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Multiomic ALS signatures highlight
subclusters and sex differences suggesting
the MAPK pathway as therapeutic target
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Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and

lacks effective disease-modifying treatments. This study utilizes a compre-

hensivemultiomic approach to investigate the early and sex-specificmolecular

mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients

with sporadic ALS and 50 control subjects, alongside four transgenic mouse

models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered sig-

nificant molecular alterations associated with the disease. Here, we show that

males exhibit more pronounced changes in molecular pathways compared to

females. Our integrated analysis of transcriptomes, (phospho)proteomes, and

miRNAomes also identified distinct ALS subclusters in humans, characterized

by variations in immune response, extracellular matrix composition, mito-

chondrial function, and RNA processing. The molecular signatures of human

subclusterswere reflected in specificmousemodels. Our studyhighlighted the

mitogen-activated protein kinase (MAPK) pathway as an early disease

mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has

potential therapeutic benefits in vitro and in vivo, particularly in females,

suggesting a direction for developing targeted ALS treatments.

Amyotrophic lateral sclerosis (ALS) is themost frequentmotor neuron

disease, is more common in males, and leads to paralysis and death

within a few years of symptomonset on average1. Whilemost cases are

sporadic (sALS) with no family history, approximately 10% of cases

have a genetic cause (fALS). The most common genetic variants

include C9orf72, SOD1, TARDBP, and FUS, with around 10% of patients

with sALS carrying disease-causing mutations2. The etiology of sALS

remains unclear, and effective disease-modifying treatments for the

disease are currently unavailable3. Enhancing our understanding of

early disease mechanisms could help identify the diagnostic and

prognostic biomarkers and uncover more efficient therapeutic drug

targets. Although direct analysis of affected nervous system tissues
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remains the gold standard inneuropathology, patient samples are only

available postmortem and in limited quantities. These limitations

increase the risk of primarily describing end stages of the disease and

obscuring mechanisms occurring in earlier phases, which are poten-

tially more suitable drug targets. As in Alzheimer’s or Parkinson’s dis-

ease, ALS is believed to spread over time—from the motor cortex to

other cortical brain areas4–6. Numerous studies have analyzed the

motor cortex in ALS7–9. However, as this area is the most severely

affected by ALS, it primarily reflects the final stages of the disease6. In

contrast, the prefrontal cortex (PFC) in Brodmann area 6 typically

exhibits only intermediate TDP-43 pathology at the time of death6,

suggesting that analyzing this area could provide insights into earlier

disease-mediated alterations.

Previous investigations of ALSbrain tissuehavemainly focusedon

individual molecular subsets, such as transcripts7,9,10, miRNAs11, and

proteins12, suggesting that ALS is a complex and heterogeneous dis-

ease. Recent studies have identified potentially distinct ALS popula-

tions, which were stratified into different subclusters based on

transcriptomics and gene set enrichment analyzes (GSEA)9,13.

In this study, we deciphered early ALS disease mechanisms by

profiling the transcriptomes, miRNAomes, and (phospho)proteomes

in the PFCs of patients with ALS and four ALS mouse models. Our

findings highlighted significant sex differences and demonstrated that

ALS is not a homogeneous disease but comprises different molecular

subtypes that correlate with individual transgenic mouse models of

the disease. Multiomic data integration identified several known ALS

disease mechanisms, but also less-prioritized pathways, such as the

MAPK pathway. Validation studies in vitro and in vivo underscored

MEK2 as a potential target for early therapeutic interventions.

Results
Cohort and data description
We conducted an in-depth multiomic characterization of the human

postmortem PFC, (Brodmann area 6) from 51 patients with neuro-

pathologically confirmed ALS and 50 control (CTR) patients, to

describe early molecular changes in sALS (Fig. 1a, Table 1, Supple-

mentary Data 1). On average, 19.641 transcripts, 736 miRNAs (mature

miRNAs and hairpin precursors), and 2.344 proteinswere detected per

sample (Supplementary Fig. 1a–c). A C9orf72 repeat expansion was

detected in one patient with ALS, and another individual carried a

pathogenic variant of NEK1(c.3107 C >G, p.Ser1036Ter)14 (Supple-

mentary Fig. 2, Supplementary Data 2). For clarity and accuracy, we

refer to all cases simply as “ALS”. Four transgenic mouse models were

analyzed to identify parallels with human ALS. To allow for compar-

abilitywith thehuman tissue, PFCs frompresymptomatic/earlydisease

stages were collected from C9orf72-, SOD1-, TDP-43-, or FUS-ALS. An

equal distribution of wild-type and transgenic littermates, as well as

sexes, was ensured (n = 20 per model, sex, condition, survival and

sampling time points depicted in the Methods and in Supplementary

Fig. 3). In mice, an average of 17.020 transcripts, 842 miRNAs (mature

miRNAs and hairpins), 2.568 proteins, and 6.755 phosphosites were

detected (Supplementary Fig. 1a–b). The overall sample quality was

consistently high for all omics analyzes (Supplementary Fig. 4).

Transcriptomic analysis reveals sex-specific alterations in ALS-
affected PFC tissue
Principal component analysis was performed to evaluate the impact of

disease, sex, and sample origin on the transcriptome, revealing a

moderate separation by condition (silhouette score: 0.11 [ALS]; −0.03

[CTR]) but a separation by sex (silhouette score: 0.29 [male], 0.15

[female]) (Fig. 1b). Consequently, we analyzed differentially expressed

genes (DEGs) separately for males and females (Supplementary

Data 3). The number of DEGs was significantly higher in males (n = 73)

than in females (n = 2), which was confirmed by down-sampling ana-

lysis using 20 bootstraps (Fig. 1c, Supplementary Data 4). Similar to

transcriptional changes, also differential alternative splicing (DAS)

analysis revealedmarked sex differences in the abundance of different

splicing events.We observedmoreDAS events inmale human samples

(Fig. 1d). DAS was observed in males for CLTB, TPRN, NRN1, and

CAMK2N1 and in females for TPRN and the gene encoding TMEM170A-

CFDP1, a readthrough transmembrane protein (AC009163.5)(Supple-

mentary Data 5). TPRN, a stereocilium-associated protein previously

describedonly innon-syndromicdeafness,may play additional roles in

the pathogenesis of ALS. Overrepresentation analysis using GO

showed enrichment for negative regulation of ERK1 and ERK2 cascade

and negative regulation ofMAPK cascade (p.adj <0.1) formale samples

(Supplementary Data 6).

Enrichment analyzes (KEGG) of transcriptomics results for males

showed significant enrichment for several synapse-related pathways

(retrograde endocannabinoid signaling, synaptic vesicle cycle, long-

term potentiation, glutamatergic synapse), as well as pathways related

to immune response, extracellular matrix (ECM), and diverse protein

processing and protein metabolism terms (which are important com-

ponents of the KEGG pathway for neurodegenerative diseases

[hsa05022]) (Fig. 1e, Supplementary Fig. 5, Supplementary Data 7). For

females, the most significant results were related to ribosomal func-

tion and oxidative phosphorylation, as well as mitochondria-related

terms. Further significantly enriched categories included neurode-

generative disorders and cell adhesionmolecules. Oxidative stresswas

inferred from the enrichment of oxidative phosphorylation pathways

in both males and females, and the MAPK pathway was frequently

enriched forweighted gene co-expressionnetwork analysis (WGCNA15)

(details in Supplementary Data 8 and in the Methods section).

Stratification of human ALS into four molecular subclusters
based on transcriptomic data
Based on frequently enriched terms for transcriptomics results (Sup-

plementary Data 7), we conducted hierarchical clustering analyzes for

pathways of interest (Fig. 1f). This analysis revealed four distinct clus-

ters labeled as C1–C4. The regulation of immune response served as a

dichotomizing factor, distinguishing patients with ALS into C1 and C2

vs. C3 and C4. At the second level of arborization, the ECM played a

primary role (C1 vs. C2), along with synaptic function and protein

folding (C3 vs. C4, Fig. 1f). These clusters are reminiscent, but not

identical to previously proposed subtypes9, where C1 andC2 alignwith

ALS-Ox (oxidative stress) and showing less resemblance to ALS-TE

(elevated transposable element expression), while C3 and C4 corre-

spond to the ALS-Glia (glial dysfunction) subtype (Supplemen-

tary Fig. 6).

Finally, to characterize the clusters using similarly regulated

RNA networks, we performed WGCNA15, resulting in 20 modules

(Fig. 1g, Supplementary Data 8). The turquoisemodule was enriched

for mitochondrial respiration and positively correlated with C1 and

C2, and driven by neuronal alterations, suggesting increased oxi-

dative respiration in PFC neurons. The yellow module, enriched for

synaptic function, exhibited a similar regulation in C1 and C2

(Fig. 1h). In contrast, the tan and lightcyan modules, enriched for

immune response and RNA splicing, were positively correlated with

C3 and C4 (Fig. 1g). These findings indicate that molecular sub-

clusters and sex-specific differences drive heterogeneity in the PFC

of patients with ALS.

Male-predominant deregulation of miRNA and protein expres-
sion, and integration of multiomic data
To explore the role of miRNA-mediated regulation in ALS16, we ana-

lyzed small RNAs, confirming previously identified sex differences.

Male ALS patients exhibited more significant downregulation in both

mature miRNAs and miRNA hairpins compared to females (Fig. 2a, b).

Specifically, males showed 17 mature DEmiRNAs (15 downregulated, 2

upregulated) while females exhibited 9 DE miRNAs (4 downregulated,
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5 upregulated) (p < 0.1, fold change > 1.5, Supplementary Data 9).

Further analysis of miRNA hairpins highlighted sex-dependent differ-

ences in early miRNA biogenesis. Males demonstrated a more pro-

nounced dysregulation with 82 DE hairpins (71 downregulated, 11

upregulated), while females displayed 13 DE hairpins (11 down-

regulated, 1 upregulated). This suggests potential defects in miRNA

biogenesis as an early disease mechanism.

To assess the significance of miRNA expression changes in our

human disease clusters, we conducted a cluster-specific DE analysis

(Fig. 2c, Supplementary Data 10). Only miRNAs with a minimum fold

change of 0.1 and significance in at least two clusters were considered,

ensuring the identification of robust expression alterations. Clusters 1,

2, and 4 exhibited distinctive miRNA profiles, while such changes were

not observed in cluster 3. Inmoredetail,miRNAmiR-4472,modulating
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E cadherin and vimentin via RGMA, presented the overall highest sig-

nificant fold change in cluster 2. miR-181c-3p, a miRNA proposed as a

circulating biomarker for ALS17, was downregulated in both clusters 1

and 2. In cluster 4 the miR-340-5p, which is neuronal injury-related,

presented the highest fold change18. Overall, miRNA dysregulation

appeared particularly important for clusters 2 and 4, while less pro-

nounced effects were seen in clusters 1 and 3.

We also assessed the proteomic signatures of early-stage ALS

using mass spectrometry in the same samples. Here, we detected 379

and 251 differentially expressed proteins (DEPs) in males and females,

respectively, with annexin A2 (ANXA2) being the only protein down-

regulated in both sexes (p <0.1). Interestingly, we identified several

neurodegeneration-related proteins, such as MATR3, SPART, and

SCNA (involved in the genetic forms of ALS, spastic paraplegia, and

Parkinson’s disease, respectively)19–21 (Fig. 2d, Supplementary Data 11).

The projection of transcriptomic clusters onto proteomic data did not

reproduce the subclustering, likely because of the much smaller

number of mapped entities (Supplementary Fig. 7). Functional

enrichment and unsupervised clustering identified relevant pathways

in both sexes, such as synaptic function, immune response, and ECM/

cytoskeleton (Fig. 2e, f). In contrast, transmembrane transport, lipid

metabolism, development, catalytic activity and ERK1/2 signaling were

enriched in females, whereas cell metabolism and tyrosine kinase-

related pathways were enriched in males (Fig. 2e, f, Supplementary

Data 12).

After using various omics modalities to identify the molecular

pathways associated with early ALS, we employed a biologically

motivated approach that focused on identifying valid interaction tri-

plets involving miRNAs, transcripts, and proteins in male and female

samples. The triplet miR-769-3p–ANXA2–ANXA2 was particularly

intriguing (Supplementary Fig. 8, Supplementary Data 13), since

ANXA2 is involved in angiogenesis and autophagy22, which are

mechanisms known to be altered in ALS23,24.

Next, we integrated transcriptomic, small RNA, and proteomic

data using Multi-Omics Factor Analysis (MOFA)25. Because sex was an

important differentiating factor (Fig. 2g), MOFAwas performed by sex

(Fig. 2h, Supplementary Fig. 9, Supplementary Data 14). In males, fac-

tor 1, mainly driven by hairpin miRNAs, explained 23.7% of the var-

iance. Downregulation of hsa-miR-7851, −1285-1, −5096, and a cluster

of −1273 isoforms strongly contributed to its weight (Supplementary

Fig. 10). Transcriptome-based factor 3 correlated best with disease

condition and was driven by genes responsible for vesicular function

(RAB3C, NSF), cell survival (BCL2, BHLHB9), and RNA metabolism

(SNORA73B, RN7SL2) (Fig. 2h). Proteome-dominated factor 4 contains

ZO2 and CD44, which are involved in myelination and blood–central

nervous systembarrier (BCNSB) formation, respectively. Finally, factor

7, which also showed a strong correlation with the disease condition,

was dominated by neurofilament heavy, medium, and light polypep-

tides (NfH, NfM, and NfL, respectively) as well as proteins involved in

Ca2+-binding (HPCL4) and ECM formation (PGCA) (Supplementary

Data 14).

In females, factors 1–3 explained 42.6%of the variance, but factors

10 and 12 correlated best with the disease condition (Fig. 2h). Synaptic

genes, such asRAB3C, NAPB, and SNAP25, contribute to factor 1 and are

upregulated in ALS. The hsa-miR-1285-1, miR-5096, and miR-1273

clusters also contributed to factor 2. Interestingly, MAPK1 plays a

central role in the miR-1273 target network (Supplementary Fig. 11).

Factor 3 (similar to male factor 4) included the oligodendrocyte and

myelin markers CD44 and ZO2. Factor 10 contained the antiproteases

SERPINA1 and SERPINA326 as well as chitinases CHI3L1 and CHI3L2,

which are known biomarkers for ALS27. Factor 12 showed a negative

Fig. 1 | Identification of transcriptomic subclusters and sex-specific differences

in humanALSpatients. aOverview of the sample processing workflow. Prefrontal

cortex samples were prepared formultiomics experiments from the human cohort

(51 ALS/50CTRsamples), aswell as from four selectedALSmousemodels (C9orf72,

FUS, SOD1, and TDP-43; 10 Tg/10 CTR animals per group). Panel awas created with

BioRender.com released under a Creative Commons Attribution-NonCommercial-

NoDerivs 4.0 International license. b Principal component analysis (PCA) on the

500 most variable genes of the human samples. Blue and orange indicate the sex,

and the condition is indicated in pink (ALS) or gray (CTR). c Volcano plot of

deregulated proteins in humans. x-axis: log2 fold change; y-axis: -log10 p-value for

each protein (DE analysis done with the limma package in R, two-sided test;

Benjamini-Hochberg multiple test correction). Blue and orange circles indicate

significant differential changes: left side, decrease (low ALS); right side, increase

(high ALS). d Differential alternative splicing (DAS) analysis. The plot displays the

results for humanmale and female samples for various splice events, i.e., alternative

exon (AE), skipped exon (SE), alternative 5’-splice site (A5), alternative 3’-splice site

(A3), alternative last exon (AL), and retained intron (RI) events. Each event is

represented by a separate bar, the height of which represents the fraction of sig-

nificant events in ALS vs. CTR. Blue: male results; orange: female results. e Sex-

specific enrichment analysis reveals crucial pathways in neurodegeneration and

ALS pathology. f Hierarchical clustering analysis of enriched pathways and litera-

ture insights reveals four distinct clusters (C1–C4) in ALS patients. Immune

response regulation dichotomizes patients into C1/C2 vs. C3/C4, while ECM,

synaptic function, and protein folding further differentiate C1 vs. C2 and C3 vs. C4.

g Heatmap showing modules from weighted gene co-expression network analysis

(WGCNA) associated with the clusters through similarly regulated RNA networks.

h Pathway enrichment per WGCNA cluster (top hits). The turquoise module,

upregulated in C1 and C2, especially in males, is enriched for mitochondrial

respiration, suggesting increased oxidative activity in PFC neurons. The yellow

module, associated with synaptic function, exhibits a similar regulation in C1 and

C2, while the tan and lightcyan modules, enriched for immune response and RNA

splicing, respectively, are upregulated in C3 and C4.

Table 1 | Summary of the demographics of the human cohort

Control ALS p-value

Donors (number) 50 51

Age at death (years) 75 (43–94) 67 (44–83) 0.0032

Sex female 56.0% 31.4% 0.0163

Postmortem inter-

val (hours)

22 (5–95) 23 (2.5–98) 0.4324

Unknown 8.0% 5.9%

Onset

Bulbar - 17.6%

Spinal - 37.3%

Upper limb - 31.6%

Lower limb - 63.1%

Limb unknown - 5.3%

Thoracic - 2.0%

Unknown - 43.1%

Diseaseduration (years) - 3 (1–28)

Unknown - 39.2%

Brain bank origin <0.0001

NBB 18.0% 17.6%

Oxford BB 20.0% 27.5%

ICL MS & PD TB 38.0% 0.0%

London NDBB 24.0% 54.9%

ALS amyotrophic lateral sclerosis. Continuous variables are presented as medians and ranges.

Categorical variables were compared using a two-sided Fisher’s exact test (for single groups) or

a two-tailed chi-square test (formultiplegroups); continuous variableswere compared using the

Mann–Whitney test. The p-values shown are uncorrected formultiple testing; p-values less than

0.05 are indicated in bold. NBB: TheNetherlandsBrainBank;OBB:OxfordBrainBank; ICLMS&PD

TB: Imperial College London—Multiple Sclerosis and Parkinson’s Tissue Bank; London NDBB:

London Neurodegenerative Diseases Brain Bank.
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correlation with MAPK–ERK1/2 regulator PEA15 and a positive corre-

lationwithNFH (Supplementary Fig. 12).MOFA analysis underlined the

mechanisms identified in the individual omics analyzes, such as the

downregulation of miRNA clusters (particularly in males, Supplemen-

tary Fig. 10), ECM components, and oligodendrocyte and myelin

markers. Overall, the integration ofmultiomic data revealed important

sex-specificmolecular networks of ALS. This unbiased data integration

strategy highlighted known ALS biomarkers (neurofilaments and

chitinases) and the MAPK pathway, especially in females, as important

molecular hubs (Supplementary Figs. 10–12, Supplementary Data 14).

Murine models of ALS partially recapitulate human ALS
We used four mouse models representing the most frequent disease-

causing mutations, C9orf72, SOD1, TDP-43, and FUS and performed

sex-specific analyzes for male and female animals. Strikingly, the

C9orf72 model exhibited the most pronounced transcriptomic
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changes, mirroring the rapid disease progression observed in this

model (Fig. 3a, Supplementary Fig. 3). In eachmousemodel, we found

differentially regulated pathways that were also identified in the

human cohort: The C9orf72model prominently featured alterations in

immune and inflammatory response pathways, the SOD1 model in the

ERK1/2 cascade, development, and response to oxidative stress,

whereas transcription and endopeptidase activity were altered in the

TDP-43 model. In contrast, the FUS model exhibited the least tran-

scriptional deregulation without enrichment of pathways (Fig. 3b,

Supplementary Data 15).

Further, transcriptome-based analyzes were performed to

explore DAS in our mouse models (Supplementary Fig. 13, Sup-

plementary Data 6). It is well documented that TARDBP/TDP-43

and FUS regulate alternative splicing and transcript usage in

hundreds of genes28,29. TDP-43 also represses cryptic exon-

splicing events in STMN230 and UNC13A31. We were not able to

detect any significant cryptic splicing events for these two genes

in our data. However, it is important to note that such cryptic

exon inclusion events are specific to neurons with TDP-43

pathology32. They are also not conserved in mice31 and are

rarely detectable in bulk RNA-Seq at our sequencing depth33.

Despite the absence of notable cryptic splicing events, our ana-

lysis revealed differential splicing in important genes such as

FLNB, CPLANE1 (involved in ciliogenesis and migration), and

ATP1B1 (a membrane-bound Na+/K+-ATPase) in multiple mouse

models (Supplementary Data 6). DAS analyses provided addi-

tional insights into sex-specific variations for the mouse cohorts

(Supplementary Fig. 13) showing enrichment in the terms mito-

chondria and myelin sheath (C9orf72), GTPase activity and myelin

sheath (SOD1), DNA binding and heat shock protein binding (TDP-

43), and protein binding and ribosome (FUS) (Supplemen-

tary Data 5).

To assess if the observed alterations in gene expression and

protein abundance reflect changes in the cellular composition of

the PFC, we estimated the cell-type fractions for the subclusters

of human and mouse ALS models using deep learning-based

deconvolution34 from the gene expression data (Fig. 3c, Supple-

mentary Fig. 14). Interestingly, the human subclusters showed

changes in the cell fractions that were partially reflected in the

individual mouse models. The human C1 and C2 clusters were

well correlated and showed a relative decrease in glial and

endothelial cells, and a relative increase in excitatory neurons

(Fig. 3c, d). SOD1 animals also displayed a slight reduction in glial

cells, while a relative increase in endothelial cells was observed

for all mouse models. A modest correlation was observed for the

SOD1, TDP43 and FUS mouse models with the cluster C4 (Fig. 3c).

The C9orf72 model and human C3 were characterized by a strong

increase in glial and endothelial cells and a decrease in excitatory

neurons, respectively, suggesting strong neuroinflammation and

neuronal loss. The FUS and TDP-43 models showed intermediate

levels of glial and neuronal cells, also assessed by cell type

enrichment in WGCNA modules (Fig. 3d, Supplementary

Figs. 14 and 15). Thus, the observed transcriptional changes are

partially driven by cell composition. Interestingly, our data sug-

gest that the neurovascular unit in ALS24 may be affected differ-

ently in different subclusters of patients with ALS. We then

correlated the deconvolved fractions of humans and mice with

each other. Overall, our transcriptome analyzes revealed corre-

lations between human clusters and mouse models: C1 and

C2 showed the best correlation with the SOD1 model (C1: 0.11 and

C2: 0.42), whereas C3 correlated best with the C9orf72 model

(0.31) and, to a lesser extent, TDP-43 (0.23) and FUS (0.14)

models. Finally, C4 showed a weak correlation with the FUS

model (0.14).

To further correlate molecular alterations in mouse models with

our human data, we investigated the proteome in PFC samples, where

again sex-specific differences were reproduced (Supplementary

Data 11, Supplementary Fig. 16). Similar to transcriptomic data, the

strongest changes were observed in the C9orf72 model. Sequesto-

some 1/p62, a product of the ALS-causing gene SQSTM135, showed the

strongest upregulation in C9orf72 males, indicating reduced autop-

hagic flux in a dipeptide accumulation model36 (Supplementary

Fig. 16). SOD1 mice showed one upregulated DEP, exportin-1 (XPO1), a

major regulator of nuclear RNA export. XPO1 was also among the

significantly regulated proteins in the C9orf72 model (Supplementary

Data 11). Unsupervised clustering for enrichment analysis of proteomic

mouse data using REVIGO revealed multiple pathway clusters that

were also identified in the human data. For example, most models

presented clusters or individual terms related to synaptic function.

Other enriched pathways include cytoskeleton and morphogenesis

(for C9orf72 females, SOD1 and FUS males); mitochondria/cell

respiration/cell metabolism (present for C9orf72 females, TDP43

females, FUS males and SOD1 for both sexes). A cluster for the MAPK

cascade was captured for SOD1 animals (males) (adjusted p-value =

0.04), which also exhibited enrichment for several terms related to

endocytosis and regulation of cellular transport (adjusted p-values <

0.04)(Fig. 3e).

To further compare the representation of human ALS-related

proteomic changes in murine models, we performed a comparative

clustering analysis of Gene Ontology (GO) term in semantic space37.

Human proteomics results showed prominent clustering for differ-

entiation and development (females: groups 3, 4, 7, 11 and 13; males:

group 8), synapse (females: groups 16; males: group 2, 10, 15), and

immune/defense response (females: group 12; males: groups 4, 6 and

11) (Supplementary Fig. 17). In contrast, the C9orf72 model showed

clustering for RNA processing, ribosome, translation, ATP synthesis,

Fig. 2 | Validation of sex-specific dysregulation in ALS patients in micro-

RNAomic, proteomic and multiomic analyzes. a, b Volcano plot of microRNA

analyzes of human samples, separated by sex for mature (a) and hairpin (b)

microRNAs. We used DESEq2 for DE analysis and Benjamini-Hochberg for multiple

test correction. The x-axis shows the log2 fold change in ALS vs CTR, whereas the y-

axis shows the -log10 p-value. Orange and blue dots represent DEGs in females and

males, respectively. miRNA-mediated regulation in ALS reveals a notable sex-

dependent pattern. Male ALS patients exhibit a more pronounced downregulation

of mature and hairpin miRNAs compared to females. c Heatmap showing mature

miRNA expression changes for the identified ALS clusters. miRNA candidates sig-

nificant in at least one condition were considered (p < 0.05). The scale (left-hand

side) shows the range of log2 fold change values. d Volcano plot of differentially

expressed proteins (DEP) in human samples (calculatedwith limma, two-sided test;

multiple test correction with Benjamini-Hochberg). The x-axis shows the log2 fold

changeALS andCTR,whereas the y-axis shows the -log10p-values. Orange and blue

dots represent DEGs in females and males, respectively. 379 DEPs in males and 251

in females. ANXA2 emerges as the sole protein downregulated in both sexes

(p < 0.1). e, f Functional enrichment and unsupervised clustering using REVIGO, a

tool used for summarizing Gene Ontology (GO) terms. Important pathway clusters

are revealed in both sexes, including synaptic function, immune response, and

ECM/cytoskeleton. Females (e) exhibited enrichment in transmembrane transport,

lipidmetabolism, development, catalytic activity, and ERK1/2 signaling, whilemales

(f) showed enrichment in cell metabolism and tyrosine kinase-related pathways.

The size of the circles represents the number of genes in the GO-BP terms, and the

color of each node represents the enrichment FDR values. g, h Uniform manifold

approximation and projection (UMAP) of MOFA factor analysis for sex (g) and

condition (ALS vs. CTR) (h). Sex (g) emerges as a robust differentiating factor when

integrating transcriptomic, small RNA, and proteomic data. i MOFA correlation

analysis displays which factors are dominated by which omic layer. Components of

the representative factors 3 (males) and 12 (females) aredisplayed in feature-weight

plots (bottom part). These factors are the ones that better correlate with disease

conditions for each sex.
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development, cell adhesion, transport, and synapse. The SOD1 model

showed strong clustering for ATP synthesis,mitochondrial respiration,

translation, and vesicle-mediated transport. Thus, enrichment results

underscored the pathways previously identified in the RNA

sequencing data.

In addition, multiple mouse omics datasets, including phos-

pho-proteomics, were also integrated to visualize valid

interacting partners based on their expression levels in so-called

quadruplets. This analysis identified a coherent regulation of

GFAP, SQSTM1, ATXN10 (Supplementary Fig. 18, Supplementary

Data 13) and XPO1 (Supplementary Data 13). Several different

phosphosites of SQSTM1 were also found significantly upregu-

lated in the phosphoproteomic analysis of C9orf72 mice (Sup-

plementary Fig. 18).
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Alterations of the MAPK/ERK pathway are identified across
multiple omics layers in mouse models and human patients
Finally, we wanted to use the multiomic data generated from humans

andmice to identify signaling pathways that could represent potential

therapeutic targets for ALS. Although multiple molecular pathways

identified in our analysis merit therapeutic validation, we decided to

focus on the MAPK/ERK pathway, which was altered consistently

across several data types, integration methods, and different sub-

clusters. For example, ERK1/2 signaling was enriched in human

females, whereas cell metabolism and tyrosine kinase pathways were

enriched in males (Fig. 2e–f, Supplementary Data 12). Integrative ana-

lyzes performed with MOFA also identified different interactors of the

MAPK/ERK pathway: PEA15 and isoforms of miR-1273 were important

contributors to the weight of different MOFA factors for both males

and females and directly regulate MAPK signaling (Supplementary

Figs. 10 and 12, Supplementary Data 9 and 14). Enrichment analyzes

with transcriptomics data showed disruptions in the ERK1/2 cascade

for the SOD1 mouse model and DAS results for human males showed

enrichment for terms related to the ERK1/ERK2 cascade and theMAPK

cascade (Supplementary Data 15). To explore alterations of the MAPK

pathway in more depth, we analyzed mouse and human tran-

scriptomicswithWGCNA, showing the contribution ofMAPK signaling

in multiple modules. While deregulations in the MAPK cascade are

observed for all mouse models and the human cohort (both for sig-

nificant levels and absolute counts), the C9orf72 model presented the

most striking changes (Fig. 4a). Next, based on the DAS analyzes for

human and mouse cohorts, we calculated enrichment analyzes across

all species and sexes and grouped the top resulting pathways in five

major groups (Fig. 4b). Among them, MAPK clearly shows a sex-

specific expression in SOD1 males—corroborating the enrichment

results from transcriptomics analyzes for this model, while human

males showed enrichment for more general terms related to kinase-

activity. We also carried out a miRNA expression analysis, which

identified miRNA-451a consistently deregulated across mouse models

and human samples with ALS (Fig. 4c, Supplementary Fig. 19). Target

prediction analyzes revealed that miRNA-451a interacts with multiple

members of the MAPK pathway (Fig. 4d), including MAPK1, AKT1, and

BCL2, which are known for their roles in the regulation of cell growth,

survival, and apoptosis38. In addition, centrality measurements for

targets of this miRNA showedMAPK1 as the top hit, followed by AKT1,

IKBKB, BCL2 and MYC. This indicates an important role of miR-451a in

the context of MAPK signaling (Fig. 4e).

We next investigated the role of the MAPK pathway in human

subclusters C1-C4. Interestingly, the classical MAPK pathway was

activated in C1 and C2 and downregulated in C3.Meanwhile, C1 and C2

showed downregulation of the JNK and p38 MAPK pathways, which

were activated in C3 (Supplementary Fig. 20). In addition to individual

omics, also MOFA results from the ALS-associated factor 12 pointed

towards a prominent role of the MAPK pathway, where multiple of its

members contributed to the PPI network (Fig. 4f). Overall, many of the

analyzes pointed towards a significant role of the MAPK pathway in

ALS, specifically ERK1/2, across organisms and data types.

Validation of MEK2 inhibition by trametinib in vitro and in vivo
Currently, licensed drugs target glutamatergic synapse function (rilu-

zole), oxidative stress (edaravone), mitochondrial function (taur-

oursodeoxycholic acid/phenylbutyrate), or SOD1 itself (tofersen).

Other mechanisms identified in this analysis, such as immune

response, ECM/BCNSB function, or theMAPK/ERK pathway are not yet

targeted by licensed drugs. We concentrated on mitogen-activated

protein kinase kinase 2 (MAP2K2 or MEK2), as it appeared to be

upregulated in the human PFC and multiple mouse models. Further-

more, MEK2 can be modulated by the clinically approved inhibitor,

trametinib39. A scheme for its mechanism of action and the expected

effects in the context of the MAPK pathway is depicted in Fig. 4g.

First, we used primary cortical neuronal cultures from P0–P1

C57BL/6 Jmice that were treatedwith glutamate as an in vitromodel of

excitotoxicity in ALS40. Treatment with 5mM glutamate (6 hours)

increased cell death (caspase-positive neurons) and reduced the

average neurite length, both ofwhichwere counteractedby trametinib

(Fig. 5a–d). Glutamate treatment did not affect total MEK2 or ERK1/2

protein expression, but significantly increased pErk1/2 levels, whereas

trametinib attenuates glutamate-induced phosphorylation of Erk1/2

(Fig. 5e–f, Supplementary Fig. 21). We observed a significant increase

of pMEK2activation in response to trametinib treatment. This couldbe

explained by inhibition of the feedback circuit: MEK2 inhibition indu-

ces a decrease of pERK1/2, which also counteracts the feedback loop,

resulting in the activation of the pathway and the accumulation of

activated pMEK241,42. (Figs. 4g, 5e, f, Supplementary Figs. 21 and 22).

Our data suggest that trametinib attenuatesMEK2 activity and reduces

Erk1/2 phosphorylation resulting in decreased cell death and increased

neurite outgrowth under excitotoxic stress.

To validate the importance of the MAPK pathway in vivo, we

selected the SOD1 mouse model, which showed the strongest simi-

larity with the largest human ALS subcluster (C1 and C2) (Fig. 3c–d). In

females, we observed pMEK2 levels substantially increased with dis-

ease progression, whereas in males, pMEK2 levels returned to control

levels after week 14 (Fig. 6a). Furthermore, in an initial study, we

treated SOD1micewith trametinib for sevenweeks, starting fromweek

9 (presymptomatic stage), and observed a reduction in ERK1/2 phos-

phorylation compared with that in vehicle-treated female and male

mice (Fig. 6b). Trametinib significantly reduced the autophagy

receptor p62 expression in the spinal cord of female but not male

mice, correlating with its previously described neuroprotective role of

increasing autophagy via transcription factor EB activation43 (Fig. 6c).

p62 also co-localizes with ubiquitin and mutant SOD1 in protein

aggregates44. Accordingly, we detected a significant reduction in

detergent-insoluble SOD1 and ubiquitin in trametinib-treated females

but not in males (Fig. 6d, e). Finally, we investigated the effect of

trametinib onneurodegeneration andmuscle denervation. NfL plasma

Fig. 3 | ALSmousemodels partially resemblehumanALS subclusters. aVolcano

plots of DE genes for male and female mice across ALS models (C9orf72, SOD1,

TDP-43, and FUS). The x-axis illustrates the log2 fold change between ALS and

control (CTR), while the y-axis displays the -log10 adjusted p-values. Orange and

blue dots denote differentially expressed genes in females andmales, respectively.

DESEq2 was used for DE analysis and Benjamini-Hochberg for multiple test cor-

rection. bAnalysis of enriched Gene Ontology (GO) terms using topGO inmale and

female samples. The dot plot displays significantly enriched pathways inmales and

females, represented by circles colored by their corresponding adjusted p-values

(-log10 transformed) on the x-axis and gene count on the y-axis. The size of each

circle corresponds to the number of genes annotated in the GO gene set.

cHeatmap showing the differences (ALS vs. ctrl) in the estimated cell-type fractions

(microglia, inhibitory neurons, excitatory neurons, oligodendrocytes, endothelial

cells, oligodendrocyte precursor cells [OPC], astrocytes) forhumansubclusters and

mouse ALS models. Relative differences in cell type abundances are depicted.

d Pearson Correlation analysis of deconvolved cell-type fraction changes (as shown

in c) between human and mouse ALS models. Correlation between relative differ-

ences are shown. Subgroups C1 and C2 demonstrated the strongest correlation

with the SOD1 model, while C3 exhibited the best correlation with the C9orf72

model, with additional correlations with the TDP-43 and FUS models. A weak cor-

relation was noted between C4 and the FUS model. e REVIGO-based summary of

proteomics gene set enrichment results for the mouse models. The plots sum-

marize the functional similarity for each model by reducing redundant GO-BP

(biological process) terms and clustering the remaining non-redundant terms. Each

cluster represents a network of similar GO-BP terms. Networks with 5 or more

nodes for each model were selected for display. The size of the circles represents

the number of genes in the GO-BP terms, and the color of each node represents the

enrichment FDR values.
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concentration45 and Acetylcholine Receptor γ subunit (AChRγ)

expression46 were significantly reduced after trametinib treatment in

female SOD1 mice (Fig. 6f, Supplementary Fig. 24). We also observed

strongMEK2 phosphorylation in themotor neurons of the spinal cord,

the main tissue involved in the pathology of this animal model47

(Fig. 6g–h). Phospho-proteomic analyzes supported the regulation of

theMAPKpathwayby trametinib in females, demonstrating in addition

a reduced phosphorylation of its upstream regulator CAMK2A (Sup-

plementary Fig. 23).

We thus focused on femalemice to assess the effect of trametinib

on the onset and progression of the disease. In a follow-up study, a

second groupof female SOD1micewas treatedwith the same schedule

up to survival. Body weightmonitoring andmotor tests (grip strength,

extension reflex) were performed in comparison with vehicle-treated
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mice. Although no effect was observed in body weight loss and

behavioral analysis (available as source data files), there was a sig-

nificant delay in the age of paralysis (Fig. 6i), the onset of the disease,

and significantly improved survival (Fig. 6j). We also observed that a

significant effect on NfL plasma concentration was maintained along

the progression of the disease (Fig. 6k). Thus, trametinib markedly

affects the clearanceof protein aggregates, leading to neuroprotection

in female SOD1 mice, suggesting that MEK2 is a promising therapeutic

target for ALS, particularly in females.

Discussion
In this study, we conducted individual and combined analyzes of

multiple omics datasets to comprehensively understand the mole-

cular architecture of ALS in the PFC, an area affected in the later
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Fig. 5 | Effects of theMEK2-inhibitor trametinib on theMAPKpathway in vitro.

a, b Effects of different concentrations of trametinib on apoptosis in glutamate

(5mM)- and non-glutamate-treated cells analyzed by immunostaining. Repre-

sentative photomicrographs for two of the analyzed conditions (control [vehicle]

and 200nM trametinib). Scale bar: 40 µm. c, d Quantification plots showing the

effects of treatment with trametinib on cell survival (caspase 3 staining) (c) and

neurite outgrowth (d) for glutamate- or vehicle-treated (control) cells, for all ana-

lyzed conditions (control [vehicle]; 2 nM trametinib; 20 nM trametinib; 200 nM

trametinib). Data represent the mean± standard error of the mean (SEM) (n = 5

independent neuronal cultures), and were tested using pairwise Tukey’s test after

one-way analysis of variance. In (c), p < 0.0001 for 0mM glutamate − 0nM tra-

metinib vs. 5mM glutamate − 0nM trametinib conditions; p = 0.0027 for 5mM

glutamate − 0nM trametinib vs. 5mM glutamate − 20nM trametinib conditions;

p = 0.0237 for 5mM glutamate − 0nM trametinib vs. 5mM glutamate − 200 nM

trametinib conditions. In (d), p = 0.0051 for 0mM glutamate − 0nM trametinib vs.

5mM glutamate − 0nM trametinib conditions; p < 0.0001 for 5mM glutamate −

0nM trametinib vs. 5mM-glutamate − 20 nM trametinib conditions; p = 0.0003 for

5mM glutamate − 0nM trametinib vs. 5mM glutamate − 200nM trametinib con-

ditions. Non-significant comparisons not depicted in the panels. e, f Western blot

analysis and quantification of trametinib effects on pErk1/2 with and without glu-

tamate treatment. Data represent the mean± SEM (n = 3 different cultures) and

were tested using pairwise Tukey’s test after one-way analysis of variance. In (f),

p = 0.0139 for 0mM glutamate − 0nM trametinib vs. 5mM glutamate − 0nM tra-

metinib conditions; p = 0.0103 for 5mM glutamate − 0nM trametinib vs. 5mM

glutamate − 20nM trametinib conditions; p =0.0042 for 5mM glutamate − 0nM

trametinib vs. 5mM glutamate − 200nM trametinib conditions. Non-significant

comparisons not depicted in the panels.

Fig. 4 | Consistent dysregulation of the MAPK pathway in human ALS patients

and mouse models. a The occurrence and importance of MAPK pathways and

other related kinase pathways are shown across all mouse models and the human

samples, highlightingdistinct activitieswithin the co-expressionmodules identified

by WGCNA. For that, we selected gene modules from individual WGCNA analyzes

formice andhumans by filtering for termswithMAPK/MAPkinase. The upper panel

shows the significance (-log10 p-value; right-tailed fisher’s exact test with

Benjamini-Hochberg correction) and the lower panel shows absolute counts. The

legend below the bars depicts the origin of the hits. b GO-enrichment results for

DAS genes. Bar heights represent the fraction of Gene Ratio of differentially

alternatively spliced genes in the pathways. All pathways have an adjusted p-

value < 0.1. c Differential expression analyzes for mature miRNAs for humans and

ALS mouse models. Mice exhibited pronounced differential expression (DE) of

miRNAs, with the C9orf72 model showing the most significant changes. d Targets

of miR-451a, such as MAPK1, AKT1, BCL2, Il6R, IKBKB, MIF, MMP2, and MMP9, are

involved in cell growth, survival, apoptosis, inflammatory signaling, and ECM

remodeling. e Target centrality measurement for miR-451a reveals MAPK1 as the

top hit for target centrality measures based on the network shown in panel (d).

f Protein-protein interaction (PPI) network of the genes in MOFA factor 12 in

females. MAPK1 is an important molecular hub and interacts with PEA15, PRRT2,

MEK2, DUSP6, HSPA4 and HSP90AA1. Further proteins of interest are highlighted

(bold/dark purple). g Scheme for the mechanism of action of trametinib in the

context of the MAPK pathway. MEK/Erk are activated through the Ras/RAF/PI3K

cascade, showing important roles for cell proliferation/survival. ERK activation is

subject to negative feedback regulation both downstream and upstream of MEK.

This involves the expression of DUSPs, as well as the direct phosphorylation and

inhibition of proteins such as RAF. Trametinib binds to the activation loop of MEK,

disrupting theRaf-dependent phosphorylation of the target. This results in reduced

expression of p-MEK and p-Erk. The pharmacological inhibition of MEK by trame-

tinib swiftly eliminates this feedback mechanism, inducing the phosphorylation of

MEK. Panel gwas createdwith BioRender.com released under a Creative Commons

Attribution-NonCommercial-NoDerivs 4.0 International license.
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stages by TDP-43 pathology and that has the potential to reveal

early disease mechanisms6. We observed that significant sex-

specific differences are often more pronounced in males, which is

alignedwith the higher prevalence of ALS inmales1. Previous studies

have also identified sex-specific differences in the blood of patients

with ALS48,49 as well as therapeutic responses in ALS mouse

models50,51. However, current therapeutic options, clinical trials,

and Food and Drug Administration guidelines for clinical trial

design41 do not consider patient sex in differential therapy. Our

data, especially the sex-specific differences in MAPK signaling and

therapeutic tractability, suggest that sex should be considered as a

covariate in future ALS clinical trials.

Phenotypic heterogeneity is clearly recognized in ALS52, as

reflected by stratification in onset or disease progression rate, and

previous transcriptomic analyzes have suggested molecular

subtypes13. We identified four clusters in our human ALS cohort based

on the transcriptome, partially mirroring previously identified ALS-Ox,

ALS-Glia, and ALS-Transposable elements subtypes9. While the ALS-

Glia and ALS-Ox clusters correlatedwith clusters C1 and C2 and C3 and

C4, respectively, the ALS-TE cluster was onlymarginally represented in

our data. As we analyzed the PFC, an area wherein TDP-43 aggregation

is observed later than that in the motor cortex, our data reinforce that

ALS-TE is driven by TDP-43 dysfunction9. Because alterations in the

PFC may represent earlier changes in ALS, clustering differences
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between the two studies may also reflect the evolution of clusters in

different stages of the disease. Molecular subtypes of ALS may evolve

with time and could be subject to changes during the disease course.

Exploring liquid biomarkers could further aid in patient stratification

and personalized clinical trials.

Furthermore, we suggest that the molecular phenotype in the

four analyzedmousemodels canbe partially approximated to features

displayed in the ALS cohort and the different subclusters, providing

evidence for the validity of these models in recapitulating parts of the

disease in humans. For example, the oldest and most frequently used

model, the SOD1.G93A mouse, displayed several common features

present in the largest clusters C1 and C2. For example, we observed a

relative decrease in different types of glial cells, as well as in molecular

pathways (e.g. synaptic- and mitochondria-related terms captured in

clustering analysis for humans and REVIGO analysis for the mouse

model, for instance). Overall, although not representative of all human

ALS cases, our findings indicate that this model represents an impor-

tant subgroup of the disease based on the identified dysregulated

pathways.

Integrated analysis of multiomic datasets has identified several

dysregulated pathways relevant for ALS, including mitochondrial

respiration/oxidative stress, transcriptional regulation/splicing,

and protein misfolding/degradation3. Additionally, previously less

prioritized pathways—including the dysregulation of the ECM and

BCNSB or the MAPK pathway—were identified. The deregulation of

pathways that are only distantly related suggests the need for

combinatorial drug therapies to address ALS mechanistically. It is

important to highlight that we found evidence of female-

predominant deregulation of the MAPK pathway in integrative

analyzes, but it did not contribute to the separation of clusters

C1–C4. Therefore, the MAPK pathway may be an interesting ther-

apeutic target for all human ALS subgroups. MAPKs are funda-

mental signal transducers that are involved in cell proliferation,

differentiation, survival, and death, and as such not specific for

ALS53. Extracellular and intracellular signals are integrated byMAPK,

and the overactivation of MAPK signaling, for example, via the

abnormal phosphorylation of ERK1/2, has been reported in human

and ALS mouse models54. A Ser/Thr kinase belonging to the MAPK

superfamily—the MAPK/MAK/MRK [MOK] kinase—has also been

linked to impaired microglial function and inflammatory insults

associated with ALS pathophysiology55. Increased phosphorylation

of ERK1/2 was also observed in our glutamate toxicity model, and

pMEK2 expression was increased in the SOD1 mouse model,

reproducing the aberrant activation of this pathway that was

restored by the MEK2-inhibitor trametinib. However, this effect was

most pronounced in females, suggesting a sex-specific efficacy. Our

experimental approach did not target neurons exclusively. Never-

theless, our primary cultures mainly contained neurons (∼95%), and

all staining procedures for both in vivo and in vitro experiments

focused on neurons. While other cell types may be involved, the

evidence presented here supports the significance of the

MEK2–MAPK pathway in neurons.

Indeed, trametinib significantly affected the onset of the disease,

the age of paralysis and the survival of SOD1 mice, but not the rate of

disease progression, in which non-neuronal supporting cells are

thought to have a role56. Although theMAPK pathwaymay represent a

less specific answer of the cell in response to stressors, its involvement

in ALS pathomechanisms suggests it could be a valuable target for

potential combination therapies. Currently, one phase I/II clinical trial

is examining the safety, tolerability, and efficacy of trametinib in

patients with ALS (clinicaltrials.gov identifier:NCT04326283). Our data

support the independent evaluation of male and female patients and

suggest that the ECM, immune response, and RNA processing

machinery are potential targets for therapeutic intervention that need

further exploration.

Despite the limitations of our study (e.g., the retrospective view

permitted by postmortem tissue analysis and restricted balancing of

sex and disease stage due to the limited number of well-characterized

postmortem brain samples), we aimed to provide valuable insights

into the molecular architecture of ALS. While analyzing over 100 brain

samples helped identify molecular subclusters, a larger sample size

may provide a more detailed view of the subgroups. Nevertheless,

analyzing the PFC tissue allowed us to study the earlier stages of the

disease, offering a unique perspective compared with those of pre-

vious studies. Our robust multiomic, computational, and integrative

approaches identified subclusters that are reminiscent of previously

identified subtypes, yet show clear differences. Additionally, we

emphasize the role of splicing and transcript usage in early disease

regulation, involving several ALS-related genes. Overall, our study

contributes towards unraveling the complexity of ALS and lays the

groundwork for further research in the field.

Our study also compared human brain tissue with samples from

transgenic mouse models of ALS. Although clear correlations were

found between mouse models and molecular subtypes of sALS, the

four analyzed models represent specific scenarios. Other models for

each of the four studied genes could potentially yield different

results57. Furthermore, we did not analyze DNA methylation status or

other post-translationalmodifications (such as glycation, methylation,

Fig. 6 | Modulation of the MAPK pathway member MEK2 by trametinib

attenuates ALS pathology in vivo. a Western blot analysis of pMEK2 in lumbar

spinal cords of SOD1 transgenic (tg) and non-transgenic (Ntg) mice at 9, 14, and

19 weeks. Data are shown as box plots (Ntg, n = 6; SOD1, n = 4 per group) with

median center lines, 0.25-0.75 interquartile range boxes, and 1.5x IQR whiskers.

Results are expressed as relative immunoreactivity (RI). *p < 0.05, pairwise Tukey’s

test after one-way ANOVA. b–f Results of the study in female and male SOD1 mice

un/treated with trametinib (9 to 16 weeks). Data are presented as box plots with

center line on median, box bounds indicating the 0.25-0.75 IQR and whiskers at 1.5

times the IQR below the first and above third quartile. Dot blot analysis of pERK1/2

(female, n = 4 per group; male, n = 4 vehicle-treated mice; n = 5 trametinib-treated

mice) (b), p62 (female, n = 3 vehicle-treated mice; n = 5 trametinib-treated mice;

male, n = 5 per group) (c), insoluble SOD1 (female, n = 4 per group; male, n = 5

vehicle-treatedmice; n = 4 trametinib-treatedmice) (d), andubiquitin (female, n = 4

per group; male, n = 5 per group) (e) in the spinal cord of SOD1 female and male

mice treated with trametinib or vehicle. Data are mean ± SEM and are expressed as

relative immunoreactivity (RI). *p < 0.05, Student’s t-test. Plasma neurofilament

light chain levels were analyzed in female and male (f) SOD1 mice treated or not

with trametinib. Data are mean ± SEM (female, n = 3 vehicle-treated mice and n = 5

trametinib-treated mice; male, n = 4 vehicle-treated mice and n = 5 trametinib-

treated mice). *p < 0.05, two-tailed Student’s t-test. g, h Diffuse pMEK2 immunos-

taining in the lumbar spinal cord of non-transgenic (g) and SOD1 mice (h) at

19 weeks. In the ventral horns, pMEK2 staining was mainly observed in motor

neurons. Scale bar: 50 µm. Experiments included three animals per group; three

independent slices analyzed per animal. i–k In a preclinical study, female SOD1

mice were treated with trametinib from 9 weeks until end of life. Paralysis was

assessed by age at loss of reflex, with hind limbs and paws retracted. Themean age

differed significantly between trametinib-treatedmice (150.2 ± 8 days) and vehicle-

treated mice (143.5 ± 6.5 days). Data are mean ± SEM (vehicle n = 8; trametinib

n = 10). *p = 0.0376, one-tailed Student’s t-test. j Kaplan–Meier curve for disease

onset and survival of SOD1 female mice treated with vehicle (n = 8) or trametinib

(n = 10). Log–rank Mantel–Cox test for disease onset, *p =0.0177 (mean ± SD =

vehicle 103.4 ± 3.5 days and trametinib 108.7 ± 5 days). Log–rank Mantel–Cox test

for survival, *p =0.0405 (mean ± SD = vehicle 147 ± 6.5 days and trametinib

153.7 ± 8 days). k Plasma NfL levels were analyzed in SOD1 female mice, with and

without trametinib treatment, at 16 and 19 weeks. Data are mean± SEM (16 weeks:

vehicle n = 3, trametinib n = 5; 19weeks: vehicle n = 5, trametinib n = 6). At 16weeks:

p = 0.0486 for vehicle-treated animals vs. trametinib-treated animals; at 19 weeks:

p = 0.003 for vehicle-treated animals vs. trametinib-treated animals (Benjamini-

Hochberg corrected p-values after one-way ANOVA).
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or acetylation) that could provide further insights into ALS-specific

dysregulation, as much as a single cell-based analysis could yield an

additional layer of detail.

In this thorough integration of human tissue- and animal model-

derivedmultiomic data, we emphasized sex-specific differences in ALS

pathology, identified molecular clusters, and highlighted their

importance for clinical trials and the development of therapeutic

strategies for this disease. The validation of omics results relies on

multiple systems, as each mouse model system only reproduces parts

of the human pathology. Our data suggest the need for the validation

of additional molecules and pathways and justify the further explora-

tion of the MAPK pathway as an ALS therapeutic target.

Methods
The results presented here complywith all relevant ethical regulations.

Ethical approval for the use of human tissues was obtained from the

Ethics Committees of the University Medical Center Göttingen (2/8/18

AN) and the Technical University Munich (145/19 S-SR).

All animal experiments complied with international and local

animal welfare standards and were approved by the respective reg-

ulatory organs of the involved research centers. The experimental

protocols for the collection of PFC tissue from transgenic SOD1 and

FUS mice were prospectively reviewed and approved by the Mario

Negri Institutional Animal Care and Use Committee and the Italian

Ministry of Health (Prot. No. 9F5F5.143, ministry authorization no. 4/

2020-PR; Direzione Generale della Sanità Animale e dei Farmaci Veter-

inari, Ufficio 6). The collection of PFC tissue from C9orf72 transgenic

mice followed the regulations from the German Animal Welfare Act

(Tierschutzgesetz/Tierschutz-Versuchstierverordnung, Regier-

ungsbezirke Oberbayern, Prot. No. TV 55.2-2532.Vet_02-17-106). The

collection of PFC tissue from TDP43 transgenic animals was approved

by the (CCD) Centrale Commissie Dierproeven of Utrecht University

(CCD license: AVD 1150020171565) and was in accordance with Dutch

animal welfare laws (Wet op de Dierproeven 2014) and European reg-

ulations (guideline 2010/63/EU). The validation experiments in SOD1

transgenic mice, including the treatment with trametinib, were

reviewed and approved by the Mario Negri Institutional Animal Care

and Use Committee and the Italian Ministry of Health (Prot. No.

9F5F5.250, ministry authorization no. 496/2023; Direzione Generale

della Sanità Animale e dei Farmaci Veterinari, Ufficio 6).

Human postmortem PFC samples
Human PFC samples were provided by four different brain banks: The

Netherlands Brain Bank (NBB), London Neurodegenerative Diseases

Brain Bank (London NDBB), Imperial College London—Multiple

Sclerosis and Parkinson’s Tissue Bank (ICLMS&PDTB), and theOxford

Brain Bank (OBB). Race, ethnicity or social information were not con-

sidered for cohort composition. In total, 51 ALS and 50 CTR samples

(without any signs of neurodegenerative diseases) were included.

Frozen tissues were shipped on dry ice to the rechts der Isar Hospital

Department of Neurology at the Technical University of Munich and

stored at −80 °C (Supplementary Data 1). For sampling, PFC samples

were transferred to a cryostat chamber at −20 °C and punched with a

20-G Quincke Spinal Needle (Becton Dickinson, Franklin Lakes, NJ,

USA). Subsequently, ∼20mg tissue was collected in RNAse-/DNAse-

free tubes and stored at −80 °C until further use.

ALS animal models
Four transgenic mouse models representing the most frequent ALS-

causing genes were used for the multiomic studies. Mice were housed

in standard cages in pathogen-free facilities, under a 12-h light/dark

cycle. The animals were provided with unrestricted access to food and

water. Prior to euthanasia for tissue collection, the animals were fully

anesthetized in a CO2 chamber. After spinal reflexes were tested (by

pinching the tail and upper and lower limbswith a laboratory tweezer),

the animals were subsequently euthanized by cervical dislocation.

B6;129S6-Gt(ROSA)26Sortm1(TARDBP*M337V/Ypet)Tlbt/J mice58

(here simply referred to as TDP-43 mice) were provided by the

Department of Translational Neuroscience of the University Medical

Center Utrecht. This model was generated by inserting an 80 kb

genomic fragment carrying the human TDP-43 locus (including a

patient-derivedM337Vmutation). TDP-43 transgenic and control wild-

type mice were euthanized at the age of 26 weeks (presymptomatic

stage) for biomaterial collection. B6SJL-Tg(SOD1*G93A)1Gur/J mice47

(here referred to as SOD1 mice) were provided by the Laboratory of

Translational Biomarkers, Mario Negri Institute for Pharmacological

Research,Milan. High-copy number B6 congenic Tg(SOD1*G93A)1Gur/

J SOD1*G93Amalemice fromThe Jackson Laboratory (Bar Harbor, ME,

USA) were bred with C57BL/6 female mice to obtain non-transgenic

and mutant transgenic G93A*SOD1-expressing mice. SOD1 transgenic

and control animals were sacrificed 14 weeks after birth (presympto-

matic stage). (Poly)GA-NES/C9orf72(R26(CAG-Isl-175GA)−29×Nes-Cre)

mice ref. 59 (here referred to as C9orf72 mice) were provided by the

German Center for Neurodegenerative Diseases in Munich. To gen-

erate transgenic animals, plasmids were electroporated to enable the

conditional expressionofdipeptide-repeatproteins (DPRs).DPRswere

created by inserting 175 GFP-(GA) genes encoded by non-repeating

alternate codons downstreamof a floxed stop cassette in the pEX CAG

stop-bpA vector. Electroporation was performed on murine

recombination-mediated cassette exchange embryonic stem cells at

the Rosa26 safe harbor locus. Mouse lines with germline transmission,

known as GAstop, were obtained and subsequently backcrossed to a

C57BL/6 J background until a confirmed purity of over 98% was

achieved (using SNP genotyping). C9orf72 transgenic and control

animalswere sacrificed4.5weeks after birth (early symptomatic stage).

Tg (Prnp-FUS)WT3Cshw/J mice60 (hereafter referred to as FUS mice)

were provided by the Laboratory of Translational Biomarkers, Mario

Negri Institute for Pharmacological Research, and were sacrificed four

weeks after birth. For each model, a total of 20 transgenic and non-

transgenic mice were selected and balanced for condition and sex

(TDP-43 model: 5 females vs. 5 males for transgenic and control

cohorts; SOD1model: 5 females vs. 6males for the control cohort and 5

females vs. 4 males for the transgenic cohort; C9orf72 model: 6

females vs. 4males for the control cohort and 4 females vs. 6males for

the transgenic cohort; FUS model: 5 females vs. 5 males for transgenic

and control cohorts).

Preparation of PFC from ALS mouse models
The mice were perfused with 50mL of ice-cold phosphate-buffered

saline (PBS) prior to microdissection. The head was removed by cut-

ting the base of the skull followed by skin removal. The skull was

removed using small incisions followed by microdissection of the PFC

in both hemispheres. The olfactory bulb and cerebellum were

removedby cutting the cerebellar peduncle starting from theolfactory

bulb and continuing along the interhemispheric fissure using tweezers

with fine tips. The cortex was removed from the rest of the brain.

Incisions were made in the middle of the cortex to excise the PFC

(Supplementary Fig. 25). Freshly prepared PFCs were collected in

nuclease-free tubes and stored at −80 °C until RNA and protein isola-

tion experiments were performed.

RNA and DNA isolation from human and mouse tissue samples
Total RNA was isolated from human and animal PFC samples using

TRIzol Reagent (Sigma-Aldrich, Taufkirchen, Germany). To ensure

proper handling of the RNA, all related experimentswere conducted in

an RNA workstation fume hood. In brief, 500μL TRIzol was added to

each sample, and the tissues were homogenized using a plastic

homogenizer. Subsequently, 50μL of 1-bromo-3-chloro-propane

(Sigma-Aldrich) was added. The reaction tubes were inverted for

10–15 s and incubated at room temperature (22–25 °C) for three
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minutes. The resulting lysateswere centrifuged at 12 000× g for 15min

at 4 °C, leading to phase separation. The RNA-containing aqueous

phase was carefully collected and transferred to a fresh nuclease-free

tube. To precipitate the RNA, 250μL of 2-propanol (AppliChem,

Darmstadt, Germany) and 2μL of GlycoBlue Coprecipitant (15mg/mL)

(Thermo Fisher Scientific, Waltham, MA, USA) were added to each

sample. The mixture was thoroughly vortexed and incubated over-

night at −20 °C. Samples were centrifuged at 12 000 × g for 30min at

4 °C the following day. The supernatant was discarded, and the RNA

pellets were washed three times with 75% ice-cold ethanol (Appli-

Chem). After air-drying the pellets for a few minutes under a fume

hood, they were reconstituted with 15–20μL nuclease-free water

(Sigma-Aldrich). The reconstituted RNA was completely dissolved by

incubation at 55 °C for two minutes in a thermoshaker. Following RNA

isolation, DNase treatment was performed to eliminate DNA con-

tamination. For this purpose, 5μL 10× DNAse I Incubation Buffer (Life

Technologies, Carlsbad, CA, United States), 5μL DNase I (2 U/μL), and

0.5μL RNaseOUT (40 U/μL) were added to each sample. Nuclease-free

water was added to a final volume of 50μL, and the samples were then

incubated at 37 °C for 20min. Finally, the RNA samples were purified

and concentrated using an RNA Clean & Concentrator-5 Kit (Zymo

Research, Irvine, CA, USA) following themanufacturer’s instructions. A

QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) was used for DNA

isolation from human midbrain samples according to the manu-

facturer’s instructions. After RNA andDNA isolation, the concentration

and purity of nucleic acids were assessed using a NanoDrop One

spectrophotometer (Thermo Fisher Scientific). RNA integrity was

evaluated using an Agilent 6000 NanoKit on a 2100 Bioanalyzer (Agi-

lent, Santa Clara, CA, USA).

DNA sequencing experiments and C9orf72 repeat expansion
analysis
Prior to the DNA sequencing experiments, the quality of the isolated

DNA was determined using a 4200 TapeStation System (Agilent). The

AmpliSeq protocol (Illumina, San Diego, CA, USA) was used in sub-

sequent steps. We used a target panel of 566 amplicons covering 30

ALS-related genes: TARDBP, DCTN1, ALS2, ERBB4, TUBA4A, CHMP2B,

NEK1, MATR3, SQSTM1, FIG4, C9orf72, SIGMAR1, VCP, GLE1, SETX, OPTN,

HNRNPA1, KIF5A, TBK1, ANG, SPG11, CCNF, FUS, PFN1, MAPT, VAPB,

SOD1, CHCHD10, NEFH, and UBQLN2. Using this panel, DNA samples

(50–100 ng) were amplified over 14 PCR cycles. The amplicons were

digested, and AmpliSeq combinatorial dual indices were ligated for

multiplexing. The quality and quantity of the enriched libraries were

validated using a 4200 TapeStation System (Agilent). The average

fragment size of the amplified product was 480 bp. The libraries were

standardized to a concentration of 9 nM in Tris–Cl (10mM, pH 8.5)

supplementedwith 0.1% Tween 20. Cluster generation and sequencing

were performed using the MiSeq platform (Illumina) following the

standard protocol. The loading concentration was 9 pM, and 15% phiX

was added. The sequencing configuration was a 250-bp paired-end

sequencing. C9orf72 repeat expansion analysis was performed using

the AmplideX PCR/CE C9orf72 Kit (Asuragen, Austin, TX, USA). Briefly,

DNA samples (n = 51, 40ng each) were amplified using the three-

primer GGGCC-repeat-primed configuration (combining flanking pri-

mers and a GGGCC-repeat-specific primer). This configuration allows

the sizing of GGGCC alleles of up to 145 repeats and simultaneous

detection of expanded GGGCC alleles with > 145 repeats. The PCR

conditions consisted of initial denaturation (five minutes, 98 °C), 37

cycles (35 s, 97 °C; 35 s, 62 °C; and 3min, 72 °C), and final elongation

(10min, 72 °C). Capillary electrophoresis was carried out on an ABI

3730 DNA Analyzer (Applied Biosystems, Waltham, MA. USA) using a

ROX 1000 Size Ladder (Asuragen), followed by analysis with Gene-

Mapper 4.0 software (Applied Biosystems) and conversion of peak size

to GGGGCC repeat length via the calibration curve method according

to the manufacturer’s instructions.

Preparation of RNA libraries for sequencing experiments
ThemRNA and small RNA sequencing experiments were conducted at

the Functional Genomics Center, Zürich. For mRNA sequencing, two

different library preparation kits were used: the TruSeq Stranded

mRNA Kit (Illumina; short read sequencing) and the SMARTer Stran-

ded Total RNA-Seq Kit v2 Pico Input Mammalian (Takara Bio USA, San

Jose, CA, USA; short read sequencing). In the TruSeq protocol, total

RNA samples (100–1000ng) were subjected to poly-A enrichment and

reverse transcription to generate double-stranded cDNA. The cDNA

was fragmented, end-repaired, adenylated, and ligated to TruSeq

adapters containing unique dual indices for multiplexing. Fragments

with adapters at both ends were selectively enriched using PCR

amplification, resulting in a smear with an average fragment size of

∼260 bp. The libraries were subsequently normalized to 10 nM in

Tris–Cl (10mM, pH 8.5) containing 0.1% Tween 20. For the SMARTer

Stranded Total RNA-Seq Kit protocol, total RNA samples (0.25–10 ng)

were reverse-transcribed using random priming into double-stranded

cDNA in the presence of a template switch oligo (TSO). The generated

cDNA fragments contained sequences derived from random priming

oligos and the TSO. PCR amplification with primers binding to these

sequences incorporated full-length Illumina adapters, including a

multiplexing index. The ribosomal cDNAwas cleavedusing ZapR in the

presence of mammalian R-Probes. The remaining fragments were

enriched through a second round of PCR amplification using primers

designed to match the Illumina adapters, resulting in a smear with an

average fragment size of ∼360bp. The libraries were normalized to

5 nM in Tris–Cl (10mM, pH 8.5) containing 0.1% Tween 20. To validate

the quality and quantity of the isolated RNA and enriched libraries, an

Agilent Fragment Analyzer was used for the TruSeq kit, while the 4200

TapeStation System (Agilent) was used for the SMARTer Kit.

RNA sequencing
Sequencing was performed using the Illumina platforms NovaSeq

6000 (for transcriptomics) and HiSeq 2500 (for small RNA sequen-

cing) according to standard protocols. Small RNA sequencing was

performed using RealSeq-AC miRNA (SomaGenics, Santa Cruz, CA,

USA) (short read sequencing). All samples were quantified and quality

was controlled using an Agilent Fragment Analyzer. Briefly, RNA sam-

ples (1 ng–1 ug) were adaptor-ligated, circularized, and reverse-

transcribed into cDNA. The cDNA samples were amplified using PCR,

which also incorporated sample barcodes. The library product, a peak

with a fragment size of ∼149 bp, was normalized to 10 nM in Tris–Cl

(2mM, pH 8.5) containing 0.1% Tween 20. The quality and quantity of

the enriched libraries were validated using an Agilent Fragment Ana-

lyzer. Transcriptomics data were processed using the Nextflow Core

RNASeq pipeline version 3.061. The data were demultiplexed with

bcl2fastq, and the fastq files underwent several quality checks,

including FastQC62. Salmon63 was used for pseudo alignment and

quantitationwith a Salmon indexbuilt usingGRCm39with annotations

from GENCODE vM26 for mouse data and GRCh38 with annotations

fromGENCODE v37 for humandata.Countmatrices fromSalmonwere

used for the downstream analyzes. The count matrices were filtered,

retaining genes with at least ten counts in 50% of the samples for any

condition or sex. We used the clusterProfiler R package64 and GO

biological processes andmolecular functions for GSEA, filtering terms

by size between 10 and 500 genes and correcting for multiple testing

(Benjamini–Hochberg correction). For the DE analysis we used a cut-

off of adjusted p-value 0.05 and threshold of log2 fold change (±1.5).

Global proteomics of mouse and human PFC tissue samples
Tissues from both human PFCs and four different mouse models

were prepared. The tissues were ground with a biomasher using

350 µL MeOH:H2O (4:1). Protein pellets were resuspended in 200 µL

Laemmli buffer (10% SDS, 1 M Tris pH 6.8, and glycerol) and then

centrifuged at 16.600 x g at 4 °C for five minutes. The protein
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concentration was determined using a DC assay (Bio-Rad, Hercules,

CA, USA) following the manufacturer’s instructions. Each sample,

containing 100 µg protein lysate, was heated at 95 °C for five min-

utes and loaded onto a 5% acrylamide SDS–PAGE stacking gel

(prepared in-house). Prior to overnight digestion at 37 °C using

modified porcine trypsin (Mass Spectrometry Grade, Promega,

Madison, WI, USA) at an enzyme–protein ratio of 1:80, the gel bands

were reduced and alkylated. The resulting peptides were extracted

using 60% acetonitrile (ACN) followed by 100% ACN. The peptides

were resuspended in 30 µL H20, 2% ACN, and 0.1% fluoroacetic acid.

iRT peptides (Biognosys, Schlieren, Switzerland) were added to

each sample as an internal quality control (QC). NanoLC–MS/MS

analyzes were conducted using a nanoAcquity UltraPerformance LC

(UPLC) system (Waters, Milford, MA, USA) coupled to a Q-Exactive

Plus Mass Spectrometer (Thermo Fisher Scientific). The solvent

system consisted of 0.1% formic acid (FA) in water (solvent A) and

0.1% FA in ACN (solvent B). Samples equivalent to 800 ng protein

were loaded onto a Symmetry C18 precolumn (20mm× 180μmwith

5 μmdiameter particles, Waters) over three minutes at a flow rate of

5 μL/min with 99% solvent A and 1% solvent B. Peptides were sepa-

rated on an ACQUITY UPLC BEH130 C18 column (250mm × 75 μm

with 1.7 μm diameter particles) at a flow rate of 400 nL/min. The

following gradient of solvent B was used: 1–8% over 2min, 8–35%

over 77min, 35–90% over 1 min, 90% for 5min, and 90–1% over

2min. Samples from each cohort were injected in a random order.

The system was operated in data-dependent acquisition (DDA)

mode, automatically switching between MS (mass range 300–1800

m/z with R = 70 000, automatic gain control [AGC] fixed at

3.10^6 ions, and the maximum injection time set to 50ms) and MS/

MS (mass range 200–2000m/z with R = 17 500, AGC fixed at 1.10^5,

and the maximum injection time set to 100ms) modes. The ten

most abundant precursor ions were selected on each MS spectrum

for further isolation and higher energy collisional dissociation,

excluding monocharged and unassigned ions. The dynamic exclu-

sion time was set to 60 s. A sample pool was injected as an external

QC every six samples for the human cohort and every five samples

for the mouse cohort. MaxQuant65 version 1.6.14 was used to pro-

cess raw data. The Andromeda66 search engine was used to assign

peaks with trypsin/P specificity against a protein sequence database

generated in-house containing all human (20 421 entries as of

August 24, 2020) ormouse entries (17 134 entries for SOD1 and TDP-

43 models as of March 27, 2020, and 17 061 entries for C9orf72 and

FUS models as of September 29, 2020) extracted from UniProtKB/

Swiss-Prot. Methionine oxidation/acetylation of the protein

N-termini was used as a variable modification, whereas cysteine

carbamidomethylation was used as a fixedmodification. The “match

between runs” option was enabled to facilitate protein quantifica-

tion. To control false discoveries, a maximum false discovery rate of

1% was implemented (at both peptide and protein levels), employ-

ing a decoy strategy. Intensities were extracted from the Protein-

group.txt file for statistical analyzes. The MaxQuant protein vs.

sample table was used for downstream analyzes, including label-

free quantitation intensities. Only Swiss-Prot proteins were

retained, whereas TrEMBL proteins were removed for higher relia-

bility. After filtering out low abundant proteins, i.e., proteins that

were detected in less than 50% of the samples in any combination of

condition and sex, and imputing missing values using the

missForest67 algorithm, the intensities were log2-transformed and

used for principal component exploration, constructing heat maps,

and differential abundance analysis. The limma package68 was used

for linear modeling, and p-values were using the

Benjamini–Hochberg correction. The protein names were mapped

to the corresponding genes and used to search for enriched biolo-

gical processes andmolecular functions using the criteria described

in the transcriptomics data processing, with a p < 0.01 threshold for

functional annotation analyzes.

Phosphoproteomics on mouse PFC brain tissue samples
Starting with the protein extracts from the global proteomics experi-

ments, protease inhibitors (Sigma-Aldrich, P8340) and phosphatase

inhibitors (final concentration in Na3VO4 = 1mM) were added to sam-

ples. Protein concentration was determined using the RC DC Protein

Assay (Bio-Rad) according to themanufacturer’s instructions. Proteins

for each sample (250 µg) were reduced and alkylated prior to an in-

houseoptimized single-pot, solid-phase-enhanced sample preparation

protocol (adapted fromHughes et al., Nat Protoc, 2019). Briefly, beads

A (Sera-Mag SpeedBeads, Fisher Scientific, Schwerte, Germany,

45152105050250) and B (Sera-Mag SpeedBeads, Fisher Scientific,

65152105050250) were combined (1:1) and, after three washing steps

with H2O, were added to the samples (bead–protein ratio of 10:1 for

each type of bead, meaning a 20:1 ratio for the combination of beads).

After inducing protein binding to the beads with 100% ACN for 18min,

the bead and protein mixtures were washed twice with 80% ethyl

alcohol and once with 100% ACN before being resuspended in 95 µL

NH4HCO3 prior to overnight on-bead digestion (enzyme–protein ratio

of 1:20) at 1 000 rpmat 37 °C usingmodified porcine trypsin/Lys-CMix

(Mass Spectrometry Grade, Promega). The digestion was stopped

using trifluoroacetic acid (TFA) (final pH <2). The recovered peptides

were resuspended in 170 µL 80% ACN and 0.1% TFA, and MS Phos-

phoMix I Light (Sigma-Aldrich) was added to each sample (peptide

[µg]–mix [fmol] ratio of 1:6). Phosphopeptide enrichment was per-

formed on 5 µL phase Fe(III)–NTA cartridges on an AssayMAP Bravo

platform (Agilent) following the immobilized metal affinity chroma-

tography protocol. Briefly, cartridges were washed and primed with

50% ACN, 0.1% TFA and then equilibrated with 80% ACN, 0.1% TFA.

Subsequently, 100 µL samples were loaded onto the phase at a rate of

2 µL/min and thenwashedwith 80%ACN, 0.1%TFAbeforebeing eluted

in 20 µL 1% NH4OH at 5 µL/min. After enrichment, FA and MS Phos-

phoMix I Heavy (Sigma-Aldrich) (peptide [µg]–mix [fmol] ratio of 1:6)

were added to each sample. Dried phosphopeptides were resus-

pended in 40 µL H2O, 2% ACN, 0.1% FA. Sample preparation steps for

the C9orf72 and FUSmousemodels were identical to those previously

described for SOD1 and TDP-43, except that proteins were extracted

from new tissue samples immediately before the phosphoproteomics

experiment.

NanoLC–MS/MS analyzes were conducted using a nanoAcquity

UPLC system (Waters) coupled with a Q-Exactive HF-X Mass Spectro-

meter (Thermo Scientific) equipped with a Nanospray Flex ion source.

The solvent system consisted of 0.1% FA in water (solvent A) and 0.1%

FA in ACN (solvent B). Samples were loaded onto an ACQUITY UPLC

Peptide BEH C18 Column (250mm×75 µm, 1.7 µm diameter particles)

over threeminutes at a flow rate of 5μL/min with 99% solvent A and 1%

solvent B. Phosphopeptides were separated on an ACQUITY UPLC

M-Class Symmetry C18 Trap Column (20mm×180 µm, 5 µm diameter

particles; Waters) at a flow rate of 400 nL/min using a gradient of

solvent B as follows: 1–2% over 2min, 2–35% over 77min, and finally

35–90% over 1min. The samples in each group were injected in ran-

domorder. The instrumentwas operated inDDAmodewith automatic

switching between the MS and MS/MS modes. MS scans were per-

formed in the mass range of 375–1500m/z with R = 120 000, an AGC

fixed at 3.106 ions, and a maximum injection time of 60ms. MS/MS

scans were conducted in the mass range of 200–2000m/z with R = 15

000, an AGC fixed at 1.105 ions, and a maximum injection time of

60ms. In eachMSspectrum, the tenmost abundant ionswere selected

for further isolation and higher-energy collisional dissociation,

excluding monocharged and unassigned ions. A dynamic exclusion

time of 40 s was used to prevent the reanalysis of previously selected

ions. The obtained rawphosphoproteomicsdatawereprocessedusing
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MaxQuant version 1.6.14. Peaks were assigned using the Andromeda

search engine with trypsin/P specificity against an in-house-generated

protein sequence database containingmouse entries fromUniProtKB/

Swiss-Prot (17 061 entries as of September 29, 2020). The peptides

were required to have a minimum length of seven amino acids, and a

maximum of one missed cleavage was allowed. These modifications

include methionine oxidation, acetylation of protein N-termini, and

phosphorylation of serine, threonine, and tyrosine. Cysteine carba-

midomethylation was used as a fixed modification. Protein quantifi-

cation utilized the “match between runs” option. A maximum false

discovery rate of 1% (at both peptide and protein levels) was imple-

mentedusing adecoy strategy. The intensitieswere extracted from the

Phospho (STY).txt file and processed using the Perseus platform69

version 2.0.7.0, during which contaminants and reversed proteins, as

well as proteins with negative scores, were removed. Using the

“expand sites table” option, the intensities of the different phospho-

peptides involved in one phosphosite were summed, and phospho-

sites with a localization probability below 75% were removed. The

Perseus output table was used for statistical analyzes.

Only proteins that were detected in more than 50% of the mouse

samples of any combination of sex and condition were retained for

each dataset. The intensities were log2-transformed, quantile nor-

malizationwas applied, andmissing values were imputed to the lowest

quartile. The remaining data processing for phosphoproteomics fol-

lowed the procedure described above for proteomics data processing.

For the DE analysis we used a cut-off of p-value 0.1.

Differential expression analysis
To compare murine and human samples, transcript counts were nor-

malized using DESeq2 size factor estimation. Subtype-specific differ-

ential expression of transcripts was determined using a 1.5-fold change

cut-off and an adjusted p-value < 0.05 (unless stated otherwise). Two

different models were designed to analyze sex-specific differences:

The cohort was divided intomale and female cohorts. For each cohort

we carried out differential expression between case and control sam-

ples using the RNA-seq batch as covariate for the human samples.

Transcriptomics data has been processed using the NextFlow

Core RNASeq pipeline, version 3.0 described61. The data has been

demultiplexed with bcl2fastq, and the fastq files have undergone

several quality checks including FastQC62. FastQC: A Quality Control

Tool for High Throughput Sequence Data. Available online at: http://

www.bioinformatics.babraham.ac.uk/projects/fastqc/) and fastq

screen70. Salmon63 was used for pseudo alignment and quantitation,

with a salmon index built using GRCm39 with annotations from GEN-

CODE vM26 for the mice data and GRCh38 with annotations from

GENCODE v37 for the human data. Count matrices from Salmon were

used in downstream analyzes.

The Principal Component Analysis and heatmaps used the count

matrices from Salmon, after filtering and normalization using a var-

iance stabilizing transformation blind to the experimental design. The

count matrices were filtered, keeping genes with at least ten counts in

50% of the samples of any condition and sex.

Following differential expression analysis by DESeq271, we sear-

ched for relevant biological processes and molecular functions using

gene set enrichment analysis on their Gene Ontology terms, using the

clusterProfiler R package64, filtering terms by size between 10 and 500

genes, and adjusting p-values for multiple testing with the Benjamini-

Hochberg correction. To assess the heterogeneity of the samples, sil-

houette scores were calculated on the first two principal components

and averaged across conditions.

Small RNA sequencing data-processing and miRNA target
prediction
Small RNA data were processed using the Nextflow Core smRNASeq

pipeline version 1.061. Reads were trimmed and aligned against

miRBase version 22.1 using Bowtie172, both for mature miRNAs and

hairpins. miRNAs with at least ten counts in 50% of the samples of any

condition and sex were retained, and the rest were filtered out.

Unnormalized count matrices were used for subsequent DESeq271

differential expression analysis after stratifying by sex and for p-values

using the Benjamini–Hochberg correction. Mature miRNAs were

mapped to their corresponding genes using miRDB version 6.073,

excludingmatches with scores <60 or >800 targets, as recommended.

For each miRNA present in the miRNA expression matrices, we

obtained experimentally validated targets from miRTarBase74 8.0 and

predicted targets from miRDB miRBase version 2273. miRTarBase74

provides the most extensive curated database of validated

miRNA–target interactions (MTI) collected from literature using nat-

ural language processing to select functional miRNA studies. Addi-

tionally, the miRDB database includes MTIs predicted by MirTarget,

which uses a support vector machine (SVM) to analyze thousands of

high-throughput sequencing experiments75. Each experiment is

assigned a probability score, which serves as the SVM’s output. A

higher probability score indicates a higher likelihood of accurate tar-

get prediction. Therefore, we set a threshold of 0.6 on the output

probabilities to select only highly likely MTIs. Finally, we joined the

miRNA–target pairs from both sources for further analysis. For the DE

analysis we used a cut-off of p-value 0.1 and threshold of log2 fold

change (±1.5). Target network centralitywas calculated using networkx

(v2.8.8) using the eigenvector_centrality function on the STRING

interaction network the miRNA targets.

Cell-type deconvolution analyzes
Single-cell reference-based cell-type deconvolution of RNA-Seq in

mouse models was performed using Scaden34. We used healthy

adult scRNA-Seq datasets for mouse76 and human77. Scaden uses a

fully connected deep neural network ensemble trained on

pseudo-bulks simulated from reference scRNA-Seq data. Before

deconvolution, we filtered the scRNA-seq data using Scanpy78 to

maintain at least 200 genes expressed per cell and at least five

cells expressing one gene. For Scaden, counts per million (CPM)

of simulated pseudo-bulks and transcripts per million (TPMs) of

the data to be deconvolved were used. In this study, CPM was

used for scRNA-Seq instead of TPMs because scRNA-Seq consists

of unique molecular identifier counts and does not include gene-

length bias. We used a variance cutoff of 0.01, and the mean

squared error was calculated for each batch as loss as imple-

mented in the Scaden code repository (https://github.com/

KevinMenden/scaden). For comparing the cell type abundances

between human ALS subclusters and mouse models, the relative

median differences from control samples was computed using the

following equation:

Relative difference

= ðmedian composition in ALS�median composition in controlsÞ=

ðmedian in composition in control samplesÞ:

ð1Þ

Differential alternative splicing analysis
The splicing tool SUPPA279 version 2.3 was used to analyze DAS for

seven alternative splicing events: exon skipping, mutually exclusive

exons, intron retention, alternative 3’-splice site, alternative 5’-splice

site, alternative first exon, and alternative last exon. SUPPA2 was used

with multipleFieldSelection() to select the TPM values of the tran-

scripts, followed by GenerateEvents with the parameters -f ioe -e SE SS

MX RI FL and annotation files GENCODE v37 for human data and

GENCODE vM26 for mouse data. The inclusion values (PSI) were cal-

culated using psiPerEvent, and the differences in PSI (ΔPSI) between

the mutant and control conditions were determined using diffSplice

with parameters -m empirical -l 0.05 -gc –save tpm_events to detect
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anomalies in the splicing landscape. For the DE analysis, we used a cut-

off of p-value 0.1.

Multi-omics factor analysis
We used MOFA225 version 1.4.0 to integrate data from multiple omics

levels for the human cohort, including transcriptomics, miRNA, and

proteomics. The MOFA model was trained on the data, and down-

streamanalyzeswere performed. Eachomics typewas preprocessed in

its own manner, and the default training parameters were used. The

MOFA models were initialized with 15 initial factors, and convergence

was reached when the evidence lower bound (ELBO) value did not

change with more than a deltaELBO value of 1e-4%.

Enrichment analyzes
Gene ontology, pathway enrichment analyzes, and protein inter-

action networks. GSEA80 was performed using gseGO and gseKEGG

from the clusterProfiler R package, with biological processes and

molecular functions chosen as background databases for GO

enrichment. The p-value cutoff was set at 0.05. Differential

expression was presented using volcano plots generated with the

Enhanced Volcano plot package in R, and over-representation ana-

lysis was performed on genes that showed at least one significant

DAS event using the clusterProfiler function enrichGO, with a

p-value cutoff of 0.1 and Benjamini–Hochberg correction for mul-

tiple hypothesis testing. Protein–protein interaction networks were

created using the STRING protein interaction network database

version 11.0 using standard settings. We summarized the enriched

GO terms by clustering pathways based on their descriptions, which

is called clustering in semantic space using GO-Figure37. In addition,

for proteomics results, we performed additional clustering analyzes

using REVIGO81. This tool allows GO term clustering by hierarchy,

considering the following such as enrichment p-adjusted values,

semantic similarity and term proximity.

Weighted Gene Correlation Network Analysis (WGCNA). To con-

duct a weighted gene co-expression analysis, we employed the

WGCNA package15. Pairwise Pearson correlations were calculated to

establish signed regulatory networks within the WGCNA. By con-

structing an adjacency matrix, we applied a soft-thresholding techni-

que to approximate a scale-free topological network. Eigengenes or

eigenproteins were calculated as the first principal components of

eachmodule. This resulted in the development of severalmodules.We

merged similar modules based on hierarchical clustering (SOD1: 0.4,

C9orf72: 0.4, FUS: 0.5, TDP-43: 0.4 for RNA-Seq and 0.25 for pro-

teomics). We calculated the relationships between WGCNA modules

and traits. Sex was also included in the traits resulting in four traits:

male ALS, female ALS, male CTR, and female CTR. First, we filtered

modules based on the significance of the module–gene relationship

(p <0.05) and then selected modules that were highly correlated with

either male or female ALS. The correlation cutoffs differed between

the mouse models (SOD1: 0.5, C9orf72: 0.3, FUS: 0.3, TDP-43: 0.5 and

human: 0 for RNA-Seq). The minimal module size was set to 30 with a

merge height of 0.4–0.5 and a correlation threshold of 0.3–0.5 (Sup-

plementary Data 16). Over-representation analysis was performed

using the enrichGO function of clusterProfiler64.

Pathway selection for clustering analyzes with transcriptomics

datasets. The selection of the pathways used for clustering analyzes of

human sampleswas based on the enrichment analyzes performedwith

the transcriptomics dataset. We selected the top hits from gseGO and

gseKEGG analyzes [from the clusterProfiler R package64], as well as a

co-expression network analysis (weighted gene co-expression analysis

- (WGCNA) analysis, analyzing the top 30 most highly enriched terms

for each dataset, and then grouped these terms by more general

umbrella terms, to select ten pathways that summarized the enriched

terms best: mitochondria/respiration; synapse; MAPK cascade; oxida-

tive stress; nucleocytoplasmic transport; protein folding/metabolism;

lipid metabolism; RNA splicing; extracellular matrix and activation of

immune response. In more detail, for overlapping KEGG pathway and

GO results, a predominant enrichment for extracellular matrix (ECM)

and immune response pathways and synapse-related terms was

observed for both males and females. The convergence of these

themes across sexes suggests common biological themes relevant for

the disease and justified their selection for the clustering analyzes. In

addition to neurodegenerative disease pathways driven by DE genes

involved in protein metabolism and oxidative stress mechanisms

(Supplementary Fig. 5), female-specific results showed enrichment for

aerobic respiration (GO) and ribosome (KEGG), while protein meta-

bolismwas captured formale results (KEGG). Oxidative stress was also

inferred from the enrichment of oxidative phosphorylation pathways

in both males and females (KEGG). WGCNA results revealed key

associations with all of the selected themes, especially for terms rela-

ted to mitochondria/respiration and protein metabolism, synapse,

nucleocytoplasmic transport, lipidmetabolism; immune response and

RNA splicing. WGCNA results were also very frequently enriched for

MAPK-related terms (SupplementaryData 8), justifying its selection for

the clustering analyzes.

Identification of transcriptome-based subclusters in human ALS

patients. We used decoupleR (v1.1.0)82 to aggregate scores from gene

sets derived fromGO termsof interest. Gene lists with the components

of GO terms of interest were extracted using the AmiGO2 database

(https://amigo.geneontology.org/). For the unsupervised per sample

enrichment analyzes, we used decoupleR with the consensus from the

mlm, ulm, wsum functions82 and calculated activity scores. These are

numerical values associatedwith genes and represent gene expression

levels.

Mouse primary cortical cultures
Primary cortical neuronal cell cultures were generated from neonatal

mouse C57BL/6 J pups aged postnatal day 0–1 (P0–P1) in accordance

with ethical guidelines for animal experimentation at local and inter-

national levels. Animal care strictly followed official governmental

protocols, with utmost effort to minimize the number of animals uti-

lized and to mitigate any potential suffering or distress. Pups were

decapitated, and the brains were collected in dissection media con-

taining 10× Hanks balanced salt solution and NaHCO3. The cortex was

dissected, the meninges were removed, and small pieces of the cortex

were collected in a Falcon tube. Tissues were trypsinized at 37 °C in a

water bath for 12minand treatedwith 200μLDNAse I (10mg/mL). The

tissue stripswere gently triturated (until the tissue fragmented) in fetal

bovine serum using a fire-polished Pasteur pipette. The mixture was

subsequently centrifuged at800× g for fourminutes, and the resulting

cell pellet was resuspended and cultured in a neurobasal medium

supplemented with B27 and antibiotics (0.06μg/mL penicillin and

0.1μg/mL streptomycin). Cells were seeded at a density of 3 × 105 cells

perwell in 24-well plates. Prior to cell seeding, the coverslipswere acid-

washed, rinsed several timeswith water, sterilizedwith ethanol andUV

light, and placed in a well plate. The plates were then coated with poly-

L-ornithine (0.05mg/mL) overnight and laminin (10μg/mL) for 2 h in

an incubator before use. The cells were maintained at 37 °C in a

humidified incubator under 5% CO2 for seven days prior to the

experiments. The cell culture medium was replaced every three days

during this period. To induce glutamate excitotoxicity, L-glutamic acid

(Tocris, UK) was dissolved in 50mM NaOH, and a stock solution of

50mM was prepared prior to use. An appropriate concentration of

glutamate was prepared in the maintenance medium (neurobasal

medium supplemented with B27 and antibiotics). The cells were

exposed to 5mM glutamate by exchanging 1:3 medium at seven days

in vitro. After six hours of incubation, glutamate was thoroughly
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removed by washing, and the cells were fixed for immunocytochem-

istry or lysed for protein extraction.

Immunocytochemistry andmicroscopy for in vitro experiments
Cells were cultured on coverslips following previously described

methods83 and immunostained at seven days in vitro according to

standard techniques. Cells were fixed in 4% paraformaldehyde in PBS

at room temperature for 10min. To quench the free aldehyde groups,

the cells were treated with 50mM NH4Cl for 15min and washed with

PBS. For the permeabilization of the cell membrane, PBS with 0.25%

Triton X-100 was added for 10min at room temperature. Non-specific

binding sites were blocked by applying 10% goat serum in PBS for at

least 20min. Dilutions of primary antibodies were prepared in block-

ing solution to a final volume of 180μL per 18-mm coverslip, and cells

were incubated for 90min at 37 °Cwith shaking. The followingprimary

antibodies were used: mouse anti-MAP2 (Invitrogen, Waltham, MA,

USA; #MA5-12826, RRID:AB_10976831) (1:500) and rabbit anti-cleaved

caspase 3 (Cell Signaling Technology, Danvers, MA, USA; #9661, RRID:

AB_2341188) (1:250). The cells werewashed three times forfiveminutes

each with PBS before applying the secondary antibodies. The cells

were then incubated with secondary antibodies for 30min and

washed, respectively Alexa Fluor 488 (Invitrogen, Waltham, MA, USA

#A-11034, RRID: AB_2576217) (1:250) and goat Anti-rabbit Cy3 (Jackson

ImmunoResearch, Ely, United Kingdom, #111-165-144, RRID:

AB_2338006) (1:250). For double staining, a second primary antibody

was added, and the same steps were repeated. Coverslips were

mounted on slides using a mounting medium supplemented with

DAPI. Images were captured using an inverted fluorescence micro-

scope (Zeiss, Jena, Germany) with a 63× oil objective and analyzed

using ImageJ software. Fifteen random images from each coverslip

were analyzed for cell death by counting the number of cleaved

caspase-3 positive cells. Neurite lengths weremeasured using a simple

neurite tracing plugin in ImageJ. Statistical analyzes were conducted

using GraphPad Prism version 9.4.1 (GraphPad, San Diego, CA, USA).

Outliers were identified and removed using the Grubbs test (α = 0.1).

Comparisons were done using one-way analysis of variance (ANOVA),

and data were plotted as themean± standard error of themean (SEM)

of at least five independent experiments. Differences were considered

statistically significant at p <0.05.

Protein extraction and western blotting
For protein analysis, cells were washed once with 1× PBS, and after

adding RIPA lysis buffer, protease inhibitor cocktail (1:25), and phos-

phatase inhibitor (1:20), cells were incubated on ice for five minutes.

The cells were scraped off with a cell scraper, transferred into 1-mL

reaction tubes, and homogenized by passage through a U-100 insulin

syringe several times. Protein concentration was determined using a

Pierce BCA Protein Assay Kit (Thermo Fisher Scientific) following the

manufacturer’s instructions. One microliter of protein sample was

used for the assay. Colorimetric reactions were analyzed using an

Infinite M200 PRO ELISA plate reader (Tecan, Männedorf, Switzer-

land). Twenty grams of each sample were loaded onto a gel (NuPAGE 4

to 12%, Bis-Tris) (Invitrogen, Waltham, MA, USA). NuPAGE LDS sample

buffer (1:4) and sample-reducing buffer (1:10) were added to lysed

protein before loading onto the gels, incubated with shaking at 75 °C

for 13min, and centrifuged at 12 000 × g at 4 °C. The proteins were

subjected to gel electrophoresis at 200V. Subsequently, the proteins

were transferred onto nitrocellulose membranes using an iBlot2 gel

transfer device (Thermo Fisher Scientific, Waltham, MA, USA). The

membranes were then blocked with 5% nonfat milk in PBST at room

temperature for 30min. For antibody incubation, primary antibodies

(diluted in blocking buffer) were added to themembranes and allowed

to incubate overnight at 4 °C with rotation. Rabbit anti Lamin B1

(Proteintech, Planegg-Martinsried, Germany, #12987-1-AP, RRID:

AB_2136290) (1:2000), rabbit anti p44/42 mitogen-activated protein

kinase (anti-Erk1/2) (Cell Signaling Technology, Danvers, MA, USA,

#9102, RRID: AB_330744) (1:1000), rabbit anti MEK2 (Cell Signaling

Technology, Danvers, MA, USA, #9125, RRID: AB_2140644) (1:1000),

rabbit anti Phospho-p44/42MAPK(ERK1/2) (Cell Signaling Technology,

Danvers, MA, USA, #9101, RRID: AB_331646) (1:1000) and rabbit anti

Phospho-MEK1/2 (Ser217/221) (Cell Signaling Technology, Danvers,

MA, USA, #9121, RRID: AB_331648) (1:1000). After four washes with

PBST (five minutes each), the membranes were incubated with

peroxidase-conjugated goat anti-rabbit secondary antibodies (Vector

Laboratories, Newark, CA, USA, #PI-1000, RRID: AB_2336198) (diluted

1:10 000 in blocking buffer) at room temperature for one hour. Finally,

the membranes were washed thoroughly with PBST to remove the

unbound antibodies. Blots were incubated with enhanced chemilu-

minescence reagent and were imaged using a Molecular Imager Che-

miDoc (Bio-Rad, Hercules, CA, USA) imaging system. Band signal

intensities were quantified using ImageJ software and normalized to

housekeeping proteins and controls. Statistical analyzes were con-

ducted using GraphPad Prism version 9.4.1. Outliers were identified

and removed using the Grubbs test (α =0.1). Comparisons were done

using one-way ANOVA, and data were plotted as the mean± SEM of at

least three independent experiments. Differences were considered

statistically significant at p <0.05.

Tissue protein extraction for immunoblot analysis
Spinal cords were homogenized in five volumes (w/v) of 1% boiling

SDS84. Protein homogenates were sonicated, boiled for 10min, and

centrifuged at 13 500 × g for five minutes. Supernatants were analyzed

by dot blotting. For detergent-insoluble protein extraction, mouse

tissues were homogenized in 10 volumes (w/v) of buffer (15mM

Tris–HCl pH 7.6, 1mM dithiothreitol, 0.25M sucrose, 1mM MgCl2,

2.5mM EDTA, 1mM EGTA, 0.25MNa3VO4, 2mMNa4P2O7, 25mMNaF,

5 µM MG132) and a protease inhibitor cocktail (Roche, Basel,

Switzerland)85. Briefly, the samples were centrifuged at 10 000 × g, and

the pellet was suspended in an ice-cold homogenization buffer con-

taining 2% Triton X-100 and 150mM KCl. The samples were then

centrifuged at 10,000 × g to obtain the Triton-insoluble (insoluble)

fraction.

Immunohistochemistry
Mice were anesthetized and underwent transcardial perfusion using

50mL PBS followed by 100mL of 4% paraformaldehyde (in PBS). The

spinal cord was promptly dissected, postfixed for three hours, and

subsequently transferred to a solution of 20% sucrose in PBS over-

night. Once sunk, the spinal cord was transferred to a 30% sucrose

solution until it reached the desired consistency. Next, the spinal cord

was frozen in n-pentane at 45 °C and stored at ∼−80 °C. Prior to

freezing, the spinal cord was divided into cervical, thoracic, and lum-

bar segments and embedded in Tissue-Tek O.C.T. compound (Sakura

Finetek, Torrance, CA, USA). Coronal sections (30 µm thick) were

sliced from the lumbar spinal cord and subjected to immunohis-

tochemistry. Rabbitmonoclonal anti-pMEK (Ser221) (pMEK2) antibody

(1:50, Cell Signaling, Danvers,MA, USA, RRID: AB_490903)was used. In

brief, slices were incubated with blocking solutions (0.2% Triton X-100

and 2% normal goat serum) at room temperature for one hour. Sub-

sequently, the slices were incubated overnight at 4 °C with primary

antibodies. The sections were then incubated with biotinylated sec-

ondary antibodies (1:200) for one hour at room temperature, followed

by immunostaining using an avidin–biotin kit and diaminobenzidine.

To facilitate visualization, sections were counterstained with 0.5%

cresyl violet. Sagittal sections (20 µm thick) were sliced from tibialis

anterior and subjected to immunofluorescence. Mouse anti-synaptic

vesicle glycoprotein 2 A (SV2, 1:50, DSHB, RRID: AB_2315387), mouse

anti-neurofilament medium polypeptide 2H3 (1:12, DSHB, RRID:

AB_2314897) andα-bungarotoxin (α-BTX) coupled toAlexa Fluor™ 594

(1:500; Invitrogen) was used. In brief, slices were fixed in acetone for
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10minutes and incubated for 1 h at room temperature with α-BTX.

Subsequently, the slices were incubated with blocking solutions (0.5%

Triton X-100, 5% bovine serum albumin and 5% normal goat serum) at

room temperature for one hour. Subsequently, the slices were incu-

bated overnight at 4 °C with primary antibodies. The sections were

then incubatedwith anti-mouse647 (1:500, Invitrogen) for one hour at

room temperature.

Stained sections were captured at 20× and 40× magnification

using an Olympus BX-61 Virtual Stage microscope (Olympus Life Sci-

ences, Tokyo, Japan), ensuring complete stitching of the entire section

with a pixel size of 0.346 µm. Images were acquired using 6-µm-thick

stacks (step size of 2 µm).Thedifferent focal planesweremerged into a

single stack using mean intensity projection to maintain consistent

focus across the sample. Finally, the acquired signals were analyzed for

each slice using ImageJ and OlyVIA software (Olympus Life Sciences,

Tokyo, Japan).

Immunoblotting for in vivo experiments
Protein levels were quantified using a BCA Protein Assay Kit (Pierce

Biotechnology, Waltham, MA, USA) and analyzed by western blot-

ting and dot blotting86. Membranes were blocked with a solution of

3% (w/v) BSA (Sigma-Aldrich, St. Louis, MO, USA) and 0.1% (v/v)

Tween 20 in Tris-buffered saline (pH 7.5). Subsequently, the mem-

branes were incubated with primary antibodies followed by

peroxidase-conjugated secondary antibodies (GE HealthCare, Chi-

cago, IL, USA). The antibodies utilized were rabbit monoclonal anti-

pMEK2 (1:2000, Cell Signaling Technology; Danvers, MA, USA,

RRID: AB_490903), rabbit monoclonal anti-phospho-p44/42 MAPK

(Erk1/2) (Thr202/Tyr204) (1:2000, Cell Signaling Technology, Dan-

vers, MA, USA,; RRID: AB_2315112), rabbit polyclonal anti-human

SOD1 (1:1000, StressMarq Biosciences, Victoria, Canada; RRID:

AB_2704217), rabbit polyclonal anti-ubiquitin (1:1000, Abcam,

Cambridge, UK; RRID: AB_306069), and mouse monoclonal anti-

SQSTM1/p62 (p62) (1:500, Abcam, Cambridge, United Kingdom,

RRID: AB_945626). Peroxidase-conjugated secondary antibodies

(goat anti-mouse and anti-rabbit) (GE HealthCare, Chicago, IL, USA)

were used at dilutions of 1:20 000 and 1:10 000, respectively. The

blots were developed using the Luminata Forte Western Chemilu-

minescent HRP Substrate (MilliporeSigma, Burlington, MA, USA)

and visualized on a ChemiDoc Imaging System (Bio-Rad, Hercules,

CA, USA). Densitometry analysis was performed using Image Lab

software version 6.0 (Bio-Rad, Hercules, CA, USA). Protein immu-

noreactivity was normalized to Ponceau Red staining (Honeywell

Fluka, Charlotte, NC, USA) for accurate quantification.

Preclinical study in SOD1G93A mice
SOD1G93A female and male mice received 3mg/kg dose of trametinib

or vehicle (PBS) through intranasal delivery, twice per week. The

treatment of SOD1G93A female andmalemice started from 9weeks of

age until 16 weeks of age, when they were sacrificed for biochemical

analysis. The effect of trametinib on the progression of the disease

in SOD1G93A female mice was assessed twice a week from 9 weeks of

age by measuring body weight, hind limb extension reflex and grip

strength. The extension reflex was quantified using the following

3-point score system: 3, hind limbs extending to form an angle of

120 degrees; 2.5, hind limbs extending to <90 degrees with

decreased reflex in a hind limb; 2.0, as 2.5 with decreased reflex in

both hind limbs; 1.5, loss of reflex withmarked flexion in a hind limb;

1, as 1.5 with marked flexion in both hind limbs; 0.5, loss of reflex

with hind limbs and paws held close to the body, but still able to

walk; 0, as 0.5 but unable to walk85. The grip strength test was

performed by placing mice on a horizontal metallic grid which was

then gently inverted. The latency to fall of each mouse was recor-

ded. The test ended after 90 s. In the case of failure, the measure-

ment was repeated three times and the best performance of the

session was considered for the statistical analysis87. Age of paralysis

was defined as the age at which the mice lost reflex with hind limbs

and paws held close to the body (0.5 score at extension reflex test).

Disease onset was retrospectively determined as the average age at

which the mouse exhibits the first failure, at two consecutive time

points, from both maximum weight and maximum performance in

extension reflex score and grip strength test. The animals were

euthanized when they showed rigid paralysis in the hind limb and a

0.5 score in hind limb extension reflex. Data of behavioral tests and

body weight loss were evaluated by two-way ANOVA for repeated

measures. Disease onset and survival length were evaluated by log-

rank Mantel-Cox test. This study complied with international and

local animal welfare standards.

Plasma neurofilament light chain quantification
Mouse plasma samples were collected in K2-EDTA BD Microtainer

blood collection tubes and centrifuged at 5 000 × g for fiveminutes to

obtain the plasma. The plasma NfL was quantified using a Simoa NF-

light Advantage (SR-X) Kit (#103400) on a Quanterix SR-X platform

(Quanterix, Boston,MA, USA). All reagents usedwere from a single lot,

and measurements were performed according to the manufacturer’s

protocol.

Quantitative real-time polymerase chain reaction
Total RNA from Gastrocnemius muscle was extracted using Trizol

(Invitrogen, Waltham, MA, USA) and purified with PureLink RNA col-

umns (Life Technologies, Carlsbad, CA, USA). RNA samples were

treated with DNase I and reverse transcribed with the High-Capacity

cDNA Reverse Transcription Kit (Life Technologies, Carlsbad, CA,

USA). For Quantitative real-time polymerase chain reactions (qRT-

PCR), we used the Taq Man Gene expression assay (Applied Biosys-

tems, Waltham, MA. USA), on cDNA specimens in triplicate, using 1X

Universal PCR master mix (Life Technologies, Carlsbad, CA, USA) and

1X mix containing specific receptor probes for mouse nicotinic acet-

ylcholinergic receptor, gamma subunit (AChRγ) (Mm00437419_m1;

Life Technologies, Carlsbad, CA, USA). Relative quantification was

calculated from the ratio of the cycle number (Ct) at which the signal

crossed a threshold set within the logarithmic phase of the given gene

to that of the reference mouse β-actin gene (Mm02619580_g1; Life

Technologies, Carlsbad, CA, USA). The means of the triplicate results

for each sample were used as individual data for 2-ΔΔCt statistical

analysis.

Statistical analyzes of in vivo experiments
Statistical analyzes of in vivo experimental data were performed using

GraphPad Prism 7.0 and statsmodels Python package (v0.13.0). Stu-

dent’s t-tests or one-way ANOVAs, followed by pairwise TukeyHSD

post hoc tests, were used to analyze the differences between the

experimental groups for each variable. Statistical significance was set

at p < 0.05.

Statistics and reproducibility
The experimental designs, statistical analyzes, and reproducibility

parameters of this study are described below, encompassing both

human and animal models. The human postmortem prefrontal cortex

(PFC) samples included 51 ALS and 50 control specimens, sourced

frommultiple brain banks. The ALS animal models used included four

genetically modified mouse strains, with cohorts designed with ten

transgenic and ten non-transgenic mice per model, balanced for sex.

Experiments were conducted with strict adherence to reproducibility

guidelines. All procedures were standardized, and where possible,

performed by the same investigator to minimize variation. No statis-

ticalmethodwas used topredetermine sample size. The numberswere

chosen based on historical data, which suggested that these sample

sizes were sufficient to detect meaningful differences in the
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parameters measured, with acceptable power and alpha levels. The

experiments were not randomized. The investigators were not blinded

to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
Raw RNA-Seq and processed gene expression data from animal

models generated in this study were deposited to the National

Center for Biotechnology Information Gene Expression Omnibus

database (GSE234246). Encrypted raw RNA-Seq data for the human

cohort generated in this study were deposited to the European

Genome Phenome Archive (dataset: EGAD50000000467 and

EGAD50000000468 for mRNA and small RNA sequencing data). The

RNA-Seq data are available under restricted access, to guarantee the

privacy of the subjects of the study and their blood relatives, since it

contains sensitive phenotypic/transcriptomics information of the

studies subjects. The access can be granted over the EGA database,

with a formal request to the respective Data Access Committe

(EGAC00001003287). Proteomics and phosphoproteomics datasets

have been deposited in the ProteomeXchange Consortium database

with the identifiers PXD043300, PXD043297 and PXD051889. Source

data are provided with this paper.

Code availability
Given the size and complexity of the datasets, data processing, and

data analysis methods, we integrated all analyzes and raw data into a

Data Version Control pipeline88. The code for the computational ana-

lyzes is available at: https://github.com/imsb-uke/MAXOMOD_

Pipeline.
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