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ABSTRACT

Generative models trained with Differential Privacy (DP) are be-

coming increasingly prominent in the creation of synthetic data

for downstream applications. Existing literature, however, primar-

ily focuses on basic benchmarking datasets and tends to report

promising results only for elementary metrics and relatively simple

data distributions. In this paper, we initiate a systematic analysis

of how DP generative models perform in their natural application

scenarios, specifically focusing on real-world gene expression data.

We conduct a comprehensive analysis of five representative DP

generation methods, examining them from various angles, such as

downstream utility, statistical properties, and biological plausibility.

Our extensive evaluation illuminates the unique characteristics

of each DP generation method, offering critical insights into the

strengths and weaknesses of each approach, and uncovering in-

triguing possibilities for future developments. Perhaps surprisingly,

our analysis reveals that most methods are capable of achieving

seemingly reasonable downstream utility, according to the standard

evaluation metrics considered in existing literature. Nevertheless,

we find that none of the DP methods are able to accurately capture

the biological characteristics of the real dataset. This observation

suggests a potential over-optimistic assessment of current method-

ologies in this field and underscores a pressing need for future

enhancements in model design.
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1 INTRODUCTION

Genomic data is considered a goldmine for medical researchers, en-

abling them to tackle a wide array of challenges. These challenges

range from identifying patients at risk of specific diseases, to devel-

oping tailored drugs to enhance treatment reliability and reduce

care duration. Gene expression data stands as one of the most ex-

tensively utilized forms of genomic data. More specifically, in a cell,

the instructions on how to build the cell’s proteins are encoded in

the DNA as genes. In order to produce proteins, copies of the genes

are made from the DNA in the form of messenger RNAs (mRNAs)

which are then translated into proteins. The more mRNA copies

are made of a gene, the more of the corresponding protein can be

produced. Conditions such as environmental stimuli or diseases

can alter the kind and quantity of proteins that are being produced.

Thus, the cell’s response to such conditions is reflected in the tran-

scription of genes, i.e., the strength of their expression. Measuring

gene expression has therefore become an essential biomedical tool

in order to understand how a cell, tissue or organism responds to

the conditions it is exposed to [10, 40].

Nevertheless, the use of gene expression data is not without

danger, as it can threaten patient privacy [25]. The precise nature

of the information it contains could attract the interest of malicious

entities, capable of exploiting it for multiple purposes. For example,

an insurance company could choose to raise the coverage cost for

a patient predisposed to a serious illness. Additionally, publishing

information about a person’s genetic predispositions for stigmatized

diseases can severely impact their social life and societal acceptance.

In light of these concerns, there arose a need to protect individual

privacy and avoid such problems, leading to exploration of methods

that are able to generate synthetic data backed by rigorous privacy

guarantees. Such approaches involve creating synthetic datasets

that reflect the characteristics of real gene expression data while

providing strong theoretical differential privacy (DP) guarantees.

Nonetheless, employing DP entails introducing randomness during

the training process, which inevitably compromises the quality of

the produced synthetic data. Furthermore, as we strive for stronger

privacy guarantees, the randomness required for privacy increases

proportionally, further affecting the quality of the synthetic data to
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a larger extent. This underscores the well-known trade-off between

privacy and utility.

Despite significant advances in DP data generation methods that

report both good generation quality and privacy guarantees, the

majority of quality assessment have unfortunately focused solely

on downstream utility. A notable gap persists in evaluations that

overlook the preservation of essential statistical and biological char-

acteristics. These characteristics are, however, crucial for ensuring

the fidelity and applicability of the generated data. In real-world

scenarios, the challenge becomes even more pronounced due to the

vast feature space inherent in gene expression data, which stands

in stark contrast to the often limited number of available samples.

Consequently, the effectiveness of existing methods, previously

tested primarily on basic benchmark datasets with relatively simple

distributions, remains unclear when applied to real-world gene

expression data.

In this paper, we fill this gap by presenting the first systematic

quality assessment of synthetic gene expression data produced by

five benchmark DP generation models with diverse characteristics.

Our assessment encompasses five metrics, spanning various aspects

from downstream utility, statistical fidelity, to biological plausibility.

Our extensive experimental results reveal intriguing findings: (1)

significant privacy risks do exist if the generative models are trained

non-privately, while DP training (even with a high privacy budget

of Y = 100) greatly mitigates such risks; (2) almost all methods

manage to achieve seemingly near-perfect performance in terms

of standard utility metrics while providing a reasonably strong

privacy guarantee (e.g., Y ≤ 10), yet none of the DP models succeed

in producing biologically plausible data.

In summary, the key contributions of our study are outlined

below:

• Our work presents the first comprehensive and systematic analy-

sis of DP generation methods applied to real-world gene expres-

sion data. Our extensive investigation encompasses five diverse

generation models, five metrics targeting three principal aspects,

providing the first comprehensive view for the current state of

real-world applicability of DP generation methods.

• Our analysis reveals crucial insights, highlighting the limitations

of existing evaluations that predominantly focus on a single

aspect, namely, downstream utility. In contrast, our thorough

assessment establishes a reliable evaluation framework that ef-

fectively addresses the misconceptions arising from these one-

dimensional evaluations.

• Our compelling findings, complemented by an in-depth discus-

sion, offer fresh perspectives for the future development in the

related field. With our systematic assessment, we aim to steer DP

generation methods towards improved practicality in real-world

applications involving sensitive data.

2 RELATED WORK

2.1 Models for Synthetic Gene Expression Data

Various types of generative models have been employed for gener-

ating synthetic gene expression data. Variational autoencoders and

deep Boltzmann machines have been used to generate data that

aids in designing studies and planning analysis for large experi-

ments [39]. Generative adversarial networks have been exploited

for generating gene expression data to combat the challenges of

low sample sizes via data augmentation, which is specifically mo-

tivated by the unfavorable ratio of samples to features in these

datasets [18, 23]. Additionally, synthetic gene expression data has

also been used to train imputation methods for handling missing

data [27]. However, none of these methods ensure privacy during

the whole data generation process. Given that genome-related data,

including the gene expression data, is highly privacy-sensitive [25],

applying existing works in real-world scenarios becomes challeng-

ing due to privacy regulations.

To the best of our knowledge, there is a lack of research delving

into the differentially private generation of synthetic gene expres-

sion data. While some studies, like [37], have investigated the pri-

vate generation of synthetic data within the realm of medical data

at large, a dedicated focus on gene expression data remains notably

absent.

2.2 Measuring Quality of Synthetic Gene
Expression Data

A variety of methods have been applied in the past to assess the

quality of synthetic gene expression data from a biological stand-

point. These methods have been used both in the context of bulk

as well as single-cell RNA-seq data. Bulk RNA-sequencing refers

to the process of sequencing the mRNA transcripts from a sample

containing a collection of many cells [20]. The resulting data thus

reports the average expression strength of each gene across these

cells. Single-cell RNA-sequencing on the other hand, first separates

the cells present in the sample before sequencing each individually,

generating an expression profile at cell resolution rather than sam-

ple resolution [20, 36]. The methods used for evaluating this data

comprise the comparison of expression data distributions [6, 39, 43]

by looking at mean and median expressions, proportion of zero

counts (in single-cell cases) and coefficients of variation. Also, met-

rics related to functional biology have been applied [18, 23, 27, 39?

], including preservation of gene-gene correlations, gene ontology

terms, differentially expressed genes and clusters in reduced dimen-

sional space, using for example t-SNE, PCA, UMAP or after feature

selection.

3 PRELIMINARIES

3.1 Threat Model

The objective of an adversary is to infer private information about

individuals in the training datasets by launching various privacy

attacks, such as membership inference attack (MIA), which aims to

ascertain if a particular data point was used in training the dataset.

We consider two common scenarios for synthetic data generation

from an attack standpoint:

• A trained generator generates the synthetic data (e.g., Section 4.1-

4.4). In this case, the adversary can have either black-box access

or white-box access to the generator. Black-box access means

the adversary can only access the synthetic data generated by

querying the model through an API. White-box access allows

the adversary to access the generator’s internal state, including

its parameters.
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• The synthetic data is directly generated without using any gen-

erator (e.g., Section 4.5). In this scenario, the adversary only has

access to the synthetic data.

While our privacy model protects against the most powerful

adversaries, as discussed below in Section 3.2, our experiments

consider the scenario with the most knowledgeable adversary who

haswhite-box access to the trained generator, as well as the practical

scenario where only the synthetic data is accessible.

3.2 Privacy Model

We aim to develop a solution that protects against potential attacks

as delineated in our threat model in Section 3.1. Specifically, we

adopt differential privacy (DP), which ensures the difficulty to infer

the presence of any record in the training dataset, even when the ad-

versary has white-/black-box access to the trained generator and/or

to the synthetic data. As a result, any potential negative impact on

an individual’s privacy cannot be attributed to their involvement

in the training phase (up to Y and X). For instance, if an insurance

company accesses the generator or the synthetic data (from DP gen-

eration methods) and decides to increase an individual’s insurance

premium, such a decision cannot be attributed to the individual’s

data presented in the training dataset.

Definition 3.1 ((Y, X)-DP [12]). A randomized mechanismM with

range R is (Y, X)-DP, if

Pr[M(D) ∈ O] ≤ 4Y · Pr[M(D ′) ∈ O] + X

holds for any subset of outputs O ⊆ R and for any adjacent datasets

D and D ′, where D and D ′ differ from each other by adding or

removing one training example, i.e.,D ′
= D∪{G} orD = D ′∪{G}

for a data sample G . The privacy parameter Y is the upper bound of

privacy loss, and X is the probability of breaching DP constraints.

Smaller values of both Y and X translate to stronger DP guarantees

and better privacy protection.

Definition 3.2 (Gaussian Mechanism [12]). Let 5 : - → R3 be an

arbitrary 3-dimensional function with !2-(global) sensitivity Δ
2
5
:

Δ
2
5
= max

D,D′
‖ 5 (D) − 5 (D ′)‖2 (1)

The Gaussian MechanismMf , parameterized by f , adds noise into

the output, i.e.,

Mf (x) = 5 (x) + N (0, f2O ) . (2)

Mf is (Y, X)-DP for f ≥
√
2 ln (1.25/X)Δ2

5
/Y.

Theorem 3.1 (Post-processing Theorem [12]). IfM satisfies (Y, X)-

DP, � ◦M will satisfy (Y, X)-DP for any data-independent function

� with ◦ denoting the composition operator.

The post-processing theorem guarantees that if a DP generation

model is (Y, X)-DP, releasing the trained generator and the syn-

thetic dataset will also be privacy-preserving, with the privacy cost

bounded by Y and X .

3.3 Biological Criteria

Differential Expression. When diseases and other pathological

conditions affect the body, they can alter gene activation within

cells, contributing to the manifestation of symptoms. The specific

set of genes whose expression levels vary from one disease to

another are commonly referred to as differentially expressed (DE)

genes. Identifying DE genes that distinguish between two conditions

is a fundamental step in gene expression analysis [4, 11, 30, 31].

Differential expression can occur as either up-regulation or down-

regulation, meaning that the expression of genes is significantly

increased or decreased in one condition compared to another, re-

spectively (see Section 5.3 for the formal definition).

Gene Co-Expression. Genes that are involved in the same biolog-

ical pathways often form a functional group or module, meaning

they collectively respond to a condition by similar changes in the

expression strength. For example, all genes involved in fighting off a

bacterial infection will be activated together when such a pathogen

enters the body. Such genes are referred to as co-expressed. In order

to identify activated or inactivated biological pathways, detecting

such modules of co-expressed genes is a common step in the anal-

ysis of gene-expression data [19, 26]. Specifically, co-expression

between a pair of genes with indices 9 and : is quantified using

their Pearson correlation coefficient A 9: with

A 9: =

∑=
8=1 (G

(8)
9 − Ḡ 9 ) (G

(8)

:
− Ḡ: )

√∑=
8=1 (G

(8)
9 − Ḡ 9 )2

√∑=
8=1 (G

(8)

:
− Ḡ: )

2

, (3)

where G
(8)
9 and G

(8)

:
are the expression values of genes 9 and : in

sample 8 , respectively, while Ḡ 9 and Ḡ: are the mean expression

values of the two genes across= biological samples. Groups of genes

with high Pearson correlation coefficients are considered<>3D;4B

of co-expressed genes, with A 9: > 0.7 are typically considered as

biologically significant co-expressions.

4 MODELS

Given the real datasetD = {(x (8) , ~ (8) )}=8=1 consisting of = samples

(x (8) , ~ (8) ) with x (8) ∈ R3 and ~ (8) ∈ {1, ...,�} denoting the fea-

tures and class labels respectively, the objective of the generation

methods is to capture the real underlying distribution ? (x, ~) and

generate synthetic data samples (x̃, ~̃) that mimic the statistical

characteristics of the real samples from D. In our case, the feature

vector x (8) represents the gene expression level and the class label

~ (8) corresponds to the disease type, with 3 and � denoting the

feature dimension and number of label classes, respectively.

In this work, we explore the most prominent categories of (DP)

generation methods found in the literature: (1) density estimation

(probability distribution fitting), (2) graphical models-based meth-

ods, (3) marginal-based methods, and (4) deep generative models. A

summary of these methods and their diverse characteristics can be

found in Table 1.

Method Category Attribute type DP sanitization

RON-Gauss Density estimation continuous only one-shot

VAE Deep generative model continuous iterative

GAN Deep generative model continuous iterative

Private-PGM Graphical model discrete only one-shot

PrivSyn Marginal discrete only one-shot

Table 1: Summary of Models.

533



Proceedings on Privacy Enhancing Technologies 2024(2) chen, oestreich, afonja et al.

4.1 RON-Gauss

RON-Gauss [7] generates synthetic data by drawing samples from a

multivariate Gaussian distribution fitted in a projected space of the

real data. Specifically, it operates by executing the following steps:

Firstly, the data is pre-processed to ensure it possesses bounded

sensitivity and adheres to the regularity conditions for the Diaconis-

Freedman-Meckes effect (which guarantees the data will exhibit

Gaussian-like distribution after projection with high probability).

Next, a random orthonormal (RON) projection is applied on the

pre-processed data, i.e., ^ =])^ with] ∈ R3×? signifying the

RON projection matrix and ^ representing the pre-processed data

matrix. Subsequently, a multivariate Gaussian model is fitted onto

the projected data. During the inference stage, new samples are

drawn from the fitted Gaussian distribution and are inversely pro-

jected into the original data space to form synthetic data samples.

To maintain privacy, DP noise is added into both the mean and co-

variance of the fitted Gaussian distribution. Moreover, the Gaussian

model is independently applied to each label class to facilitate label-

conditional generation, which aligns with the concept of a Gaussian

mixture model (GMM), where each label class forms a mode of the

GMM. The detailed algorithm is presented in Algorithm 1.

Algorithm 1: RON-Gauss

Input: Dataset D = {(x (8) , ~ (8) )}=8=1, projection dimension

? , noise scale f

Output: Synthetic dataset S

for c in {1, ...,�} do
(1) Extract samples with label class 2 to form data matrix

^2 ∈ R3×=2 ;

(2) Pre-process data and compute the mean:

• Pre-normalize:x (8) := x (8)/‖x (8) ‖2 ∀x (8) ∈ ^2

• Compute the DP mean: -2 =
1
=2

∑=2
8=1 x

(8) + N(0, f2O )

• Center the data: x (8) := x (8) − -2 ∀x (8) ∈ ^2

• Re-normalize: x (8) := x (8)/‖x (8) ‖2 ∀x (8) ∈ ^2

(3) Apply RON projection: ^2 :=])^2 ∈ R?×=2 ;

(4) Derive the DP covariance: �2 =
1
=2
^2^

)
2 + N(0, f2O );

(5) Synthesize data for class 2 by drawing samples from

the Gaussian distribution x̃ (8) ∼ N(]) -2 , �2 );

(6) Inversely project and recenter: x̃ (8) :=]x̃ (8) + -2

and construct the synthetic set S2 = {(x̃ (8) , 2)}
=2
8=1;

end

return Synthetic dataset S = S1 ∪ · · · ∪ S�

4.2 VAE

The Variational Autoencoder (VAE) [17] is a type of deep genera-

tive model that consists of both an encoder and a decoder. During

training, these two components are cascaded and optimized to re-

construct data under pre-defined similarity metrics such as !1/!2
loss. The encoder (denoted as @q ) maps input data x into a latent

space, while the decoder (denoted as ?\ ) maps the encoded latent

representation back into the data space. Meanwhile, VAE regularizes

the encoder by imposing a prior %I over the latent code distribution.

This regularization encourages the latent code to form a simple

distribution that is amenable to sampling. During inference, new

latent codes z are sampled from the prior distribution %I and then

fed into the decoder to generated synthetic samples. The formal

VAE objective is composed of a reconstruction term and a prior

regularization term:

min
\,q

L+�� = −E@q (z |x) [?\ (x |z)] +  !(@q (z |x)‖%I) (4)

where  !(·‖·) denotes the KL divergence, z and x stand for the

latent code and the real data, respectively. @q (z |x) represents the

probabilistic encoder parameterized by q , and ?\ (x |z) represents

the probabilistic decoder parameterized by \ . In practice, the prior

%I is always chosen to be a unimodal Gaussian distribution and z

is sampled using the reparameterization trick, facilitating a closed-

form derivation of the second term.

We employ the class conditional (CVAE) [32] for label-conditional

generation. In this framework, both the encoder and the decoder re-

ceive additional (one-hot) label information~. Formally, the training

objective can be expressed as:

min
\,q

L�+�� = −E@q (z |x,~) [?\ (x |z, ~)] +  !(@q (z |x, ~)‖%I) (5)

During the generation process, labels are generated based on their

occurrence rates in the real dataset. Privacy constraints is incor-

porated in the training stage by replacing the regular stochastic

gradient descent (SGD) update with DP-SGD [1], which involves

clipping the per-example gradients and adding calibrated random

noise to the mini-batch gradients.

4.3 GAN

The Generative Adversarial Network (GAN) [14] is another widely

used type of deep generative model. It comprises two neural net-

work components, a generator �\ and a discriminator �q , which

are trained simultaneously in an adversarial manner. The generator

takes random noise z (latent code) as input and generates samples

that approximate the distribution of the training data. Conversely,

the discriminator evaluates both generator-generated samples and

real training data samples, aiming to distinguish between the two

sources. Throughout training, these two modules engage in a com-

petitive process, each adapting to the other: the generator seeks to

generate progressively more realistic samples to deceive the dis-

criminator, while the discriminator learns to distinguish the two

sources more accurately. The standard GAN training objective can

be formulated as

min
\

max
q
Ex∼%data [log(�q (x))] +Ez∼%I [log(1−�q (�\ (z)))] (6)

where \, q denote the parameters of the generator and the discrim-

inator respectively. %data stands for the real data distribution, and

the %I is the prior distribution of the latent code. The first term

in the objective prompts the discriminator to output high scores

for real data samples. In contrast, the second term encourages the

discriminator to assign lower scores to generated samples, while

the generator is optimized to maximize the discriminator’s out-

put score. During inference, the generator will receive new latent

code samples I drawn from the known prior distribution %I , often

standard Gaussian, and produce synthetic data samples.

For private training, we adopt the DP Wasserstein GAN (DP-

WGAN) [3] implementation and its conditional variant to integrate

label information during generation. Specifically, the Wasserstein
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distance [5] is used as the training objective with the label informa-

tion acting as auxiliary input for both the generator and discrimi-

nator:

min
\

max
q
Ex∼%data [�q (x, ~)] − Ez∼%I [�q (�\ (z, ~), ~)] (7)

The DP guarantee is ensured by employing DP-SGD for discrimina-

tor updates, which in turn guarantee the privacy of the whole GAN

model and the synthetic data due to the post-processing theorem

(Theorem 3.1).

4.4 Private-PGM

The Private Probabilistic Graphical Models (Private-PGM) frame-

work [24] is designed to construct undirected graphical models

from DP noisy measurements over low-dimensional marginals,

which facilitates the generation of new synthetic samples via sam-

pling from the learned graphical model. Specifically, Private-PGM

operates on records consisting of discrete attributes. Formally, a

record is denoted as x = (G1, ..., G3 , G3+1) where each feature at-

tribute G8 for all 8∈{1, ..., 3} and the label ~ = G3+1 fall within a

discrete finite domain. Let C represent a collection of measurement

sets, where each �∈C is a subset of {1, ..., 3 + 1} (i.e., the combi-

nations of attributes), and let v� define the marginal probability

vector on � . Private-PGM first obtains DP noisy measurements

m� = W�v� + N(0, f2
�
O ) with W� denoting the linear marginal

query set over measurement set � and N(0, f2
�
O ) representing the

noise introduced by the Gaussian mechanism (with f� the noise

scale determined by the desired privacy level Y� and X . Refer to

Definition 3.2). Subsequently, it estimates the marginal v̂ that best

explain all the noisy measurement v̂ = argmin
v
‖Qv −m‖ where

Q is a block-diagonal matrix with diagonal blocks {Q� }�∈C (i.e.,

combining all the query set Q� ) and m = (m� )�∈C the combined

vector of measurements. Meanwhile, it estimates the parameter of

the graphical model using existing graph inference and learning

algorithms such as belief propagation on a junction tree.

In general, Q� can represent a complex set of linear queries

expressed over � , and its selection can be adaptively tailored to

downstream objectives. In our work, we adhere to the default imple-

mentationwhere Q� is set to be an identity matrix. This configura-

tion renders the measurement m� equivalent to the corresponding

noisy marginal v� + N(0, f2
�
O ). Moreover, for computational feasi-

bility, we adopt the basic configuration offered by the official imple-

mentation that sets C =

{
{1}, ..., {3 +1}

}
∪
{
{1, 3 +1}, ..., {3,3 +1}

}
,

which encompasses all one-way marginals as well as the 2-way

marginals associated with the label attribute. The privacy budget is

allocated uniformly across each measurement, i.e., Y� = Y/|C| with

Y the total privacy cost due to sequential composition.

4.5 PrivSyn

Similar to Private-PGM, PrivSyn [44] operates on data with dis-

crete attributes to obtain measurable (noisy) marginals. However,

while Private-PGM explicitly constructs factorized sparse graph-

ical models, PrivSyn directly generates data from the noisy mar-

ginal measurements. This approach inherently allows the use of

an implicitly dense graphical model, enhancing its expressiveness

capacity.

PrivSyn is structured to execute the following steps sequentially:

• Marginal selection: This step selects themost informativemarginals

from the candidate set to optimize the privacy-utility trade-off.

• Noise addition: DP noise is added to the selected marginal mea-

surements, ensuring privacy guarantee.

• Post-processing: This phase ensures consistency from the noisy

measurements. It addresses issues such as negative marginal

measurements, cases where probabilities do not sum up to 1, and

aligning different marginals that share common attributes.

• Data Synthesis: Starting with a randomly initialized synthetic

dataset, this step iteratively updates it to ensure alignment with

the marginal measurements.

In our experimental evaluation, we omit the more involved 2-

way marginal selection step for our dataset, as this step is prohib-

ited by the significant computation and privacy costs, which scale

quadratically with the feature dimensions. Instead, we utilize all

2-way marginals linked with the label attribute, aligning with the

approach taken in Private-PGM to ensure a fair comparison. Apart

from this, we adhere to the default configuration of the official

implementation, which allocates the privacy budget at a ratio of

1 : 8 between publishing the 1-way and 2-way marginals.

5 MULTI-DIMENSIONAL EVALUATION OF
SYNTHETIC GENE EXPRESSION DATA

Our study delved into a comprehensive assessment of various mod-

els. This evaluation was executed through a meticulous analysis of

model performance across three main aspects: utility (Section 5.1),

statistical (Section 5.2), and biological (Section 5.3) evaluation.

Each aspect encompasses distinct metrics:machine learning efficacy

for utility evaluation, marginal (histogram intersection) and joint

(distance to closest record) closeness for statistical evaluation, as

well as differential expression and gene co-expression for biological

evaluation.

5.1 Utility Evaluation

5.1.1 Machine Learning Efficacy. Evaluating the quality of syn-

thetic data typically involves a standard procedure of assessing its

performance within a downstream task. This evaluation determines

whether the synthetic data, when used as a replacement for the

real data, can accomplish the desired task with comparable effec-

tiveness. This is executed by training machine learning models on

real (train) data and evaluating their performance on held-out (test)

data. Subsequently, a parallel model is trained on synthetic data and

evaluated using the same held-out data. The choice of evaluation

metrics is determined by the specific nature of the task at hand. In

our work, we adopt the standard accuracy score for evaluating the

disease classification task.

5.2 Statistical Evaluation

Utility-based metrics, however, often offer an incomplete perspec-

tive due to their narrow evaluation lens, presenting a single facet of

the model’s performance, which can occasionally lead to mislead-

ing impressions. In order to address this potential bias, it becomes

crucial to incorporate additional statistical metrics that emphasize

the fidelity of the generation process. This entails assessing how

effectively the model captures both the marginal distribution and
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the underlying joint distribution of the data, providing a more

comprehensive understanding of its performance.

5.2.1 Histogram Intersection. The histogram intersection serves as

a prevalent qualitative tool for visualizing one-dimensional data

(i.e., single columns/attributes), enabling a comprehensive explo-

ration of the data’s distribution characteristics. Understanding such

single-dimensional distributions can be pivotal for subsequent pre-

processing and analysis steps. Prior studies have harnessed this

metric to compare the distributions of synthetic and real data by

selecting specific attributes from the real dataset and overlaying the

histograms of the corresponding real data onto the synthetic ones.

This technique, referred to as distribution matching plots, provides

a qualitative assessment of how closely the two distributions align.

However, relying solely on qualitative measures has its limita-

tions, particularly when confronted with large feature sets like

gene expression data. Manually visualizing each column becomes

impractical. This necessitates a quantitative approach that main-

tains a similar essence but can be aggregated to yield a single score.

The normalized histogram intersection metric proposed in [2] is

applicable in such scenario. It is computed as the sum of the min-

imum probability values between the real data column and the

synthetic data column. This sum is subsequently averaged across

the various columns in the dataset (see Equation 9). In contrast

to other analogous techniques like the Wasserstein distance [16]

or Jensen-Shannon divergence score [21], the histogram intersection

score demonstrates superior performance and exhibits a strong

correlation with other metrics [2] (see Appendix Fig. 10)1. This

quantitative approach strikes a balance between comprehensive-

ness and practicality, making it an effective tool for evaluating the

quality of the generated data.

?2 =
B2

|D|Δ8
@2 =

C2

|S|Δ8
(8)

HI(p8 , q8 ) =
∑

2

min(?2 , @2 ) (9)

Overlap Score =
1

3

∑

8

HI(p8 , q8 ) (10)

where p8 and q8 denote the histogram representations of the proba-

bility distributions for the real (D) and synthetic (S) datasets within

feature 8 , respectively. The terms ?2 and @2 represent the propor-

tions of category 2 for feature 8 , with B2 /C2 denoting the counts of

real/synthetic samples in category 2 . The factor Δ8 is introduced as

a normalization term, specifying the bin size for numerical features.

The term HI(p8 , q8 ) represents the histogram intersection score

for feature 8 . The dimensionality of the feature space is denoted

by 3 . The Overlap Score is computed by averaging the histogram

intersection scores across all features.

5.2.2 Distance to Closest Record. The distance to closest record met-

ric aims to measure the similarity between the joint distribution

of real and synthetic data. Obtaining an exact measurement of the

joint distribution is inherently challenging and always infeasible, as

the underlying probability distribution of the real data is unknown

and generally intractable. To circumvent this, we approximate the

1 The histogram intersection metric defined here also corresponds to 1 - total
variation distance, a popular metric that quantifies the similarity between two
probability distributions.

alignment of joint distributions using k-nearest neighbors (KNN).

This involves computing the Euclidean distance between each syn-

thetic data sample and its : nearest neighbors in either the held-out

or training set. The objective is to evaluate the plausibility of each

synthetic sample being real. The final KNN Distance score is the

average across all synthetic dataset samples and various : values,

as defined in Equation 12.

3: (x̃) = first:

(
sort

({
‖x̃ − x ‖2 | ∀x ∈ Dtrain/test

}))
(11)

KNN Distance Score =
1

|S| · :

∑

x̃∈S

:∑

8=1

3:,8 (x̃) (12)

where S denotes the synthetic set, D the real dataset, 3: (x̃) is a

sequence contain the : smallest values of distances (where sort(·)

represents the sorting operation in ascending order and first: (·)

denotes the operation for retrieving the first : elements from the

sorted sequence), with 3:,8 (x̃) denoting the i-th element of 3: (x̃).

5.3 Biological Evaluation

5.3.1 Differential Expression. There are several methods to mea-

sure differential expression, but many of them make strong assump-

tions on the distribution underlying gene expression data [4, 22, 31].

However, the question of which distribution gene expression data

follows has been subject to debate for many years [? ]. To avoid

making any (potentially false) assumptions regarding the distri-

bution, we chose a non-parametric test for the identification of

differentially expressed genes, namely the Wilcoxon signed rank

test [42]. For each pair of conditions in the data, the test was con-

ducted on the expression values of each gene measured across the

samples of the respective condition. We ran the test using the pair-

wise Wilcoxon function from the R-package scran (version 1.26.2)

and using the alternative hypothesis for each side to differentiate

between up- and down-regulation. We considered a gene as differ-

entially expressed between two conditions if the p-value was at

most 0.05. The reconstruction of DE-genes by different generative

models " at varying privacy levels Y is quantified via the mean

true positive rate ()%') defined as follows.

TPRM,Y =

∑
{08 ,0 9 }⊂A,08≠0 9

(
TPR

up

08 ,0 9 ,M,Y
+ TPRdown

08 ,0 9 ,M,Y

)

2 ·
( |A |
2

) (13)

where A denotes the set of condition pairs (each pair representing

different disease types distinguished by unique label classes in our

case). TPR
up (down)

08 ,0 9 ,M,Y
signifies the true positive rate for identifying

up-regulated (or down-regulated) DE-genes within synthetic data

generated by the model M under a given privacy budget Y, in

comparison to the actual DE-genes observed in the real dataset

for conditions 08 and 0 9 .
( |A |
2

)
represents the count of all possible

unordered condition pairs.

5.3.2 Gene Co-Expression. To assess if groups of co-expressed

genes that are present in the real data were preserved in the syn-

thetic data, we applied hCoCena [26], an R-package that enables the

integration of different gene expression datasets, i.e., the real and the

synthetic data in our case, and their subsequent joint co-expression

analysis. The tool creates a gene co-expression network for each set,

which is a weighted graph� = (+ , �), where the nodes+ represent
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Class AML ALL CML CLL Other Total

# Samples 508 12 14 13 634 1181

Table 2: Dataset summary. Listed are the different sample classes

present in the dataset and the number of samples in each class.

genes, edges � represent co-expressions and the edges are weighted

with the co-expression strength. The weightF is computed as the

Pearson correlation coefficient A (see Equation 3) between their ex-

pression values across samples, such thatF (4 9,: )=A 9: . Afterwards,

genes that are not significantly strongly co-expressed according to

a user-defined correlation cut-off with any other gene are discarded

to only include strong co-expressions that are potentially biologi-

cally meaningful. A gene co-expression network is created for each

dataset. We then used these co-expression networks to identify the

number of co-expressions (i.e., graph edges) that were correctly

reconstructed in the synthetic data and the number of spurious

co-expressions introduced in the synthetic data that did not exist in

the real data. Additionally, modules of strongly co-expressed genes

were identified in the network of the real dataset using the Leiden

community detection algorithm. We investigated themean group

fold-changes (GFCs) for the detected modules across conditions

in the real and the synthetic data. GFCs are a metric for the average

expression of a module in a group of samples, i.e. all samples of

a particular experimental condition, essentially representing the

activation or deactivation of the module under the given condition.

6 EVALUATION

6.1 Dataset

The generative models were trained on a bulk RNA-seq dataset com-

piled byWarnat-Herresthal et al. [41], which comprises a reasonable

number of independent samples, rendering it suitable for DP train-

ing (see Section 8 for detailed discussion). The dataset is structured

as a matrix, with rows corresponding to samples and columns to

features. Each row represents a biological specimen obtained from

a patient, while each column indicates the expression level of a

particular gene. The expression levels are quantified by RNA-seq

counts, with higher integer values indicating greater gene activ-

ity. It comprises samples from 5 disease classes, 4 classes of which

are types of leukemia and the fifth class is the category “Other”,

which is made up of samples from various other diseases as well as

healthy controls. The 4 leukemia types are acute myeloid leukemia

(“AML”), acute lymphocytic leukemia (“ALL”), chronic myeloid

leukemia (“CML”) and chronic lymphocytic leukemia (“CLL”). Sam-

ple counts per class are listed in Table 2. As per the original pub-

lication, the data were normalized with DeSeq2 [22] to account

for varying sequencing depths and RNA composition, which is

necessary to compare expression levels of different samples and

conduct a DE-gene analysis. Given the high dimensionality of the

features (more than 12k genes) and the comparatively low sample

size (1181), we reduced the feature space to 958 genes. Notably,

even this reduced feature dimension remains significantly high,

especially when compared with standard benchmarking datasets

which typically comprise merely dozens of features.

These 958 genes were not selected randomly but based on their

characterization as landmark genes in the LINCS L1000 project [35].

The landmark genes were identified as representative genes that,

when measured, allow the inference of around 20k other genes.

Pre-processing and Post-processing. In accordance with stan-

dard practices, we pre-processed our data prior to model training.

For RON-Gauss, GAN, and VAE, which operate on continuous data

expected to be well-centered, we standardized each feature by sub-

tracting its mean and dividing by its standard deviation. Conversely,

for Private-PGM and PrivSyn which rely on discrete representa-

tions for computing marginals, we discretized each feature into

four bins based on its quantiles: <25%, 25%-50%, 50%-75%, and >75%.

This approach was chosen to accurately represent up- and down-

regulation, while also maintaining a condensed format (resulting

in a limited number of bins after discretization) for an optimized

privacy-utility trade-off.

After training and generation, we implemented the following

post-processing measures:

• For RON-Gauss, GAN, and VAE: We reverted the standardization by

multiplying the generated data features by the standard deviation

and adding back the mean (both the standard deviation and the

mean were pre-computed on the real dataset).

• For Private-PGM and PrivSyn: We mapped the generated dis-

crete data back to the original continuous mean value associated

with each bin.

We verify the efficacy of our approach via our preliminary experi-

ments: the continuous pre- and post-precessing was proved to be

lossless, while the discrete one did not affect the biological and

utility evaluation.

In line with the common evaluation protocol adopted in DP liter-

ature, we do not incorporate DP into the pre- and post-processing

process, and the label class occurrence ratio is treated as public

information and used during generation. This approach aids in

producing meaningful evaluation results and offers a more accurate

indication of performance, particularly given our challenging setup.

However, it is crucial to note that in real-world applications, all

such processes including the hyperparameter selection [28] would

require DP sanitization to ensure stringent privacy protection. Al-

though implementing such sanitization is generally technically

straightforward (e.g., either computed on public data or using DP

techniques such as Algorithm 2 in [38] and [13] for DP sanitization

techniques applicable to continuous and discrete processing, respec-

tively), it can lead to considerable utility loss in bio-data, mainly

due to limited sample sizes, which warrants further discussion and

investigation.

6.2 Setup

We follow the official implementation for methods that offer open-

source code: RON-Gauss2, GAN3, Private-PGM4, PrivSyn5 and adopt

the default hyperparameter setting tuned for general tabular datasets.

We adhere to such setting as further attempts at fine-tuning did not

give rise to notably better results in our preliminary experiments.

2 https://github.com/inspire-group/RON-Gauss/tree/master
3 https://github.com/nesl/nist_differential_privacy_synthetic_data_challenge/
4 https://github.com/ryan112358/private-pgm
5 https://github.com/usnistgov/PrivacyEngCollabSpace/tree/master/tools/de-

identification/Differential-Privacy-Synthetic-Data-Challenge-Algorithms/
DPSyn
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can potentially be attributed to the loss in precision resulting from

the reverse transformation inherent in the discretization process,

which may dominate the additional information loss incurred by

privacy constraints. Interestingly, despite the modest performance

in this metric, the same models excel in the private case for the

machine learning efficacy metric. This underlines the necessity of

evaluating synthetic data from various generative models across

an array of metrics to gain a comprehensive understanding of their

behavior relative to real data.

7.2.2 Distance to Closest Record. This metric aims to approximate

the likelihood that a synthetic data sample originates from the

distribution of real data samples. This measurement relies on the

K-Nearest Neighbors (KNN) approximation technique. In our ex-

perimental setup, we specifically set the value of k to 10, which

dictates the computation of the KNN Distance Score according

to Equation 12. We use the scikit-learn KNN estimator7 to compute

the nearest neighbors distance of each synthetic sample to the real

test data. Fig. 1(c) shows the averaged 10-NN distance score for

different epsilon values (x-axis) and diverse generative models. A

higher proximity of this score to the reference established by the

real data implies a greater likelihood that the joint distribution of

real and synthetic data aligns closely. Scores falling below the refer-

ence point set by real data imply that the synthetic data samples are

closely aligned with the distribution of the real test data. However,

it is essential to exercise caution while interpreting these results

due to the relatively small size of the test set. Making assertive

conclusions based solely on these findings might be premature.

Results and Findings. Intuitively, we anticipate that the score for

this metric should be lower, indicating closer alignment to the real

data reference (depicted by the black dashed line) in the non-private

setting. As privacy levels increase, we expect a moderate increase in

the distance—moving from Y = 100 to Y = 5. This examination aims

to substantiate the assertions made by prior study [29] that this

metric has the potential to quantify privacy. However, the results

illustrated in Fig. 1(c) present a counter-intuitive observation. All

models, excluding the graphical-based models Private-PGM and

PrivSyn, demonstrate distances below the real data reference. This

holds true for both private and non-private scenarios. Notably, the

VAE model stands out, exhibiting a low distance to the closest test

record (i.e closest to the real data reference but still falls below

the black dashed line). This shows a relative drop of 48% when

contrasted with the reference established by real data. Notably,

the Private-PGM and PrivSyn models, which yield unsatisfactory

outcomes in the histogram intersection metric, also exhibit the

most substantial distances to the real data reference. This persistent

distance above the black dashed line further indicates that the

reverse discretization process could lead to a loss of precision in

these models. Additionally, for the VAEmodel, across the Y = 5 to Y =

50 range, there’s a pronounced variance in scores across different

experimental random seeds. This variance might offer insights into

the model’s sensitivity behavior in the private case.

7.2.3 Summary of Utility and Statistical Evaluation. The observed

results of Fig. 1 underscore the necessity of assessing diversemetrics

7 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
NearestNeighbors.html

when evaluating synthetic data. Moreover, it brings to light an

intriguing revelation: even if the synthetic data strays from both

marginal and joint distributions, it still exhibits the capacity to

maintain substantial downstream utility tasks. This observation

reinforces the significance of a comprehensive evaluation approach

that considers various aspects of data behavior and performance.

7.3 Biological Evaluation

To evaluate the different models for biological soundness, we as-

sessed their capabilities of maintaining two biological aspects in

the generated synthetic data: (1) the preservation of differential ex-

pression by assessing the TPR and FPR of reconstructed DE-genes

per model and across privacy parameters and (2) the preservation

of co-expressions between genes, i.e., their Pearson Correlation

Coefficients r as well as the activation of co-expressed modules.

The models were evaluated once without the constraint of DP and

then with DP using Y = 5, 10, 20, 50, 100.

7.3.1 Differential Expression. We first compared the models’ abil-

ity to maintain DE-genes in a non-private case. As shown in Fig. 2,

it can be observed that the TPR was high for PrivSyn and VAEmod-

els, reaching more than 75% on both data split seeds. RON-Gauss ,

Private-PGM and GAN showed subpar results, with the GAN model

performing particularly poorly. Regarding the FPR, all models main-

tained rates below 25%, with PrivSyn and Private-PGM reaching

FPRs close to zero. For the DP-case, we observe from Fig. 2 the

following:

• VAE: At a privacy parameter Y = 100, the TPR decreases noticeably

in comparison to the non-DP setting from around 75% on average

to approximately 50%. As Y is reduced further, the TPR continues

to show a decreasing tendency, albeit at a less steep rate. Even at

the lowest privacy budget of Y = 5, the TPR of VAE remains higher

than that of the GAN in the non-DP setting. Moreover, VAE shows

better or equal TPR than PrivSyn at low Y values, and outper-

forms RON-Gauss across all Y but underperforms Private-PGM

once DP is introduced.

The FPR increases slightly when introducing DP but remains

largely stable for different values of Y.

• GAN:The TPR of DE-genes in the GAN model observed under non-

DP conditions remains poor at the introduction of DP and decreas-

ing Y, staying below 20%, while the FPR remains stable (around

10%) across all Y.

• RON-Gauss: The TPR of the RON-Gauss model drops when intro-

ducing DP. Intriguingly, and somewhat against expectations, it

exhibits a slight improvement as the privacy loss Y decreases, yet

it still only attains low values (around 30%). Concurrently, the

FPR steadily increases with decreasing Y, eventually approaching

the TPR.

• Private-PGM: The TPR of Private-PGM exhibits a slight increase

with decreasing Y, with Private-PGM outperforming all other

models for Y ≤ 50. Conversely, the FPR rate also increases drasti-

cally, reaching around 35%.

• PrivSyn: While PrivSyn showed near perfect TPR in the non-DP

setting, it is strongly impacted by the introduction of DP, falling

below VAE and Private-PGM for Y ≤ 50. This performance loss is

similarly reflected in the increasing FPR with decreasing Y values.
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In summary, while PrivSyn and VAE demonstrate good preserva-

tion of DE genes in the non-DP case, their performances drop when

introducing DP and they are surpassed by the Private-PGM model.

However, this boost in DE-gene preservation of the Private-PGM

model is accompanied by an increasing false positive rate, possibly

indicating that the Private-PGM model generally tends to gener-

ate more DE genes, however without biological correctness. Both

the GAN and the RON-Gauss models perform poorly on this metric,

especially in the DP case.

7.3.2 Co-expression. Here, we investigated both the general preser-

vation of co-expressed genes as well as the activation and deactiva-

tion of strongly co-expressed gene sets, so-called modules, detected

in the real data. The preserved co-expressions as well as the activa-

tion patterns of co-expressed gene modules were assessed once for

all positive correlations identified in the data (r > 0) (Fig. 3, Appen-

dix Fig. 11-15) and once after filtering for only highly co-expressed

genes (r > 0.7) (Appendix Fig. 16-18). The latter is motivated by the

typical interest in strongly correlated genes during co-expression

analyses. The detection of gene modules was performed on the

real data for these respective filtering thresholds. In both cases,

co-expressions were filtered for associated p-values < 0.05.

We first investigate the non-private case. When considering all

co-expressions with A > 0, the VAE reconstructed most of the them

while only introducing few false ones that did not exist in the real

data (Fig. 3). It further maintained highly similar patterns of up- and

down-regulation in the gene modules (Appendix Fig. 11), with sam-

ples clustering by class rather than dataset. The GAN model had less

correctly and more incorrectly reconstructed co-expressions than

the VAE (Fig. 3) and the patterns of activation in the gene modules

do not match the real data (Appendix Fig. 12). The Private-PGM

and PrivSyn models had very similar performances, with more

correctly than incorrectly reconstructed co-expressions, however

only reconstructing half of the co-expressions found in the real data

(Fig. 3). The activation of the gene modules was well reconstructed

(Appendix Fig. 13, 14). The number of correctly and incorrectly

reconstructed co-expressions was almost equal for the RON-Gauss

model (Fig. 3) and activation patterns in the gene modules were al-

most entirely lost (Appendix Fig. 15). Reducing the co-expressions

to only those with A > 0.7, only the VAE model and one of the

sampling seeds for the GAN yielded any results. The VAE correctly

reconstructed most co-expressions from the real set but addition-

ally introduced an almost equal number of incorrect co-expressions

(Appendix Fig. 16). Activation patterns in gene modules were well

preserved (Appendix Fig. 17). In the data generated by the GAN, the

number of incorrectly introduced co-expressions was very high

(Appendix Fig. 16) and activation patterns in the gene modules

remained poor (Appendix Fig. 18).

For the DP-case, we list below our findings:

• VAE: For all co-expressions with A > 0, the number of correct

co-expressions reconstructed by the VAE reduced gradually when

introducing DP with decreasing Y (Fig. 3). Meanwhile, the num-

ber of incorrect co-expressions more than doubled. Activation

patterns of gene modules were well maintained for the classes

CML, AML and Other at Y = 100 and 50. For lower Y, the character-

istic patterns of the modules were increasingly lost as illustrated

in Fig. 4, indicated by the increasing lack of distinctive colors.

While the order of gene modules (rows) is fixed to improve com-

parability, the order of sample groups (columns) is dictated by

their hierarchical clustering. This is intended, since it illustrates

similarity between module expression of different conditions in

the different datasets. In the case of biologically high-quality

synthetic data, synthetic samples are expected to co-locate with

real samples of the same condition. Note that the results are only

shown for one seed used for splitting the dataset for training.

Detailed illustrations for all Y and seeds can be found in Ap-

pendix Fig. 11. If the synthetic data successfully captured the

co-expression modules, disease classes are expected to cluster

together across synthetic and real data. Focusing only on highly

co-expressed genes with A > 0.7, a high number of co-expressions

is introduced that do not occur in the real data (Appendix Fig. 16).

Preservation of module activation is comparable to that observed

when selecting co-expressions with A > 0 (Appendix Fig. 17).

• GAN: When considering all co-expressions with A > 0, the num-

ber of correctly reconstructed co-expressions decreased and the

number of incorrect ones increased when introducing DP with

Y = 100 and reducing this value did not impact the metric further

(Fig. 3). The module activation patterns from the real data are

almost entirely lost with the modules demonstrating homoge-

neous activation (Appendix Fig. 12). When filtering for A > 0.7

there were no co-expressions left for any of the Y-values.

• Private-PGM & PrivSyn: The Private-PGM and PrivSyn mod-

els demonstrated similar behavior, with the number of recon-

structed co-expressions barely being affected by introducing vary-

ing levels of privacy in comparison to the non-DP case (Fig. 3).

Private-PGM maintained the module activation patters for very

high Y-values (100 and 50) and for lower Y (20, 10, 5) patterns of

large classes such as AML and Other where maintained, but de-

graded for the smaller classes (Appendix Fig. 13). Similar results

are observed for PrivSyn, with the exception that the degrada-

tion of activation patterns already starts at Y = 50 (Appendix

Fig. 14). Like the GAN, both models did not generate any signifi-

cant co-expressions exceeding A > 0.7.

• RON-Gauss: While in the non-DP case, the number of incorrect

co-expressions was still slightly lower than that of correct ones,

this changes in the DP-case (Fig. 3). Decreasing values of Y, how-

ever, not only gradually increased the number of incorrectly

reconstructed ones, but also that of the correctly reconstructed

co-expressions. The gene modules lose their distinctive patterns,

showing uniform activation and thus the synthetic data is cluster-

ing distinctly away from the real data for all Y (Appendix Fig. 15).

As was the case for all models but the VAE, no high co-expressions

with A > 0.7 were generated by the RON-Gauss model.

In summary, all models except the VAE struggled at correctly recre-

ating strong co-expressions and even the VAE was prone to intro-

ducing a high number of incorrect co-expressions for A > 0.7. Also

for weaker co-expressions, introducing DP strongly impaired the

utility of the data both in terms of general co-expressions as well

as the activation and inactivation of highly co-expressed modules,

with only high Y-values of 100 and 50 maintaining the co-expression

structure in the data of some models but not offering any consider-

able privacy.
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8 DISCUSSION AND FUTURE DIRECTIONS

Private vs. non-private synthetic data. The biological evalu-

ation of the different models yielded that some model types are

capable of generating synthetic data with high biological utility

in the non-DP case. However, the incorporation of DP, though

essential for maintaining privacy, significantly hampers their per-

formance. In examining the generally top-performing VAE models

through membership inference attacks (Section 3.1), we found that

non-DP training poses a considerable privacy risk, with AUC-ROC

scores of 0.949 and 0.614 for white-box (implemented following

[15]) and black-box attacks (implemented following [9]), respec-

tively. Notably, setting the privacy budget at a relative high level of

Y=100 resulted in a rapid decline of AUC-ROC scores to around 0.52

in both scenarios. While such high privacy budgets Y =100/50 in

some cases still allowed good reconstruction of biology properties

as measured by our metrics, these budgets are generally too high

to be considered strictly privacy-preserving.

Challenges of low sample regime. As has become apparent in

the analysis of activation patterns of co-expressed modules, classes

with low sample counts were the first to lose their activation pat-

terns with decreasing privacy budgets. However, such low sample

sizes are highly common in gene expression datasets given the often

low availability of sampling material. This is particularly the case

for rare diseases or samples that can only be acquired with inva-

sive and/or risky medical procedures. Another point that requires

addressing is the feature space. The results presented here were

achieved on a strongly reduced feature space of approximately 1000

genes, with gene expression datasets often comprising 20-times as

many features. The observed limitations of differentially private

data generation can thus be expected to increase further when

attempting to generate full sets.

Comparingmodels. The biological evaluation indicated that some

model architectures (VAE, PrivSyn and sometimes Private-PGM)

are better than others (GAN, RON-Gauss) at learning and generat-

ing such highly complex, non-normally distributed data like gene

expressions. In general, VAE stands out with the best overall per-

formance, likely because of their substantial expressive capacity,

which outperforms simpler probabilistic models like RON-Gauss

and methods dependent on low-dimensional approximations, such

as PrivSyn and Private-PGM. Moreover, VAEs benefit from stable

training processes, advantageous in scenarios with limited samples,

unlike the less stable GANs. However, incorporating privacy into

this process presents challenges, while maintaining biological util-

ity in a privacy-preserving manner requires further research and

possibly more data.

Dependent data. In certain scenarios where the dataset used con-

tains dependent records—such as those associated with the same

individual (e.g., single-cell data), a transition to a more advanced

level of protection becomes imperative, wherein the goal shifts to

preserving each group of dependent records (referred to as Group-

level DP). However, this elevation in privacy protection comes

with the trade-off of injecting more noise, potentially leading to a

greater compromise in the quality of the synthetic data. Further-

more, the task of defining a set of dependent records is not always

straightforward. For instance, while it is evident that individuals

within the same family often share a common genomic heritage,

the extent of relatedness to consider when forming such groups re-

mains ambiguous. Determining whether to include only immediate

family members like parents and siblings or to encompass more

distant relatives poses an additional challenge. Due to these intri-

cate aspects of privacy considerations, we opt to exclude single-cell

datasets from our analysis, despite their potential size advantage

for assessing non-DP generative models.

General-purpose synthetic data vs. task-specific data. Pro-

viding general-purpose private synthetic data that is useful for all

kinds of downstream tasks while preserving statistical and biolog-

ical properties is still a highly challenging task. Having accurate

generators would also imply a strong model and insights for the

respective domain, which is often not the case for many bio-medical

applications. In addition, small sub-population might not be rep-

resented and suffer from mode collapse issues of the generator. It

has also been recently questions to what extend such an ultimate

solution can be achieved at all [33, 34]. While it is difficult to predict

how these trade-off develop in the future, the increased available

of such medical data will have a positive effect. In addition, task-

specific data generation (e.g. [8]) in a data distillation approach

can relax the objectives, but is also departing from the goal of pre-

serving statistic and biological properties by mostly focusing on

downstream utility.

9 CONCLUSIONS

We provide the first systematic analysis of non-private and differ-

entially private generation of gene expression data that covers five

diverse modeling approaches ranging from simple density estima-

tion over graphical models to deep generative models. Our analysis

encompasses a diverse set of metrics that shed light on the quality

of the generated data in terms of statistical and biological properties

as well as down-stream utility. A key message of our work is that

such a broad evaluation is necessary in order to understand the

limitations of current generators. Overall, simple estimators fall be-

hind in performance but equally very complex models like GAN are

suffering from the low sample regime as typically encountered in

bio-medical applications. While downstream utility can be strong,

the synthetic data itself might not retain statistical nor biological

properties. Adding privacy preserving estimation and learning of

the generators amplifies these problems. A general model recom-

mendation is difficult to provide, as these trade-offs will shift as

more data is going to become available in the future. However, we

see a tendency that the evaluated graphical models have retained

better the differential expression and the variational autoencoder

retained better the co-expression - in particular when privacy is

added. We release our setup and evaluation framework in order to

further drive progress in this domain8.
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(a) Y = 5, seed 1 (b) Y = 10, seed 1 (c) Y = 20, seed 1

(d) Y = 50, seed 1 (e) Y = 100, seed 1 (f) non-priv, seed 1

(g) Y = 5, seed 2 (h) Y = 10, seed 2 (i) Y = 20, seed 2

(j) Y = 50, seed 2 (k) Y = 100, seed 2 (l) non-priv, seed 2

Figure 18: Activation patterns of co-expressed gene modules in VAE after filtering co-expressions for A > 0.7. Shown are the Group

Fold Changes (GFCs) of gene modules (rows) in the real and the synthetic data sampled with two different seeds. Numbers on the right

indicate the number of genes per module. Darker shades of red imply activation of the gene module, while darker shades of blue indicate

deactivation. The dendrograms show the hierarchical clustering of the classes in the different data sets. A heatmap is shown for each Y twice,

once for each seed used to split the training data. Each heatmap further features, in addition to the real data, data from two synthetic sets,

one for each seed used to generate the data. Note that only one data generation seed yielded any co-expressions above > 0.7 in case of Y = 20,

data split seed 2. A general fading of module activation can be observed for decreasing privacy budgets, indicating poor reconstruction of

module activation patterns in the synthetic data.
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