ever more subtle and early biomarkers of incipient changes in
brain state often demands ever larger aggregates of data to tease out the factors that
are associated with, or perhaps cause, those changes. This search brings with it the
perennial conflict of homogeneity versus representation. While there is little doubt that
‘big data’ approaches applied to large public data repositories, e.g., ADNI, PPMI, UK
Biobank etc., have provided us with hitherto unmatched insight into the general nature
of the human brain’s mechanisms and circuits, such cohorts are largely drawn from
Western countries and are not representative of the global population.

The effectiveness of data repositories requires sufficiently rich and diverse data to
ensure that outcomes of research and the innovations informed by these outcomes
can be generalisable to diverse populations and contexts globally. Sex differences,
age, socioeconomic status, ethnicity and other factors contribute to individual
differences in neural structure, function and cognitive performance (Dotson & Duarte,
2020) as well as differences in disease prevalence, recovery and survival rates
between demographic groups (Zahodne et al., 2015; Sterling et al., 2022). Moreover,
differences worldwide exist regarding the reporting of racial demographic information
in studies (Goldfarb & Brown, 2022). At the same time, initiatives in Low- and Middle-
Income Countries (LMICs) have steadily grown for the diagnosis and prevalence of
brain disorders and mental health issues, e.g., the ASEAN region. There is a need for
global collaboration including the collection, dissemination and analysis of well curated,
deeply phenotyped and genotyped datasets from LMICs to identify similarities and
differences among different global sub-populations. It is not possible to obtain
statistically reliable inference about such comparisons without access to nationally
representative cohorts from different countries, a requirement beyond the reach of
individual laboratories. As the repeated use of existing datasets leads to their inevitable
decay (Thompson et al., 2020), the problem of representation cannot be addressed
merely as an afterthought but requires urgent prioritisation.
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In the coming decade, as open data-sharing initiatives (UK Biobank, OpenNeuro,
CONP, EBRAINS, etc.) expand globally, scientists' evolving views on data
management and sharing (Donaldson & Koepke, 2022), along with shifting
expectations from funders and journals (see, e.g., Editorial in Nature Neuroscience
("How we promote data sharing," 2023)), will likely result in a significantly increased
availability of diverse data for the global community. This will bring a new level of
awareness of the associated and causal factors that give rise to brain and behavioural
differences among global populations. Such data-sharing platforms, many of which
have now been in existence for over a decade, have reached a level of technical
advancement such that they already support open data-sharing across many
countries.

However, there is work to be done in developing a clear and seamless interoperability
across diverse platforms, ensuring that end-users can engage without delving into
intricate technical underpinnings. The challenge is not merely about providing 'data’;
the emphasis lies on delivering data that is both valuable and interpretable, complete
with provenance that adheres to FAIR data-sharing principles (Wilkinson et al., 2016).
Technically, achieving data interoperability, providing data descriptors and protocols,
and adhering to metadata standards not only enhance the value and usefulness of the
data but also contribute to building a stronger, collaborative, and more efficient
research ecosystem. However, the imperative for access to meaningful and actionable
data also introduces a myriad of challenges related to data governance and ethics.
These practices are still evolving across different constituencies, with diverse and
sometimes incompatible frameworks globally (Eke et al., 2022). Differences also exist
regarding the reporting of racial demographic information in studies (Goldfarb & Brown,
2022), and the technical capacity to generate and process data, funding for data
collection and other socio-cultural factors. So far, datasets from regions in Africa and
Latin America are often not part of global brain research and innovation discourse.

The next decade will see a pressure to harmonise the different data governance and
ethics frameworks in Europe (e.g., GDPR), North America, Asia, Australia and Africa,
to foster the wider dissemination of brain data within an Open Neuroscience global
community. More attention should be paid to capacity building, increased reporting of
demographic information, funding programs and finally awareness campaigns focused
on data generation, processing and sharing in low- and middle-income countries.

Arguably the most important aspect of the globalisation of brain research will be the
‘democratisation’ of brain research. Rather than being simply sources of cohort data
that are analysed and published by scientists in High-Income Countries, we anticipate
a growing presence of LMIC scientists in the brain research enterprise. This
democratisation is a natural evolution from the increasing access to advanced analytic
workflows that are available through current data analytic portals (e.g. CBRAIN
(https://cbrain.ca/), EBRAINS (https://ebrains.eu/), BrainLife (https://brainlife.io/). Such
portals allow researchers anywhere in the world to run complex analyses on large
datasets that are resident elsewhere and remove the logistical, administrative and
technical barriers that have hindered LMIC scientists from participating fully in the brain
research community. Further, the redistribution of derived data becomes possible by
combining data sharing and analysis platforms. The sharing of results is essential to
minimise scientific redundancy, maximise reproducibility and foster accessibility of
scientific analyses to LMIC environments. With growing awareness of the role, that
analytic decisions play in learned models of the brain (Botvinik-Nezer et al., 2020), the

20



dissemination of derived data allows for both iterative and collaborative approaches to
scientific exploration and removes key barriers to entry. Such a vision also brings with
it a host of administrative factors to be worked through, e.g., academic recognition,
promotion, mentorship, etc., but these issues are already topics within the current
Open Neuroscience debate. Adding a globalisation component introduces scaling and
logistical challenges, e.g., language, local governance regulations, but does not
change the fundamental issue, which is the tension between data privacy and open
science. We anticipate that, as the technical challenges are resolved, the vision of
global neuroscience integration will become a reality over the next ten years.

7. BRAIN MODELS AS ENABLES OF FUTURE BRAIN RESEARCH

The accelerated development of information and communication technologies in the
past two decades has not only supported the development of simulation and machine
learning technologies but has also made data and models interoperable within a
common ecosystem leading to novel types of brain models. Directly tapping into the
results stemming from basic research on the brain, brain simulation is expected to play
a key role in elucidating essential aspects of brain processes (by demonstrating the
capacity to reproduce them in silico), such as decision-making, sensorimotor
integration, memory formation, etc. While mindful of some of the ethical and
philosophical issues they raise, one may also envision the potential use of such models
and simulations to address specific questions in brain research. From there, it is easy
to envision how generic brain models can be customised to capture some of the distinct
features of a given patient’s brain. For example, an individual’s structural and functional
brain imaging data may constrain a generic digital brain model and render it subject-
specific, thus enabling its use as a personalised analysis template or in silico simulation
platform.

A concrete instance of such an approach is the Virtual Epileptic Patient, wherein
neuroimaging data inform in silico simulations of an epileptic patient’s brain to support
diagnostic and therapeutic interventions, clinical decision-making and prediction of
consequences (Wendling, 2008; Jirsa et al., 2017; El Houssaini et al., 2020). With the
overall trend in computational neuroscience, various models of epileptic activity are
being built based on knowledge regarding the relevant underlying neural circuits. The
models often explain the network-level observation of epileptic seizures as an
emergent hyper-synchronous/high amplitude rhythmic state of network of neurons or
neural population. Multilevel atlas data represent another data source that can further
inform personalised brain models in instances where data cannot be directly obtained
from that subject (Amunts et al., 2022).

Such personalised ‘virtual brains’ can be seen as a stepping-stone towards something
even more theoretically and technically, and possibly ethically challenging, but also
better adapted to the ever-changing nature of brain activity across all time scales. The
logical culmination of personalised brain simulation can be seen in a model that is
continuously informed and updated by real-world data, a type of model referred to as
a ‘digital twin’. The concept of the ‘digital twin’ in this context needs to be carefully
defined to avoid obscuring the limitations of the approach and to avoid creating
unrealistic expectations of exact fidelity or even counterproductive hype (Evers &
Salles, 2021). Historically, the concept of the digital twin originated in the realm of
industry and manufacturing (Grieves & Vickers, 2017; Grieves, 2019), and comprises
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three components: the physical object, its virtual counterpart and the data flow back
and forth between the two. Empirical data measured for the physical object are passed
to the model, and information and processes from the model are passed to the physical
object. Today, the term ‘digital twin’ is widely used beyond its origins in the industrial
domain and is now applied in many areas of research, including in biological and
medical fields, although the concepts behind this term may differ.

In manufacturing, the digital twin is more than a general simulation model. It is the
specific instance of the general model for an individual object fed with empirical data
from that specific object, e.g., an airplane engine in the industrial domain (Tao et al.,
2019). Recently and in the same context, ‘digital shadows’ have been proposed as an
improved approach to provide task- and context-dependent, purpose-driven,
aggregated and persistent datasets that can encompass different complex realities
from multiple perspectives in a more versatile fashion and with better performance than
a fully integrated digital twin (Becker et al., 2021; Brauner et al., 2022).

One reading of a digital twin speaks to the dialectic between machine learning and
generative modelling in Al. Generative models underwrite interpretability and
explainability. Furthermore, they enable the move from ‘big data’ to ‘smart data’ (or
more precisely selecting and integrating data features to maximise expected
information gain). A generative model is a probabilistic specification of the mapping
from (latent) causes to (measurable) consequences. In this sense, a digital twin can
be taken as a formal specification of a model that is apt for generating the responses
of a cell, subject or cohort in question. Crucially, getting the generative model right
affords an interpretable and mechanistic account of empirical data. Coincidentally, it
casts the distinction between bottom-up and top-down modelling in terms of model
fitting (i.e., inversion) and model selection (i.e., hypothesis), respectively.

In constructing a ‘digital twin’ of a living organ, one is confronted by important
challenges over and above those encountered when constructing the digital twin of an
inanimate object. The brain is by far the most complex and multi-facetted organ. To
what extent, then, can the digital twin concept be applied to neuroscience and the
brain? The term digital twin, if applied 1:1 to the brain, could trigger major
misunderstandings. Here, we want to contribute to the discussion by clearly defining
the term in the specific context of brain science. We distinguish purpose-driven digital
twins from the abstract idea of a full digital replica (or duplicate/copy) of the brain, the
latter being the complete representation of all aspects of the brain at all levels (see Box
2). A full replica of the brain is neither achievable nor does it seem of clear practical
use. When we speak of digital twins in what follows, we mean purpose-driven digital
models generated for specific questions, unless explicitly indicated otherwise. The
digital twin as discussed here should be understood as a virtual model designed to
adequately represent an object or process that is constrained by data from its physical
counterpart and that provides simulation data to guide choices and anticipate their
consequences. The digital twin is thus a copy in the practical sense, usually associated
with a model of a function or process, and its power lies in its usefulness in dealing
with relevant problems faced by its physical counterpart at an appropriate level of
abstraction. The aim is thus not to resemble the biological brain in as much detail and
on as many levels as possible but rather to selectively reduce the amount of
information to those data that have proven predictive for a specific (research) question
— keeping the model as simple as possible but ensuring it is as complex as necessary.
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Even for a specialised model that aims to understand specific aspects of brain structure
and dynamics or predict the progression of disease in a specific patient, one still needs
a comprehensive source of data to draw from in order to generate sufficiently
information-rich, complex Virtual Brain models. Such curated data systems have been
created, for example in the form of the Human Brain Project’s high-resolution multi-
level human brain atlas on EBRAINS. These serve as an interface for integration of
structural and functional data modalities. With each model, it must be demonstrated
whether more data makes the model more powerful or not, i.e., do the added data
enable more accurate, testable predictions? There needs to be a continuous, question-
related monitoring of the trade-off between the inclusion of more parameters or
measurements for better predictions and the feasibility and associated costs of
collecting these data. This also serves as an ongoing loop for testing whether the data
selection is suitable for the question at hand, i.e., whether it reflects the major
determining factors (Box 3: Categories of digital brain models).

Box 3: Categories of digital brain models

e Brain models

Brain models are digital representations of the brain. The term is used in different
contexts; common examples include digital atlases, artificial neural networks,
anatomical models, biophysical models, network models, cognitive and behavioural
models and mathematical and data-driven models.

e Personalised brain models

Personalised brain models are special types of models that are personalised by
integrating specific data of one individual into a more general model (e.g., as enabled
by the Virtual Epileptic Patient).

e Digital twins

Next-generation personalised brain models that continuously evolve by being informed
with real-world data. They are designed in a purpose-driven way, integrating data
relevant for a specific research question.

e Full replica

The idea of a complete digital representation of all aspects of a brain at all levels
(hypothetical concept), eventually including the interpretation with the digital twin body

An important distinction between the digital twin and other personalised virtual brain
models is that the digital twin constantly receives new information from the real world
to immediately adjust to its environment. In a neuroscience context, a ‘digital twin’ of a
brain in the above sense holds much promise as an approach for continuously adapting
interventions in functional neurorehabilitation or for tailoring neurotechnology-based
interventions. Applications making use of a high-fidelity digital twin of a human brain
updated in quasi-real time will require technical developments (e.g., ecological
immersion of that twin brain in simulated environments, high-bandwidth, stable brain-
machine interfaces, very high computational power), in areas where breakthroughs
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have yet to be made; as such, they remain a long-term objective for a rather distant
future. This is not to say, however, that digital twins cannot already be applied in
neuroscience and medicine today, provided they adequately address the intrinsic
limitations of current brain models, of available personalisation processes and those
faced by current technologies in updating them at the required frequency. The twin
thus defines the current horizon of our digital neuroscience roadmap and must be
appropriately taken into account as a driver for future developments.

While the use of digital twins of the brain in concrete applications may still seem some
way off, the era of digital brain research has, without question, already started, both in
real world settings and research alike. Digital brain research is an umbrella concept
under which data, models, theory, methods and computational technology are
integrated for all research and development efforts undertaken in the framework of the
HBP. Its value rests upon a successful demonstration of internal and external validity
(features of experimental results) as well as ecological and construct validity (features
of interpretative claims). It enables researchers to address some of the major
challenges that have hindered progress in neuroscience for decades. These
challenges include our understanding of intra- and inter-subject variability, non-
identifiability of mechanisms and multiscale complexity. EBRAINS provides an
infrastructure and user interfaces to allow interoperation of the required components
of data, models and methods; in doing so, it de facto establishes the operational basis
for the concept of the digital brain to take centre stage in neuroscience research.

We propose that there are three areas where digital brain models of all kinds (see Box
3) could be fruitfully applied in the short-to-medium term: (1) basic brain research, (2)
applications in medicine, and (3) brain-derived technologies.

(1)Basic brain research

Digital brain models and their simulation will not replace basic research and knowledge
accumulation but can be rather thought of as a useful ‘engineering’ tool that functions
currently as an in-progress predictive model with a dual purpose: (1) putting current
knowledge to the test, and (2) anticipating the effect of interventions. The latter can be
appealing as the number of interventional methods is expanding (deep brain
stimulation (DBS), transcranial magnetic stimulation (TMS), transcranial direct current
stimulation (tDCS), transcranial focused ultrasound stimulation (tFUS), drugs,
optogenetics, photopharmacology). Although there are already various studies where
computational brain models make predictions, drive the design of and explain effects
observed in interventional research (Frank et al., 2004; Frank et al., 2007), these
methods are currently often applied ‘semi-empirically’ with the available information
about electrode location; circuit connectivity, function, and electrical models; genetic
promoters of neuronal types; expression patterns of neuroreceptors and their signalling
pathway models, etc. The digital twin may allow rational decision-making regarding
these parameters, the testing of outcomes, followed by re-evaluation of the model and
so forth.

In order to be successful, underlying models must be biologically realistic, i.e.,
anatomically adequate and functionally comprehensive. Ultimately, they should be
capable of linking brain structure and function with behaviour and allow the study of
cognition, language, consciousness or emotions. This requires the integration of highly
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heterogeneous data across scales, including in vivo and ex vivo, in the same spatial
reference framework. In an alternative, complementary approach, the Cell Atlas
Network (BICAN) will extend to the whole human brain the approach used in the US
Cell Census Network (BICCN), undertaking in-depth characterisation of (small-scale)
components of the mammalian brain, e.g., the most detailed and comprehensive multi-
modal model of the primary motor cortex including single-cell transcriptomes and
proteomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell
transcriptomes, morphological and electrophysiological properties and cellular
resolution input-output mapping (Callaway et al., 2021).

Based on this concept, brain simulation plays a key role in elucidating brain complexity
by allowing the testing of hypotheses about the brain’s multi-level organisation and its
functions that control the surrounding body (see also next paragraph). Clearly,
following this line of research, it will become more and more important to interconnect
simulations executed at different spatial levels (e.g., the EBRAINS simulation engines
Gromacs at the molecular level, Arbor and NEURON at the cellular level, NEST at the
systems level, The Virtual Brain at the whole-brain level and the neurorobotics platform
at the level of the embodied organism and its environment (see Brain-derived
technologies); for an overview see Einevoll et al., 2019.

Unlike with the real living brain, the embedded simulated brain can be sampled at any
point in space and time. It will be possible to look at all the processes in such a brain
(provided those processes are modelled in the simulation, based on real-world data
and/or on physics/chemistry) and make this observation with simulated measurement
devices, e.g., multi-array electrodes, fMRI scanners. Then, in principle, all kinds of
functional hypotheses can be tested in a full-body and closed-loop environment;
further, it will also be possible to build dynamic anatomical atlases, e.g., atlases that
allow for the observation of the changes and processes in a brain section under a
specific stimulus — in real simulation time.

The multiscale complexity of the living brain, the limited accessibility for measurements
and our incomplete understanding of brain processes makes the realisation of the
digital twin approach difficult to say the least. The BigBrain as an anatomical model
may serve as the scaffold for the integration of twin data in a strict sense (Amunts et
al., 2013), data from other sources such as dynamic cellular data and those from
experimental population studies as well as synthetic data simulated by models and
different brains. Such an approach also determines the limitations and ranges of
validity of the digital twin strategy, which is crucial for the responsible use of and
subsequent trust in the technology. Nevertheless, such data-driven models may
represent the closest digital representation of a living human brain that is achievable
at any given point in time. New insights from mathematics will be necessary to speed
up simulations and analyse models (Lehtimaki et al., 2017; Lehtimaki et al., 2019;
Lehtimaki et al., 2020).

Therefrom, the following goals can be derived:

o Develop multi-level brain atlas and high-resolution brain models.
o Enable multi-level brain models and simulation.
o Elucidate the mechanisms of cognition and behaviour.
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(2)Brain medicine

From such digital twins, personalised twins can be derived with the aim of improving
diagnostics and therapy for patients in a new and powerful way and therefore
supporting strategies towards brain health such as that recently published by the
European Academy of Neurology (Bassetti, 2022). Analogous to cardiac digital twins
(Gillette et al., 2021), i.e., digital replicas of patient hearts derived from clinical data
that match all available clinical observations, human electrophysiological replicas have
great potential for informing clinical decision-making and also for facilitating the cost-
effective, safe and ethical testing of novel device therapies. Digital twins in medicine
address a defined spatial scale, with a defined granularity, consider a defined time
interval and serve a dedicated purpose. An application of the digital twin approach for
Alzheimer’s disease has been proposed recently (Stefanovski et al., 2021), and while
careful consideration of data privacy, security and safety aspects will be required,
personalised twins might also offer a uniquely powerful strategy for treating such
conditions.

The Virtual BigBrain (TVB) enables construction of individual connectomes based on
neuroimaging and EEG data of a subject and anatomical data from the BigBrain model
(Jirsa et al., 2017). The ongoing EPINOV clinical trial employing the TVB represents a
major step forward in this regard; scientists have developed individual models of the
brains of patients undergoing epilepsy surgery to guide and predict the best seizure
outcome (Proix et al., 2017; Jirsa et al., 2023; Wang et al., 2023). Here again, the
strategy is to combine population data with data from an individual brain to develop a
Virtual Brain model, a twin, that is realistic enough to allow simulation of the
intervention prior to surgery. Patients with super-refractory seizures, i.e., seizures
which persist over periods of anaesthesia, often require prolonged intensive care and
are at a very high risk of permanent neurological damage and death. For such patients,
a digital twin might be used to examine a vast array of models, with ongoing feedback
from EEG, responses to drugs and blood ion and gas concentrations, all readily
available in intensive care environments.

The utility of digital brain modelling is illustrated by DBS, a well-established surgical
therapy for several treatment refractory neurological disorders. Currently, clinical-use
DBS most often implements an ‘open-loop’ system, meaning that stimulation is
delivered continuously according to fixed parameters. These parameters can be
adjusted after implantation, but adjustments are manual, infrequent and driven by
observation of patients’ visible symptoms. In contrast, ‘closed-loop’, adaptive DBS has
been developed to overcome limitations of traditional DBS and to modulate neuronal
circuits based on clinically relevant biofeedback signals in real-time (Marceglia et al.,
2021). To apply them successfully, however, requires understanding mechanisms of
plasticity and learning.

Applications following localised brain lesion, such as stroke or traumatic brain injury
would have similar requirements. Beyond invasive therapeutic interventions, a digital
twin would be a powerful tool for predicting the consequences of brain lesions,
pathophysiology and plasticity, which is sometimes described in terms of
computational neuropsychology, namely, characterising lesion-deficit relationships in
silico, using synthetic lesions (Parr et al., 2018). This could significantly change our
capacity to personalise neurorehabilitation, while integrating complex information
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generated by virtual reality and robot-based therapies together with fine measurements
of patients’ responses and progress.

Other applications could employ simulations to test a ‘clinical’ simulated population that
could be far larger than a real one, therefore providing data amplification by creating
cohorts of ‘digital patients’. This could be particularly interesting for evaluating rare
diseases, for studying the influence of gender or for predicting disease progression
(Maestu et al., 2021). Moreover, the more diverse (and heterogeneous) the sources of
data used for training, the better the performance of the model on other datasets,
resulting in good generalisability. This is one of the most interesting features provided
by federated systems, which facilitate increasing the diversity of data sources (e.g.,
(Dayan et al., 2021)).

Recently, the AlphaFold system developed by DeepMind (Jumper et al., 2021), an
application of deep learning methods, has enabled prediction of protein 3D structure.
This could be generalised to test the drug-protein or drug-protein-system interactions
at a systems level. Another perspective would evolve from testing the effect of drugs
in a virtual environment to uncover the mechanisms of the drug not only at molecular
but also systemic levels. Considering that quantum mechanics/molecular mechanics
are computationally highly demanding, such an approach at a systems level would
require highly scalable tools run on the most powerful supercomputers. For example,
fine-grained models of local microcircuits with molecular or cellular resolution, like
those constructed and simulated using NEURON and Arbor, can be directly used to
map the local distribution of some molecules (e.g., ion channels, receptors) and then
be used to simulate the impact of drugs on this system. These low-scale models can
be tuned according to a given pathological condition and then transformed into patient-
specific mean field models, advancing the precision of digital twins.

More generally, increased cross-talk between the neuroscience fields addressing the
human brain as compared to those focusing on non-human brains could work
synergistically to solve long-standing problems in biomedical sciences (Devinsky et al.,
2018). Humans and companion animals suffer from overlapping diseases (e.g.,
epilepsy, cancer, obesity). Similar to humans, dogs suffer from epilepsy and are
subjected to brain scans when they are sick. The overlap in diseases and care offered
by human and veterinary medicine means that there are untapped opportunities to test
the effectiveness of personalised medicine and digital twins in companion animals
before implementing them in humans.

Finally, it would be expected that brain twins contribute to ‘human body twins’. This
perspective goes beyond merely adding another organ, because it would allow
modelling the interactions of nervous system activity with those of other organs at the
systems level, e.g., heart-brain couplings and linking the brain with stomach and
intestines. These interactions are pervasive and bidirectional. For example, recent
research has identified an intrinsic allostatic and interoceptive system in the human
brain, which includes visceromotor regions that provide cortical control of the body’s
internal milieu and support allostasis (Kleckner et al., 2017). Furthermore, bodily
processes such as respiration are powerful drivers of rhythmic neural activity (Tort et
al., 2018). Capturing these bidirectional interactions would help us understand how the
brain supports vital bodily functions — and possibly how to restore them when they are
impaired.
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The challenge of bidirectionally and systemically linking multiple single-organ or single-
scale digital twins is a key element of the European Commission’s roadmap for the
Virtual Human Twin that is currently under development (https://www.edith-csa.eu/).

Therefrom, the following goals can be derived:

o Obtain detailed insights into brain plasticity, learning, adaption, during the
lifespan.

o Accelerate digital brain medicine.

o Explore and model the brain as part of the body.

(3)Brain-derived technologies

A fundamental challenge is to establish what level of granularity in brain modelling,
what transitional computations and what kind of simulated development is required to
support the emergence of a variety of cognitive and sensorimotor functions. Models of
the human brain, simulated in embodied settings, i.e., having the ability to control
virtual or physical bodies interacting with realistic virtual or actual physical
environments, and receiving time-dependent input streams to produce behavioural
outputs, represent a uniquely attractive platform for investigating the links between
brain structure, brain activity and cognitive and functional performance.

How such bottom-up assembly and the emergent behaviour of the digital twin system
can be evaluated against biological data remains an ongoing challenge, because
typical synthetic development environments do not match the natural environment. Ed
Yong (2019) argued in his feature article "The Human Brain Project Hasn’t Lived Up to
Its Promise” in The Atlantic ''” that “large-scale simulations are useful for
understanding weather and galaxies, but ‘planetary systems are not about anything
other than themselves. A brain is built to be about other things.’ .... Simulating the
tissue is do-able, but meaningless.”

The previous paragraphs provide several examples where simulation has led to
progress in basic neuroscience and brain medicine for well-defined research
questions. Additionally, the HBP from its start aimed to develop technologies enabling
the study of brain-environment interactions ("Booklet | Brain-inspired intelligent
robotics: The intersection of robotics and neuroscience sciences," 2016). In other
words: a simulation of certain processes occurring in the brain is embedded in a real
or simulated body with all its sensors and actuators connected to the simulation. In
principle, these sensors and actuators can just as well be real or simulated or a
combination thereof. Likewise, this body is embedded in a real or virtual world. Once
we have these elements, simulated or real, we can combine them in any sensible way.

Obviously, this approach is heavily dependent on models representing the physics of
the real world, and it also requires sophisticated software that can simulate spatial
environments in high fidelity and that can provide adequate physics of environments,
sensors and actuators, connection to brain simulators, facilities for storing the results
of simulations, graphical rendering and the orchestration of these complex software

"7 https://www.theatlantic.com/science/archive/2019/07/ten-years-human-brain-project-simulation-
markram-ted-talk/594493/
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modules. All of these (co-)simulations can be run at different time scales (ideally of
course in real time), in closed-loop or open-loop scenarios and with entities modelled
at different granularities.

The neurorobotics platform of the HBP'"® is a software environment that was designed
to perform all these steps, run simulations based on diverse sets of data from biological
experiments as well as input from real world robots, and integrate machine learning on
top of those simulations. While this platform was originally conceived of for the purpose
of designing neurorobots, i.e., robots that are controlled by biologically inspired models
of the brain, over time it has evolved into a software environment that can be used to
connect and integrate all types of entities ranging from simulated mouse bodies by way
of sophisticated sensor models to various neuron and brain simulators. Today, the
neurorobotics platform can be considered to be both an environment for robot design,
and at the same time, an execution platform for neuroscientific experiments. It is
therefore a powerful vehicle for virtualising neuroscience, up to the point where system-
level in vivo experiments can be replaced with in silico experiments that run completely
inside this platform.

In addition, the neurorobotics platform allows for training the ‘brain’ (Al-based
controller) of embodied robots with real neuroscientific data, even before they are built.
It is also conceivable that a simulated copy of the real environment in which they will
be used serves as the reference basis for the training, so that they can be pre-trained
before they are shipped to the end user, who will only need to make small adaptations
to (emergent) behaviour to ensure that the robot performs its tasks in a perfect manner.
We will refer to approaches following this paradigm as brain-derived technologies, as
they are directly based and built on findings from brain research. Importantly, these
findings can be implemented at different levels of organisation. In neuromorphic
engineering, the main components, i.e., biological neurons, are emulated by
functionally equivalent electrical circuitry to construct highly energy-efficient, possibly
analogue, processors and sensors. Likewise, the neural models running on these
systems can be derived from specific types of neurons, microcircuits or brain regions
that have been identified in biological brains. When connecting these systems to
robotic embodiments (both simulated and/or physical) or to biological organisms, it
becomes possible to replicate some aspects of the full closed loop of perception,
cognition and action. Modelling can thereby be extended to the complete organism and
address all aspects of complex cognitive processes at the behavioural level. Brain-
derived technologies are therefore not limited to approaches that mimic structural
features of the brain but can also encompass cognitive models and architectures along
with their underlying neural dynamics. These technologies will represent new tools for
brain research and enable innovations in computing, robotics and Al.

One field expected to benefit greatly from this approach is neurorehabilitation, where
realistic models of brain-body interactions will be useful in elucidating the neural
mechanisms at play (Rowald & Amft, 2022). The combination of highly detailed brain
models with models of the spinal cord and of the musculoskeletal system indeed
affords special opportunities, such as allowing investigation of the relationship between
neural activity and resulting motor behaviour in a detailed, quantitative manner.
Personalised models could thus be integrated into decision-support systems to guide
the choice and combination of rehabilitation strategies by a physician or a therapist.

118 https://www.neurorobotics.net/
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They may also support breakthrough developments in central nervous system
(including spinal cord) stimulation technology and functional electrical stimulation,
improving the efficacy of these techniques and expanding their relevance to a greater
breadth of conditions. A very promising recent application reported successful epidural
electrical stimulation to treat spinal cord injury (Rowald et al., 2022).

Similarly, the combination of high-fidelity models of both the human musculoskeletal
and central nervous systems is also expected to support the emergence of in silico
technologies for so-called electroceuticals, i.e., medical devices that provide
neurostimulation for therapeutic purposes (e.g., in Parkinson’s disease, epilepsy, etc.).
There is little doubt that the medical device industry would have a fundamental interest
in tools guiding their product design, generating predictions regarding efficacy and
overall de-risking of the whole product development process. With the brain atlases
and the multiscale brain simulators created by the HBP, it thus seems timely to
consider the collection and integration of new data (e.g., dielectric properties) as a
prelude to the development of simulation tools and services geared towards the
evaluation of electroceuticals. Simulating the effect of such electroceuticals seems to
be overdue, given that DBS is already being widely used.

The HBP has supported the SpiNNaker many-core and BrainScaleS physical
emulation neuromorphic computing platforms in establishing the first open
neuromorphic computing services and has contributed to the further development of
these technologies (Furber & Bogdan, 2020). Neuromorphic technologies, where both
data transfer and processing are event- i.e., spike-based, provide a multitude of
opportunities for edge computing, mobile robotics and neuroprosthetics. Considering
current trends in automation of mobile systems and deployment of ‘always-on’ sensor
arrays, in particular, neuromorphic devices are expected to deliver enhanced, low-
latency capacities for perception, cognition and action, while reducing the impact of
onboard operations on the system’s energy consumption (Goltz et al., 2021; Cramer
et al., 2022). For example, combining spike-driven processing units with spike-
generating sensors (e.g., dynamic vision sensors, dynamic audio sensors) into
complete neuromorphic systems (sensors and processing units) will make it easier to
perform data fusion and overcome constraints related to the heterogeneity of data
sources. Advances in the neurocomputational understanding of learning by neuronal
circuits, especially through synaptic plasticity, will also provide new ways of endowing
neuromorphic circuits with ever-more complex functionalities at a lower training cost
(e.g., one-shot and continuous on-line learning). In particular, the restriction to local
plasticity constitutes a manifest advantage over conventional von Neumann
architectures.

The circuitry of analogue neuromorphic processing systems such as BrainScaleS
emulates the ion flows in biological neurons by electrical currents. Unlike traditional
microprocessors that are based on the classic von Neumann architecture, every silicon
neuron is physically incorporated into the chip with dedicated components. Like in the
brain, these neurons exchange information based on spikes, which allows for an
extremely efficient implementation and is one of the reasons why neuromorphic
systems are a promising technology for a new generation of real-time-capable and
extremely energy-efficient computers. An important consequence of their direct
derivation from the brain’s structure is that neuromorphic processors are typically not
well suited for loading external data but instead support learning online in real-time.
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This unique feature enables new types of learning rules that do not require large data
sets but adapt dynamically as required.

Learning rules based on spike timing-dependent plasticity are a remarkable success
story of brain-derived systems (Diamond et al., 2019; Kreutzer et al., 2022). They are
directly rooted in experimental results and have become a cornerstone for research on
learning algorithms in both theoretical neuroscience and neuromorphic engineering.
Importantly, traditional machines have also benefited considerably from brain
research. One of the most prominent examples are arguably convolutional neuronal
networks, precursors of which have originally been derived from the architecture of the
visual cortex.

Another important area where basic brain research has fostered the emergence of new
technologies is that of neuromorphic sensors, particularly dynamic vision sensors and
dynamic audio sensors. The former mimic the functioning of the retina and, like
neuromorphic processors, encode information with spikes. The characteristics of these
are completely different from their traditional counterparts. Since they only signal
changes rather than capturing full image frames, they can operate extremely efficiently,
give rise to new types of image processing algorithms and ideally complement
neuromorphic processors.

From a technological perspective, the human brain is also the most promising ‘Rosetta
Stone’ for the implementation of advanced cognitive abilities in artificial systems.
Modern artificial agents are characterised by limited levels of intelligence, difficulty in
generalising beyond provided training sets and an often-superficial understanding of
their environment. The lack of generalisability implies either the necessity for large data
sets (the resource-intensive big data paradigm), continuous human supervision
(remotely controlled systems) or extensive, rigid mission planners accounting for any
allowable occurrence (for planetary or ocean exploration). The superficiality of
perception and lack of explainability imply a lack of robustness of and trust in artificial
perception systems, a known obstacle to the emergence of, e.g., effective driving
automation. To mitigate against such limitations, brain-inspired multi-area model
architectures must be developed in conjunction with new embodied and incremental
learning algorithms, with a view to finding those that best emulate the functional
mechanisms underlying human perceptual cognition. Harnessing such mechanisms
and understanding the emergence of cognitive functions will be essential for creating
explainable, reliable and eventually more general Al.

The functional architecture of the brain with its different regions is the basis for many
types of cognitive architectures that have been defined for technical systems. This is
especially true for robotics, where brain-derived approaches are studied extensively.
Examples include the research on phenomena related to embodiment or the
development of novel perception and sensing systems such as artificial whiskers,
inspired by the actual somatosensory system in rodents.

Future developments in neural networks for artificial intelligence applications will see
a convergence between mainstream Al and neuromorphic technologies. Multiscale
brain models can make a critical contribution to the construction of advanced robotic
controllers. These could embed plastic rules and autonomously adapt through their
interaction with the environment. Thus, basic brain science will be key in informing the
development of these technologies. Moreover, neuromorphic computing might help
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reduce the substantial carbon footprint of large deep learning models (Strubell et al.,
2019).

Therefrom, the following goals can be derived:

o Bridge the gap between human and machine intelligence.
o Build neuromorphic brain models and bio-inspired artificial intelligence.

8. CONCLUSION

An improved understanding of brain function depends on a deeper understanding of
brain organisation and a better appreciation of the fundamental mechanisms — the
actual biological processes, their relationships and the rules that govern them. This is
prerequisite to more efficiently target prevention, therapies and mechanism-based
diagnoses. A promising approach for the coming decade of digital brain research
consists in developing digital twins of individual brains that afford personalised
simulations. Although now feasible, digital twins of the brain are still at an early stage
and once developed have to undergo rigorous testing and validation before they can
meaningfully address brain disorders and become the basis for disruptive new health
technologies. Therefore, we need to understand the computational goals and
algorithms of the systems and subsystems to be able to see the limitations and
possibilities of implementation in individual cases. Further, brain twins raise ethical
questions that we will need to address in an open dialogue with society. Twins can be
seen as a kind of endpoint for ongoing developments of brain models and analytics.

With this goal in mind, a digital infrastructure that can host such digital brain twins may
foster progress in understanding the rules and refining our digital brain twins to a point
where they pass validation testing and become useful for clinical translation. Further,
such an infrastructure should ideally provide interoperability, information security,
multi-level data, access to knowledge-based computing resources including high-
performance computing and other relevant technologies. EBRAINS is an infrastructure
that is capable of hosting such developments. To make that successful, training of
younger generations in working with such infrastructures and leveraging the potential
of new digital tools is key.

Structuring data and knowledge such that they can easily be recombined and
integrated towards a plethora of digital brain twins by the research community —
together with delivering the powerful technology with which complex simulations of
these twins can be performed — may in itself represent a disruptive technology for
generating scientific insight.

9. SCIENTIFIC GOALS — A ROADMAP

The ‘roadmap’ below outlines goals within eight intersecting areas of research in the
coming decade, each ranging from 1. near-term or current work, 2. middle-term, to 3.
long-term. It is derived from the input provided above.

Develop multi-level brain atlas and high-resolution brain models
1. Integrate data, from the whole-brain level to cells, into a comprehensive, high-
resolution brain atlas as a basis to get a deeper understanding of general
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principles of brain organisation, to enable the prediction of missing features,
where the atlas is incomplete, and to guide comparative studies about
interspecies similarities and differences.

. Generate detailed, data-driven, multi-scale models to study the role of variability

in human brain organisation during lifespan, under different conditions.

Elucidate those aspects of brain organisation and structure that are responsible
for complex behaviors, intelligence and consciousness.

Enable multi-level brain models and simulation

1.

Multiscale integration of models, from local biophysical properties to whole-brain
models, including detailed bottom-up and top-down models. Models are driven
and tuned by data and their predictions tested.

Model biologically realistic, complex brain functions using multi-scale, whole-
brain models — approaching digital brain twins for concrete use cases.

. Apply model predictions to larger-scale use cases in basic science, medicine

and Al, which in turn drive model testing and sophistication (‘productive loop’).

Elucidate the mechanisms of cognition and behaviour

1.

Develop a coherent framework describing the mechanisms of cognitive
functions using a multi-scale perspective, from sensory- and visuomotor to more
complex cognitive functions.

Formulate a coherent framework for language, as a uniquely human complex
cognitive function, integrating insights from linguistics and neuroscientific
research using multi-level brain approaches, using development as a window to
brain specialisation, and providing the backbone for development of language
models and artificial intelligence.

Link concepts of different hypotheses and self-consciousness to each other and
to mechanisms at the cellular, molecular and genetic levels.

Obtain detailed insights into brain plasticity, learning, adaption, during lifespan

1.

2.

3.

Identify and integrate the rules of plasticity, learning and adaptation, into existing
multi-level brain models.

Identify constraints of brain plasticity, and tools to modulate it for the benefit of
patients.

Reveal mechanisms of memory consolidation and translate this to medicine and
technology.

Accelerate digital brain medicine

1.

Develop and apply personalised models, informed by brain atlases and
individual patient data, for diagnosis and treatment of a broad range of brain
disorders (e.g., epilepsy, tumours, movement disorders, stroke, psychiatric
disorders).

. Construct and apply data-driven models of development and aging to brain

medicine in different age groups (from children to the elderly).

Develop and apply digital body twins, continually amenable to new real-life
sensor data, to brain medicine (e.g., diagnostics, rehabilitation, intensive care
and surgery).

Explore and model the brain as part of the body
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1. Link advanced digital brain models to spinal cord models based on multi-level
atlases and derive therefrom new approaches for stimulation.

2. Model sensorimotor integration and coordination for interaction, task
performance and navigation.

3. Integrate somatic and autonomic regulation in combined, multi-organ models to
construct patient twins, which reflect nervous system, organ and body
regulatory functions. Develop and apply cellular-level body twins, which model
nervous system, endocrine/hormone, immune regulatory and homeostatic
mechanisms.

Bridge the gap between human and machine intelligence
1. Simulate complex behaviour using robots interacting with rich environments;
promote convergence of deep learning Al and event-based (spiking) neural
networks facilitated by neuromorphic technology; democratise and develop
complex (brain-inspired) Al models, including large language models in an
open, transparent approach.

2. Apply insights into brain mechanisms behind cognitive functions, such as
perception and decision-making to emulate learning and developmental
processes in the fields of Al and neuromorphic technology and test the potential
role of organoids and organoid intelligence (Ol).

3. Apply fundamentally new concepts and algorithms to machine learning
and novel engineering applications (e.g., new materials, artificial life, replacing
and enhancing brain function).

Neuromorphic brain models and bio-inspired artificial intelligence

1. Develop training methods for spike-based deep neural networks using leaky-
integrate-and-fire-based neuron models. Integrate complex hardware neuron
models in simulation environments.

2. Develop hardware and training methods for large-scale and highly performant
spiking network models using complex neuron models.

3. Integrate results from plasticity research to develop large-scale spiking
networks with built-in learning capabilities.
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ANNEX 1
White paper: Participatory process and timeline
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ANNEX 2

Statements of support

Rafael Yuste: “As a European working in the US, | strongly support this initiative, it
could help put European neuroscience in a leadership position and help European
countries capitalize on the benefits of working together towards the same goal.”

Linda Richards: “Overall, this manuscript presents novel ways of moving the field
forward and is extremely exciting.”

Alexandra A. de Sousa: “As founder of the European Network for Brain Evolution
Research | strongly support this initiative and in particular its reference to the
importance of comparative and evolutionary neuroscience.”

Mu-ming Poo: "Understanding the structure and function of the human brain and
developing effective approaches in diagnosis and intervention of brain disorders are
both long-term goals of all societies. The tasks are enormous, requiring global
collaboration in promoting rapid progress and sharing knowledge and
technology. China Brain Project is now fully funded by the Chinese government for
the coming decade. Chinese scientists, many of them have close ties with scientists
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in the Europe and US, are hoping to establish international collaborative projects, and
to set up effective mechanisms to facilitate collaboration."

George Paxinos "It is exciting to observe the progress that has been made in the
development of multi-level brain atlases. The advanced digital tools that have emerged
in recent years offer entirely new possibilities for studying brain structure in different
species.”
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