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IMPORTANCE Effects of antiamyloid agents, targeting either fibrillar or soluble monomeric

amyloid peptides, on downstream biomarkers in cerebrospinal fluid (CSF) and plasma are

largely unknown in dominantly inherited Alzheimer disease (DIAD).

OBJECTIVE To investigate longitudinal biomarker changes of synaptic dysfunction,

neuroinflammation, and neurodegeneration in individuals with DIADwho are receiving

antiamyloid treatment.

DESIGN, SETTING, AND PARTICIPANTS From 2012 to 2019, the Dominantly Inherited Alzheimer

Network Trial Unit (DIAN-TU-001) study, a double-blind, placebo-controlled, randomized

clinical trial, investigated gantenerumab and solanezumab in DIAD. Carriers of gene variants

were assigned 3:1 to either drug or placebo. The present analysis was conducted from April to

June 2023. DIAN-TU-001 spans 25 study sites in 7 countries. Biofluids and neuroimaging from

carriers of DIAD gene variants in the gantenerumab, solanezumab, and placebo groups were

analyzed.

INTERVENTIONS In 2016, initial dosing of gantenerumab, 225mg (subcutaneously every 4

weeks) was increased every 8 weeks up to 1200mg. In 2017, initial dosing of solanezumab,

400mg (intravenously every 4 weeks) was increased up to 1600mg every 4 weeks.

MAIN OUTCOMES ANDMEASURES Longitudinal changes in CSF levels of neurogranin, soluble

triggering receptor expressed onmyeloid cells 2 (sTREM2), chitinase 3–like 1 protein

(YKL-40), glial fibrillary acidic protein (GFAP), neurofilament light protein (NfL), and plasma

levels of GFAP and NfL.

RESULTS Of 236 eligible participants screened, 43 were excluded. A total of 142 participants

(mean [SD] age, 44 [10] years; 72 female [51%]) were included in the study (gantenerumab,

52 [37%]; solanezumab, 50 [35%]; placebo, 40 [28%]). Relative to placebo, gantenerumab

significantly reduced CSF neurogranin level at year 4 (mean [SD] β = −242.43 [48.04] pg/mL;

P < .001); reduced plasma GFAP level at year 1 (mean [SD] β = −0.02 [0.01] ng/mL; P = .02),

year 2 (mean [SD] β = −0.03 [0.01] ng/mL; P = .002), and year 4 (mean [SD]

β = −0.06 [0.02] ng/mL; P < .001); and increased CSF sTREM2 level at year 2 (mean [SD]

β = 1.12 [0.43] ng/mL; P = .01) and year 4 (mean [SD] β = 1.06 [0.52] ng/mL; P = .04).

Solanezumab significantly increased CSF NfL (log) at year 4 (mean [SD] β = 0.14 [0.06];

P = .02). Correlation analysis for rates of change found stronger correlations between CSF

markers and fluid markers with Pittsburgh compound B positron emission tomography for

solanezumab and placebo.

CONCLUSIONS AND RELEVANCE This randomized clinical trial supports the importance of

fibrillar amyloid reduction in multiple AD-related processes of neuroinflammation and

neurodegeneration in CSF and plasma in DIAD. Additional studies of antiaggregated amyloid

therapies in sporadic AD and DIAD are needed to determine the utility of nonamyloid

biomarkers in determining disease modification.
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A
lzheimer disease (AD) is characterized by progressive

neuropathological changesyears before clinical symp-

toms emerge. Pathophysiological hallmarks are the

accumulationandaggregationof extracellular amyloid-β (Aβ),

intracellular neurofibrillary tangles composed of hyperphos-

phorylated tau, neuroinflammation, synaptic toxicity, and

neuronal death.1-3Dominantly inherited AD (DIAD) is caused

by variants in APP, PSEN1, or PSEN2 genes, with carriers de-

veloping cognitive impairment at a predictable, young age.4

Thephase 2/3placebo-controlled, double-blind, random-

ized clinical trial, the Dominantly Inherited Alzheimer

Network Trial Unit (DIAN-TU-001), investigated 2 monoclo-

nal immunoglobulin G1 antibodies against amyloid:

gantenerumab targetsAβ fibrils, initiatingplaque removal via

fragment crystallizable (Fc) γ-receptor–mediatedactivationof

microglial phagocytosis,5 and solanezumab binds to soluble

forms of Aβ, thereby potentially ameliorating their synaptic

toxicity.6-8 Although clear clinical benefits were not identi-

fied, target engagement was successful, showing a dose-

dependent reduction in amyloid positron emission tomogra-

phy (PET)burdenwithgantenerumabandsignificant increases

of cerebrospinal fluid (CSF) Aβ42 for solanezumab.9

However, the effect on emerging markers of AD-related

pathophysiology has not been sufficiently investigated.

Neurogranin is apostsynapticproteinandconsideredasoluble

marker of synaptic integritydue to its involvement inmemory

function and synaptic plasticity, both showing early impair-

ment in AD.10 Glial fibrillary acidic protein (GFAP), chitinase

3–like protein 1 (YKL-40), and soluble triggering receptor ex-

pressed on myeloid cells 2 (sTREM2) are further biomarkers

of interest reflecting neuroinflammatory processes of astro-

cytes andmicroglia,11-14 whereas neurofilament light protein

(NfL) is a nonspecific marker of axonal degeneration in AD.15

AlthoughthemagnitudeofclinicalbenefitwhentargetingAβ

insymptomaticADisdebated,16,17recenttrialshavedemonstrated

a slowingof clinical decline in sporadicAD (sAD)with antiamy-

loid treatment, leading to traditional regulatory approval of

lecanemab18 (USFoodandDrugAdministrationnewsreleaseJuly

2023).Consideringthesuccessful targetengagementforbothin-

terventions in theDIAN-TU-001 trial,we investigated theeffect

ofeachdrugonmarkersofAD-relatedpathology, in thecontext

oftheirdistinctmechanismsofactiononrespectiveformsofamy-

loid,andstageofdiseasebyexploringlongitudinaleffectsofgan-

tenerumab and solanezumabonCSF andplasma levels of neu-

rogranin, sTREM2, YKL-40, GFAP, andNfL.

Methods

Trial Design and Participants

The DIAN-TU-001 study ran as a double-blind, placebo-

controlled, phase 3 randomized clinical trial from December

2012 until November 2019, spanning 25 sites in 7 countries

(Supplement 1 and Supplement 2). It was approved by the

WashingtonUniversityHumanResearchProtectionOffice and

local institutional reviewboards at eachparticipating site. Eli-

gible participants, after providing written informed consent,

were tested for the presence of a DIAD gene variant via

polymerase chain reaction–based amplification and subse-

quent Sanger sequencing. Baseline clinical status was deter-

minedusing theClinicalDementiaRating (CDR[KnightADRC])

dementia staging instrument,19groupingparticipants intocog-

nitively unimpaired (CDR 0), very mild dementia (CDR 0.5),

ormilddementia (CDR1).Drugadministrationspanned4years,

allocating participants 3:1 to either drug or placebo, with a

midtrial increase to a maximal dosage of 1200 mg for gan-

tenerumaband1600mgfor solanezumab.9Furtherdetails can

be found in the original publication.20 Race and ethnicity in-

formation was collected from the participants through self-

report; categories includedAsian,Black,multiracial/other, and

White. This study followed theConsolidated Standards ofRe-

porting Trials (CONSORT) reporting guidelines.

Sample Collection and Fluid Biomarker Analysis

CSF samples were collected and processed as previously

described,20 undergoing 2 freeze-thaw cycles before analysis.

Withlimitedavailabilityofsamples,analysiswasrestrictedtorel-

evant downstream biomarkers of AD-related pathology.When

CSF and plasma were available, both were measured. Plasma

sampleswerecollectedatbaseline, alongwithCSF,andatyears

1,2,and4.EDTAtubeswerecentrifugedat3000g for 10minutes

at4°Candsubsequently flashfrozenin1-mLaliquots forstorage

at −80 °C. CSF and plasma biomarkers were measured by the

RocheNeuroToolKit(NTK),aportfolioofrobustprototypeassays,

running on the fully automated Elecsys platform (Roche

Diagnostics).21 Immunoassays forneurogranin,GFAP, sTREM2,

YKL-40,andNfLwereperformedonthecobase411ande601plat-

forms(RocheDiagnostics)byindividualsblindedtomutationand

treatmentstatus.Ofnote, theseanalysesweredistinct fromim-

munoassays previously reported.20

Neuroimaging

Study participants underwent carbon 11 Pittsburgh com-

pound B (PiB) PET for amyloid imaging, magnetic resonance

imaging (MRI) for structural and safety measures, and [18F]-

fluorodeoxyglucose (FDG) PET formetabolic imaging at each

Key Points

Question How do antiamyloid agents affect downstream

biomarkers of Alzheimer-related pathophysiology regarding their

target engagement with either soluble (solanezumab) or fibrillar

(gantenerumab) amyloid?

Findings This phase2/3double-blind, placebo-controlled, random-

ized clinical trial including 142participants investigatedgan-

tenerumaband solanezumab in individualswith genevariants for

dominantly inheritedAlzheimerdisease.Gantenerumabdecreased

cerebrospinal fluid (CSF) neurogranin andplasmaglial fibrillary acidic

protein levelswhile increasingCSF levels of soluble triggering recep-

tor expressedonmyeloid cells 2; in contrast, solanezumab treatment

was associatedwith increasedCSFneurofilament light protein levels.

Meaning Antiamyloid agents removing fibrillar amyloid plaques

demonstrated effects on glial and postsynaptic fluid biomarkers

downstream of initial amyloid deposition, whereas binding soluble

amyloid-β was associated with increasedmeasures of

neurodegeneration.
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time point of CSF collection. Neuroimaging protocols are de-

tailed in the original publication.20

Statistical Analysis

Treatment effects in eachoutcomewere assessed in themodi-

fied intention-to-treat (mITT) population, including all ran-

domized participants who received at least 1 treatment dose

and had baseline and postbaseline assessments of the pri-

mary efficacy measurements. Within the mITT population,

subgroupswere created basedonbaselineCDRGlobal scores:

asymptomatic (CDR = 0) and symptomatic (CDR >0) popula-

tions. However, the original trial was not powered for sub-

group analyses nor for post hoc biomarker analyses, with no

formal sample size calculations conducted.Mixedmodels for

repeated measures (MMRM) estimated treatment effects for

each outcome within the entire mITT population and the

asymptomatic and symptomatic subpopulation.

For the whole mITT population, MMRM analyses in-

cluded fixedeffects of baselinevalue, treatment, visit, and the

interactionbetweentreatmentandvisit.Forasymptomaticand

symptomatic subpopulations, MMRM analysis included

additional fixed effects: baseline value, baseline status

(asymptomatic vs symptomatic), treatment, visit, and vari-

ous interactions involving these variables in order to esti-

mate the change over time for each subpopulation (including

baselinevalue × baselinestatus, treatment × visit, baselinesta-

tus × treatment, andbaseline status × treatment × visit). The

model estimated least-squaresmeanchanges frombaseline to

each postbaseline visit, their differences, and 95% CIs.

To examine correlations for rates of change in each out-

come, individual rates of change were calculated using the

least-squares meanmethod, and pairwise Spearman correla-

tionswere reported. PlasmaandCSFNfL levelswere log trans-

formed following a previous convention, and a sensitivity

analysis was conducted to exclude 1 extreme value (above 3

SD) identified in the gantenerumab arm.

All analyses were conducted with SAS, version 9.4 (SAS

Institute). As post hoc analyses, these results are primarily

descriptive, and their interpretation should focus on clinical

relevance. With this and due to small sample sizes, no mul-

tiple comparison adjustments were made, and only nominal

P values are presented from2-sided t testswith type I error of

.05 and 95% CI. P values <.05 were considered statistically

significant.

Results

Baseline Demographics

Baseline characteristics are displayed in Table 1. Of 236 eli-

gible participants screened, 43 were excluded. A total of 142

participants (mean [SD] age, 44 [10] years; 72 female [51%];

Table 1. Baseline Demographics andMean Biomarker Levels of Participants in the Dominantly Inherited

Alzheimer Network Trial Unit (DIAN-TU-001) Trial Included in the Analysis

Characteristic Gantenerumab (n = 52) Solanezumab (n = 50) Placebo (n = 40)

Age, median (IQR), y 44.00 (39.00 to 53.25) 41.00 (36.00 to 50.00) 44.00 (37.75 to 51.00)

Baseline EYO, median (IQR), y −1.94 (−9.32 to 3.12) −2.58 (−6.79 to 2.66) −1.89 (−6.44 to 3.41)

Sex, No. (%)

Female 21 (40) 29 (58) 22 (55)

Male 31 (60) 21 (42) 18 (45)

APOE4 (≥1 ε4 allele), No. (%) 16 (30.8) 14 (28.0) 13 (32.5)

Variant type, No. (%)

APP 6 (11.5) 8 (16.0) 5 (12.5)

PSEN1 43 (82.7) 40 (80.0) 29 (80.0)

PSEN2 3 (5.8) 2 (4.0) 2 (7.5)

CDR 0, No. (%) 31 (59.6) 30 (60.0) 22 (55.0)

CSF neurogranin, median
(IQR), pg/mL

1310.00 (973.00 to
1608.00)

1236.00 (958.35 to
1611.50)

1179.00 (956.20 to
1683.00)

CSF sTREM2, median (IQR),
ng/mL

9.14 (7.27 to 12.00) 9.77 (7.15 to 11.55) 9.05 (7.56 to 11.02)

CSF YKL-40, median (IQR),
ng/mL

140.20 (108.10 to 166.50) 140.00 (107.20 to 164.20) 121.40 (99.48 to 183.58)

CSF GFAP, median (IQR),
ng/mL

7.11 (4.84 to 10.12) 5.62 (4.85 to 8.88) 5.89 (4.06 to 9.71)

CSF NfL (log), median (IQR) 4.65 (4.39 to 5.12) 4.65 (4.26 to 5.11) 4.73 (4.32 to 5.19)

Plasma GFAP, median (IQR),
ng/mL

0.10 (0.06 to 0.16) 0.12 (0.06 to 0.17) 0.13 (0.07 to 0.18)

Plasma NfL (log), median
(IQR)

0.45 (0.05 to 0.90) 0.64 (0.06 to 1.17) 0.46 (0.13 to 0.80)

PiB-PET composite (SUVR),
median (IQR)

2.45 (1.59 to 3.51) 2.40 (1.70 to 3.52) 2.40 (1.73 to 3.63)

FDG-PET precuneus (SUVR),
median (IQR)

1.83 (1.65 to 1.92) 1.80 (1.68 to 1.96) 1.80 (1.68 to 1.90)

MRI cortical thickness
precuneus, median (IQR), mm

2.26 (2.15 to 2.36) 2.22 (2.11 to 2.35) 2.25 (2.09 to 2.42)

Abbreviations: APOE, apolipoprotein
E; APP, amyloid-precursor protein;
CDR, Clinical Dementia Rating; CSF,
cerebrospinal fluid; EYO, estimated
years to symptom onset; FDG,
fluorodeoxyglucose; GFAP, glial
fibrillary acidic protein; MRI,
magnetic resonance imaging; NfL,
neurofilament light protein; PET,
positron emission tomography; PiB,
Pittsburgh compound B; PSEN1,
presenilin 1; PSEN2, presenilin 2;
sTREM2, soluble triggering receptor
expressed onmyeloid cells 2; SUVR,
standardized uptake value ratio;
YKL-40, chitinase 3–like protein 1.
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70male [49%])were included in the study (gantenerumab, 52

[37%]; solanezumab, 50 [35%]; placebo, 40 [28%]). Partici-

pants self-identifiedwith the following race andethnicity cat-

egories: 3Asian (2%), 1Black (0.7%), 19multiracial/other (6%),

and 129 White (91%). Participants included in this analysis

showed similar distributions for age, baseline estimatedyears

tosymptomonset, sex, clinical status,biomarker levels,APOE4

status, and gene variant type.

CSF and PlasmaMeasures

We investigated the impact of gantenerumab or solan-

ezumab treatment on downstream CSF and plasma biomark-

ers (Figure 1, Figure 2, and Table 2) and further characterized

both drugs with exploratory analyses within the presympto-

matic and symptomatic subgroup (eFigures 1 and 2 and

eTables 1 and 2 in Supplement 3).

Gantenerumab treatment significantly decreased CSF

neurogranin levelsatyear4comparedwithplacebo (mean[SD]

β = −242.43 [48.04] pg/mL; P < .001) (Figure 1A), whereas

solanezumab exhibited no effect on CSF neurogranin

(Figure 1B).

CSF sTREM2 levels (Figure 1C and D) increased steadily

withgantenerumabcomparedwithplacebo (year2:mean [SD]

β = 1.12 [0.43]ng/mL;P = .01; year4:mean [SD]β = 1.06 [0.52]

ng/mL; P = .04). Solanezumab revealed no effect on sTREM2

level by year 4. CSF YKL-40 level (Figure 1E and F) was not

significantly increased with gantenerumab or solanezumab.

Further, no effect on CSF GFAP levels was seen with

gantenerumabor solanezumabatany timepoint.PlasmaGFAP

levels (Figure 2C and D), however, stabilized under

gantenerumab compared with placebo (year 1: mean

[SD] β = −0.02 [0.01] ng/mL; P = .02; year 2: mean [SD]

β = −0.03 [0.01] ng/mL; P = .002; year 4: mean [SD]

β = −0.06 [0.02] ng/mL; P < .001) but were not affected by

solanezumab.

Lastly,we foundnodifference inCSFNfL levels (Figure2A

and B) for gantenerumab. However, with solanezumab, CSF

NfL (log) was significantly increased compared with placebo

at year 4 (mean [SD] β = 0.14 [0.06]; P = .02). For plasma NfL

(Figure 2E andF), solanezumabhadno significant effect, and

gantenerumab revealed a nonsignificant difference at year 4.

For theexploratory subgroupanalysis (eTables 1 and2and

eFigures 1 and 2 in Supplement 3),we foundneurogranin and

sTREM2 levels significantly decreased and increased, respec-

tively, in presymptomatic partic ipants receiv ing

gantenerumab. CSFGFAPandNfL (log) levels showed signifi-

cant increases with solanezumab and plasma NfL (log) level

was significantly lowered in symptomatic carriers receiving

gantenerumab, whereas plasma GFAP level significantly de-

creased inbothgroups for gantenerumaband increased inpre-

symptomatics with solanezumab.

Correlation Analysis

Correlationanalysesbetween the individually calculated rates

of changeof fluid and imagingbiomarkerswere conducted for

gantenerumabor solanezumab separately (Figure 3 and eFig-

ure 3 and eTable 3 in Supplement 3). Further details are also

presented in eTables 4 and 5 in Supplement 3.

Both interventionsrevealedsimilarpatternsofpositivecor-

relations between all CSF biomarkers, with the solanezumab

armshowinga tendencyofhighercorrelationcoefficients.Cor-

relations of biomarkers with imaging for solanezumab found

that CSF markers of sTREM2 (Spearman ρ = −0.36; P = .03),

YKL-40 (Spearman ρ = −0.35; P = .03), GFAP (Spearman ρ =

−0.38;P= .02), andNfL (log; Spearmanρ=−0.42;P= .01)were

negatively correlated with PiB PET, whereas no relationship

wasdetected for gantenerumab.However, participants receiv-

inggantenerumabshowedacorrelationof lowerGFAP (plasma

Spearmanρ=−0.54;P= .008;CSFSpearmanρ=−0.36;P= .02)

and NfL (log; plasma Spearman ρ = −0.49; P = .02; CSF

Spearmanρ=−0.38;P= .01) levels inCSF andplasmawith in-

creased glucose metabolism in the precuneus, and solan-

ezumab revealed a negative correlation with FDG precuneus

for CSF NfL (log) level only (Spearman ρ = −0.47; P = .01). For

CDRSB, therewasmoderate correlationwithCSFNfL (log) and

GFAP level only in both drugs arms (solanezumab: NfL [log]

Spearman ρ = 0.38; P = .02; GFAP Spearman ρ = 0.33; P = .02;

gantenerumab: NfL [log] Spearman ρ = 0.44; P = .002; GFAP

Spearman ρ = 0.31; P = .03).

Discussion

We leveraged the Roche NeuroToolKit to assess multiple

CSF andplasmamarkers ofAD-relatedprocesses in theDIAN-

TU-001 trial. As solanezumab and gantenerumab differ in

target engagement, we aimed to elucidate the impact of each

drug on biofluidmarkers of inflammation, synaptic loss, and

neurodegeneration. We found that treatment with

gantenerumabsignificantlydecreased levels ofCSFneurogra-

ninandplasmaGFAPlevelswhile increasingCSFsTREM2level.

Meanwhile, solanezumab did not show beneficial changes in

these biomarkers but significantly increased CSF NfL levels,

whichwerepreviously demonstratedusing adifferent immu-

noassay. With gantenerumab, lower levels of CSF YKL-40,

GFAP, NfL (log), and plasma GFAP and NfL (log) significantly

correlated with higher precuneus FDG-PET signals, and

correlations between all CSFmarkers revealed slightly higher

correlations for solanezumab relative to gantenerumab.

Early synaptic loss inAD is hypothesized to be inducedby

soluble formsof amyloid,22 rendering antiamyloid agents tar-

geting soluble Aβ promising candidates against initial syn-

apse loss. Neurogranin-level increases in the CSF inmild cog-

nitive impairment and AD predict conversion from mild

cognitive impairment toAD23,24 andcorrelatewithhippocam-

pal atrophy and cognitive decline.8,24,25 Increased neurogra-

nin level also correlates with CSF phosphorylated tau (p-tau)

181 and total tau (t-tau)—but not Aβ42—in sAD10,24,26 and

DIAD.27Wefound that gantenerumab—butnot solanezumab—

decreased CSF levels of neurogranin at highest dosage. This

suggests that a reduction of the specific soluble amyloid pep-

tides targetedbysolanezumab isnot sufficient todecreaseneu-

rogranin levels.However, theadministrationofanagentagainst

fibrillar amyloid might alleviate synaptic degeneration and

therefore decreaseCSFneurogranin levels. This is in linewith

reports of neurogranin increasing only after the point of amy-
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Figure 1. EstimatedMean Change FromBaseline for Gantenerumab, Solanezumab, and Placebo for Cerebrospinal Fluid (CSF)Markers
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Assessment of CSFmarkers was done for both gantenerumab and solanezumab, respectively, in neurogranin (A and B), soluble triggering receptor expressed on
myeloid cells 2 (sTREM2; C and D), chitinase 3–like protein 1 (YKL-40; E and F), and glial fibrillary acidic protein (GFAP; G and H),
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loid PET positivity28 and correlating with neuropathological

amyloid plaques,29 as well as with observations from a Study

to Confirm Safety and Efficacy of Lecanemab in Participants

With Early Alzheimer Disease (Clarity AD), reporting a de-

crease in neurogranin levels compared with placebo after 12

and 18 months of lecanemab administration,18 a drug with a

similar bindingprofile, primarily targetingprotofibrils anddif-

fuse fibrils of Aβ.30,31 Exploratory results from the Study of

Gantenerumab in Participants With Prodromal Alzheimer

Disease (Scarlet Road) also suggested a dose-dependent re-

duction of CSF neurogranin level with gantenerumab, al-

though careful interpretation is warranted as it was stopped

prematurely due to futility.32

We further assessed sTREM2,YKL-40, andGFAP levels as

markers of neuroinflammation. In AD, CSF sTREM2 concen-

trations seem to change dynamically, peaking at the early

symptomatic stage of sAD and DIAD.33 Although some stud-

ies reporthigher levels of sTREM2tobeassociatedwithhigher

degrees of AD-related pathology,34-36 others have found it to

correlatewith lower cross-sectional tauPETburden aswell as

CSF t-tau and p-tau levels,34,37 and less longitudinal increase

of amyloid PET burden in sAD.11 Similarly, steeper annual in-

creases of sTREM2 level result in a reduced rate of increase in

PiB-PET burden in symptomatic carriers of a DIAD gene vari-

ant and a diminished rate in CSF Aβ42 decrease in presymp-

tomatic carriers of a DIAD gene variant.38

Figure 2. EstimatedMean Change FromBaseline for Gantenerumab, Solanezumab, and Placebo for Cerebrospinal Fluid (CSF) and PlasmaMarkers
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Assessment of CSFmarkers was done for both gantenerumab and
solanezumab, respectively, in neurofilament light protein (NfL; A and B) and of
plasmamarkers in glial fibrillary acidic protein (GFAP; C and D) and NfL (E and

F). All estimations are shownwith 95% CI error bars.
a Resembles a significance of a P value <.05 or lower (Table 2).
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Table 2. Results of theModel Analysis in theWhole Cohort Investigating the Longitudinal Changes

of the Respective Biomarkers in Cerebrospinal Fluid (CSF) and Plasma for Each Drug

Yeara Sample size

Estimated
least-squares mean
change from baseline SE (95% CI) P value

CSF neurogranin, pg/mL

Gantenerumab

1 44 −21.863 48.04 (−117.44 to 73.71) .65

2 40 −51.785 60.72 (−172.60 to 69.03) .40

4 28 −242.430 63.68 (−369.12 to −115.73) <.001

Solanezumab

1 38 1.182 53.87 (−106.16 to 108.53) .98

2 35 8.507 63.98 (−118.98 to 135.99) .90

4 30 23.712 96.44 (−168.44 to 215.87) .81

CSF sTREM2, ng/mL

Gantenerumab

1 44 0.636 0.33 (−0.02 to 1.29) .06

2 40 1.123 0.43 (0.26 to 1.99) .01

4 28 1.063 0.52 (0.03 to 2.09) .04

Solanezumab

1 39 0.021 0.47 (−0.91 to 0.96) .97

2 36 −0.026 0.42 (−0.86 to 0.81) .95

4 30 0.436 0.59 (−0.73 to 1.61) .46

CSF YKL-40, ng/mL

Gantenerumab

1 44 7.196 4.86 (−2.47 to 16.86) .14

2 40 13.795 8.38 (−2.88 to 30.47) .10

4 28 16.822 9.39 (−1.86 to 35.50) .08

Solanezumab

1 40 8.994 10.70 (−12.32 to 30.31) .40

2 37 5.394 9.83 (−14.19 to 24.98) .59

4 30 19.511 13.28 (−6.93 to 45.96) .15

CSF GFAP, ng/mL

Gantenerumab

1 45 −0.105 0.36 (−0.82 to 0.61) .77

2 41 0.024 0.40 (−0.78 to 0.83) .95

4 29 4.713 6.55 (−8.32 to 17.74) .47

Solanezumab

1 40 −0.156 0.40 (−0.95 to 0.64) .70

2 36 0.434 0.39 (−0.34 to 1.21) .27

4 30 0.941 0.64 (−0.34 to 2.22) .15

CSF NfL (log)

Gantenerumab

1 44 −0.016 0.04 (−0.09 to 0.06) .66

2 40 −0.019 0.04 (−0.09 to 0.05) .61

4 28 −0.053 0.06 (−0.17 to 0.06) .35

Solanezumab

1 40 −0.002 0.07 (−0.14 to 0.13) .97

2 37 0.068 0.04 (−0.01 to 0.15) .10

4 30 0.143 0.06 (0.03 to 0.26) .02

(continued)
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Inparticipants receivinggantenerumab,wefoundthatCSF

sTREM2 level increased compared with placebo, whereas

solanezumab treatment remained without effect. Consider-

ing that decreased PiB PET levels were observed with gan-

tenerumab, sTREM2elevationmight reflect an increaseofmi-

croglia activity attributable to their receptor-mediated

engagement with the drug, prompting increased glial activ-

ity with augmented plaque removal. Accordingly, a study re-

ported that the dose-dependent effect of an agent against fi-

brillar amyloid on microglia was predominantly TREM2

mediated, with TREM2-depletedmicroglia exhibiting dimin-

ished ability to engulf Aβ and remove plaques, despite el-

evated levels of Fc receptors expected to compensate for defi-

cits in phagocytic activity.39 Some investigations further

suggest independent effects of sTREM2 onmicroglia by pro-

tecting them from apoptosis, promoting proinflammatory

states40 andmodulating Aβ clearance abilities.41

ElevatedCSF levelsofYKL-40havebeen found in sADand

DIAD42,43 and seem to correlate with t-tau, p-tau, and in-

creased cortical thinning in patients with reduced Aβ42

levels.44 Gantenerumab and solanezumab had no effect on

YKL-40 comparedwith placebo. Although increased YKL-40

level has been proposed to precede amyloid plaques,45 stud-

ies in sAD and DIAD have found no correlation with CSF

Aβ42,27,46ultimately leaving the treatment-related changes in

YKL-40 levels a subject of future research.

Althoughdynamics of CSFGFAPhavebeen somewhat in-

consistent in AD,47-50 recent studies show plasma GFAP lev-

els to reliably increase in early stage sAD and DIAD,51,52 pre-

dict PiB-PET positivity49,53 and correlate with longitudinal

amyloid PET54 and cognitive decline.49PlasmaGFAP levels in

carriers of DIAD gene variants seem to diverge from noncar-

riers around 16 years before expected symptom onset, cor-

roborating findingsof early changes in sAD.55 Interestingly,we

found no relevant treatment-related differences in CSF GFAP

levels for either drug. GFAP plasma levels, however, revealed

a significant decrease in participants receiving gan-

tenerumab, with levels continuously rising in placebo, mir-

roring previous results with lecanemab18 and donanemab,56

where both trials reported a longitudinal decrease of plasma

GFAP relative to baseline. Given that in AD, activated astro-

cytes colocalizemore readily with fibrillar amyloid plaques57

and increasedGFAPexpressionhasbeenfoundtocorrelatepre-

dominantlywith the presence of solid Aβ plaques,14 these re-

sults could hint at an indirect amelioration of astrocytic reac-

tivity by gantenerumab due to successful cerebral plaque

removalandexplainwhytheengagementof solanezumabwith

soluble amyloid remained without effect on GFAP. The dis-

crepancy betweenCSF and plasmahereby further underlines

the theory that plasma levelsmight bemore closely related to

amyloid status due to an amyloid-dependent, direct secre-

tion of GFAP into the bloodstream by astrocytic end feet,

whereas CSF GFAP might respond to events in later disease

stages, eg, neuroinflammation.49

Finally, we assessed NfL (log), which increases with age

in CSF and blood andwas found to correlatewith progressive

cognitivedysfunction in sADandDIAD.58,59CSFNfL levels in-

creased with solanezumab, as it was reported in the main

publication,20butnot gantenerumab,whereas significant cor-

relations with imaging and CSF markers were seen for both

drugs. These results differ from the original publication re-

porting significant decreases in CSF NfL level at year 1 and 4

for gantenerumab.20 However, only a subset of the original

samples was included here, and original results were ob-

Table 2. Results of theModel Analysis in theWhole Cohort Investigating the Longitudinal Changes

of the Respective Biomarkers in Cerebrospinal Fluid (CSF) and Plasma for Each Drug (continued)

Yeara Sample size

Estimated
least-squares mean
change from baseline SE (95% CI) P value

Plasma GFAP, ng/mL

Gantenerumab

1 20 −0.019 0.01 (−0.03 to 0) .02

2 20 −0.025 0.01 (−0.04 to −0.01) .002

4 13 −0.058 0.02 (−0.09 to −0.03) <.001

Solanezumab

1 18 −0.006 0.01 (−0.02 to 0.01) .47

2 19 −0.023 0.01 (−0.05 to 0) .10

4 9 −0.007 0.03 (−0.06 to 0.05) .80

Plasma NfL (log)

Gantenerumab

1 18 −0.032 0.09 (−0.21 to 0.15) .72

2 19 −0.035 0.11 (−0.25 to 0.18) .74

4 13 −0.180 0.13 (−0.45 to 0.09) .19

Solanezumab

1 17 −0.085 0.08 (−0.24 to 0.07) .29

2 18 −0.012 0.15 (−0.31 to 0.29) .94

4 8 −0.020 0.17 (−0.36 to 0.32) .91

Abbreviations: GFAP, glial fibrillary
acidic protein; NfL, neurofilament
light protein; sTREM2, soluble
triggering receptor expressed on
myeloid cells 2; YKL-40, chitinase
3–like protein 1.
a Each year represents the time
duration of drug administration
since the initial biomarker
assessment at baseline.
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tainedusing Simoa (Quanterix) insteadof theNTK. Compara-

tively, effect sizes 3 timeshigher forNFLwith Simoa (eTable 6

in Supplement 3) could be attributed to differences in assay

standardization. Seeingnodifference inCSFNfL level is, how-

ever, in line with our findings for plasma NfL, with no differ-

ence for either intervention compared with placebo. In sAD,

Figure 3. Correlations for Individual Rate of Change of Cerebrospinal Fluid (CSF) and PlasmaMarkers and Tests
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Pittsburgh compound B (PiB)
positron emission tomography (PET),
[18F]-fluorodeoxyglucose (FDG) PET
for precuneus, magnetic resonance
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eFigure 3 in Supplement 3. NS
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a P <.05.
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c P <.001.
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donanemab and lecanemab did not affect plasma NfL (log)

levels56orNfL levels in theCSFandplasma,18 respectively.The

increase inCSFNfL levelwith solanezumab treatment is, how-

ever, directionally consistent with cognitive worsening re-

ported in the DIAN-TU-001 study20 andwith the numerically

greater cognitive decline observed in A4 in preclinical sAD.60

The reasons for increasesofNfL level andcognitivedeclineare

unclear, asameta-analysisof theTrial of SolanezumabforMild

Dementia Due to Alzheimer’s Disease (EXPEDITION) 2 and 3

trialshas foundmodestcognitive improvement inmildlysymp-

tomaticADwithsolanezumab.61Differences in thestageofdis-

ease could be one possible explanation.

Similar to prior biomarker findings in the DIAN-TU-001

trial,20 only gantenerumab significantly modulated markers

of synaptic injury andneuroinflammation in a beneficialway.

Thoughonlyexploratory,we foundthesedifferencespredomi-

nantly within the presymptomatic group. In contrast, solan-

ezumabdidnot showbeneficial effects onbiofluidmarkers or

neuroimaging, in linewithprevious publications inDIADand

sAD,20,60 suggesting little impactof solubleAβ42orAβ40pep-

tidesondownstreampathophysiology.Thesediscrepanciesun-

derscore the importance of targeting specific amyloid forms

in AD treatment. Although results for gantenerumab imply a

potential impact onearly-stageAD-relatedpathology, the lim-

ited influence of solanezumabon thebiomarkers calls for fur-

ther investigation into its role in disease modification, espe-

cially in thecontextof itshypothesizedneuroprotectiveeffects

against soluble amyloid-inducedsynaptic toxicity. These find-

ings highlight the nuanced and complex nature of AD thera-

peutics,where the specificmolecular targetsof treatments can

lead to varying outcomes in disease progression and bio-

marker profiles.

Correlation analysis revealed generally higher coeffi-

cients for solanezumabbetween fluidbiomarkers andPiBPET

thatwere similar to those receiving placebo. Considering that

solanezumab had no significant effect on amyloid burden in

PiB PET in this cohort, these findings suggest, in contrast to

gantenerumab,wherea lackof correlation forPiBPETandfluid

markershints at adecouplingdue to significant target engage-

mentandthat solanezumabhas little impactonbiomarkerpro-

gression in AD. With clinical progression, CDR-SB correlated

moderately and to a similar degreewithCSFNfL andGFAP for

gantenerumab and solanezumab, suggesting that the patho-

physiological modulations seen in this analysis do not trans-

late to beneficial cognitive effects, similar to findings in the

main publication.20

Limitations

Our analysis has limitations. TheDIAN-TU-001 studywas not

intended to provide sufficient power to identify statistically

significant differences for subgroups; results should be inter-

preted accordingly. Further, due tomidtrial dose escalation,9

not all participants received thehighestdose for the same time

span, which might have implications for downstream bio-

marker levels. Moreover, a lack of racial and ethnic diversity

limits generalizability of the presented results. Finally, al-

thoughour findings offer valuable insights into changes ofAD

pathophysiology under antiamyloid treatment, the assessed

biomarkers remaina toolof researchwithneedfor further stan-

dardization of assays, investigation of diagnostic and predic-

tive value concerning clinical status and clinical function, as

well as assessment of pathophysiological context. It is pos-

sible that with larger study cohorts or longer treatment dura-

tions, a novel magnitude of treatment effect might be found.

As of now, results need to be interpreted with caution.

Conclusions

In summary, in DIAN-TU-001 randomized clinical trial, we

report the beneficial impact of fibrillar amyloid reduction on

fluid markers of synaptic dysfunction and neuroinflamma-

tion in DIAD, whereas the reduction of soluble Aβ42 or Aβ40

peptides did not show a positive effect on any of those

markers. Results from further studies administering antiamy-

loid therapies in both sAD and DIAD are crucial to corrobo-

rate the utility of nonamyloid biomarkers in evaluating dis-

ease modification.
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