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Abstract  

Background 

Neurofilament light chain (NfL) levels in circulation have been established as a sensitive 
biomarker of neuro-axonal damage across a range of neurodegenerative disorders. 
Elucidation of the genetic architecture of blood NfL levels and its genetic correlation with 
neurological traits could therefore provide new insights into shared molecular mechanisms 
underlying neurodegenerative disorders.  

Methods 

To identify the genetic variations underlying blood NfL levels, we conducted an ancestry-
specific meta-analyses of genome-wide association studies (GWAS) based on 18,532 
participants from 11 cohorts of European and 1142 participants (3 cohorts) of African-
American ancestry. In the post-GWAS analyses, we performed expression quantitative trait 
loci (eQTL) analysis, LD-regression, and genetic risk score (GRS) association analysis with 
neurological traits. 

Results 

In the European ancestry GWAS meta-analysis, we identified two genome-wide significant (P 
< 5x10-8) loci at 16p12 (UMOD), and 17q24 (SLC39A11). In the African-American ancestry 
GWAS meta-analysis, we identified three novel loci at 1q43 (FMN2), 12q14, and 12q21. 
Genetic correlation based on the European ancestry meta-analysis with neurological traits 
showed a strong genetic correlation of NfL (AD) (rg = 0.32, P = 
1.74x10-6), total-tau (rg = 2.01, P = 1.03x10-6), amyloid-beta (A -40 (rg = 0.80, P = 6.92x10-6), 
and A -42 (rg = 1.03, P = 4.39x10-5). A higher genetic risk score based on NfL-associated 
genetic variants was also related to increased plasma levels of total-tau (P = 1.97x10-4), A -
40 (P = 2.24x10-5), A -42 (P = 2.92x10-4) in the Rotterdam Study. 

Conclusion 

This large-scale GWAS meta-analysis revealed multiple novel genetic loci of NFL levels in 
blood in participants from European and African-American ancestry. Significant genetic 
correlation of genes underlying NfL with AD, A -42, and total-tau may indicate a common 
underlying pathway of neurodegeneration.  
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Introduction 

Blood levels of the neurofilament light chain (NfL) have emerged as a robust biomarker of 

neuro-axonal injury and are increased in a range of neurodegenerative disorders  including 

 (PD), amyotrophic lateral sclerosis (ALS), and 

multiple sclerosis(1). NfL proteins are expressed in the cytoplasm of neurons where they 

confer structural stability to the cytoskeleton of neurons(1, 2). Under normal physiological 

conditions, NfL proteins are continuously released from the axoplasm into circulation in an 

age-dependent manner(3), whereas neuro-axonal damage has been associated with 

increased release of NfL in the neuronal extracellular space(3, 4). NfL proteins may diffuse 

into the cerebrospinal fluid (CSF) and circulation, thereby acting as biomarkers of neuro-

axonal injury and neurodegeneration(5, 6). Identifying the genetic basis of the NfL in blood 

could therefore provide a better understanding of the biological pathways underlying  

axonal damage and facilitate identification of   shared molecular mechanisms contributing to 

neuronal loss across neurodegenerative disorders.  

Previously, two modest size genome-wide association studies (GWAS) were performed to 

identify the genetic variants associated with plasma, and CSF levels of NfL in the 

Disease Neuroimaging Initiative (ADNI) cohort(7, 8). The GWAS on the CSF levels of NFL 

suggested two genome-wide significant association of variants near the ADAMTS1 gene at 

chromosome 21(7), and sub-threshold associations of LUXP2 and GABRB2 genes with plasma 

levels of NFL(8). To uncover the underlying genetic factors of blood NfL levels, studies with 

substantially larger sample sizes across different ethnicities are warranted. 

In the current study, we therefore performed a GWAS meta-analysis based on the findings 

from 11 cohorts of the Cohorts for Heart and Aging Research in Genomic Epidemiology 

(CHARGE) consortium including people from both European and African-American ancestry. 

Furthermore, we performed a range of  post-GWAS investigations, including expression 

quantitative trait loci (eQTLs) lookups, pathway enrichment analysis, and linkage 

disequilibrium (LD) regression analysis. Based on the identified genetic variants of NfL, we 

calculated a genetic risk score (GRS)  and assessed its  association with the incidence of AD, 

and other AD-related endo-phenotypes using individual levels data from the Rotterdam 

Study cohort.  
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Methods 

Study populations 

The current study includes 18532 participants of European and 1142 participants of African-

American ancestry from 11 different cohorts of the CHARGE consortium including: the 

Rotterdam Study (RS-I and RS-II, N = 4119), the Rhineland Study (N = 4019), the MEMENTO 

cohort (N = 2195), the Framingham Heart Study (FHS, N = 2048), the BiDirect study (N = 

1899),  the Cardiovascular Health Study (CHS-, African-American N = 273, European-

American N = 1396), the Atherosclerosis Risk in Communities (ARIC-, African American N = 

823, European American N = 742), the Vietnam Era Twin Study of Aging (VETSA, N  = 828), 

the Alzheimer's Disease Neuroimaging Initiative (ADNI, N = 578),  the Coronary Artery Risk 

Development in Young Adults (CARDIA-, African-American N  = 128, European-American N = 

343) Study, and the Austrian Stroke Prevention Family Study (ASPS-Fam, N = 287). A detailed 

description of each of the participating cohorts, their genotyping information, and the 

quantification of NfL is described in the supplementary materials. General demographic 

information is provided in Table 1. 

NfL quantification 

Different protocols were adopted by participating cohorts for sample preparation, plasma or 

serum extraction, and NfL quantification. Methodological details concerning  NfL 

quantification are provided in the cohort descriptions included in the supplement 

(Supplementary table 1). In summary, the Rotterdam Study used the single molecule array 

(Simoa) HD-1 analyzer platform, the Rhineland study used the Quanterix Simoa NF-light 

assay (103186), the FHS, ARIC, and CARDIA cohorts used the Quanterix 4, the MEMENTO 

cohort used Simoa NF-light kit on a Quanterix H1 analyzer, BiDirect cohort profiled NFL on 

Simoa HDX analyzer, the CHS used the Simoa Human Neurology 4-Plex A assay and the ASPS-

fam used Simoa HDX analyzer. 

Genotyping and Imputation 

The participating cohorts genotyped their samples employing  various genotyping kits and 

imputed using either 1000 Genomes (1Kg)(9) or the Haplotype Reference Consortium 
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(HRC)(10) panels. Detailed descriptions of the genotyping and imputation methods  are 

provided in cohort description ( Supplementary table 1). 

Statistical analysis  

Ancestry specific GWAS meta-analysis  

Each participating cohort performed genome-wide association of single nucleotide 

polymorphism (SNP) and plasma or serum levels of NfL using an additive model. Blood levels 

of NfL were log2 transformed before conducting the GWAS and analyses were adjusted for 

age, sex, study-specific covariates, and genetic principal components to account for 

population structure and family relatedness. A post-GWAS quality control was performed on 

summary statistics of each study using the easy QC software(11). We excluded SNVs with 

low imputation quality scores (info score or r2 < 0.3), low frequency (minor allele count <5 or 

minor allele frequency < 0.01), and variants that were available in less than 30 participants 

for each cohort. In order to identify ancestry-specific genetic variants, we performed an 

ancestry-stratified GWAS meta-analysis for three cohorts of African-American ancestry and 

11 cohorts of European ancestry separately, using METAL(12) with inverse variance 

weighted average score to account for population heterogeneity and genomic inflation. In 

the European ancestry GWAS meta-analysis, we retained only 705,8703 genetic variants that 

were present in at least two major cohorts (i.e. the Rotterdam Study, and the Rhineland 

Study) of a total of 11 cohorts accounting for more than 40% of the total number of 

European ancestry participants. In the case of the African-American ancestry, we retained 

838,1611 genetic variants present in all three cohorts of African ancestry (ARIC-AA, CHS-AA, 

and CARDIA-AA) due to the limited sample size. Moreover, we excluded variants with 

heterogeneity I2 values greater than 0.75 in the ancestry-specific meta-analysis. 

Functional mapping and annotation 

To perform functional mapping, and annotation of GWAS summary statistics of NfL, we used 

the Functional Mapping and Annotation (FUMA) platform version 1.3.8 which is designed to 

prioritize and aid in the interpretation of GWAS findings(13, 14). To identify independent 

genome-wide significant SNPs, we used r2 = 0.2 and P-value < 5x10-8. Using FUMA, we 

defined the lead SNPs as independent of each other at r2 = 0.1 within a 500 kb region in the 
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1000 Genome Phase 3 reference panel. The individual lead SNPs were mapped based on the 

default 10kb distance between SNPs and genes. The ancestry-specific GWAS meta-analysis 

NfL loci were visualized using Manhattan plots and regional plots using EasyStrata (15) and 

Locus Zoom(16) (using the 1000 Genomes reference panel for estimating LD), respectively. 

We used LD score (LDSC) regression software(17)  to estimate blood NfL heritability based 

on GWAS summary statistics. Reference LD scores were computed based on the 1000 

Genomes reference panel.  

Pathway enrichment analysis and functional analysis  

Gene-based and gene-set enrichment analyses which quantify the association of individual 

mapped genes with NfL levels and sets of genes with GO terms, respectively, were 

performed using MAGMA (version v1.0.8) (18) as implemented in FUMA (version 1.3.7). The 

gene-based analysis was performed based on 18,718 protein-coding genes, setting the level 

of statistical significance at a Bonferroni-adjusted threshold of P-value = 2.671x10-6 (= 

0.05/18718). Similarly, tissue-specific gene expression analysis was also performed using 

MAGMA as integrated in FUMA. Further, we explored the effects of genetic variants 

identified in our GWAS on the expression levels of other genes by querying the genotype-

tissue expression (GTEx)(19) database (version 8) for genes expressed in brain and blood.  

LD regression analysis  

To quantify the genetic correlation between  blood NfL levels and other neurological traits 

and biomarkers of neurodegeneration, we performed LD regression analysis. We obtained 

GWAS summary statistics for AD, PD  ALS, amyloid-beta (A )-42, A -

40, total-tau, and brain imaging markers (total hippocampal volume, total brain volume, and 

total white matter lesions) from the GWAS catalogue(20). We performed LD regression 

analysis using the LDSC tool(17) based on the European ancestry 1000 Genomes LD 

reference panel. Details of the GWAS studies used for LD regression and their base 

heritability estimates are provided in Supplementary table 2. 

Polygenic Risk Score association with AD biomarkers 

We calculated genetic risk scores (GRS) based on the genome-wide significant variants 

leading the two independent loci of NfL in people from European ancestry. GRS was 
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calculated in the Rotterdam Study participants by summing the number of risk alleles of 

rs7203642 and rs12051560 variants weighted by their regression coefficients obtained from 

our meta-analysis. We used the Cox proportional-hazard models to check the association of 

GRS with the incidence of AD, adjusted for age at baseline and sex. Moreover, we performed 

multiple linear regression analyses to assess the association of NfL GRS with plasma levels of 

A -40, A -42, total tau, as well as with  magnetic resonance imaging markers (MRI)  markers 

of neurodegeneration including total hippocampal volume, total brain volume, and total 

white matter lesions in the Rotterdam Study cohort. All linear regression analyses were 

adjusted for age, sex and additionally for intracranial volume for MRI traits.  

Look up of lead variants into previous GWASs of neurological traits  

To evaluate the association of the most significant genetic variants with the two common 

neurodegenerative diseases AD and PD, we used the most recent GWAS meta-analyses of 

AD(21) and PD(22) and reported the results for each genetic variant. Additionally, we 

performed lookups for single variants in GWASs of traits used for LD regression analysis. 

Results 

Our ancestry-specific GWAS meta-analysis of circulating levels of NfL was based on 11 

different cohorts of European (N  = 18532) and African American ancestry (N  = 1142), Table 

1. The Rotterdam Study and the Rhineland study were the major contributors (> 40%) to the 

total samples size. Participants of cohorts of European ancestry had diverse age ranges, 

varying from a mean age of 51 years (standard deviation [SD]= 3.2) in CARDIA-EA to a mean 

age of 85.3 years (SD = 6.7) in the ADNI cohort. The female proportion varied from 0% in the 

VESTA cohort  to 63% in the CHS-EA cohort. Among the three cohorts representing African-

American ancestry, the ARIC-AA cohort contributed the largest number of participants, while 

CHS-AA participants were older (mean = 76.3 years [SD =4.93]) compared to the other two 

cohorts (mean ages of 61.5 [SD = 4.5] and 48.9 [SD = 3.5] years in ARIC-AA and CARDIA-AA, 

respectively). Moreover, Cardia-AA had the lowest percentage of female participants 

(56.7%). Overall mean NfL levels in all participating cohorts were significantly positively 

correlated with mean age (Pearson  r = 0.81, P = 2.06x10-4).  

GWAS meta-analysis findings 
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The European ancestry GWAS meta-analysis identified 26 genome-wide significant SNPs 

within two loci lead by two individually significant SNPs (r2 < 0.1) (Table 2). Manhattan plot 

and Quantile Quantile (Q-Q) plot of the meta-analysis summary statistics are provided in 

Figure 1:A and Supplementary figure 1:A. The first locus at 16p12 was mapped to the 

UMOD, PDILT genes, and it was tagged by 39 SNPs with P-values < 0.05 (Supplementary 

table 3). This locus was  led by two genetic variants (r2  0.4) reaching genome-wide 

significance, including rs7203642-A (effect = 0.041, standard error [SE] = 0.007, P = 1.37x10-

8) in the intronic region of the UMOD gene and rs77924615-A (effect = -0.041, SE = 0.007, P = 

3.77x10-8) within the intronic region of the PDILT gene. A regional plot for 16p12 locus  

(Figure 2:A) shows that both of these variants are also in high LD (r2~0.4) with each other. 

Therefore, we defined this locus based on the rs7203642 variant of UMOD gene, with the A-

allele of rs7203642 is associated with increased blood NfL levels. The second locus at 

chromosome 17q24 was tagged by 117 SNPs with a P-values < 0.05 (Supplementary table 3), 

and was mapped to the SLC39A11 gene. At 17q24 locus, the A-allele of the lead intronic 

variant rs12051560 (effect = 0.033, SE = 0.006, P = 9.94x10-9) was associated with increased 

blood NfL levels (Figure 2:B regional plot). Based on LSDC, the SNP-heritability (h)2 of blood 

NfL levels was 0.12, meaning that the identified SNPs can explain about 12% of the variation 

of NfL levels in blood. 

The Manhattan plot and Q-Q plots for GWAS meta-analysis of African-American ancestry are 

provided in Figure 1:B and supplementary figure 1:B. In the GWAS meta-analysis of African-

American cohorts (Table 2), we identified three independent genome-wide significant loci at 

chromosomes 1q43, 12q14, and 12q21, which were altogether tagged by 75 SNPs with P < 

0.05 (Supplementary Table 4). An intronic variant inside the FMN2 gene (rs1026417-C, 

effect = -0.433, SE = 0.076, P = 1.36x10-8) was associated with decreased levels of NfL in 

circulation, while two genetic variants at 12q14 (rs17098087-C, effect = 0.440, SE = 0.074, P 

= 2.59x10-9) and 12q21 (rs73423978-T, effect = 0.332, SE = 0.060, P = 3.50x10-8) were 

associated with increased levels of NfL in blood. We have provided the information about 

Combined Annotation Dependent Depletion (CADD) score, Regulome Database (RDB) 

annotation, and chromatin state information for all SNPs inside the observed genetic loci for 

both European and African-American ancestry using FUMA in Supplementary table 3, 4 and 

Supplementary figures 2-6.  
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Conditional analysis on kidney function (eGFR) 

In the European ancestry meta-analysis, the locus at 16p12 (UMOD gene) is also known locus 

for kidney function(23). Kidney function was not included as a covariate in the GWAS of 

blood NfL levels by the participating cohorts, although it may have a role in blood protein 

clearance and thus may confounding genetic associations of blood protein levels. To 

investigate whether genetic variants associated with kidney function may have confounded 

the associations between the identified SNPs and blood NfL levels, we conducted a 

conditional analysis by conditioning the observed genetic association effect size estimates on 

the estimated kidney glomerular filtration rate (eGFR)(23) associated genetic variants in 

European ancestry using mtCOJO(24). Results of this conditional analysis (Supplementary 

table 5) showed that one of the lead genetic variants at 17q24 (rs12051560-A, Effect = 

0.033, SE = 0.006, P = 9.13x10-9) is independent of kidney function. However, the second 

locus inside the intronic region of UMOD gene became less significant (rs7203642-A, effect = 

0.034, SE = 0.007, P = 3.51x10-6) upon conditioning the meta-analysis on kidney function.  

Gene enrichment analysis 

Gene enrichment analysis of both European (number of genes = 18,718) and African-

American (number of genes = 17,370) ancestry-based meta-analysis showed enrichment of 

several GO terms, though they did not pass the Bonferroni-adjusted thresholds for multiple 

testing (Supplementary table 6, 7). We also did not find an overlap in the top ten curated 

GO terms in the ancestry-specific enrichment analysis. Yet, the top GO terms enriched in 

European ancestry meta-analysis included GO molecular function beta 2 adrenergic receptor 

binding (P = 1.89x10-5), GO biological process glycerolipid catabolic process (P = 2.97x10-5), 

germ cell proliferation (P = 6.85x10-5), and canonical wnt signaling pathway (P = 5.57x10-5). 

In addition, genes were enriched in curated gene sets including sharma pilocytic 

astrocytoma location dn, reactome foxo mediated transcription of cell death genes, and pid 

p38 alpha beta downstream pathway.  

In African-American ancestry meta-analysis findings were enriched for GO biological process 

astrocyte differentiation (P = 1.38x10-4; Supplementary table 7), compartment pattern 

specification (P = 1.85x10-4) and GO astrocyte development (P = 3.38x10-4). 
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eQTL analysis for the identified genetic variants  

We then performed eQTL lookups for all the lead SNPs of identified loci in both ancestries to 

assess which genetic variants are associated with the expression of cis- and trans-genes. The 

lead genetic variant at chromosome 17, rs12051560-A allele was associated with decreased 

expression of the SSTR2 gene in cerebellar hemispheres (Normalized Effect Size [NES] = -

0.28, P = 1.7x10-7) and the cerebellum (NES = -0.26, P = 7.2x10-6). 

Genetic correlation of NfL with neurological traits 

In the LD regression analysis based on the results of European ancestry meta-analysis (Table 

3), we observed a strong positive genetic correlation of NfL with AD (rg = 0.322, P = 1.74x10-

6), total-tau (rg = 2.014, P = 1.04x10-6), -40 (rg = 0.829, P = 5.36x10-6 -42 (rg = 1.024, 

P = 6.37x10-5). However, rg values were inflated with total-tau (h2 = 0.066; Supplementary 

table 2) -42 (h2 = 0.092), which can be due to low heritability estimates in one of the 

regressed traits. We repeated the LD score regression analysis after removing MAPT and 

APOE region from total- -42 GWAS summary statistics data, but results did not 

change with total-tau (rg = 2.014, P = 1.04x10-6 -40 (rg = 0.829, P = 5.95x10-6 -42 

(rg = 1.024, P = 6.37x10-5). As a sensitivity test, we also repeated the LD regression analysis 

using the European ancestry NfL summary statistics conditioned on kidney function 

(Supplementary table 8), but the results remained similar to the original unadjusted 

summary statistics. 

Genetic risk score analysis in the Rotterdam Study 

We further corroborated the results of the LD regression analyses, which were based on 

summary statistics, by deriving  a GRS based on individual-levels data (Supplementary Table 

9). In the Rotterdam Study cohort, the GRS based on two lead genetic variants of the 

identified loci in European ancestry participants showed strong associations with plasma 

l , SE = 0.227, P = 1.97x10-4 - , P = 2.24x10-5), and 

- , P = 2.93x10-4). We did not observe associations of the NFL GRS with AD risk 

P = 8.88x10-1) in the Rotterdam Study. 

Relation of identified single genetic variants with neurological traits 
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We also performed look-ups of the two identified genetic variants associated with blood NfL 

levels in European ancestry participants using recent AD(21), PD(22), and other GWAS 

(meta-analysis) summary statistics included in our LD regression analyses (Supplementary 

table 10). Neither of the two genetic variants showed an association with AD or PD. Genetic 

variant inside the UMOD (rs7203642-A) was associated with all three AD biomarkers i.e. 

total- 0.028, P = 6.21x10-4 - 0.039, P = 1.37x10-2 - 0.033, P = 

4.43x10-2), while the variant inside the SLC39A11 gene (rs12051560-A) showed nominal p-

value of association with total-tau only 0.012, P = 7.30x10-2).  

In the association of single genetic variants of NfL with CSF levels of -42, phosphorylated 

tau (p-tau), total-tau in the MEMENTO cohort (Supplementary table 11), only one genetic 

variant rs12051560-A (SLC39A11) was nominally associated  

0.138, P =  4.96x10-2). 

Discussion 

In these ancestry-specific GWAS meta-analyses, we identified two genome-wide significant 

loci (16p12 and 17q24) associated with blood NfL levels within the UMOD and SLC39A11 

genes among European ancestry participants, and three loci (1q43, 12q14, and 12q21) in 

participants from the African-American ancestry. Conditioning the GWAS summary statistics 

on kidney function indicated that the genetic variants located inside the UMOD gene likely 

exert their effect on blood NfL levels through their influence on kidney function. Evaluation 

of the genetic correlation of the blood NfL levels (European ancestry) with neurological traits 

demonstrated significant positive -42, -40, and total-tau. Further, a 

higher NfL GRS based on genome-wide significant variants identified in participants from 

European ancestry was associated with plasma levels of -42, -40, and total-tau in the 

Rotterdam Study cohort.  

Conditional analysis based on kidney function using summary statistics data discovered a 

novel locus at 17q24 (SLC39A11) that was independently associated with blood NfL levels at 

the genome-wide level of significance. Interestingly, there are several pieces of evidence 

derived from earlier studies that all point toward the role of the SLC39A11 gene in 

neurodegeneration. The SLC39A11 gene plays a role in zinc homeostasis(25) and has been 

associated with ALS (P = 8.11x10-6)(26, 27). The KEGG pathway database (map05010 and 
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map05012) queries indicated a role of the SLC39A11 gene in the AD- as well as PD-related 

pathways(28). Moreover, an RNA expression-based study in AD and Huntington's disease  

identified the SLC39A11 gene as a common hub gene of the differentially expressed 

genes(29).  Another interesting observation that links the SLC39A11 polymorphisms to 

neuro-axonal injury is that the rs12051560-A (SLC39A11) associated with decreased 

expression of the somatostatin receptor 2 (SSTR2) gene in the cerebellum and the cerebellar 

hemispheres based on the queries of the GTEx eQTL database. Decreased expression of 

SSTR2 gene was linked to axonal degeneration of noradrenergic projections in SSTR2-/- mice 

studies(30). The SSTR2 gene plays a role in the integrity and maintenance of the 

noradrenergic system, a brain network involved in the regulation of memory, stress, 

emotions, motor coordination, and arousal functions(31). Moreover, evidence from earlier 

studies indicated the involvement of the SSTR2 gene in neurodegeneration under 

ischemia(32) and Gs receptors coupled cAMP level reduction (33), which plays a crucial role 

in neuronal survival and differentiation in cell culture conditions(34). Earlier studies also 

demonstrated the role of somatostatins, substrate of somatostatin receptors, in hypoxia-

induced neuronal cell death(35) due to their involvement in potassium channel 

activation(36).  

Another locus for blood NfL levels in European ancestry participants was identified in the 

16p12.3 region, which is tagged by two lead genetic variants located inside the UMOD and 

PDILT genes, which have previously been associated with kidney function (23). Conditional 

analysis on the kidney function showed that the association of our lead SNP rs7203642 

became less significant (P = 3.51x10-6). The association of blood NfL levels with variants in  

UMOD is supported by results from earlier studies reporting the association between 

increased blood NfL levels and decreased kidney function, which may be due to aging, 

cardiovascular risk factors, and diabetes mellitus (37-40). The observation of higher blood 

levels of NfL in children with chronic kidney disease (41) contradicts the role of 

cardiovascular diseases and diabetes as the sole drivers of blood NfL levels. Nevertheless, 

kidney function has been associated with cognitive decline, brain atrophy, and white matter 

abnormalities(42, 43) which suggest a direct role of kidney function in determining blood NfL 

levels. The exact mechanism through which genetic variants in the UMOD and blood levels 

of NfL are related needs further investigation, but the key role of UMOD in kidney function 
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may be instrumental in understanding its link to neurodegeneration. The UMOD gene 

encodes for uromodulin protein and mutations in this gene have been associated with  

hyperuricemia and tubulointerstitial nephritis(44). One of the primary reasons for UMOD-

related kidney disease is the accumulation of misfolded UMOD protein inside the 

endoplasmic reticulum (ER)(45) and thereby generation of ER stress which results in cell 

death and inflammation(46). Hyperglycemia and ER stress related pathways may trigger the 

generation of advanced glycation end products (AGE), which have been associated with 

neurodegeneration(46, 47). Second, the lead genetic variants of identified locus i.e., 

rs77924615 was found inside the PDILT gene, which belongs to the protein-disulfide 

isomerase (PDI) family of proteins(48). PDI proteins play an important role in protein folding 

in the ER and their dysfunction may lead to diseases involving the accumulation of misfolded 

proteins, which is also a hallmark of neurodegenerative diseases such as AD and PD(23). 

Genetic correlation of the European ancestry-based NfL summary statistics with other 

neurological traits demonstrated a strong genetic correlations of NfL with AD, and AD-

related biomarkers including blood-based t-tau - -42. The higher genetic 

correlation between NfL and AD biomarkers could partly be attributed to kidney function 

loci/locus, as kidney function could influence the clearance of protein-based biomarkers in 

blood. Indeed, genetic variants inside the UMOD gene also showed nominally significant 

associations (P < 0.05; Supplementary table 10) with all three biomarkers in previously 

published GWAS. However, our sensitivity analysis, using LD regression analysis with eGFR-

adjusted (conditional analysis) NfL summary statistics produced similar results, indicating 

that the genetic correlation of NfL with biomarkers of neurodegeneration is largely 

independent of kidney function. This conclusion is further supported by our findings of 

strong associations of NfL GRS with t- - -42 levels in plasma in the Rotterdam 

Study, though we did not observe an association with incident AD which maybe due to our 

relatively small number of incident AD cases. Further, variants inside the SLC39A11 gene 

were also associated with higher levels of total tau in CSF (P<0.05) based on our post-GWAS 

analysis in the MEMENTO cohort, supporting the notion that genetic determinants of blood 

NfL levels are likely linked to central neurodegeneration.  

In the participants from the African-American ancestry, one of the three loci was located 

near the FMN2 gene (rs1026417-C). FMN2 is a coding gene involved in the cytoskeleton 
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assembly, which makes it an interesting discovery since NfL is a cytoskeleton protein 

released into extracellular space as a result of neuro-axonal damage(5). FMN2 gene is highly 

expressed in the brain and involved in synaptic plasticity and memory formation(49). Our 

observation was concordant with several studies that reported the association of the FMN2 

gene with cognition(50), ALS (51), intellectual development disorder(52) and 

neuropsychiatry traits(53). All these interlinked evidences support the role of the FMN2 gene 

in determining the blood NfL levels in various neurological diseases in African-American 

ancestry. None of the genetic variants identified in the African-American ancestry meta-

analysis showed association with blood NfL levels in the European ancestry.  

Next, in the pathway-enrichment analysis based on the European ancestry, we did not 

identify significant enrichment of GO biological processes for our observed genes after 

multiple testing correction. However, GO: canonical wnt signaling pathway (P = 5.57x10-5) 

and GO: regulation of wnt signaling pathway (P = 1.43x10-4) were among the top pathways 

that were enriched for 307 and 334, respectively, of the putative genes identified in our 

study. Wnt signaling is one of the most crucial pathways involved in brain development and 

involves several genes associated with neurodegenerative diseases such as AD and PD(54). 

Furthermore, the beta 2 adrenergic receptor  binding GO molecular process ranked first in 

our analysis (P = 1.89x10-5). Interestingly, blocking the beta 2 adrenergic receptors is found 

to be an effective approach in PD to reduce neuroinflammation and degeneration of 

dopaminergic neurons(55, 56). In the African-American ancestry, in GO biological processes, 

go astrocyte differentiation (P = 1.38x10-4) and go astrocyte development (P = 3.38x10-4) 

were most notable terms enriched in the GWAS, which reiterates the role of astrocytes in 

neurodegeneration(57). 

Our study represents the first largest GWAS to uncover the genetic determinants of NfL 

levels in blood. Our GWAS sample included 11 different cohorts of both European and 

African-American ancestry which is the main strength of our study. Two genetic variants 

identified in our study not only highlight the importance of kidney function in 

neurodegeneration but also indicate that the kidney function should be taken into account 

when assessing blood-based protein biomarkers and specifically NfL. This study has also 

limitations. A small sample for African-American cohorts was a major limitation for 

performing a trans-ethnic meta-analysis. 
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In conclusion, we identified two unique loci associated with blood levels of NfL in 

participants from European ancestry and three loci in African-American ancestry 

participants. The genetic locus inside SLC39A11 gene represents a promising candidate that 

could be involved in a common pathways underlying axonal damage and neurodegeneration 

in European ancestry. Moreover, our findings highlight the role of the UMOD and PDILT 

genes, which are involved in protein miss-folding and renal accumulation of uromodulin, in 

linking reduced kidney function to neuro-axonal injury and neurodegeneration 
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Figure 1: Manhattan plot for the meta-analysis of genome-wide association study (GWAS) of the blood levels of neurofilament light (NfL) in the European 
ancestry (A) and African-American ancestry (B). Observed association of all tested genetic variants on autosomal chromosomes (X-axis) are displayed as 
log10(P-values) on Y-axis. Red dotted horizontal line indicates a genome-wide significant association (P-value <5x10-8) with NFL levels in blood. 
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Figure 2: Regional plot for two loci identified in the meta-analysis of neurofilament light (NfL) genome-wide association study (GWAS)  in European ancestry. 
The genetic variants are denoted as colored circles with their P-values (-log10) on left Y-axis and genomic location is based on build 37 on X-axis. Lead SNPs 
(purple diamond) are marked with their genomic location. Recombination rates are plotted on right Y-axis to represent the local linkage disequilibrium (LD) 
structure. The LD between the genetic variants is provided with a color scale, ranging from blue (r2 =0) to red (r2 =1). LD calculations are based on 1000 
genome European ancestry. 
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Figure 3: Regional plot for two loci identified in the meta-analysis of neurofilament light (NfL) genome-wide association study (GWAS)  in African-American 
ancestry. The genetic variants are denoted as colored circles with their P-values (-log10) on the left Y-axis and genomic location is based on build 37 on X-
axis. Lead SNPs (purple diamond) are marked with their genomic location. Recombination rates are plotted on right Y-axis to represent the local linkage 
disequilibrium (LD) structure. The LD between the genetic variants is provided with a color scale, ranging from blue (r2 =0) to red (r2 =1). LD calculations are 
based on 1000 genome African ancestry. 

 

 

 

 



 

Table 1: Demographic information for participating cohorts of European ancestry and African-American ancestry. 
 

Cohort N Age 
(mean, SD) 

Female 
(%) 

Plasma NfL 
(mean, SD) 

Plasma NfL 
(median [25%-75%]) 

Log2 Plasma NfL 
(mean, SD) 

Log2 Plasma NfL 
(median [25%-75%]) 

Eu
ro

pe
an

 

Rotterdam Study I 2476 75.3 (6.11) 1445 (58.3) 17.74 (12.6) 14.99(11.32-20.23) 3.97(0.67) 3.91(3.50-4.34) 

Rotterdam Study II 1643 67.8 (7.12) 902 (55) 13.95 (13.66) 11.31(8.83-15.42) 3.59(0.68) 3.5(3.14-3.94) 

Rhineland Study 4019 55.4 (13.99) 2250 (56) 9.59  (8.64) 7.89 (5.72-11.47) 3.03 (0.76) 2.98 (2.56-3.52) 

MEMENTO 2195 70.8 (8.70) 1358 (62) 20.71 (12.95) 18.20 (13.40  25) 4.19 (0.72) 4.19 (3.74  4.64) 

FHS cohort 2048 70.6 (8.33) 1111(54.2) 22.90 (27.2) 17.8 (13.0-25.3) 4.24 (0.787) 4.15 (3.70-4.66) 

Bio-Direct cohort 1899 52.1 (7.9) 921 (48.5) 9.77 (7.15) 8.45 (6.51-11.06) 2.16 (0.45) 2.13 (1.87-2.4) 

CHS-EA 1396 77.9 (4.3) 873 (63) 32.83 (36.0) 25.86 (20.2-34.49) 4.78 (0.72) 4.69 (4.34-5.11) 

VESTA cohort 828 67.5 (2.5) 0 (0) 13.5 (7.3) 11.9 (9.2- 15.3) 3.6 (0.61) 3.6 (3.2-3.9) 

ARIC-EA 823 63.1 (4.4) 477 (58) 19.4(45.9) 14.9(11.5-18.9) 3.95(0.71) 3.89( 3.52-4.24) 

ADNI cohort 578 85.3 (6.7) 243 (42) 42.8 (26.8) 36.9 (26.3 - 50.5) 5.2 (0.73) 5.2 (4.7-5.6) 

CARDIA- EA 340 51.0 (3.2) 179 (52.6) 9.88(5.87) 8.79(6.53-11.68) 3.14(0.65) 3.14(2.71-3.55) 

ASPS-Fam 287 64.3 (10.6 172 (59.9) 35.27(16.42) 32.20 (22.80 - 44.10) 4.99(0.65) 5.01 (4.51-6.46) 

Af
ric

an
 

Am
er

ica
n 

 
       

ARIC-AA 742 61.5 (4.5) 465 (62.7) 18.75( 47.95) 12.09( 9.24-17.35) 3.74(0.89) 3.60( 3.21-4.12) 

CHS-AA 273 76.3 (4.93) 177(65) 24.60 (16.23) 21.14 (16.18, 28.06) 4.43 (0.69) 4.4 (4.02-4.81) 

CARDIA- AA 127 48.9 (3.5) 72 (56.7) 10.24(7.56) 8.81(7.07-11.23) 3.17(0.66) 3.14(2.82-3.49) 
Abbreviations: Nfl, Neurofilament light; SD, Standard deviation; FHS, Framingham Heart Study; CHS, The Cardiovascular Health Study; ARIC, The Atherosclerosis Risk in Communities; VESTA, the Vietnam Era Twin 
Study of Aging; ADNI, the Alzheimer's Disease Neuroimaging Initiative; CARDIA, the Coronary Artery Risk Development in Young Adults; ASPS-Fam, the Austrian stroke prevention family study; EA, European-
American; AA, African-American 



 

Table 2: Genome-wide significant loci associated with blood levels of Neurofilament light (NfL) in European and African-American Ancestry. 

SNV Chromosome Position* Effect 
Allele 

Other 
allele Effect SE P-value Nearest Genes Genomic 

Locus Direction I2 

European ancestry           
rs7203642 16 20367130 A G 0.041 0.007 1.37x10-8 UMOD 1 +++++-++++++ 15.9 

rs12051560 17 70898201 A G 0.033 0.006 9.94x10-9 SLC39A11 2 +++++-++++++ 0 
African-American Ancestry          

rs1026417 1 240437747 C G -0.433 0.076 1.36x10-8 FMN2 1 --- 0 
rs17098087 12 63003902 C G 0.440 0.074 2.59x10-9 RP11-631N16.2 2 +++ 0 
rs73423978 12 88776247 T C 0.332 0.060 3.50x10-8 - 3 +++ 53.9 

*base pair (BP) location is provided as per hg19  
Note: The direction column represents the direction of -I, RS-II, Rhineland study, CHS-EA, ASPS-Fam, VESTA, ADNI, ARIC-EA, FHS,  BioDirect, CARDIA-EA, MEMENTO, and direction columns in 
African-American meta- ARIC-AA, CHS-AA, CARDIA-AA 

 

 

 

 

 

 

 

 

 



 

Table 3: Genetic Correlation of Neurofilament light (NfL) with neurological traits 

Trait* Correlation SE P-value h2-base h2- NFL 
 0.322 0.067 1.74x10-6 0.019 0.127 
 (Jiang et al., 2021) -0.449 0.457 3.26x10-1 0.020 0.127 
 (Nalls et al., 2019) -0.006 0.071 9.37E-01 0.019 0.127 

Total brain volume -0.045 0.062 4.62x10-1 0.020 0.128 
White matter lesions 0.090 0.072 2.10x10-1 0.020 0.128 
Total hippocampal volume 0.051 0.071 4.70x10-1 0.019 0.125 
Huntington disease -0.116 0.138 4.00x10-1 0.143 0.127 
ALS 0.159 0.123 1.99x10-1 0.066 0.131 
T-tau 2.014 0.412 1.04x10-6 0.019 0.127 

-40 0.829 0.182 5.36x10-6 0.103 0.127 
-42 1.024 0.256 6.37x10-5 0.070 0.127 
ratio 0.289 0.213 1.75x10-1 0.053 0.127 

Note: Bonferroni correction threshold 0.05/12 = 4.16x10-3 

*Details of studies used for genetic correlation for each trait are provided in supplementary table 2 


