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Abstract

Amino acid scales are crucial for protein prediction tasks, many of them being curated in the AAindex
database. Despite various clustering attempts to organize them and to better understand their relation-
ships, these approaches lack the fine-grained classification necessary for satisfactory interpretability in
many protein prediction problems. To address this issue, we developed AAontology—a two-level clas-
sification for 586 amino acid scales (mainly from AAindex) together with an in-depth analysis of their rela-
tions—using bag-of-word-based classification, clustering, and manual refinement over multiple iterations.
AAontology organizes physicochemical scales into 8 categories and 67 subcategories, enhancing the
interpretability of scale-based machine learning methods in protein bioinformatics. Thereby it enables
researchers to gain a deeper biological insight. We anticipate that AAontology will be a building block
to link amino acid properties with protein function and dysfunctions as well as aid informed decision-
making in mutation analysis or protein drug design.
� 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license (http://creativecom-

mons.org/licenses/by/4.0/).
Introduction

Amino acids are vital to numerous biological
processes, and understanding their
physicochemical properties is critical for protein
bioinformatics research. The AAindex database1–4

provides comprehensive quantifications of these
properties (e.g., volume, charge, or hydrophobicity)
in form of 566 numerical indices (also called
scales). Obtained by 149 studies from over six dec-
ades of research, these scales constitute valuable
features for machine learning models.5–7 However,
the redundancy of AAindex—exemplified by the
presence of over 30 scales for hydrophobicity
alone—and its sometimes ambiguous annotations
impede the development of highly-needed inter-
pretable machine learning models.8,9
or(s). Published by Elsevier Ltd.This is an op
Efforts to cluster the AAindex database have
aimed to organize amino acid properties and
elucidate their relationships. In 1988, Kenta et al.1

created the first version of AAindex by collating
and hierarchically clustering 222 scales (using
agglomerative clustering with single-linkage10,11 into
four groups: alpha and turn propensity, beta propen-
sity, hydrophobicity, and other properties such as
bulkiness. This work was extended by Tomii et al.2

in 1996, introducing two new groups (amino acid
composition and physicochemical properties) for
the updated 402 indices, underscoring the impor-
tance of studying amino acid scale relationships.
An update in 2008 expanded AAindex to 544
scales,4 leading Saha et al.12 to conduct a consen-
sus fuzzy clustering analysis in 2012,13 where
scales were clustered by various algorithms and
then assigned via majority voting, yielding eight
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clusters. They introduced three new groups: electric
properties, residue propensity, and intrinsic proper-
ties—while eliminating ‘other properties’. Moreover,
they addressed the issue of scales not being clus-
tered into main clusters by assigning them to the ‘in-
trinsic property’ group. In 2016, Simm et al.14

clustered 98 hydrophobicity scales, mostly from
AAindex, emphasizing their impact on secondary
structures. Lastly, in 2018 Forghani and Khani15 per-
formed a multivariate clustering analysis on the lat-
est version of AAindex (566 scales, 2017),
revealing issues with clustering algorithms’ perfor-
mance and their dependence on settings, particu-
larly for models with pre-defined cluster number
such as k-means.16 Using various clustering quality
measures, including the silhouette coefficient17 and
the Calinski Harabasz score,18 they determined opti-
mal numbers of clusters: 2, 3, and 9. However, these
clusters were not further biologically characterized.
While the existing studies have advanced our

understanding of amino acid properties, two
limitations hinder their direct use in protein
prediction. The first limitation, redundancy, occurs
when similar properties are grouped, potentially
merging distinct but related properties such as
charge and polarity. The second issue, limited
interpretability, stems from clustering only based on
statistical similarity, which may not reflect the
biological meaning or functional relationships.
Moreover, current efforts oversimplify the diversity
of property scales by confining them to a few
clusters without adequately mitigating their
complexity. Therefore, a pressing need exists for a
more fine-grained and biologically meaningful
classification to meet diverse research requirements.
Here, we introduce AAontology, a two-level

ontology19,20 of amino acid scales, a systematic
description of scales, and a comprehensive analysis
of their relationships. AAontology organizes amino
acid property scales into 8 categories and 67 subcat-
egories based on their numerical similarity and
physicochemical meaning. It enhances their inter-
pretability, particularly for scale-based machine
learning in protein prediction tasks.21–24 This frame-
work may serve as the foundation for systematically
exploring the relationships between physicochemical
properties and protein functions (e.g., cellular signal-
ing,25,26 molecular recognition,27 or membrane inser-
tion28and dysfunctions (e.g., oncogenicity29–31 or
aggregation linked to diseases such as Alzheimer’s
disease.32–34 In addition, it may also propel informed
decision-making in mutation analysis35–40 or drug
design of proteins such as antibodies.41,42 Thus,
AAontology promises to deepen our understanding
of the multifaceted landscape of protein biology.

Results

Creation of AAontology

We developed AAontology by compiling a dataset
of 586 amino acid scales (Supplementary Table 1),
2

sourced from the AAindex database4 and two addi-
tional studies.43,44 Using clustering and knowledge-
based criteria, these scales were first automatically
assigned to categories and subcategories, and then
manually refined to ensure that the classification
accurately reflects biological meanings. This pro-
cess, from initial classification to the refined two-
level classification into 8 categories and 67 subcat-
egories, is depicted in the graphical abstract.
Figure 1 further details our classification

workflow through a Sankey diagram, beginning
with a bag-of-words approach, where scales are
assigned to categories based on key terms in
their names or descriptions. Subsequently,
scales within each category were clustered into
subcategories using our AAclust clustering
framework,45 which serves as a wrapper for clus-
tering models that require a pre-defined number of
clusters, such as k-means.16 AAclust optimizes
the number of clusters (subcategories) to guaran-
tee that each cluster meets a minimum similarity
criterion, specifically ensuring that all pairwise
Pearson correlations between members (scales)
within a cluster are higher than a defined threshold
(e.g.., 0.3 Pearson correlation coefficient, indicat-
ing at least week positive correlation). Finally, the
assignments of scales to subcategories and cate-
gories were manually curated based on biological
knowledge. These steps were iteratively repeated
to refine and ensure consistency in the classifica-
tion and the naming of subcategories. For com-
prehensive details, see Materials and methods
and Supplementary Table 2.
To assess the coherence and validity of our two-

level classification, we analyzed the Pearson
correlations between scales within each
category. Figure 2 shows a heatmap for every
category, where each subcategory demonstrates
a strong internal consistency with a minimum
Pearson correlation of 0.3, visualizing the
robustness of our semi-automatic classification
approach. A Pearson correlation threshold of 0.3
was chosen for creating AAontology as a good
tradeoff between numerical strictness (ensuring
that scales within each subcategory exhibit at
least a weak positive correlation) and the
manageability of the resulting number of
clusters, aiming for an outcome of 50–100
subcategories. While the average pairwise
Pearson correlation within each subcategory is
0.68, a stricter threshold, such as 0.4, would
result in over 100 subcategories, with many
scales forming single-member clusters. While
most subcategories (e.g., volume or
hydrophilicity) contain many highly correlated
scales, a few subcategories (e.g., charge or
entropy) include only a few scales that reflect
unique physicochemical properties. Scales that
could not be classified based on these
correlation criteria or lacked clear literature-
based assignments were labeled as



Figure 1. Creation of AAontology. Sankey diagram showing the process of scale classification. 586 amino acid
scales from 151 publications were first automatically assigned to 8 different categories using a bag-of-word approach
based on their scale description. Key references with the number of containing scales are given. Next, an automatic
subcategory assignment was performed using clustering with AAclust.45 Finally, subcategory and category
assignment were manually refined including the renaming of the automatically created subcategories. This procedure
was repeated over multiple iterations to refine subcategory names and scale assignment.
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‘unclassified’ and grouped separately within their
respective category.
AAontology: Two-level classification of scale
categories and subcategories

The two-level AAontology classification of 586
amino acids scales into 8 categories and 67
subcategories is depicted in Figure 3. This
taxonomic hierarchy19,20 provides meaningful rela-
tionships at the level of individual scales and scale
subcategories.

Scale categories

Scale subcategories were manually named using
our bag-of-word analysis as guidance and
consolidated based on selected studies. Brief
descriptions of each scale, scale subcategory, and
scale category can be found in Supplementary
Table 3. Each category (Figures 4–11) including
their subordinated scale subcategories will be
described in the following.

Accessible surface area (ASA)//Volume. The
‘ASA/Volume’ category comprises around 60
scales and 5 subcategories describing properties
related to the general volume of amino acids and
3

their preference of being either accessible to
solvent, reflected by their ASA, or being not
accessible to solvent, i.e., being buried within a
folded protein.
Accessible Surface Area (ASA) (n = 23)

measures the residue surface area that is
accessible/exposed to solvent (typically water),
obtained from folded proteins. It indicates the
ability of residues to interact with water, mainly at
the protein surface. Residues with larger ASA
often participate in protein–protein interactions,
with higher ASA being more typical for polar
residues with longer side chain
(lysine > arginine > glutamic acid > glutamine).44,46

Hydrophobic ASA (n = 3) measures the residue
surface area that is solvent-accessible and
hydrophobic, obtained from folded proteins. This
reflects the hydrophobic area exposed to water at
the protein surface. This value is remarkably high
for lysine—due to its long hydrophobic side chain
ending in a polar e-amino group—followed by
proline, a hydrophobic residue often found in b-
turns on the protein surface. Conversely, aromatic
residues show moderately low values due to their
less frequent occurrence on the protein surface.44

Buried (n = 12), as opposed to ASA, represents
the propensity of amino acids to be buried within
the protein core, shielded from the exterior



Figure 2. Correlations between scales in each category. Heatmaps for the eight scale categories (color-coded)
comprising distinct subcategories with highly positive correlated scales. Each subcategory fulfills a minimum within
Pearson correlation of 0.3, which was used as minimum quality criteria for the semi-automatic scale classification.
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solvents. These concealed residues are crucial for
the protein stability and folding, driven by
hydrophobic interactions and disulfide bridges.
Consequently, cysteine and large hydrophobic
residues tend to be particularly buried.46,47

Volume (n = 17) is a direct measure of the amino
acid size. Larger amino acids can enhance protein–
protein interactions48 and foster protein stability
through long-range interactions.49 However, their
size requirements can impact chain packing.50 This
becomes crucial when mutations alter amino acid
size in densely packed protein cores, which can
lead to destabilization.51 Aromatic amino acids
(tryptophan > tyrosine > phenylalanine) and argi-
nine are the largest, while glycine and alanine are
the smallest.52
4

Partial specific volume (n = 9) reflects the
effective amino acid volume in water, accounting
for both physical volume and additional water
displacement due to residue-solvent
interactions.53 Also included in this subcategory
are hydrophobic interactivity potential54 and bulki-
ness (i.e., the side chain volume/length ratio).55

These properties affect protein structure by promot-
ing stability and introducing steric hindrances. Argi-
nine, despite its high Volume, exhibits only a
moderate Partial specific volume as it lacks addi-
tional hydrophobic water displacement. In contrast,
large hydrophobic residues, particularly branched-
chain amino acids (isoleucine, leucine, valine)56

and aromatic residues (phenylalanine, tryptophan,
tyrosine), score highest.54,55,57



Figure 3. AAontology: Categories and subcategories. Two-level hierarchy of AAontology comprising 67
subcategories within the following 8 categories (excluding unclassified scales): ‘ASA/Volume’ (blue; ‘ASA’: Accessible
Surface Area) with 5 subcategories, ‘Composition’ (orange) with 5 subcategories, ‘Conformation’ (green) with 24
subcategories, ‘Energy’ (red) with 9 subcategories, ‘Others’ (gray) with 6 subcategories, ‘Polarity’ (yellow) with 6
subcategories, ‘Shape’ (light blue) with 6 subcategories, and ‘Structure-Activity’ (brown) with 6 subcategories. Each
category is visualized by a donut plot, with its size approximately reflecting the number of scales assigned to the
respective category.
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Composition. The ‘Composition’ category
includes around 60 scales and 5 scale
subcategories regarding the frequency of amino
acid occurrence in different types of proteins, such
as membrane proteins or the mitochondrial
proteins.
AA Composition (n = 23) represents the overall

frequency of amino acids (abbreviated here as
‘AA’) in proteins, largely independent of
subcellular location or the residue position within a
protein. This subcategory also comprises specific
compositions, such as those of intra- or
extracellular proteins, that correlate strongly with
the general composition. Most abundant are
alanine, leucine, and glycine, while amino acids
containing a sulfur atom (methionine, cysteine) or
a nitrogen atom within an aromatic ring
(tryptophan, histidine) occur less frequently.58–60

AA Composition (Surface) (n = 5) reflects the
propensity of amino acids to occure at the protein
surface compared to the protein interior. Polar
amino acids typically occur frequently on the
protein surface, with aspartic acid and lysine being
the most prevalent.61

Membrane Proteins (MPs) (n = 13) describes the
amino acid frequency in transmembrane domains.
These a-elical domains traverse cellular
membranes, forming parts of either single-
5

spanning or multi-spanning membrane proteins.
Given their specialized roles within lipid-rich
environments, these domains exhibit a distinct
composition, predominantly non-polar amino acids
(leucine > valine > alanine, phenylalanine), with
methionine and tryptophan appearing least
frequently.62,63

MPs (anchor) (n = 11) refers to the frequency of
amino acids occurring in the N-/C-terminal regions
flanking the transmembrane domains (TMD) of
membrane proteins. The flanking regions fortify
the anchoring of the hydrophobic TMDs64 through
strong partitioning between the hydrophobic and
hydrophilic phase.65,66 They terminate TMD helices
by short motifs of hydrophilic amino acids, typically
comprising charged helix-capping and/or helix-
breaking residues (proline and glycine).67 The N-
terminal region is characterized by negatively
charged/acidic residues, especially aspartic acid
but also asparagine. In contrast, the C-terminal
region follows the positive-inside rule,68 with poly-
basic motifs (arginine, lysine) enhancing protein-
phospholipid interactions at the interface.65,67,69

Mitochondrial Proteins (n = 4) focuses on the
frequency of occurrence of amino acids in
mitochondrial proteins. Similar to membrane
proteins, they are rich in hydrophobic residues,
but typically with less valine.62



Figure 4. ASA/Volume category. Circular dendrogram showing the hierarchical clustering of all ‘ASA/Volume’
subcategories, based on the Euclidean distance between their average scales. Each subcategory is represented by a
line plot, with scales depicted as lines and the number of scales assigned to a subcategory indicated in parentheses.
The arrangement of line plots corresponds to the clustering results, and size modifications have been made if
necessary, highlighting larger subcategories. Amino acids are given by their one-letter code and are grouped as
follows: non-polar/hydrophobic amino acids comprising alanine (A), isoleucine (I), leucine (L), methionine (M), proline
(P), and valine (V); aromatic amino acids of phenylalanine (F), tryptophan (W), and tyrosine (Y); polar/hydrophilic
amino acids comprising cysteine (C), glycine (G), asparagine (N), glutamine (Q), serine (S), and threonine (T); acidic/
negatively charged amino acids of aspartic acid (D) and glutamic acid (E); as well as basic/positively charged amino
acids of histidine (H), lysine (K) and arginine (R).

Figure 5. Composition category. Circular dendrogram showing hierarchical clustering of all ‘Composition’
subcategories. Further details are as described in Figure 4.
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Figure 6. Conformation category. Circular dendrogram showing hierarchical clustering of all ‘Conformation’
subcategories. Grouping of line plots representing subcategories follows clustering results, as highlighted by dashed
gray lines. An explanation of further details is given in Figure 4.
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Conformation. The ‘Conformation’ category is
the largest category, with over 200 scales across
24 subcategories. It covers four major
conformations: helical, extended (b-sheet and b-
strand) together with b-turn, and coil secondary
structures. These account for almost all secondary
structures—roughly 30–40% a-helix, 20–30% b-
sheets, 20% b-turn, and 20% coils.70 Pioneering
7

work by Chou and Fasman,71,72 Richardson and
Richardson,73,74 as well as Qian and Sejnowski75

highlighted the distinct amino acid distribution
across and within these conformations.
Helical and extended conformations are

structured by hydrogen-bonding patterns, adopting
specific dihedral angles within the polypeptide
backbone.76 Conversely, coils are defined by the



Figure 7. Energy category. Circular dendrogram showing hierarchical clustering of all ‘Energy’ subcategories.
Further details are given in Figure 4. Note that we corrected the following transcription mistake in AAindex database
for the ‘charge transfer capability’115 scale (CHAM830107 scale id; Charge (negative) subcategory): glycine was
erroneously scored 1 instead of glutamine.

Figure 8. Polarity category. Circular dendrogram showing hierarchical clustering of all ‘Polarity’ subcategories. See
Figure 4 for further details.
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Figure 9. Shape category. Circular dendrogram showing hierarchical clustering of all ‘Shape’ subcategories. More
details are explained in Figure 4.

Figure 10. Structure-Activity category. Circular dendrogram showing hierarchical clustering of all ‘Structure-Activity’
subcategories. Details are described in Figure 4.
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absence of these patterns according to the Define
Secondary Structure of Proteins (DSSP) conven-
tion.77 Coils can either adopt disordered conforma-
tions (called ‘random’ coils) or form structured loops
(non-random coils78 in folded proteins. Secondary
structure formation is context-dependent, demon-
9

strated by conformational transition studies for
polyalanine79 and polylysine.80 With decreasing
temperature, the conformational prevalence order
is described by coil > b-sheet > helix, whereas an
decrease in solvent hydrophobicity reorders this
preference to coil > a-helix > b-sheet.79,81 For



Figure 11. Others category. Circular dendrogram showing hierarchical clustering of all ‘Others’ subcategories. See
Figure 4 for details.
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example, in hydrophilic solvents, a-helices are less
stable than b-sheets but vice versa in hydrophobic
membranes. a-Helices can segregate hydrophobic
and hydrophilic amino acids, while b-sheets shield
hydrophobic residues from water,44 albeit playing
a multifaceted role in protein aggregation.82 Intrigu-
ingly, proline and glycine (to a lesser extent), abun-
dant in random coils, can interrupt a-helix formation
and increase flexibility.83 In b-sheets, these resi-
dues can destabilize the central structure but
enhance peptide chain turns at the edges.
Each conformational subcategory describes the

prevalence/tendency of residues to occur within
the associated secondary structure. However, for
the sake of clarity, only the secondary structure
and their conformational implications will be
described, while bearing in mind that these
subcategories essentially represent residue
frequencies.

Helical conformations. These subcategories
describe a-helical and p-helical conformations,
differing in the number of residues per 360� turn—
3.6 and 4.4, respectively. The more compact 310-
helix, comprising 3.0 residues per turn, is not
described in AAindex, and thus not included here.
Although 310-helices are rare (4%) due to their
reduced stability,84,85 short 310-helix segments
often appear at the C-terminus of a-helices, tighten-
ing the final helical turn.73 They can also switch
entirely to an a-helical conformation.84 The com-
pactness order of these helix types is 310-helix > a-
helix > p-helix, each characterized by distinct back-
bone hydrogen bonding patterns of i to i + 3, i + 4,
i + 5, respectively.86 They exhibit an altered stability
order of a-helix > 310-helix > p-helix, explaining their
respective prevalences of 30–40%, 4%, and
0.02%.84 The p-helix prevalence might, however,
10
be higher than suspected,85 particularly for short
(7–10 residue long) p-helical segments.87

a-helix (n = 36) refers to right-handed helical
structures with 3.6 residues per turn. It is the most
abundant protein helix type, accounting for 30–
40% of all secondary structures.85 a-Helices are
formed by backbone hydrogen bonding (i + 4) and
local side chain interaction between periodically
neighbouring residues (i + 3/4), which increase heli-
cal stability via hydrophobic, polar, and aromatic
stacking interactions.88–90 Predominant residues
include alanine, large hydrophobic residues (leu-
cine, methionine), and glutamic acid alongside
glutamine.72

a-helix (N-term) and a-helix (C-term) (n = 7, 8)
denote the segments at the N-terminus and C-
terminus inside the a-helix. These segments,
especially the terminal residues, can notably
influence the stability of the a-helix structure.67,72,74

a-helix (N-cap) and a-helix (C-cap) (n = 5, 4) refer
to the positions at the exact termini of the a-helix
where the helix is ‘capped’, i.e., either begins (N-
cap) or ends (C-cap), respectively. The N-
terminus has a high prevalence for aspartic acid,
but also asparagine and serine, while the C-
terminus is characterized by positively charged/
basic residues (arginine, lysine). These residues
link a-helices to adjacent turns or unstructured
regions.67,74,91

a-helix (N-term, out) and a-helix (C-term, out)
(n = 3, 5) refer to the segments at the N-terminus
and C-terminus outside the a-helix structure,
critical for the termination of the helix. The N-
terminus often harbors negatively charged/acidic
residues (mainly aspartic acid) but also residues
with large side chains (mainly tyrosine) and the
helix-breaking glycine. In contrast, the C-terminus
comprises positively charged/basic residues
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(histidine, arginine), residues with a large side chain
(mainly phenylalanine), and, especially, the helix-
breaking proline.67,74

a-helix (a-proteins) (n = 5) reflects the frequency
of residues in a-helices within proteins that
predominantly have a-helices as their secondary
structural element.92

a-helix (left-handed) (n = 11) is a left-handed
helical structure with 3.6 residues per turn, similar
to right-handed helices, but winds in the opposite
direction,76 resulting in steric hindrance between
side chain and main chain atoms. Although rare
and typically 4-residue long, these helices con-
tribute to protein stability and functions such as
ligand binding or active site participation.93 Glycine
and aspartic acid are prevalent.94

p-helix (n = 5) is a rare and unstable84 helix with
4.4 residues per turn, resulting in a 1 �A hole at its
center too narrow to accommodate a water mole-
cule. This hole diminishes backbone van der Waals
interactions, destabilizing p-helices.86 Mainly stabi-
lized by side-chain interactions, including aromatic
stacking and van der Waals forces, p-helices
require a collinear alignment of every fourth side
chain residue.86 This unique structure, found in
specific protein binding sites,86 may enhance
enzyme ligand coordination and dipole involvement
in ion transport proteins.85 Prevalent residues
include aromatic and large aliphatic amino acids—
particularly tryptophan, phenylalanine, and
methionine.85
Extended conformations and b-turn. These
subcategories comprise extended conformations
(i.e., b-strand and b-sheet) and b-turn, a sharp 4
residue turn often linking consecutive segments
within anti-parallel b-sheets, which are
characterized by adjacent b-strands running in
opposite directions.
b-strand (n = 15) refers to a fully extended

segment of a polypeptide chain, typically
containing 3–10 residues. When multiple b-
strands align, they form b-sheets, which are
predominantly intra-molecular. Inter-molecular b-
sheets (‘hybrid b-sheets’95,96can also mediate
protein-protein interactions, facilitated by residue
side chains fostering interaction specificity and
affinity.97 Prevalent residues are branched-chain
amino acids (value, isoleucine > leucine) and
cysteine.72,98

b-sheet (n = 21) is, after a-helix, the second most
common secondary structure, characterized by its
pleated structure, also called pleated sheet. It is
composed of multiple b-strands forming distinct
backbone hydrogen bonding patterns (either anti-
parallel or parallel),99 supported by hydrophobic
side chain interactions and avoidance of steric
side/main chain clashes.100 b-Strands are con-
nected by short loops of two to five residues or b-
turns. Prevalent residues are branched-chain (va-
11
line, isoleucine > leucine) and aromatic (phenylala-
nine, tyrosine > tryptophan) amino acids.72,75

b-sheet (N-term) and b-sheet (C-term) (n = 5, 5)
denote the N-terminal and C-terminal segment of
a b-sheet, respectively. Generally, prevalent
residues near or at the termini are serine and the
destabilizing proline (inducing a 90� backbone
turn) and glycine (enhancing backbone
flexibility).100 The C-terminus additionally contains
asparagine and aspartic acid, while the N-
terminus is also characterized by positively charged
residues (histidine, arginine).75

b/a-bridge (n = 2), a new term introduced here,
pertains to the frequency of residues in the ‘bridge
region’ of the Ramachandran plot,76 an area reflect-
ing an energetically less favored conformation
between b-sheet (top-left quadrant) and right-
handed a-helix (bottom-left quadrant). Higher
scores suggest that these residues can facilitate
context-dependent folding, such as a-helix/b-sheet
transition, by acting as a conformational switch by
engaging in long-distance (intra)molecular hydro-
gen bonding.101–103 Polar residues with longer side
chains and moderate b-sheet or a-helix preferences
are favored, e.g., asparagine, aspartic acid, and
histidine.94,104,105

b-turn (n = 21), also known as b-bend or hairpin
loop, is the third most common secondary
structure. Comprising 4 amino acids, b-turns
sharply reverse the polypeptide chain by 180�.
This reversal is often aided by a hydrogen bond
between the 1st and the 4th residue, yielding
multiple subclassifications.106 Typically connecting
consecutive segments within anti-parallel b-
sheets, b-turns can overlap with other structural ele-
ments (e.g., co-occurrence of 1st residue in a-helix
or b-sheet70 and frequently appear on protein sur-
faces, contributing to compact structures. Prevalent
residues include proline, glycine, asparagine, and
aspartic acid.72,107

b-turn (N-term) and b-turn (C-term) (n = 6, 6)
represent the prevalence of residues for the 1st
and 2nd positions, and the 3rd and 4th positions
within the b-turn structure.72,94

b-turn (TM helix) (n = 3) refers to b-turns placed in
the middle of a long single-spanning
transmembrane helix. Unlike a-helical turns,
completing 360� over 3 to 4 residues, b-turns
accomplish a 180� turn over 4 residues. This
chain reversal can transform a single long
transmembrane helix into two closely spaced
helices. Prevalent are charged residues (aspartic
acid, arginine > glutamic acid, lysine) and the
helix-breaking proline, while glycine, compared to
its presence in b-turn, demonstrates only a
moderate propensity.108
Coil conformation and linkers. These
subcategories describe coil conformations and
linker segments. Unlike helical and extended
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secondary structures, coils, devoid of a defined
backbone hydrogen-bonding pattern, can adopt
either unstructured coil (‘random coils’) or
structured loop forms. Linkers, typically
unstructured in isolation, may assume specific
conformations upon interaction with other protein
parts or under certain conditions. While random
coils and unstructured linkers lack a defined
structure, their roles in proteins differ. Coils are
highly dynamic and can mediate various functions,
whereas linkers specifically connect functional
domains, providing flexibility.
Coil (n = 13), the fourth major secondary

structure, is defined by the absence of well-
defined backbone hydrogen-bonding patterns,76

which are characteristic for a-helices or b-sheets.
Coils can be ‘random’ coils, typically elusive in X-
ray crystallography, or structured loops (non-
random coils,78 which are observable.109 ‘Random’
coils are dynamic, flexible segments enabling criti-
cal conformational changes in proteins and playing
a vital role in molecular interactions, especially in
intrinsically disordered proteins.110,111 In contrast,
structured loops connect a-helix or b-sheet motifs
in folded proteins,112 contributing to molecular
recognition at the protein surface.109 Akin to b-
turns,113 prevalent residues are proline, glycine,
asparagine, and serine.75,107

Coil (N-term) and Coil (C-term) (n = 3, 4) denotes
the N-terminal and C-terminal sections of coil
conformations, respectively. Notably, methionine
is typically present in the N-terminus but absent at
the N-terminus of a coil.75

Linker (>14 AA) and Linker (6-14 AA) (n = 6, 6)
describes regions that connect functional
domains, called linkers. The linker length
significantly influences protein structure and
function, enabling cooperative interactions
between domains. Long linkers (>14 residues)
predominantly adopt helical or coil structures,
ensuring flexibility and domain separation.
Medium-sized linkers (6–14 residues), however,
can also form b-strand structures, striking a
balance between flexibility and stability.114

Energy. The ‘Energy’ category comprises
around 40 scales organized into 9 specific
subcategories, each highlighting different
energetic aspects of amino acids including free
energy—determining conformational stability—and
charge, playing an important role for protein
structure and function such as enzymatic activity,
protein interactions, or anchoring of
transmembrane proteins.
Charge (n = 2) represents net charge and’charge

transfer donor capability’.115 The net charge reflects
proton-related ionic charge, assigning scores 1, 0,
0.5 to positively charged (arginine, lysine), nega-
tively charged (aspartic and glutamic acid), and all
other residues, respectively..116 The ‘Charge trans-
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fer donor capability’ marks the ability (1) or inability
(0) to donate an electron with a certain ionization
energy input. It is present in polar (cysteine, aspar-
agine, glutamine), basic (histidine, arginine, lysine),
and aromatic residues, as well as in methionine
(due to its sulfur atom).115

Charge (negative) (n = 2) describes a residue´s
negative charge (aspartic acid, glutamic acid)117

and ‘charge transfer capability’.115 The latter
involves polar side chain groups, specifically
CONH2 in asparagine and glutamine and the
COO– in deprotonated aspartic and glutamic acids,
crucial for intermolecular interactions such as
hydrogen bonding.118 While the deprotonated
aspartic and glutamic acid can accept protons,117

asparagine and glutamine can accept elec-
trons.115,117 Presence is indicated as 1, absence
as 0.115,117

Charge (positive) (n = 1) is dedicated to residues
carrying a positive charge (arginine, lysine,
histidine), indicating presence with 1 and absence
with 0.117

Entropy (n = 3) refers to side chain conformational
entropy, reflecting the number of potential
conformations a residue can be part of. It is one
opposing force to protein folding119,120 and it also
influences molecular interactions.121 Alanine has a
low Entropy due to its predominant a-helix propen-
sity, while structure-breaking residues
(glycine > proline) also exhibit low Entropy. In con-
trast, positively charged and aromatic residues
have high Entropy due to their moderate propensi-
ties for various secondary structures such as a-
helices or b-sheets.122

Free energy (unfolding) (n = 8) encompasses
measures of conformational stability, including the
‘Gibbs energy of unfolding’ and ‘activation Gibbs
energy of unfolding’.123 Higher values indicate
enhanced stability and a larger energy barrier
against unfolding. The energy required for residue
transfer from hydrophobic to hydrophilic solvent,
another component, reflects role of hydrophobicity
role in stability.124 Despite consistent high activation
energy across residues, excluding arginine, other
measures are more nuanced, with positively
charged residues (arginine > lysine > histidine)
scoring higher.123,124

Free energy (folding) (n = 5) comprises measures
of the absolute free energy required for a-helix or b-
strand formation, where higher values denote
reduced stability, hence conformational
instability.125 While structure-disrupting residues
(proline > glycine) show high values, asparagine
and aspartic acid display a stronger tendency to
destabilize b-strands.126

Isoelectric point (n = 3), often abbreviated as pI,
designates the pH at which an amino acid is
electrically neutral, indicating relative acidity or
basicity. Basic residues (arginine > lysine >
histidine) exhibit the highest values, while acidic
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residues show the lowest.55 Additionally, residue
basicity is also determined based on hydrogen bond
donation, crucial for enzymatic reactions and pro-
tein–ligand interactions.127 Quantified as the num-
ber of hydrogen bond donors within a side
chain,117 this parameter ranges from none (non-
polar residues) to four (arginine), where each
donated bond equates to 0.25.55,117

Electron-ion interaction potential (n = 3) denotes
the capacity for electrostatic interactions, such as
dipole–dipole, hydrogen bond, or ionic
interactions. It is quantified by the average energy
state of all valence electrons, the electrons within
the outer shell of atoms. Essentially, it measures
the potential of amino acids for engaging in
electrostatic protein-protein and protein-DNA
interactions.128 Aspartic acid exhibits the highest
score, followed by cysteine and serine, while gly-
cine and the branched chain amino acids show
the lowest scores.129

Non-bonded energy (n = 4) refers to the average
energy per residue resulting from non-covalent
interactions. Derived from X-ray crystallography
using the Lennard-Jones potential, this energy
encompasses electrostatic interactions and van
der Waals forces, with the latter not being
considered in the Electron-ion interaction
potential. Therefore, smaller residues
(glycine > proline > alanine) score highest due to
their ability for close packing, fostering van der
Waals interactions. Conversely, larger aromatic
amino acids yield lower scores, as their size
dilutes the energy contribution per atom.130
Polarity. The ‘Polarity’ category is the second
largest category with over 100 scales organized
into 6 subcategories. This category describes the
foundational dichotomy of hydrophilicity and
hydrophobicity, reflected by polar and non-polar
residues which determine crucial biological
phenomena such as protein folding and
subcellular localization.
Hydrophilicity (n = 28) reflects the preference of

an amino acid for a polar/hydrophilic environment.
This is often gauged as the transfer free energy
from water to a non-polar solvent. It is essential
for protein-solvent interactions, influencing protein
solubility, folding, and function. Charged residues
exhibit the highest hydrophilicity.124,131

Hydrophobicity (n = 38) represents the amino acid
preference for a non-polar/hydrophobic
environment. It is often measured as the transfer
free energy from a non-polar solvent to water or
from the interior of a protein to the surface, playing
a central role in protein folding and stability.
Isoleucine and phenylalanine consistently score
highest across all scales.124,131,132

Hydrophobicity (surrounding) (n = 17) describes
the effective hydrophobicity of residues within
globular proteins, accounting for both their own
hydrophobicity and the hydrophobicity of the
13
neighbouring residues within an 8-angstrom
radius. Derived from protein crystal structures, it
reflects Hydrophobicity in internal protein
arrangements adjusted for steric hindrance,
thereby gauging protein stability. Compared to
Hydrophobicity, it is closer related to Buried
measures, with particularly high scores for
cysteine, slightly lower ones for aromatic residues,
and similarly high scores for branched-chain
amino acids (valine > isoleucine, leucine).133

Hydrophobicity (interface) (n = 3) focuses on the
preference of residues for non-polar/hydrophobic
environments at membrane interfaces, influencing
the membrane-association behavior of proteins.134

Cysteine exhibits the highest scores, followed by
tyrosine.43

Amphiphilicity (n = 6) captures the preference of
amino acids to occur at the interface of polar and
non-polar solvents, such as the membrane-water
boundary. Typically, high at the termini of
transmembrane helices, this can substantially
affect protein interactions and cellular processes.
Amphiphilic residues consist generally of a polar
and a non-polar group (alkyl side chain or
aromatic ring). Tryptophan scores notably higher
than other residues, followed by tyrosine and
basic amino acids (arginine > lysine, histidine).135

Amphiphilicity (a-helix) (n = 13) denotes the
amino acid propensity to form amphiphilic a-
helices, characterized by segregated polar and
non-polar faces.136,137 These helices, when located
at protein surfaces or membranes, often serve as
signal sequences.138 When interacting with mem-
branes, they align parallel to the membrane, dis-
cerning curvature and aiding remodeling.139

Prevalent are non-polar residues (methionine,
tryptophan, and branched chain amino acids),
along with certain polar (cysteine > tyrosine) and
positively charged residues (histidine >
arginine).138,140
Shape. The ‘Shape’ category, embracing 45
scales across 6 subcategories, delves into
geometric and steric characteristics of amino
acids. These subcategories describe side chain
angles, symmetry, and unique parameters derived
from amino acid representation based on graph
theory. Here, amino acids are conceptualized as
undirected, node-weighted graphs, with atoms as
nodes and molecular bonds as edges.141 From
these graphs, different measures can be derived,
such as the maximum eccentricity—the greatest
number of bonds (edges) required to link the two
furthest atoms within a graph. For instance, this
results in 0 for glycine, 1 for alanine, or 3 for serine
or cysteine. These metrics offer a mathematical fin-
gerprint of each amino acid´s atomic structure.
Side chain length (n = 19) refers to the length of

the amino acid side chain, quantified by the
number of bonds in its longest chain. This
subcategory includes also closely related graph–
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based size measures such as the average
eccentricity, offering an alternative perspective on
the amino acid length.115,141

Graph (1. eigenvalue) and Graph (2. eigenvalue)
(n = 5, 3) are graph-based measures, where amino
acids are considered as undirected graphs, with
atoms as nodes and bonds as edges. To capture
the edge-bond relationships, the Laplacian matrix
is computed from these graphs. Of interest are
this matrix´s first (i.e., smallest) and second
smallest eigenvalues. These measures allow a
nuanced differentiation between amino acids,
even those with similar atomic configurations.141

Reduced distance (n = 5) reflects the relative
distance of a residue from the protein’s center of
mass, as obtained for 14 native proteins.142 To
adjust for protein size and shape, this distance is
divided by the root mean square of the ‘radius of
gyration’, a metric depicting the average distance
of all atoms from a protein´s center of mass.143

When Reduced distance value exceeds 1 (0.8 for
min–max normalized values), it suggests that a resi-
due is located further from the center than the aver-
age. This may influence its function and interaction
within the protein‘s overarching structure.142

Shape and Surface (n = 3) gauges relationships
between the physical form of an amino acid and
its solvent exposure in folded proteins. Two
measures describe the rate at which the
accessible surface increases relative to the protein
core distance.144 Also included is the typical torsion
angle a side chain adopts within folded proteins.145

While high for small (glycine > alanine > proline) and
polar residues (e.g., serine), these measures are
low for cysteine andmethionine, reflecting their tight
packing within globular proteins.144,145

Steric parameter (n = 6) describes measures
regarding the steric complexity of an amino acid
side chain, such as branching, symmetry, or side
chain angles. Low for glycine and high for
isoleucine, these factors can influence how a
residue fits into protein structures and its
interactions with adjacent residues.117

Structure–Activity. The ‘Structure–Activity’
category, the second smallest category with 31
scales in 6 subcategories, encapsulates the
spectrum of structural dynamics from flexibility to
stability. Flexibility, often associated with surface
residues and hydrophilicity, is key for interactions
at sites such as catalytic centers, binding
domains, or antigenic regions.25,26 Conversely,
structural stability is fundamental to protein folding
and is generally high in buried, hydrophobic
residues.
Flexibility (n = 11) refers to local residue

movement within a protein (e.g., positional
changes or involvement in bending or twisting),
comprising side chain and backbone flexibility.146

Typically quantified by the B-factor in X-ray crystal-
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lography,147 it reflects structural flexibility in form of
atomic fluctuation and thermal vibrations. While
side chain flexibility does not imply backbone flexi-
bility, both types can contribute to conformational
changes, allowing flexibility in disordered and
ordered regions.148 Side chain flexibility enhances
molecular interactions such as protein–ligand bind-
ing,149 whereas backbone flexibility is found in sur-
face regions or epitopes.150 Structure-breaking
residues (proline, glycine), lysine, aspartic acid,
and serine exhibit high flexibility.150–153

Flexibility (2 rigid neighbors) (n = 3) assesses the
flexibility of a residue placed between two rigid
neighboring residues, providing a context-specific
view on structural flexibility. Under such conditions,
lysine retains high flexibility, while the flexibility of
aspartic acid, proline, serine moderately decreases,
and that of glycine markedly drops.150,152

Stability (n = 7) denotes residues´ contribution to
enhancing protein stability. In contrast to Flexibility
reflecting local movement, stability is a global
property of entire proteins governed by
intermolecular forces, such as hydrophobic
interactions. Typically, buried residues increase
stability by forming b-sheets, measured, for
example, by the b-coil equilibrium,154 describing
the preference of residues for extended over disor-
dered coil structures. Prevalent residues include
branched-chain (isoleucine, valine > leucine) and
aromatic amino acids.54,154,155

Stability (helix-coil) (n = 4) quantifies the stability
of residues using the helix-coil equilibrium. Higher
scores indicate a preference for a-helices over
disordered coil structures. Hence, residues
common in a-helices, such as leucine and
methionine, show higher Stability (helix-coil)
scores. In contrast, residues more prevalent in b-
sheets (e.g., isoleucine and valine), tend to score
lower in Stability (helix-coil) compared to
Stability.154,156

Backbone-dynamics (ANH) (n = 2) reflects the
mobility of a residue´s a-NH hydrogen atom within
a polypeptide backbone, with higher values
indicating backbone stability.157 It is determined by
a-NH chemical shifts using NMR, comparing hydro-
gen atom mobility in structured polypeptide to in
random coil (highly flexible). High scores imply a-
NH backbone stability, while low scores, typical in
proline, indicate high mobility. Using an alternate
method, spin–spin coupling, methionine and trypto-
phan score 0.158

Backbone-dynamics (ACH) (n = 3) gauges the
mobility of a residue’s a-CH hydrogen atom within
a polypeptide, reflecting backbone stability.157

These measures use a-CH chemical shifts to com-
pare the hydrogen atom´s mobility between a struc-
tured backbone and a random coil. While tyrosine,
asparagine, and lysine have high scores, low
scores can be seen for valine, isoleucine, and espe-
cially glycine.158,159
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Others. The ‘Others’ category, comprising 17
scales and 6 subcategories, contains scales which
could not be reasonably assigned to other
categories. It includes mutability and 5 groups of
scales derived by principal component analysis
(PCA). Essentially, PCA is a statistical technique
that transforms a large set of correlated variables
(e.g., scales) into a smaller set of uncorrelated
variables, called principal components (PC).
These PCs encapsulate the maximum variance,
thereby offering a succinct representation of the
initial data and reducing the number of variables
greatly. Moreover, it provides insight into the
relative importance of these variables. This
approach was employed by Sneath on 134 amino
acid scales,160 yielding four principal components
(PC1–PC4), which we utilized for our subcategory
naming.
Mutability (n = 3) refers to the likelihood of a

residue to undergo mutations, calculated as the
ratio of observed changes to its frequency of
occurrence. This offers valuable insights into the
evolutionary pressure exerted on specific residues
within protein sequences.59

PC 1 (n = 1), termed ‘aliphaticity’ and ‘typicalness’
by Sneath, represents mainly a residue´s aliphatic
properties (i.e., signifying the presence of linear,
non-aromatic carbon chains) and its general
prevalence in proteins.160

PC 2 (n = 2), labeled ‘hydrogenation’ by Sneath,
approximately corresponds to the inverse of the
reactive group count in a residue, with lower
values indicating higher reactivity. While proline
and glycine (in Sneath´s PCA) have the highest
values, acidic residues exhibit the lowest.160

PC 3 (n = 2), called ‘aromaticity’ by Sneath,
denotes the aromatic properties of residues,
elevated not only in aromatic residues but also
residues with cyclic side chain such as histidine.160

PC 4 (n = 2), referred to as ‘hydroxythiolation’ and
an ambiguous property by Sneath, potentially
represent the ability of residues to form hydrogen
bonds, prevalent in amino acids such as cysteine
or serine.160

PC5 (n = 2) is another principal component vector
derived by Wold et al.,161 but the precise properties
it encapsulates are not explicitly detailed.

Relations of scale subcategories

Understanding the relationships between scale
subcategories is crucial for interpretation of
machine learning results. We assessed the
relations between scale subcategories using
hierarchical clustering, correlation analysis, and
PCA. To make subcategories comparable, they
were represented by their average scales (see
‘2.3 Representation of scale subcategories by
average scales’).

Hierarchical clustering of scale subcategories
and amino acids. To explore the relations
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between all 67 subcategories, we hierarchically
clustered their representative average scales
based on their Euclidean distance using
agglomerative clustering with complete
distance10,11 (Figure 12).
The 6 following clusters (C1–C6) were found: C1

reveals that hydrophobicity correlates with stability,
frequently seen in buried residues, and driving the
formation b-strands and b-sheets; C2 links a-helix
propensities to conformational stability (Free
energy (unfolding)) and steric complexity; C3
highlights the correlation between entropy,
volume, side chain length, and charge, all
characteristic in C-terminal residues of a-helices;
C4 relates hydrophobic ASA, long linkers, and
conformational instability (Free energy (folding))—
pronounced for proline; C5 demonstrates
hydrophilicity relating to ASA, flexibility, and
membrane anchor or surface residues; and C6
underlines a close conformational link between
propensities to form coils, b-turns, and medium-
sized linkers. Here, the connection between Coil
and a-helix (N-cap) underscores that the a-helical
N-terminus is less stable than the C-terminus,162

while the association of b-turn with b-sheet (C-
term) illustrates the process of anti-parallel b-
sheet formation, characterized by b-strands that
end at the C-terminus and sharp backbone reversal
via a b-turn.100,163

In essence, C1–C2 represent core-forming
properties, especially a-helix and b-sheet
propensities. C3–C4 pertain to conformational
transitions and molecular interactions, while C5
highlights surface-related properties. Finally, C6
underscores the contribution of coils and b-turns
in terminating structured conformations.
Correlation analysis of subcategories. Scale-
based machine learning can identify features not
anticipated or seemingly inconsistent with our
biological understanding. To enhance their
interpretation, we investigated correlations and
anti-correlations between average scales of
subcategories (Figure 13).
Among strongly positively correlated

subcategories (Pearson’s r > 0.9–0.99,
Figure 13a), three groups underline the
connection between polarity and protein folding:
(a) Hydrophobicity, Partial specific volume, and
Stability, (b) Hydrophilicity, Accessible surface
area (ASA), and MPs (anchor), which is
additionally highly correlated with Flexibility and
Reduced distance; and (c) Amphiphilicity (a-helix),
Buried, and Hydrophobicity (surrounding). Other
notable highly correlated pairs include Volume/
Side chain length, AA composition/MPs (single-
spanning), and the conformation pairs Coil/b-turn
and b-sheet/b-strand.
Strong negative correlations (Pearson’s r < �0.9

to �0.99, Figure 13b) shed new light on three
polarity groups: While Hydrophobicity anti-



Figure 12. Hierarchical clustering of scale subcat-
egories and amino acids. a, Circular dendrogram
showing the following 6 clusters (C1–C6) of scale
subcategories: C1 (e.g., Hydrophobicity and b-strand),
C2 (e.g., Steric parameter and a-helix), C3 (e.g., Charge
and a-helix (C-cap)), C4 (e.g., Hydrophobic ASA and
Linker (>14 AA)), C5 (e.g., Hydrophilicity and Flexibility),
and C6 (e.g., Coil and b-turn).
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correlates with MPs (anchor), Hydrophilicity anti-
correlates with Amphiphilicity (a-helix),
Hydrophobicity (surrounding), and Buried. In
addition, the Accessible surface area (ASA)/
Buried anti-correlation highlights the clear
distinction between surface and buried residues.
The anti-correlation of Isoelectric point and Free
energy (unfolding) (conformational stability) shows
that basic residues can potentially decrease
stability due to the disruptive potential of their
positive charge when buried, albeit context-
dependent. Notably, MPs (anchor) inversely
correlates with five other subcategories including
Buried and Amphiphilicity (a helix), underlaying its
unique residue signature, dominated by proline,
aspartic acid, and lysine.
Moderate positive correlations (Pearson’s

r = 0.75–0.9, Figure 13c) reveal a complex
picture, especially for three major conformations:
(a) Coil correlates with Free energy (folding)
(conformational instability) and various b-turn
subcategories; (b) a-helix correlates with a-helix
(C-term) and Stability (helix-coil), while a-helix (C-
cap) correlates with Isoelectric point (basicity); (c)
Extended conformations (b-sheet, b-strand)
correlate with Hydrophobicity, Stability and Partial
specific volume. Interestingly, structure
termination (b-sheet (C-term), a-helix (N-cap)
relates to b-turn, which highlights their structural
overlapping. The correlation of Entropy with
Volume and Side chain length indicates that larger
residues contribute to structural variety (a-helix or
16
b-sheet), unlike the helix-breaking proline or the
helix-forming alanine. Flexibility shows broad
correlations, including Hydrophilicity and
Accessible surface area (ASA).
We also identified diverse moderate negative

correlations (Pearson’s r = �0.75 to �0.9,
Figure 13d). As expected, Coil anti-correlates with
a-helix, as do extended conformations with
Hydrophilicity and Flexibility. Notably,
Amphiphilicity is negatively correlated with Free
energy unfolding and Mutability, suggesting that
amphiphilic residues can be less stable (e.g.,
arginine) and less mutation-prone (e.g.,
tryptophan). Non-bonded energy inversely
correlates with Volume and Side chain length,
showing that small residues have reduced van der
Waals forces and electrostatic interactions. See
Supplementary Table 4 for detailed results of our
correlation analysis.
Principal component analysis of scale subcate-
gories. PCA provides another way to visualize the
relationships between scale subcategories. To
obtain a two-dimensional ‘snapshot’ of these
relationships, we divided the scale subcategories
into four roughly equally sized sets from different
categories, plotting the first two principal
components for each (Figure 14a).
Our first PCA involved ‘ASA/Volume’ and

‘Composition’ subcategories. The first dimension,
PC1 (56.2% variance explained), reveals a
spectrum between buried and solvent accessible
surface, relating Buried with Mitochondrial
Proteins, and Accessible surface area (ASA) with
MPs (anchor). The second dimension, PC2
(23.3%), differentiates Volume from Membrane
proteins (MP) and AA composition, implying that
larger residues occur less frequently, especially in
membrane proteins.
‘Conformation’ subcategories were analyzed

together due to their large number. The first PC
(38.8%) distinguishes unstructured (Coil, Linker
(>14 AA)) and b-turn from extended (b-strand, b-
sheet) and a-helical conformations, which are both
separated along the second PC (15.9%).
Interestingly, subcategories representing
termination of b-sheets or a-helices are closely
related to Coil and b-turn.
We grouped ‘Energy’ and ‘Polarity’ subcategories

since hydrophobicity is often measured as transfer
free energy from a non-polar solvent to water.
Polarity (hydrophilicity vs. hydrophobicity) is
reflected by the first PC (43.6%), relating Free
energy (folding) to Hydrophilicity and Free energy
(unfolding) to Hydrophobicity, reinforcing the
polarity-conformational stability relationship.
Interestingly, Entropy closely aligns with
Amphiphilicity. The second PC (21.4%)
differentiates positive from negative charge.
We also analyzed ‘Shape’, ‘Structure-Activity’,

and ‘Others’ categories. The first PC (36.0%)



Figure 13. Correlations between average scales across scale categories. Chord diagrams showing the
correlation and anti-correlation of subcategories filtered for ranges of Pearson correlation. Connections are formed
between subcategories when their correlation lies within the indicated correlation range. Colors indicate the category
to which the subcategories are assigned: ASA/Volume (blue), Composition (orange), Conformation (green), Energy
(red), Polarity (yellow), Others (gray), Shape (light blue), and Structure-Activity (brown). Subcategories with fewer
than 3 scales, such as those related to charge, were omitted for clarity. Self-referencing correlation of 1 or �1 were
disregarded.
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underscores the Stability-Flexibility dichotomy,
relating Stability to steric complexity (e.g., Steric
parameter and Side chain length), and Flexibility
to Reduced distance. The second PC (23.1%)
separates orthogonal aspects of a residue’s
structural graph representation. embodied by
Graph (1. eigenvalue) and Graph (2. eigenvalue).
In a comprehensive PCA of all subcategories

(Figure 14b), the polarity spectrum is represented
17
in the PC1 (33.4%). Hydrophilicity relates to
Accessible surface area (ASA), Flexibility, Coil,
and b-turn, while Hydrophobicity links with Buried,
Stability, and structured conformations—b-strand
and b-sheet more than a-helix. These ordered
conformations are separated along the PC2
(19.1%), which also distinguishes the two
complementary graph-theoretic measures of
Graph (1. eigenvalue) and Graph (2. eigenvalue).



Figure 14. Relations between subcategories. Principal component (PC) analysis of average scales representing
scale subcategories. a, Four separate PCA for subcategories of following sets of categories: ASA/Volume and
Composition; Conformation; Energy and Polarity; Shape, Structure-Activity, and Others. b, PCA for all subcategories
contained in AAontology with important ones being annotated. Each point represents a subcategory, color-coded by
category; and their size is indicating the number of scales that are assigned to the subcategory.
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Both PCs together discriminate Free energy
(unfolding) from charge (negative and positive)
and Free energy (folding).
Overall, this analysis elucidates the interplay

between higher-order physicochemical properties
in protein folding, primarily driven by the
hydrophilicity-hydrophobicity dichotomy. Protein
folding is a two-phase process orchestrated by
fundamental intermolecular forces (highlighted in
18
italic lowercase). The first phase comprises the
formation of secondary structures through a
balance of attractive (mainly backbone hydrogen
bonding and also hydrophobic interactions) and
repulsive forces (electrostatic repulsion and steric
restrictions),164 reflected in the ‘ASA/Volume’,
‘Energy’, ‘Polarity’, and ‘Structure-Activity’ cate-
gories. The subsequent phase involves inter-
amino acid forces, captured by the ‘Polarity’ and
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‘Energy’ categories. Polar residues participate in
diverse interactions (dipole–dipole or ion–dipole
interactions, hydrogen bonds, or ionic interactions),
while non-polar residues engage in weaker van der
Waals and hydrophobic interactions. The latter
drives hydrophobic clustering to minimize water
exposure, known as the hydrophobic effect, which
is crucial for protein stability.165,166 Protein struc-
tures emerge from this interplay of intermolecular
forces, influenced further by the molecular and cel-
lular context.

Discussion

Advantages and challenges for AAontology

AAontology, with its two-level classification and
in-depth subcategory analysis, enables a broader
understanding of amino acid properties and
provides a rigorous interpretation for scale-based
machine learning. AAontology derives its strength
from consensus-driven, robustly explained
subcategories. Furthermore, it is a transparent,
modular, and consistent framework to incorporate
new amino acids properties. Its versatile nature
permits applications across a wide range of
computational biology problems, such as mutation
analysis or protein design.
The abundance of property scales collated over

six decades holds potential pitfalls. Specifically,
issues may arise due to incomplete knowledge
and the quality of the scales included. While
AAontology helps to structure existing knowledge
about amino acid properties, it is inherently limited
by our current understanding of these
characteristics. Any error or bias may
inadvertently be carried over into computational
approaches based on AAontology.
To tackle these pitfalls, scales can be revised or

updated, as was done for CHAM830107 from the
Charge (negative) subcategory and polarity
scales, respectively. Furthermore, new
subcategories could be defined, reflecting, for
example, different types of b-strands99 or participa-
tion in certain catalytic processes such as nucle-
ophilic attacks (serine, cysteine, and histidine) or
transition state stabilization by aromatic rings
(e.g., tyrosine) or charge (e.g., aspartic acid or
lysine).
A broader concern arises considering the general

limitations of scale-basedmachine learningmodels.
Their performance varies considerably depending
on the prediction task, chosen model, and scale
dataset used.45 For instance, simple randomly cre-
ated scales or one-hot encodings of residues have
outperformed biologically meaningful property
scales, however, only for a specific redundancy-
reduced scale set.167 Additionally, the array of
scales and subcategories in AAontology could add
complexity, challenging novice researchers.
Overcoming these limitations could involve

knowledge-based pre-selection of categories from
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AAontology, coupled with the selection of
redundancy-reduced scale sets via our AAclust
framework.45 Another solution is offered by large
protein language models, overpassing simple
scale-based approaches,168–170 and thereby pro-
pelling the field of protein prediction.171
Do protein embeddings abolish scale-based
machine learning?

Scale-based approaches (since the 1970s)72,104

and Multiple Sequence Alignment (MSA)-based
models (since the late 1980s)172–174 leveraging evo-
lutionary sequence information, have long been
instrumental in protein structure and function pre-
diction. However, the early 2010s saw the advent
of deep learning models including Convolutional
Neural Networks (CNNs)175,176 and Long Short-
Term Memory (LSTMs).177 In the late 2010s, trans-
former models178 emerged, combining CNN local
structure capture and LSTM long-range depen-
dency handling, which lead to breakthroughs such
as AlphaFold179 in protein structure prediction.
Recent state-of-the-art protein language models,

such as ProtT5,180,181 utilize transformer architec-
tures to improve protein prediction tasks. These
models, trained on billions of sequences, aim to
decipher the ‘language of life’180,182 encoded by
proteins. To this end, they produce a self-learned
amino acid representation, called protein embed-
dings, that can be viewed as property scales
enriched by both nearby and distant sequence con-
text. Beside their superior prediction performance,
these protein embeddings are advantageous in
their simple application and unbiased nature
because they are alignment-free181 and do not rely
on hand-crafted features.170 They can also serve as
input to other machine learning models via transfer
learning,183 enabling their application to
moderately-sized datasets.
A significant drawback is, however, the lack of

interpretability of protein embeddings,8,9 as they
are an opaque numerical representation of proteins.
This challenge could potentially be addressed by
AAontology. Mapping protein embeddings onto
scale subcategories could merge the predictive
power of embeddings with the interpretability pro-
vided by AAontology. Improved interpretability
would enhance the biological insight derived from
protein embeddings. The process of mapping might
even expose yet unknown properties,184 that one
could call the ‘dark matter’ of protein biology, in an
analogy previously used in this field.185,186 Conse-
quently, we foresee a synergistic relationship
between AAontology and protein embeddings, fos-
tering a novel understanding of proteins.
Aaontology as the fundament to understand
protein biology

AAontology offers a framework to study how
amino acids determine protein structure and
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function. While AlphaFold can produce accurate
snapshots of protein structures, simulating
complex and/or slow molecular processes remains
still elusive.187 AAontology can fill this gap by pro-
viding a deep understanding of amino acid proper-
ties to elucidate molecular mechanisms such as
substrate or epitope recognition.
Additionally, AAontology facilitates a multi-

dimensional understanding of amino acid
changes, especially pertaining to disease-related
mutations.35–40 For instance, an alanine-to-lysine
substitution not only introduces a positive charge
and increases volume and hydrophilicity, but also
increases the hydrophobic ASA, entropy, and flexi-
bility within two rigid neighbors, while decreasing
buriability, certain shape and surface properties
and the propensity to form amphiphilic a-helices.
Moreover, we envision that AAontology serves as

a cornerstone in linking physicochemical properties
to protein functions and dysfunctions—as for
example done for post-translational
modifications.188 Notable examples of connections
to protein functions include (a) substrate cleavage
facilitated by the formation of extended b-
strands189–192; (b) epitope recognition influenced
by hydrophobicity and hydrogen bonds193,194; and
(c) protein–protein interactions195,196 (e.g., chaper-
one–client interactions,197,198 protein–peptide inter-
actions (involving peptides with extended
structures, but also a-helix or b-turn conformation,97

and protein interactions with other biomolecules
such as DNA,199 RNA,199 lipids,199 or small
molecules.200 Physiochemical properties are fur-
ther important for subcellular localization,21 protein
stability,201 or protein trafficking,202 next to general
cellular functions such as signaling25,26 or cell
division.203

Protein aggregation is a crucial example for
protein dysfunction. Triggered by increased
hydrophobicity and b-sheet tendency, protein
aggregation is associated with over 40 human
diseases including various neurodegenerative
disease (e.g., Alzheimer’s, Parkinson, Huntington,
and prion disease) and type II diabetes.32–34

Numerous efforts have beenmade to predict aggre-
gation–prone sequence regions,24,204,205 yet they
still need to be refined. Oncogenicity, another key
example, is associated with altered protein folding
due to changes in hydrophobicity, charge, or confor-
mational characteristics.29–31 Other examples
encompass alterations in hydrophobicity leading to
cystic fibrosis,206 loss of charge in voltage-gated
sodium channel associated with epilepsy,207 or
decreases a-helicity in myosin causing cardiomy-
opathy.208 A systematic overview of the relation-
ships between physicochemical properties and
protein functions and dysfunction could lay the
groundwork for a deeper understanding of protein
biology. This would further foster functional annota-
tions209–211 of novel or so far poorly characterized
proteins.
20
Overall, AAontology, in conjunction with tools like
AlphaFold or ProtT5, is expected to unravel
molecular mechanisms and unfold a systematic
understanding of protein functions. This will
augment numerous applications that rely on
knowledge-based decisions. These include the
development of biocompatible materials (e.g.,
amino acid-based surfactants (i.e., surface active
agents)),212,213 rational protein engineering184

(e.g., enzyme engineering),214 and drug design of
peptides215,216 or proteins,201,217 such as vacci-
nes218,219 or, especially, antibodies.220–223
Conclusion

Through a semi-automatic process involving
clustering and manual refinement, we classified
586 amino acid scales into 8 categories and 67
subcategories, resulting in AAontology. This two-
level classification also provides a detailed
subcategory description and an extensive analysis
of their relationships, bolstering interpretable
machine learning models for protein
bioinformatics. Beyond hierarchical clustering,
PCA allowed to map these subcategories onto the
major physicochemical spectra of polarity
(hydrophobicity vs hydrophilicity) and
conformational stability, thereby painting a holistic
picture of the properties governing life.
AAontology, when combined with our AAclust

framework, could overcome limitations of scale-
based machine learning in protein prediction. Our
plans include integrating AAontology with protein
embeddings, such as ProtT5, enriching high
predictive power with interpretability and possibly
unveiling hitherto unknown amino acid properties.
Complementing tools such as AlphaFold,
AAontology could foster the deciphering of
molecular mechanisms encapsulated in protein
structures. Linking physicochemical properties and
protein function/dysfunction, AAontology will be a
useful decision support tool for mutation analysis
and drug design.
Material and Methods

Dataset of amino acid scales

We obtained 566 property scales for amino acids
from the AAindex database (version 9.2),4 including
their scale id, scale name, and their one-sentence
description, referred to as scale description. A fur-
ther 86 scales related to the solvent accessible sur-
face area (ASA)44 and hydrophobicity were
manually collated from the literature (72 from Lins
et al.44 and 14 from Koehler et al.,43 respectively)
because of their general relevance for protein fold-
ing224 and backbone dynamics.225 After discarding
scales due to missing values or complete redun-
dancy, 586 scales remained in our dataset (553
from AAindex, 21 from Lins et al., and 12 from
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Koehler et al.). For Lins et al. and Koehler at al., we
created new scale ids by adopting the AAindex
naming convention: first author´s last name, publi-
cation year, and the order of appearance in the pub-
lication (LINS030101, . . ., LINS030121 and
KOEH090101, . . ., KOEH090112). A second publi-
cation in the same year is indicated by 02 such as in
CHOP780211 (Chou-Fasman, 1978b). Moreover, a
scale name and a scale descriptionwere created for
each scale using the descriptions provided in the
respective publications. Each of the 586 scales
was min–max normalized to a [0,1] range (Supple-
mentary Table 1).
Representation of amino acid scales

Property scales are represented as arrays x
containing 20 numerical values, each
corresponding to one of the 20 canonical amino
acids: x ¼ ½a1; a2; � � � a20�. Multiple property scales
are represented as an m � 20 feature matrix X:

X ¼
a1;1 � � � a1;20

..

. . .
. ..

.

am;1 � � � am;20

2
664

3
775 ¼

x1

..

.

xm

2
664

3
775

where m is the number of property scales.
Representation of scale subcategories by
average scales

To compare different sets of scales, we created
representative ‘average scales’. Given a
predefined set of scales S = {x1; x2; � � � xm}, with
m denoting the number of scales, an average
scale x

�
was computed as the arithmetic average

of scale values for each amino acid across all
scales: x

� ¼ ½ a�1; a
�
2; � � � ; a

�
20�, where a

�
i is the

arithmetic average value for the i-th amino acid
over all m scales in S.
Such sets of scale can be derived using clustering

algorithms. These algorithms generally partition
sets of observations (in our case, the 566 property
scales) into subsets or clusters by grouping
numerically similar observations together. The
central point of a cluster (called cluster center or
centroid) is the arithmetic mean of the scales
within that cluster and corresponds to our defined
average scale x

�
. The scale closest to the centroid

is the medoid, which we refer to as ‘medoid scale’
in our study. Both these concepts will be
instrumental in subsequent steps.
In this work, we define scale subcategories

(indicated in capital italic) as sets of ‘similar’
scales. For instance, the Volume subcategory
includes all volume-related scales, and its average
scale is derived from the mean volume scores of
the 20 amino acids across all scales. Scale
similarity was determined both based on the
literature and Pearson correlation analysis,
ensuring a minimum correlation of 0.3 within each
subcategory. For example, although
21
hydrophobicity and hydrophilicity scales both
reflect polarity concepts, they were kept separate
to maintain numerical consistency. This approach
lessens the cancellation of effects due to anti-
correlated scales, allowing the average scales to
provide a more robust consensus on certain
properties drawn from various studies.
To this end, we performed the following three

steps (Figure 1): scale assignment to categories
using bag-of-words (a common technique in text
classification,226,227 automatic assignment of scales
to subcategories through AAclust, and manual
refinement of the scale assignment to subcate-
gories and categories. To improve the clustering
quality, we performed these steps multiple times
with different clustering algorithms and AAclust set-
tings, similar to an ensemble clustering
approach.228 The process is shown in Figure 2, with
comprehensive details provided in Supplementary
Table 2.
Scale classification and naming by automatic
assignment and manual refinement

Leveraging our AAclust framework45 as well as
heuristic and knowledge-based criteria, we classi-
fied the 586 amino acid scales obtained from 151
studies curated in AAindex and two further studies
(Lins et al.44 and Koehler et al.43). We defined the
following 8 categories (color-coded) based on previ-
ous results from the literature1,2,12,14,15: ‘ASA/Vol-
ume’ (blue), ‘Composition’ (orange),
‘Conformation’ (green), ‘Energy’ (red), ‘Others’
(gray), ‘Polarity’ (yellow), ‘Shape’ (light blue), and
‘Structure-Activity’ (brown). To increase the applica-
bility and interpretability of our classification, we fur-
ther aimed to subdivide each category into
subcategories, each with an average size of 5–10
scales, ideally yielding a manageable number of
between 50 and 100 subcategories in total.
Classification of scales using bag-of-words

In the field of natural language processing, bags-
of-words are sets of terms associated with the same
class and they are employed as a simple tool for text
classification.226,227 We defined a bag-of-words for
each of the 8 categories: ASA/Volume ({‘accessible
surface‘, ‘volume’, . . .}), Composition ({‘amino acid
distribution’, ‘membrane-propensity’, . . .}), Confor-
mation ({‘b-sheet’, ‘helix’, . . .}), Energy ({‘charge’,
‘entropy’, . . .}), Others ({‘mutability’, ‘principal com-
ponent’, . . .}), Polarity ({‘hydrophobicity’, ‘polarity’,
. . .}), Shape ({‘graph’, ‘steric parameter’, . . .}), and
Structure-Activity ({‘flexibility’, ‘side chain interac-
tion’, . . .}). The complete bag-of-words for each cat-
egory are given in Table 1. For each scale and
category, the occurrence of thesewords in the scale
name and the scale description was counted,
referred to as word count, and the scale was
assigned to the category for which it had the highest
word count.
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525 out of 586 scales were classified by assigning
a scale to a scale category when at least one word
within the category´s bag-of-words occurred in the
scale name or the scale description. If scales were
assigned to multiple categories, the category with
fewer scales was preferred to achieve a more
balanced partition of scales. The remaining 61
scales were classified manually using additional
information from the literature.

Subcategory assignment by AAclust
clustering

Leveraging our AAclust framework,45 we subdi-
vided the categories hierarchically into subcate-
gories, each named according to term counts from
scale names, such as the Entropy subordinated to
the ‘Energy’ category.
In the first step, scales within each category were

clustered. We used AAclust in conjunction with k-
means16 and agglomerative clustering10 (with aver-
age, complete, ward, single linkage methods.11

These clustering models demonstrated excellent
performance in our previous AAclust study, and
were used as implemented in the scikit-learn
library.229 For AAclust, we set a minimum within-
cluster Pearson correlation of 0.3, ensuring a posi-
tive correlation among all scales within each subcat-
egory. Depending on the AAclust merging
parameters, the number of clusters varied between
50 and 270 clusters. Cluster models were subse-
quently evaluated based on the silhouette coeffi-
cient,230 Calinski Harabasz score,17 and Bayesian
information criterion (BIC),230 as outlined in
AAclust. To obtain a manageable number of 50–
100 subcategories, we considered for further steps
only the top-performing models that yielded a max-
imum of 100 clusters over all categories. This was
achieved by employing cluster merging in the
AAclust approach, a process that reduces cluster
numbers by reassigning scales from smaller to lar-
ger clusters.
In the second step, we assigned names to each

cluster by analyzing term counts in scale names,
thereby naming subcategories. Term lists from
each scale name were generated, considering
both the scale name and whole-word substrings
(without parentheses). For example, for the scale
names ‘a-helix’ and ‘a-helix (N-terminal)’, the term
lists would be [‘a-helix’] and [‘a-helix (N-terminal)’,
‘a-helix’, ‘N-terminal’], respectively. Term lists
were then combined, and term counts within each
subcategory were calculated. Additionally, we
used AAclust to identify the medoid scale, having
the highest correlation to the cluster center. The
most frequently occurring term became the
subcategory name, such as Hydrophobicity
occurring in almost all hydrophobicity scales.
Names were assigned in descending order of
cluster size, and if two terms occurred equally
frequently the medoid scale´s name or the shorter
was preferred. Clusters with only one scale or a
22
duplicate name were labeled ‘unclassified’ and
merged into a single subcategory within their
category, denoted as ‘unclassified Category
name’. We excluded five charge-related scales
from the clustering process due to their binary
nature and later assigned them to distinct
subcategories.
This procedure was repeated multiple times with

varying models and settings to improve naming
consistency and clustering robustness.228 This iter-
ative process also allowed for the refinement of
scale names based on subcategory classification,
scale description, and literature review. For
instance, scales such as the ‘TOFT index’ or ‘PRIFT
index’ led to the subcategory of Amphiphilicity (a-
helix).
Overall, we obtained 7 ‘unclassified’ and 73

meaningful subcategories (Supplementary
Table 2). The subcategory names largely
overlapped with the bag-of-words used for
category classification, offering a convenient link
between the scales and their respective
subcategories.
Manual refinement of scale subcategories and
categories

We reduced the 73 meaningful subcategories
onto 67 subcategories by manual refinement
using heuristic and knowledge–based criteria. In
this step, for each scale one out of the following
four different actions were performed:

� No changing: The scale classification is kept, as
automatically derived using AAclust.

� Changing category: Change of the AAclust classifi-
cation for the scale category and subcategory.

� Changing subcategory: Change of the AAclust
classification for the scale subcategory.

� Renaming subcategory: Change of the semi-
automatically derived subcategory name.

We manually renamed subcategories of 43
scales for clarity and brevity, applying heuristics
including shortening (e.g., ‘Principal Component 1’
to PC1), summarizing (e.g., ‘Charge donor’
included into Charge), deleting unclear names
(e.g., ‘Kerr-constant’), and aligning with naming
conventions. Notably, we adhered to a general
convention for the N- or C-terminal preference in
conformational subcategories, as seen in the
renaming of ‘b-turn (3rd residue)’ to b-turn (C-term).
Scales were allotted to ‘unclassified’

subcategories when they had a Pearson
correlation lower than 0.3 with any scale within
their original subcategory and failed to attain a
minimum within-cluster correlation of 0.3 with any
other subcategory. Further, a scale was deemed
‘unclassified’ when a conclusive literature-based
assignment failed. Consequently, 42 of the total
586 scales could not be classified.



Table 1 Scale categories with their bag-of-words and the number of respective subcategories before and after manual
refinement (indicated in bold).

Category Bag-of-words # subcategories

ASA/Volume ‘accessibility’, ‘accessible surface’, ‘buriability’, ‘buried’, ‘bulkiness’, ‘exposed residue’,

‘size’, ‘van der waals’#1, ‘volume’, ‘weight’

5

5

Composition ‘amino acid distribution’, ‘composition’, ‘frequency of occurrence’, ‘membrane

preference’, ‘membrane proteins’, ‘mesophilic proteins’, ‘proteins of mesophiles’, ‘mt

proteins’, ‘multi spanning proteins’, ‘nuclear proteins’, ‘proteins of thermophiles’,

‘proteins of mesophiles’, ‘sequence frequency’, ‘single spanning proteins’,

‘thermophilic proteins’, ‘transmembrane regions’

4 (+1 unclassified)

5 (+1 unclassified)

Conformation ‘alpha-helix’, ‘aperiodic indices’, ‘average relative fractional occurrence’, ‘bend’, ‘beta-

sheet’, ‘beta-strand’, ‘beta-structure’, ‘coil’, ‘conformational state’, ‘extended’, ‘helical’,

‘helix’, ‘linker’, ‘loop’, ‘normalized frequency’, ‘pi-helices’, ‘pleated-sheet’, ‘relative

preference value’, ‘turn’, ‘chain reversal’

27 (+1 unclassified)

24 (+1 unclassified)

Energy ‘charge’, ‘electrical effect’, ‘electron-ion interaction potential’, ‘energy transfer’,

‘entropy’, ‘free energies’, ‘free energy’, ‘gibbs energy’, ‘heat capacity’, ‘hydrogen bond

donors’, ‘isoelectric point’#2, ‘non-bonded energy’, ‘nonbonding orbitals’, ‘partition

coefficient’, ‘partition energies’, ‘partition energy’, ‘polarizability’, ‘transfer energy’

15 (+1 unclassified)

9 (+1 unclassified)

Polarity ‘amphiphilicity’, ‘cornette et al’*, ‘hydration’, ‘hydrophobic moment’, ‘hydrophobic

parameter’, ‘hydrophobicity’, ‘hydrophilicity’, ‘hydropathy’, ‘pK’, ‘polar requirement’,

‘polarity’, ‘refractivity’, ‘retention coefficient’, ‘surrounding residues’

5 (+1 unclassified)

6 (+1 unclassified)

Shape eccentricity’, ‘eigenvalue’, ‘graph’, ‘kakraba-knisley’*, ‘longest chain’, ‘prabhakaran-

ponnuswamy’*, ‘reduced distance’, ‘side chain’, ‘steric parameter’, ‘value of theta’

6 (+1 unclassified)

6 (+1 unclassified)

Structure-Activity ‘average interactions’, ‘b values’, ‘chemical shift’, ‘contact number’, ‘equilibrium

constant’, ‘flexibility’, ‘interactivity’, ‘side chain interaction’, ‘signal sequence’, ‘site

occupied by water’, ‘spin-spin coupling’, ‘stability’, ‘zimm-bragg parameter’

4 (+1 unclassified)

6 (+1 unclassified)

Others ‘bitterness’, ‘kerr-constant’, ‘melting point’#3, ‘mutability’, ‘optical rotation’, ‘principal

component’, ‘principal property’, ‘rf rank’

7 (+1 unclassified)

6 (+1 unclassified)

#1 ‘van der waals’ refers not to van der Waals forces but rather to van der Waals volume or radius, properties related to ‘ASA/

Volume’.
#2 ‘isoelectric point’ is assigned to ‘Energy’ since it is related to the net charge of residues.
#3 ‘melting point’ is attributed to ‘Others’ due to ambiguous assignments with other categories—it could be associated, for example,

with ‘Energy’ (i.e., as a measure of heat capacity) or to ‘Structure-Activity’ (i.e., as a measure of stability).
* Names of authors contributing various scales to a specific category.
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Scales were reassigned to different
subcategories and categories to enhance the
overall Pearson correlation within each
subcategory and align better with existing
literature. In some cases, scales were allocated to
larger subcategories, resulting in a slightly lower
minimum within-cluster Pearson correlation, but
maintaining a high degree of specificity and
consistency in smaller subcategories. For
example, despite a higher minimum correlation
with the PC5 subcategory, the ’Relative mutability’
scale was placed into the broader Mutability
subcategory.
Overall, we manually refined 70% of the

automatically assigned scales using these
heuristic and knowledge-based criteria, classifying
544 out of the 586 scales into 8 categories and 67
distinct subcategories. Scales within the same
subcategory often displayed a high positive
correlation (>0.9) or at least a minimum within
Pearson correlation of 0.3 (Figure 3).
Code availability

AAontology is a foundational component of
AAanalysis, a Python-based framework for
23
interpretable protein prediction, freely accessible
at https://github.com/breimanntools/aaanalysis
and documented under https://aaanalysis.
readthedocs.io/en/latest/.
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