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A B S T R A C T   

Time and space form an integral part of every human experience, and for the neuronal representation of these 
perceptual dimensions, previous studies point to the involvement of the right-hemispheric intraparietal sulcus 
and structures in the medial temporal lobe. Here we used multi-voxel pattern analysis (MVPA) to investigate 
long-term memory traces for temporal and spatial stimulus features in those areas. Participants were trained on 
four images associated with short versus long durations and with left versus right locations. Our results 
demonstrate stable representations of both temporal and spatial information in the right posterior intraparietal 
sulcus. Building upon previous findings of stable neuronal codes for directly perceived durations and locations, 
these results show that the reactivation of long-term memory traces for temporal and spatial features can be 
decoded from neuronal activation patterns in the right parietal cortex.   

1. Introduction 

The perception of time and space is an essential aspect of every 
sensory experience. Every sensation occurs at a specific location and 
lasts for a specific duration. Many studies have been conducted to reveal 
the neuronal mechanisms underlying the processing of temporal and 
spatial information, and cross-dimensional interference effects at the 
behavioral level suggest at least partly overlapping neuronal networks 
(Bueti and Walsh, 2009; Cona et al., 2021; Gijssels et al., 2013; Lourenco 
and Longo, 2010; Riemer et al., 2016, 2018, 2022; Srinivasan and Carey, 
2010; Walsh, 2003). 

The intraparietal sulcus (IPS) in the right hemisphere and the medial 
temporal lobe (MTL) are plausible candidate regions for a common 
representation of time and space, because earlier work has demon
strated that they are involved in both temporal and spatial processing 
(Bueti and Walsh, 2009; Cona et al., 2021; Eichenbaum, 2017; Gijssels 
et al., 2013; Riemer et al., 2016; Walsh, 2003). In a recent study on the 
interference between travel time and traveled distance, we found that 
representational similarity (of time-attended and distance-attended tri
als) in the right IPS was correlated with the magnitude of time-space 
interference (Riemer et al., 2022). With respect to the MTL, animal 
studies have shown that both hippocampal place and entorhinal grid 

cells – in addition to their well-known spatially tuned firing patterns 
(Hafting et al., 2005; O’Keefe and Dostrovsky, 1971) – also exhibit firing 
patterns tuned to specific moments in time (Kraus et al., 2013, 2015). 
Moreover, Kraus et al. (2015) reported that a single neuron in the rodent 
brain can exhibit both spatially and temporally tuned firing patterns. 
There is ample evidence that the same neuronal mechanisms exist in the 
human brain (Deuker et al., 2016; Doeller et al., 2010; Ekstrom et al., 
2003; Lee et al., 2020; Stangl et al., 2018). 

Together, these findings point to the right IPS, the hippocampus and 
the entorhinal cortex as possible candidate regions in which information 
about the temporal duration and spatial location of events is stored or 
processed. However, studies focussing on the question as to whether 
those regions contain neuronal codes differentiating between the 
various levels of each dimension (e.g., durations of different lengths) are 
scarce. Hayashi et al. (2018) could show that the ability to distinguish 
between four different durations in the sub-second range was associated 
with the distinctiveness of activation patterns in the right parietal cor
tex, and in a recent study by Gladhill et al. (2024) is was found that the 
supramarginal and middle occipital gyri of the right hemisphere con
tained information about abstract magnitudes regarding temporal and 
spatial distance in a navigation task. Moreover, in these studies dura
tions were directly presented in each trial, leaving the unresolved 
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question whether distinctive neuronal activation patterns depend on the 
direct perception of durations or whether they can also be elicited on the 
basis of reactivated memory traces (i.e., by mere cueing of the respective 
duration). For the domain of time, further evidence for 
duration-selective coding was provided through fMRI adaptation para
digms, demonstrating increased suppression effects in the parietal cor
tex and the supplementary motor area for repeatedly presented 
durations (Hayashi et al., 2015; Protopapa et al., 2019). 

With respect to the spatial domain, most evidence for location- 
specific neurons centers around the hippocampus (Fritch et al., 2020; 
Jeye et al., 2018; Shafer-Skelton and Golomb, 2016), but parietal areas 
are also involved in the processing of two-dimensional spatial location 
(Jerde et al., 2012; Lee and Baker, 2016; Sprague et al., 2014). For 
example, Jerde et al. (2012) used multi-voxel pattern analysis (MVPA) 
to decode different spatial locations displayed on a screen from the 
neuronal activation patterns in the posterior part of the IPS. The role of 
the posterior IPS in the short-term memorization of two-dimensional 
spatial location was confirmed by Sprague et al. (2014). Similarly, 
neuronal activity patterns in the hippocampus distinguish between 
different locations in two-dimensional space (Fritch et al., 2020; Jeye 
et al., 2018; Shafer-Skelton and Golomb, 2016). Another line of research 
provides evidence that the hexadirectional coding of three-dimensional 
space found in the entorhinal cortex (e.g., Doeller et al., 2010) gener
alizes to the representation of locations in two-dimensional visual space 
(Julian et al., 2018; Killian et al., 2012; Nau et al., 2018). For example, 
Julian et al. (2018) asked their participants to perform a visual search 
task on a 2D display (finding a target letter among distractor letters) and 
reported a sixfold modulation of the entorhinal fMRI signal as a function 
of gaze-movement direction. In another study, Merhav et al. (2019) 
found age-related deficits in spatial learning also for 2D images pre
sented at various positions on a 2D display (instead of 3D environmental 
locations; Muffato et al., 2019). Together, these findings extend the role 
of MTL regions from three-dimensional navigation space to 
two-dimensional visual space. 

While the role of parietal and medial temporal computations for 
perceptual processing and short-term retention of temporal and 2D 
spatial information is well established (e.g., Hayashi et al., 2018; Jerde 
et al., 2012; Jeye et al., 2018), the neural mechanisms underlying 
long-term storage and retrieval of such memory traces have received less 
attention. Prominent models of memory consolidation posit that the 
initial stages of long-term memory storage critically rely on rapid syn
aptic plasticity in hippocampal networks (Alvarez and Squire, 1994; 
Squire et al., 2015). Retrieving recently established memory traces also 
involves the reactivation of neocortical cell assemblies, which provide 
fine-grained sensory information. Over time, however, the contribution 
of the hippocampus may become less important, because integrated 
memory engrams ultimately develop in neocortical networks (Gilmore 
et al., 2021). Although competing models have questioned the 
time-limited role of the hippocampus (Sekeres et al., 2018), both 
viewpoints suggest that retrieving recently formed memory engrams of 
temporal and 2D spatial information should involve medial temporal 
and parietal computations. 

The present study set out to test this prediction. Specifically, we 
hypothesized (i) that neuronal activity patterns in MTL regions and the 
right IPS contain both temporal and spatial information, and (ii) that 
these activity patterns can be triggered by mere memorization of the 
respective information (in contrast to direct perception), serving as long- 
term memory representations acquired during several learning sessions 
spread over two consecutive days. A positive result would reinforce the 
idea of duration-selective coding in these areas, as it has been proposed 
earlier (Hayashi et al., 2015; Hayashi and Ivry, 2020; Protopapa et al., 
2019; Thavabalasingam et al., 2019), and would provide the first evi
dence for long-term memory traces for specific durations and 2D spatial 
locations. In order to ensure the reliability of our findings, two separate 
fMRI scanning sessions were implemented. 

2. Methods 

2.1. Participants 

Fourteen young adults (12 males; all right-handed; mean age was 27 
years, ranging from 22 to 35) participated in the study. Participants 
were recruited from the local community in Magdeburg and received 
monetary compensation. All participants gave written informed consent 
to the experimental protocol, which was approved by the ethics com
mittee of the University of Magdeburg. The data of one participant were 
excluded from the analysis because of low quality of fMRI data (head 
movements, low tSNR) and poor task performance. In addition, two 
participants only completed the first scanning session (cf. Section 2.3.2). 

2.2. Experimental stimuli 

Target stimuli consisted of four fractal-like, black-and-white images 
(3 × 3 cm2; Fig. 1A) adapted from stimuli used in Hindy et al. (2019). 
Each of the four fractals was orthogonally assigned to either a short or a 
long duration for which it was presented (1.4 or 2.9 s) and to either a left 
or a right location on the screen at which it was presented (8 mm left or 
right of the screen center). Within each participant, the coupling be
tween fractal identity, duration, and location was kept constant 
throughout the entire experiment. Across participants, the assignment 
was quasi-randomized with the following constraint: For a set of four 
participants, the two fractals linked to the short duration for the first 
participant were linked to the left location for the second, to the long 
duration for the third, and to the right location for the fourth participant. 
More specifically, for each participant the arrangement of fractals within 
the coordinate system in Fig. 1A was rotated by 90 degrees. 

2.3. Experimental procedure 

2.3.1. Duration and location trials 
In duration trials (Fig. 1C), one of the four fractals was cued for 1 s, 

followed by an interstimulus interval of 2 s. Then a black square frame 
appeared in the screen center and lasted for a variable comparison 
duration. After the frame offset, participants had to judge whether the 
cued duration was shorter (left key press) or longer (right key press) 
than the comparison duration. 

In location trials (Fig. 1D), one of the four fractals was cued for 1 s, 
followed by an interstimulus interval of 2 s. Then a black square frame 
appeared for 2 s at a variable comparison location along the horizontal 
axis of the screen. After the frame offset, participants had to judge 
whether the cued location was left (left key press) or right (right key 
press) of the comparison location. 

Duration and location trials were presented in separate, alternating 
runs. Independently for the time and the space task, comparison dura
tions/locations were defined by means of an adaptive staircase pro
cedure (1-up-3-down). After three consecutive correct responses, the 
absolute ratio between cued duration and comparison duration was 
reduced by 0.044 (in the time task; starting value was 1.44), or the 
difference between cued location and comparison location was reduced 
by 0.8 mm (in the space task; starting value was 8 mm). These values 
were chosen to ensure a comparable relation between the short/long 
levels in the time task and the left/right levels in the space task, as well 
as between the staircase step sizes in both tasks. Responses were not 
time-limited, and every response was directly followed by feedback 
(correct or false). The structure of two exemplary trials is depicted in 
Fig. 1C-D. At the end of each run, participants were presented with a 
graphical depiction of their reached performance level. 

2.3.2. Training and scanning sessions 
A schematic depiction of the complete experimental structure is 

shown in Fig. 1E. In two training sessions (one the day before, and one at 
the same day as MRI scanning) participants learned to associate the four 
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fractals with their specific duration and location. Each training session 
consisted of 24 runs (12 duration and 12 location runs). In each training 
run, participants were instructed to specifically attend to either the 
duration or the location of the fractals. Then the fractals were sequen
tially presented (Fig. 1B), and directly afterwards four test trials (one for 
each fractal) were performed as described in Section 2.3.1. The order of 
fractals during presentation and test phases was randomized 
independently. 

MRI scanning started after the second training session and was 

conducted in two scanning sessions, each lasting about 1.5 hours and 
separated by approximately thirty minutes. During these pauses, par
ticipants left the MRI scanner and took a walk on the campus. Each 
scanning session consisted of 24 runs (12 duration and 12 location 
runs)1. In contrast to the runs in the training sessions, each scanning run 
consisted of 16 trials, which were pseudo-randomized according to a de 
Bruijn sequence (Aguirre et al., 2011), so that each fractal was preceded 
once by each other fractal including itself (except, of course, for the 
fractal presented in the first trial, which was not preceded by the fractal 

Fig. 1. Experimental stimuli and task. (A) Four images were assigned to a specific duration and a specific location, and (B) repeatedly presented during training in 
randomized order. (C/D) In the time/space task, one image was cued and a variable comparison duration/location was presented, before participants decided 
whether the cued image was shorter/left or longer/right than/of this comparison. Time periods used for the estimation of betas are highlighted in red. (E) 
Experimental procedure during two consecutive days. In each run of a training session, the four images were presented for/at the associated duration/location (cf. B), 
followed by four duration or location trials (cf. C/D). In scanning sessions, the images were not presented for/at the associated duration/location. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 

1 For two participants, only 20 runs were performed per scanning session (10 
duration and 10 location runs) due to reported feelings of unease related to 
lying in the scanner so long. 
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presented in the last trial). To refresh the participants’ memories, 
directly at the start of each scanning session, the four fractals were 
presented three times (Fig. 1B), but during the rest of the session, the 
original durations and locations of the fractals were not shown again. 

As we were interested in the neuronal activation caused by the 
spatiotemporal memories associated with the cue, fMRI analyses tar
geted the 3-second period between cue onset and comparison onset (cf. 
Fig. 1C-D). According to the adaptive staircase procedure (cf. Section 
2.3.1), the duration/location of the comparison frame converged to the 
target value as the participants’ performance increased. In the space 
task, for example, a cue associated with the right side of space would 
invariantly be followed by a comparison frame also at the right side. This 
would have been problematic, because the measured BOLD response to 
the cue could be affected by the congruent location of the comparison, 
which would interfere with our objective to induce neuronal activity 
patterns in the absence of direct perception. To prevent this confound, 
half of all trials in the scanning sessions were presented with the com
parison for the respective other level (e.g., in the space task, a cue 
associated with the right side was followed by a comparison frame close 
to the uncued location on the left side). To accustom the participants to 
these conspicuously easy trials, the same was done for one out of four 
trials from the training sessions.2 

2.4. Acquisition and preprocessing of MRI data 

MRI data were acquired on a 3T Siemens Magnetom Prisma scanner, 
equipped with a 64-channel phased array head coil. Functional images 
were recorded with an echo-planar-imaging (EPI) sequence (TR = 2000 
ms; TE = 25 ms; slice thickness = 1.75 mm; voxel size = 1.5 × 1.5 × 1.75 
mm; number of slices = 28; field of view = 216 mm; flip angle = 80◦; 
slice acquisition order = interleaved). Anatomical data consisted of a T1- 
weighted image (MPRAGE, TR = 2500 ms; TE = 2.82 ms; TI = 1100 ms; 
slice thickness = 1 mm; number of slices = 192; voxel size = 1 × 1 × 1 
mm; field of view = 256 mm; flip angle = 7◦) and a T2-weighted image 
(TSE, TR = 6000 ms, TE = 71 ms, slice thickness = 2 mm, number of 
slices = 64, voxel size = 0.5 × 0.5 × 2 mm, field of view = 224 mm, flip 
angle = 120◦). Each session comprised 24 runs, and each run lasted 
about 3 minutes. Quality of fMRI data was checked with MRIQC (Este
ban et al., 2017). 

Functional images were preprocessed with SPM12 and Matlab 
R2018a v9.4.0.813654 (The MathWorks, Natick, 2018). Images were 
corrected for differences in slice timing, realigned to the first image 
collected from each subject, and smoothed using a 1 mm FWHM 
Gaussian filter (Hendriks et al., 2017). 

Anatomical masks for early visual areas (V1/V2) and MTL regions 
(entorhinal cortex and hippocampus), combining both hemispheres, 
were created with Freesurfer v7.1.1 (Fischl, 2012), using the 
Desikan-Killiany atlas for segmentation of the entorhinal cortex (Desi
kan et al., 2006) and the automatic segmentation protocol according to 
Van Leemput et al. (2009) for the hippocampus. Note that only dorsal 
parts of the V1/V2 complex were covered by our scanning protocol 
(activation patterns in this region were not the primary focus of the 
present study and only served as a manipulation check; see Section 
3.2.1). Anatomical masks for the posterior IPS were obtained as follows: 
The T1 image was segmented into white and gray matter images and 
normalized into standard MNI space. The inverse deformation field was 
then applied to a standard MNI space mask of the right posterior IPS 
(including areas hIP4-8; Richter et al., 2019) generated with the JuBrain 
Anatomy v3.0 SPM Toolbox Anatomy toolbox (Eickhoff et al., 2005). All 
masks were then coregistered to the realigned functional images. 
Anatomical masks for an exemplary participant are depicted in Fig. 3. 

2.5. Multi-voxel pattern analysis of fMRI data 

Multi-voxel pattern analysis (MVPA) was performed using the 
Python-based packages nilearn 0.9.2 (http://nilearn.github.io) and 
scikit-learn 0.21.3 (Abraham et al., 2014; Pedregosa et al., 2012). As 
input data, trial-wise beta estimates were calculated. For beta estimates, 
periods of interest covered the 3 seconds between cue onset and com
parison onset (cf. Fig. 1C and D), which were modeled as delta functions 
that were convolved with the hemodynamic response function as 
implemented in SPM12. For each trial, a GLM was computed in which 
the specific cue was modeled as the regressor of interest. All other cues 
during the same run as well as all other events (and the parameters for 
head motion derived from spatial alignment) were modeled in separate 
nuisance regressors. This “LS2” approach was found to be superior in 
classification performance for rapid event-related designs compared to 
modeling each trial as a separate regressor (Mumford et al., 2012; 
Turner et al., 2012). 

Following a region-of-interest approach, we tested the classification 
accuracy to differentiate between the two levels of a specific dimension 
(either duration or location) using either time or space runs. A logistic 
regression classifier was used as estimator (regularisation = l2, C = 0.1, 
solver = lbfgs, scoring = roc_auc, tol = 1e-4). To prevent inflated per
formance estimates for the classifier due to slight data imbalances, a 
receiver operating characteristic (ROC) approach was implemented. 

Decoding accuracies were obtained by a leave-one-run-out cross- 
validation. The data were split at the individual level in train and test 
runs and the classifier was repeatedly tested on the left-out run. Thus, 
there were as many folds as runs and each fold produced one accuracy 
value, the mean of which represents the decoding accuracy of the spe
cific condition. 

The significance of decoding accuracies were tested in R (R Core 
Team, 2016) by means of one-sided t-tests against chance level. For 
direct comparison between task types (i.e., whether participants atten
ded to the stimuli’s duration or location), classified dimensions (i.e., 
whether MVPA focusses on the stimuli’s duration or location), and be
tween sessions, the data were also entered into linear mixed effects 
models (2 × 2 × 2 factorial design) using packages lme4 (Bates et al., 
2015) and lmerTest (Kuznetsova et al., 2017), including the 
within-subjects factors task type (time vs. space, coded as -.5 and .5), 
classified dimension (duration vs. location, coded as -.5 and .5), and ses
sion (first vs. second, coded as -.5 and .5). Subjects were included as 
random factor. 

2.6. Univariate analysis of fMRI data 

For the univariate analysis, realigned functional images were 
normalized into standard MNI space along with the segmented T1 image 
(cf. Section 2.4), and then smoothed using a 4 mm FWHM Gaussian 
filter. Model generation and contrast estimation was done in SPM12 and 
Matlab R2018a v9.4.0.813654 (The MathWorks, Natick, 2018). Periods 
of interest covered the 3 seconds between cue onset and comparison 
onset (cf. Fig. 1C and D), which were modeled as delta functions that 
were convolved with the hemodynamic response function as imple
mented in SPM12. All other events as well as six head motion parameters 
were included as nuisance regressors. Set contrasts were long- versus 
short-duration images in the time task and right- versus left-location images 
in the space task. At the second level, two-sided one-sample t-tests were 
performed on these contrasts. Threshold criteria were a cluster-wise 
FWE (p < .05) and a minimum cluster size of 10 voxels. 

2.7. Statistical analysis of behavioral data 

For each participant, each task, and each of the four fractals (data 
were pooled over both sessions), psychometric functions were calcu
lated using R package quickpsy (Linares and López-Moliner, 2016). 
Guess and lapse rates were allowed to vary between 0 and 0.2. Fitted 

2 This procedure also prevented a retrospective inference of the cue based on 
the presented comparison (i.e., it assured that it was impossible to solve the task 
without paying attention to the cues). 
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logistic functions represent the probability of the response ‘cued dura
tion was shorter than the comparison duration’ (in the time task) or 
‘cued location was left of the comparison location’ (in the space task), as 
a function of the comparison values. From the resulting functions we 
extracted the point of subjective equality (PSE), defined as the value of 
the x-axis corresponding to 50 % on the y-axis. Goodness-of-fit for the 
psychometric functions was calculated by deviance, ranging from 0.2 to 
11.1 (Wichmann and Hill, 2001). 

To enable a direct comparison between function parameters for time 
and space tasks, data were transformed onto a common metric before 
logistic functions were fitted: Comparison values (against which the 
cued duration/location had to be compared to) were centered (so that 
the value between the two levels equals 0), and rescaled (so that the 
lower level equals -1 and the upper level equals 1). To account for the 
scalar property of time perception, comparison durations were log- 
transformed (Wearden et al., 1997). 

Data were analyzed in R (R Core Team, 2016), by fitting linear mixed 
effects models (2 × 2 × 2 factorial design) using packages lme4 (Bates 
et al., 2015) and lmerTest (Kuznetsova et al., 2017), including the 
within-subjects factors task type (time vs. space, coded as -.5 and .5), 
relevant dimension (short/left vs. long/right, coded as -.5 and .5), and 
irrelevant dimension (left/short vs. right/long, coded as -.5 and .5). 
Subjects were included as random factor. All scripts and raw data for the 
analyses described in this and the previous sections can be found at OSF 
(https://osf.io/f2xra/). 

3. Results 

3.1. Behavioral results 

Behavioral results are depicted in Fig. 2. The main effect of the 
relevant dimension indicates that participants could distinguish between 
the small and the large value of the dimension relevant for the current 
task (β=1.864, SE=0.057, t84=32.8, p < .001). Although at the end of 
the second training session there were interindividual differences in the 
accuracy of temporal judgments (mean absolute ratio between cued and 
comparison duration was 1.18, ranging from 1.02 to 1.48) and of spatial 
judgments (mean difference between cued and comparison location was 
2.9 mm, ranging from 0.4 to 5.6 mm), the top graphs in Fig. 2 show that 
every single participant memorized short fractals as clearly shorter than 
long fractals, and left fractals as more left than right fractals.3 

No main effects were found for the irrelevant dimension (β=0.057, 
SE=0.057, t84=1.0, p = .32) and task type (β=0.051, SE=0.057, t84=0.9, 
p = .37). However, the significant interactions with task type indicate 
that the effect of the relevant as well as the irrelevant dimension was 
different for the time and the space task (task type × relevant dimension: 
β=0.233, SE=0.114, t84=2.1, p = .043; task type × irrelevant dimension: 
β=-0.227, SE=0.114, t84=-2.0, p = .049). We also found a significant 3- 
way interaction between task type, relevant and irrelevant dimension 
(β=0.469, SE=0.227, t84=2.1, p = .042). 

To investigate these interactions, we analyzed each task in a separate 
model. For both tasks, the separate models confirmed the effect of the 
relevant dimension (time: β=1.747, SE=0.068, t36=25.6, p < .001; space: 
β=1.980, SE=0.088, t36=22.5, p < .001). However, only for the time 
task we also found a significant effect of the irrelevant dimension (time: 
β=0.170, SE=0.068, t36=2.5, p = .017; space: β=-0.056, SE=0.088, 
t36=-0.6, p > .5). The interaction between the relevant and the irrelevant 
dimension was not significant in neither of the tasks, although a trend in 
the time task suggests that the effect of space on time was more pro
nounced for one of the two durations (time: β=-0.243, SE=0.137, t36=- 
1.8, p = .084; space: β=0.226, SE=0.176, t36=1.3, p = .21). This is in 

line with the significant 3-way interaction in the full model and was 
confirmed by subsequent t-tests showing that the short duration was 
judged as longer when it was associated with the right versus the left 
spatial side (t12=3.3, p = .003), while the long duration was not 
(t12=0.6, p = .27). 

3.2. MVPA results 

3.2.1. Decoding of stimulus identity in early visual areas 
As a first manipulation check, we confirmed that the identity of the 

four visual stimuli could be decoded from activation patterns in early 
visual areas (V1/V2), independent of whether the task required atten
tion to either time or space. Decoding accuracies were significantly 
above a chance level of 25 % (t12=3.7, p = .001). 

3.2.2. Decoding of duration and location 
We compared the three regions of interest with respect to the 

decoding accuracies for duration and location information in the 
respective tasks. As depicted in Fig. 3, the right pIPS was the only region 
in which the fractals could be decoded, in the time task with respect to 
their associated duration (t12=3.4, p = .003) and in the space task with 
respect to their associated location (t12=2.5, p = .014). In MTL regions, 
the corresponding decoding accuracies were not significantly different 
from chance level, neither for the hippocampus (duration in time task: 
t12=-0.3, p > .5; location in space task: t12=0.5, p = .31) nor for the 
entorhinal cortex (duration in time task: t12=-1.1, p > .5; location in 
space task: t12=0.5, p = .33). 

3.2.3. Decoding accuracies in right posterior IPS cannot be explained by 
image characteristics 

To test the specificity of the decoding accuracies found in the right 
pIPS, we compared the accuracy values for duration in the time task and 
location in the space task with the accuracy values during the respective 
other task (e.g., decoding of duration information during the space task). 
These results are depicted in Fig. 4A. Duration information could be 
decoded above chance level during the time task (t12=3.4, p = .003), but 
not during the space task (t12=0.2, p = .41), and location information 
could be decoded during the space task (t12=2.5, p = .014), but not 
during the time task (t12=0.7, p = .25). Direct comparison between the 
decoding accuracies for both tasks (grey distributions in Fig. 4) showed 
that each dimension was better decoded during the corresponding task, 
that is, decoding accuracy for duration was higher during the time task 
(t12=2.5, p = .013) and location decoding was higher during the space 
task (t12=1.9, p = .043). To exclude the possibility that the performance 
of the decoding classifier was based on image identity rather than on the 
image-associated durations and locations, we performed a cross-level 
decoding analysis (Fig. 4C). We trained a classifier to differentiate be
tween the two levels of the relevant dimension, but only using instances 
of one level of the irrelevant dimension, and then tested this classifier’s 
performance using instances of the other level of the irrelevant dimen
sion. For example, the classifier was trained to differentiate between left 
and right short-duration images and tested on left and right long-duration 
images. This procedure makes it impossible that the decoding accuracy 
is boosted by visual characteristics of the images. As depicted in Fig. 4C, 
duration information could still be decoded above chance level during 
the time task (t12=2.6, p = .011), and location information during the 
space task (t12=1.8, p = .047). 

In early visual areas (V1/V2), duration and location information 
could also be decoded in the respective task (duration: t12=3.3, p = .003; 
location: t12=4.7, p < .001), but these above-chance decoding accu
racies did not hold up to test of cross-level decoding (duration: t12=0.5, p 
= .31; location: t12=1.7, p = .061), suggesting that decoding accuracies 
in early visual areas are based on visual image characteristics. 

The reliability of these results was confirmed by the analysis of data 
from a second, independent scanning session, which was identical to the 
first one with respect to the procedure and performed by the same 

3 Temporal and spatial accuracy were not correlated with each other 
(t11=1.1, p=.14, r=.33), indicating that individuals with relatively high tem
poral accuracy did not necessarily exhibit relatively high spatial accuracy. 
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participants (except for two participants, who did not consent to a sec
ond session). As shown in Table 1 and Figs. 3 and 4, analyses of the data 
from the second session revealed the same pattern of results as the data 
from the first session, the only differences being that the decoding ac
curacy for location in the space task was not statistically different from 
that in the time task (t10=1.3, p = .12), that in area V1/V2 duration 
information was not decodable in the time task (t10=0.9, p = .20), and 
that in area V1/V2 cross-level decoding for location in the space task 
reached a significant level. 

For direct comparison between sessions, task type, and classified 
dimensions, accuracy values were subjected to a linear mixed model. 
The main effect of session and all its interactions were not significant, 
indicating that the results were not statistically different between the 
first and the second session (session: β=0.011, SE=0.013, t80=0.8, p =
.40; session × task type: β=-0.004, SE=0.026, t76=-0.1, p > .5; session ×
classified dimension: β=0.010, SE=0.026, t76=0.4, p > .5; session × task 
type × classified dimension: β=-0.0005, SE=0.053, |t76|<0.1, p > .5). Also 
the main effects of task type (β=-0.007, SE=0.013, t76=-0.5, p > .5) and 
classified dimension (β=0.007, SE=0.013, t76=0.5, p > .5) did not reach a 
significant level. However, there was a strong interaction between task 
type and classified dimension (β=0.118, SE=0.026, t76=4.5, p < .001), 
indicating that duration could be decoded significantly better in the time 
task, whereas the decoding accuracy for location was larger in the space 
task. 

3.2.4. Univariate fMRI results 
The levels of duration/location were not consistently associated with 

significant differences in univariate activity. The only significant dif
ference was found for the time task in Session 1, where long-duration 
images (in contrast to short-duration images) were associated with 
increased activity in the middle temporal gyrus of the right occipital 

cortex (Brodmann Area 39; MNI coordinates: 52, -66, 24; cluster size: 61 
voxels; pFWE-corr = .001). However, this result could not be replicated in 
Session 2. 

4. Discussion 

In the present study we employed multi-voxel pattern analysis 
(MVPA) to test whether long-term memory traces of temporal and 
spatial features associated with visual stimuli can be decoded from 
neural activity patterns in the right intraparietal sulcus (IPS) and the 
medial temporal lobe (MTL). The specific regions of interest were 
defined on the basis of previous studies, in which it was found that both 
temporal and spatial processing is associated with the right IPS (Beudel 
et al., 2009; Bueti and Walsh, 2009; Jerde et al., 2012; Lee and Baker, 
2016; Riemer et al., 2016; Sprague et al., 2014; Walsh, 2003), the hip
pocampus (Deuker et al., 2016; Eichenbaum, 2017; Ekstrom and Ran
ganath, 2018; Fritch et al., 2020; Jeye et al., 2018; Kraus et al., 2013; 
Shafer-Skelton and Golomb, 2016; Thavabalasingam et al., 2019), and 
the entorhinal cortex (Bellmund et al., 2019; Julian et al., 2018; Kraus 
et al., 2015; Montchal et al., 2019; Nau et al., 2018). 

Our results demonstrate above-chance decoding accuracies for both 
temporal duration (short vs. long stimuli) and spatial location (left vs. 
right stimuli) in the right posterior IPS. These results provide evidence 
that the right parietal cortex contains information about temporal 
duration and spatial location, corroborating previous research on 
duration-selective neuronal assemblies in this area (Hayashi et al., 2015, 
2018; Hayashi and Ivry, 2020; Protopapa et al., 2019). However, the 
present results go beyond those previous studies: Instead of being 
induced by direct perception, the different neuronal activity patterns in 
the present study were prompted by the activation of long-term memory 
traces regarding the temporal (or spatial) features. That is, in each trial 

Fig. 2. Fitted logistic functions for individual subjects (top graphs) and point of subjective equality (bottom graphs) for the time task (A) and the space task (B), 
depending on image category. Cross-dimensional interference was only found in the time task: The “short” image associated with the right side of space (brown) was 
judged as longer than the “short” image associated with the left side of space (grey). Boxplots show the median and upper/lower quartiles. (* p < .05; n.s.p > .05). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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participants were presented with a stimulus cueing the short versus the 
long duration (or the left versus the right location, respectively), in 
contrast to being presented with the short or the long duration itself (e. 
g., Hayashi et al., 2018). Therefore, the present study extends previous 
findings in a crucial aspect: The right-hemispheric IPS not only contains 
information about the direct perception of short versus long durations, 
but it also contains a neuronal code to differentiate between long-term 
memories of different durations, as it has been shown for spatial loca
tion (Jerde et al., 2012; Sprague et al., 2014). These memory traces are 
reactivated when a certain duration (or location) is recalled or main
tained in working memory (Lee and Baker, 2016). 

Parietal areas are known for their role in working memory processes 
for spatial as well as temporal information (Curtis, 2006; Hayashi et al., 
2018; Lee and Baker, 2016; Mackey and Curtis, 2017), and have been 
discussed as a supramodal network underlying abstract perceptual de
cisions (Levine and Schwarzbach, 2017). Hence, it is possible that the 
specific activation patterns in the right pIPS, which are associated with 
different levels of temporal duration and spatial location, reflect a 
temporary processing of reactivated memory engrams in working 
memory rather than the long-term memory traces themselves. 

The existence of duration-selective neurons has been suggested in 
previous studies (Becker and Rasmussen, 2007; Hayashi et al., 2015; 
Hayashi and Ivry, 2020; Heron et al., 2012; Protopapa et al., 2019). For 
example, Hayashi et al. (2015), Hayashi and Ivry (2020) and Protopapa 
et al. (2019) used an adaptation paradigm and showed that repeated 
presentation of the same interval results in an attenuated neuronal 
response, primarily in parietal regions and in the supplementary motor 
area. This corroborates the idea of neuronal assemblies in these regions 

which are devoted to the processing of temporal intervals of a specific 
duration. This idea is further supported by psychophysical studies 
(Becker and Rasmussen, 2007; Heron et al., 2012; Li et al., 2017; 
Maarseveen et al., 2017). For example, Heron et al. (2012) found 
selectively increased perceptual adaptation effects when the adaptation 
stimuli were of a similar duration as the test stimulus. Building upon this 
work, the present study suggests that duration-selective neurons in the 
posterior part of the right IPS are also involved in the processing of 
reactivated memory traces for specific durations, rather than only in the 
direct perception of these durations. 

With respect to the hippocampus and the entorhinal cortex, our data 
did not reveal decoding accuracies significantly above chance level, 
neither for temporal duration nor spatial location. Regarding temporal 
duration, a potential explanation for these null findings is provided by 
the idea that the role of MTL regions, especially of the hippocampus, for 
temporal processing is restricted to durations embedded within a 
sequence of events (Lee et al., 2020), whereas in the present study 
duration-associated stimuli were presented in isolation. Also regarding 
the decoding of spatial locations, our null finding contrasts with previ
ous research (Hassabis et al., 2009; Shafer-Skelton and Golomb, 2016). 
One important difference between those and the present study is that we 
focussed on two-dimensional stimulus location on the screen, whereas 
most studies were focussed on the representation of self-location in 
three-dimensional space (e.g., Bonnici et al., 2012; Guo et al., 2021; 
Hassabis et al., 2009). However, also for the former type of stimuli, 
above-chance decoding accuracies have been reported (Fritch et al., 
2020; Shafer-Skelton and Golomb, 2016), and Jeye et al. (2018) found 
that decoding accuracies for two-dimensional stimulus location were 

Fig. 3. Decoding accuracies for short versus long durations (turquoise) and left versus right location (violet) in the right-hemispheric posterior intraparietal sulcus 
(pIPS), hippocampus, and entorhinal cortex. The dashed line indicates the chance level. The area in between the two white lines in the T1 images shows the area 
covered by functional MRI scanning. The same pattern was found for the first and the second session. Boxplots show the median and upper/lower quartiles. (** p < 
.01; * p < .05). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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correlated with measures of behavioral performance. Another possible 
reason for the absence of an above-chance decoding in MTL regions is 
the temporal signal-to-noise ratio (tSNR) of fMRI data, which was lower 
in the hippocampus (mean: 27.9; std: 3.0) and the entorhinal cortex 
(mean: 22.1; std: 3.5), compared to the posterior IPS (mean: 36.2; std: 
12.3). 

It is important to note that, as the present study focussed on specific 
regions of interest, it does not preclude the possibility of other brain 

regions being involved in the representation of time and space. One 
example is the supplementary motor area, which has been associated 
with the representation of time and space (Cona et al., 2021, 2023; 
Gladhill et al., 2024; Protopapa et al., 2019). 

All significant decoding results from Session 1 were replicated in 
Session 2 (cf. Table 1), with one exception: Although the decoding ac
curacies for spatial location was above chance level in the space but not 
the time task, a direct comparison between these conditions revealed 
that the decoding accuracies for location were not statistically different 
in the space and the time task in Session 2 (cf. Fig. 4B). This is inter
esting, because the decoding accuracies for short versus long durations 
were always significantly higher during the time task as compared to the 
space task (Fig. 4A). This observation suggests that the activation of 
memory traces related to the spatial feature left versus right location (in 
contrast to the temporal feature short versus long duration) occurs more 
automatically, even when this specific information is irrelevant to solve 
the current task. This observation mirrors a finding from our previous 
study (Riemer et al., 2021), in which we found that the difference be
tween the quality of retrospective and prospective judgments was 
smaller for spatial locations than for temporal durations. We interpreted 
this finding in terms of differences in the required attentional resources. 
While the processing of spatial information occurs almost automatically, 
the processing of temporal information requires deliberate attention. 
This interpretation is in line with the notion of higher saliency and a 
more holistic representation for spatial versus temporal features (Cai 
and Connell, 2015; Homma and Ashida, 2015; Lambrechts et al., 2013; 
Riemer, 2015). 

Overlapping neuronal representations of temporal and spatial in
formation in the right IPS have been proposed as a likely origin for cross- 
dimensional interference between time and space (Bueti and Walsh, 
2009; Cona et al., 2021; Gijssels et al., 2013; Riemer et al., 2016, 2022; 
Walsh, 2003). However, according to the overlapping representation 

Fig. 4. Decoding accuracies in the right pIPS for two separate sessions. (A) Short versus long durations (turquoise) and (B) left versus right location (violet) were 
decodable from the data in the corresponding task (strong colors), but not from the data in the respective other task (light colors). Decoding accuracies for both 
dimensions were higher during the corresponding task compared to the respective other task (grey), except for location decoding in session 2. (C) Cross-level 
decoding for duration and location. Boxplots show the median and upper/lower quartiles. (** p < .01; * p < .05). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Results of decoding analyses.  

Classified 
dimension 

Brain 
region 

Task type Session 1 Session 2    

t12 p t10 p 

stimulus identity V1/V2  3.7 .001 2.6 .014 
duration HC time -0.3 .624 1.1 .139 

EC time -1.1 .857 1.0 .182 
V1/V2 time 3.3 .003 0.9 .196 

time (across 
levels) 

0.5 .309 -0.4 .644 

right pIPS time 3.4 .003 4.0 .001 
space 0.2 .408 0.6 .297 
time > space 2.5 .013 3.5 .003 
time (across 
levels) 

2.6 .011 1.9 .040 

location HC space 0.5 .314 -1.1 .849 
EC space 0.5 .328 0.8 .227 
V1/V2 space 4.7 .001 3.0 .007 

space (across 
levels) 

1.7 .061 1.8 .049 

right pIPS space 2.5 .014 3.0 .007 
time 0.7 .252 1.4 .092 
space > time 1.9 .043 1.3 .116 
space (across 
levels) 

1.8 .047 2.4 .018  
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hypothesis, one would expect a symmetric interference between time 
and space: As both dimensions resort to the same overlapping neuronal 
substrate, they should influence each other to the same extent. In 
contrast, there are numerous studies demonstrating an asymmetrical 
interference, with time being significantly more influenced by space 
than vice versa (Bottini and Casasanto, 2013; Casasanto and Boroditsky, 
2008; Reali et al., 2019). The behavioral results of the present study also 
show that short-duration stimuli were judged as temporally longer when 
they were associated with the left (instead of the right) side of space, 
while a reversed effect of time on space could not be confirmed. 

The idea of an automatic activation of spatial representations (in 
contrast to temporal representations) has the potential to explain the 
often-reported asymmetry in the interference between time and space. If 
the common neuronal network is more easily activated by spatial as 
compared to temporal information, then irrelevant spatial information 
should have a greater impact on perceived time than vice versa. This 
interpretation is supported by studies showing that the asymmetry of 
time-space interference can be resolved by increasing the comparability 
between temporal and spatial stimuli in terms of perceptual acuity (Cai 
et al., 2018; Cai and Connell, 2015; Cai and Wang, 2022), saliency 
(Homma and Ashida, 2015, 2019), or a gradual accumulation of sensory 
evidence (Lambrechts et al., 2013; Martin et al., 2017). 

5. Conclusions 

The present study provides evidence that neuronal activity patterns 
in the posterior part of the right IPS contain information about the 
temporal duration and the spatial location of memorized visual stimuli. 
Across two independent scanning sessions, we found stable representa
tions of both temporal and spatial information. These results extend 
previous findings by demonstrating that duration-specific as well as 
location-specific activity patterns can be evoked by a pure memorization 
of the respective features (e.g., thinking about short versus long dura
tions), rather than only by the direct perception of these stimulus fea
tures. Together, the results strengthen the idea that neuronal 
computations in the right IPS form the basis for cross-dimensional 
interference between temporal and spatial stimulus features. 
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