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SUMMARY
Dexamethasone is a life-saving treatment for severe COVID-19, yet its mechanism of action is unknown, and
many patients deteriorate or die despite timely treatment initiation. Here, we identify dexamethasone treat-
ment-induced cellular and molecular changes associated with improved survival in COVID-19 patients. We
observed a reversal of transcriptional hallmark signatures in monocytes associated with severe COVID-19
and the induction of amonocyte substate characterized by the expression of glucocorticoid-response genes.
These molecular responses to dexamethasone were detected in circulating and pulmonary monocytes, and
they were directly linked to survival. Monocyte single-cell RNA sequencing (scRNA-seq)-derived signatures
were enriched in whole blood transcriptomes of patients with fatal outcome in two independent cohorts,
highlighting the potential for identifying non-responders refractory to dexamethasone. Our findings link
the effects of dexamethasone to specific immunomodulation and reversal of monocyte dysregulation, and
they highlight the potential of single-cell omics for monitoring in vivo target engagement of immunomodula-
tory drugs and for patient stratification for precision medicine approaches.
4318 Cell 187, 4318–4335, August 8, 2024 ª 2024 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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INTRODUCTION

Dexamethasone represents the first and most effective treatment

against severe COVID-19,1 with likely millions of lives saved

worldwide during the COVID-19 pandemic. Based on transcrip-

tome-based reverse drug target prediction, we had identified

dexamethasone as a potential drug candidate for a subgroup of

patientswith severe disease courses.2 As early as June 2020, pre-

liminary data from the Randomized Evaluation of COVID-19 Ther-

apy (RECOVERY) platform trial demonstrated a significant clinical

benefit of dexamethasone, reducing the relative risk of 28-day

mortality by approximately 30% in patients with severe COVID-

19 requiring mechanical ventilation.1 The benefit of glucocorticoid

(GC) treatment in severeCOVID-19was subsequently validated in

further trials1,3,4 and dexamethasone quickly became the stan-

dard of care (SOC) for all patientswithCOVID-19 requiring supple-

mental oxygen or mechanical ventilation.5 The survival benefit

was lower in patients requiring supplemental oxygen therapy

without invasive ventilation, whereas no benefit and even harm

was observed in patients without respiratory failure and no need

for supplemental oxygen, particularly at higher doses.1,6,7

Although no impact of dexamethasone on severe acute respira-

tory syndrome coronavirus 2 (SARS-CoV-2) viral load kinetics,

antibody and T cell response was observed with the standard

dexamethasone dose used in the RECOVERY trial,8,9 negative ef-

fects of corticosteroid use have previously been reported for pa-

tients with viral pneumonia caused by SARS-CoV and Middle

East respiratory syndrome-related coronavirus (MERS-CoV),10

where delayed viral clearance was observed, as well as for influ-

enza, where corticosteroid therapy is associated with higher

mortality.11

As nomechanistic studies were conducted in the pivotal clinical

efficacy trials, smaller experimental studies haveelaboratedon the

potential effectsofcorticosteroidson the immunesystem.A recent

study demonstrated that dexamethasone treatment of patients

with severe COVID-19 affected circulating neutrophils. The study

revealed transcriptional alteration of several of the known neutro-

phil cell states in peripheral blood,mainly counteracting sustained

interferon (IFN) activation and reinforcing suppressor states, sug-

gesting limitation of neutrophil pathogenicity.12 In two hamster

models, a strong anti-inflammatory effect of dexamethasone

was postulated as amajor effect of therapy, which was also linked

to a specifically responsive subpopulation of neutrophils.13 Down-

regulation of STAT1 target genes in monocytes14 as well as

suppression of T cell function15 were two other potential modes

of action of dexamethasone in COVID-19, yet a link of these tran-

scriptomic changes to treatment response and clinical outcome is

missing.

Despite the proven clinical effectiveness of dexamethasone, a

substantial number of patients progresses to critical illness and

die from COVID-19 with apparently little or no response to dexa-

methasone treatment. Overall, the mechanisms of action of

dexamethasone in severe COVID-19 are unknown, and bio-

markers of treatment response or treatment failure are missing.

Early prediction of treatment failure, however, would be valuable

to guide early step-up of immunomodulatory therapy, and re-

sults from recent clinical trials assessing efficacy of dexametha-

sone in COVID-19 further support the need for biomarker-sup-
ported clinical decision processes, even for such well-known

and widely used drugs as corticosteroids.6,16

Here, we provide a framework to identify molecular modes of

action and markers of treatment response of repurposed drugs,

exemplified by dexamethasone in COVID-19. We identified pa-

tients treated with and without dexamethasone according to

criteria of the RECOVERY trial during the first months of the

COVID-19 pandemic from a large observational cohort study.17

We generated single-cell omics profiles from peripheral blood-

derived immune cells, deciphered cellular, molecular, and

functional changes to dexamethasone treatment, and linked

the observed changes to clinical outcomes. We found that

dexamethasone specifically reverses the dysfunctional molecu-

lar phenotypes associated with severe COVID-19 in monocytes

of patients with a clinical response to treatment but not those

with a fatal outcome. Based on these outcome-specific single-

cell gene expression data, we generated transcriptomic signa-

tures that we transferred to whole blood transcriptomes of two

independent COVID-19 cohorts, demonstrating their potential

as predictive biomarkers for treatment response in clinical

studies. We reveal molecular hallmarks that are linked to the

life-saving effects of dexamethasone and demonstrate, in gen-

eral, the feasibility of single-cell transcriptomics to assess in vivo

drug target engagement and treatment responses in clinical

studies.

RESULTS

Dexamethasone treatment leads to immunomodulation
in circulating immune cells
To determine cellular and molecular changes induced by dexa-

methasone treatment in COVID-19 patients, we identified all

patients enrolled in our central phenotyping platform study17

who were infected during the first two waves of the COVID-19

pandemic (i.e., infected with SARS-CoV-2 D614G strain) and

who were either GC naive (first wave from March to May 2020,

termed control patients, short ‘‘ctrl’’) or who were treated with

dexamethasone (second wave from October 2020 to February

2021) (Figure 1A; Table S1).17 We carefully selected patients

who met the criteria for dexamethasone treatment as identified

in the RECOVERY trial. Of note, all selected patients did not

receive any other immunomodulatory or any antiviral treatment.

We selected patients who received dexamethasone or were

treatment-naive and matched them for sex, age, disease

severity, and time from symptom onset to blood sampling, re-

sulting in comparable baseline characteristics and disease

severity (Table S1). Whole blood and peripheral blood mononu-

clear cells (PBMCs) were taken on average 8 days after treat-

ment initiation and subjected to high-dimensional single-cell an-

alyses utilizing cytometry by time of flight (CyTOF), single-cell

RNA sequencing (scRNA-seq), and multi-color flow cytometry.

Assessment of compositional alterations of the major immune

cell types (Figure 1B) by CyTOF revealed significantly increased

leukocytes in dexamethasone-treated patients with moderate

disease severity (Figure 1C). Increased leukocyte frequencies

were mainly due to alterations in B cells and neutrophils in

moderately ill patients (hospitalized patients requiring oxygen

supplementation but no mechanical ventilation), while there
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Figure 1. Dexamethasone treatment leads to immunomodulation in circulating immune cells

(A) Study design: hospitalizedmoderately (supplemental oxygen needed) and severely affected (i.e., intensive care unit treatment) patients with COVID-19 treated

with dexamethasone were matched for sex, age, disease severity, and time from symptom onset to blood sampling with treatment-naive COVID-19 patients

(ctrl.). Samples were obtained prior to treatment or corresponding time points for controls (‘‘early’’), respectively, and toward the end of the treatment period and

corresponding time points for controls (‘‘late’’). Whole blood leukocytes were analyzed by CyTOF, and purified PBMCs were analyzed by scRNA-seq and flow

cytometry for marker validation. Included sample numbers are indicated. See Table S1.

(B) UMAP of whole blood cells (downsampled from n = 3,191,132 to n = 986,030 cells for better visualization) from CyTOF with identified cell types indicated.

(C) Absolute leukocyte counts from differential blood count, monocyte percentages, and concentration of whole blood cells from CyTOF. Wilcoxon test for

statistical significance, and resulting p value is indicated.

(D) UMAP visualization of the entire PBMC space (n = 114,181 cells) from scRNA-seq with indicated major cell types.

(legend continued on next page)
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was no difference in dexamethasone-treated severely ill patients

(Figure S1A). Further, there was a relative decrease of mono-

cytes in dexamethasone-treated patients with moderate disease

(Figure 1C). Altogether, the compositional changes indicated

cell-type-related immunomodulatory alterations of dexametha-

sone treatment.

Next, we definedmolecular phenotypes and treatment-related

transcriptional alterations of a total of 114,181 PBMCs by

scRNA-seq. All major blood-derived immune cell types were

present in our dataset (Figures 1D and S1B). Overlaying time of

sampling after symptom onset (%10 and >10 days, Figure S1C)

or disease severity onto the uniformmanifold approximation and

projection (UMAP) (Figure 1E) revealed global distribution

shifts, as previously described,18 particularly within the mono-

cyte compartment. Specifically, we observed profound disease

severity-related alterations in expression of human leukocyte an-

tigen (HLA) and S100A genes (Figure 1F) and the IFN system

(Figure S1D), as previously described.18 In order to reveal tran-

scriptional effects of dexamethasone treatment, we quantified

differentially expressed genes (DEGs) by cell type (Figure 1G).

We observed the strongest treatment-dependent transcriptional

changes inmonocytes, followed by B cells andCD4+ T cells, with

all other cell types showing a moderate gene regulation. Of note,

we observed an upregulation of a substantial number of genes

associated with dexamethasone treatment in monocytes in

moderate and severe disease (Figure 1G). Despite clear differ-

ences in the magnitude of transcriptional alterations between

cell types, we identified a small set of DEGs shared across cell

types in severe COVID-19, including thewell-knownGC receptor

target genes TSC22D319 and TXNIP20 among the commonly up-

regulated genes, while IFITM1 and FTH1were among the down-

regulated genes (Figure S1E). Functional enrichment analysis

across all major cell types using all up- and downregulated

genes revealed that a large number of genes are tumor necrosis

factor alpha (TNF)-mediated nuclear factor kB (NF-kB) target

genes, particularly within downregulated DEGs (Figures 1H

and S1F), which corroborates previous findings that corticoste-

roids can inhibit NF-kB transcription factor family members.21,22

The importance of dexamethasone-related changes in the

monocyte compartment was further illustrated by the strongest

enrichment scores ofmany other cellular functionswhen assess-

ing upregulated DEGs in patients with severe disease (Fig-

ure S1F, right panel).

In summary, we observed transcriptional changes associated

with dexamethasone treatment that were quantitatively most

prominent in monocytes and B cells and exhibited cell-type-

specific modulations in addition to common transcriptional

changes.
(E) UMAP of the entire PBMC space by scRNA-seq colored by COVID-19 severity

indicated.

(F) Violin plots indicating the expression of selected MHC class II (HLA-DRA,HLA-

severity in monocytes of untreated controls. Significant differential expression is

(G) Number of differentially expressed (DE) genes (DEGs) by major cell type with

parameters: log2FC = 0.25, min.pct = 0.1).

(H) Spider plots depicting the Hallmark TNF signaling via NF-kB, the most prom

regulated genes by cell types extracted from Figure S1F.

See also Figure S1.
Dexamethasone treatment elicits a unique cell state in a
subset of monocytes
To determine disease severity-dependent commonalities and

differences in the transcriptional response ofmonocytes to treat-

ment, we compared DEGs in monocytes from dexamethasone-

treated (Dexa) vs. untreated (ctrl.) patients with severe and

moderate COVID-19 (Figure 2A). Dexamethasone treatment

suppressed expression of several proinflammatory genes,

including IL1B,CCL3,CCL4,CCL3L3, andCCL4L2, irrespective

of disease severity, and induced a disease severity-independent

gene program, which included known GC-response genes such

as IL1R2, the decoy receptor for interleukin (IL)-1 in line with

the anti-inflammatory effect of dexamethasone, as well as

TSC22D3, CD163, SAP30, PER1, and ZFP36L219,23–25 (Fig-

ure 2B). Based on these in vivo changes, we compiled a dexa-

methasone treatment gene signature composed of both down-

and upregulated genes (Figure 2C). Upregulated genes were

functionally related to hypoxia and regulation of catabolic pro-

cesses, while downregulated genes enriched for NF-kB

signaling and terms related to immune activation (Figure 2D).

Further, we found a GC signature derived from monocytes

treated with a synthetic GC in vitro26 to be strongly enriched in

monocytes during dexamethasone treatment in our dataset

(Figure 2E).

Next, we sub-clustered the 23,416 transcriptomes of the

monocyte space into ten different cell states (Figures 2F and

2G), showing enrichment of seven cell state signatures derived

from acute COVID-19 prior to introduction of dexamethasone

therapy18 (Figure S2A). Despite the enrichment of the GC-

response gene signature upon dexamethasone treatment in

the monocyte space overall (Figure 2E), cell state-specific anal-

ysis revealed the strongest enrichment of the GC signature in

one selected cluster, which we termed ‘‘Dexa response’’ cell

state (Figures 2H and S2B). These findings were validated with

gene sets based on the Gene Ontology (GO) term ‘‘response to

GC’’ and ‘‘response to steroid hormone’’ (Figures 2I and 2J).

Manual assessment of individual genes corroborated the Dexa

response state to be related to dexamethasone treatment

as several known GC target genes were elevated including

TSC22D3,19 SAP30,24 FKBP5,27 and CD16323 (Figure 2G).

To cross-validate our results, we analyzed 2,350 monocyte tran-

scriptomes included in a recently published dataset of dexa-

methasone-treated patients,12 revealing similar changes in

monocytes from this independent dataset (Figures S2C

and S2D).

Dexamethasone treatment elicited a transcriptional core

signature in monocytes in COVID-19 patients, independent

of disease severity. Single-cell analysis revealed that these
with indicated cell types subsetted for untreated controls. Shift in monocytes is

DRB1, andHLA-DPA1) and alarmin (S100A8, S100A9, and S100A12) genes by

indicated with asterisks.

at least 2,000 cells for dexamethasone vs. control by COVID-19 severity (DE

inent term of functional enrichment analysis for the dexamethasone down-
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transcriptional changes were not present evenly across all

monocytes, but that a specific monocyte substate elicited

upon dexamethasone treatment showed the highest enrichment

of GC-response genes (Dexa response monocyte state).

Dexamethasone-induced transcriptional modulation of
monocytes is linked to clinical outcome
Although clinical trials have demonstrated a strong clinical benefit

of dexamethasone in patients with moderate and severe COVID-

19, a substantial number of patients—almost 30% in the

RECOVERY trial—died despite dexamethasone treatment.1 It is

unclear whether the unfavorable outcome in these patients is

caused by a failure to adequately respond to treatment and which

mechanisms contribute to a treatment benefit. We therefore as-

sessed whether the distribution of treatment-related monocyte

cell states was linked to disease severity and to the clinical

outcome. The Dexa response monocyte state was prevalent in

up to 80% of all monocytes in dexamethasone-treated patients

with moderate COVID-19 (hospitalized patients requiring oxygen

supplementation but no mechanical ventilation) and less

pronounced in dexamethasone-treated patients with severe

COVID-19 (Figure 3A). Similarly, protein expression of CD163, a

prominent marker gene of the dexamethasone response cluster,

was elevated on monocytes in dexamethasone-treated COVID-

19 patients (Figure S3A). Analysis of whole blood samples by

CyTOF (Figure S3B) revealed that cluster abundance of the

CD14+CD16�CD163hi classical monocytes (Figure 3B) and signal

intensity of CD163 (Figure 3C) were significantly elevated in dexa-

methasone-treated patients, whereas the CD14+ and CD16+

CD69+PD-L1+ activated classical and non-classical monocyte

subpopulations were significantly downregulated by dexametha-

sone treatment (Figure S3C), with potentially beneficial effects on

T cell functionality, similar to programmed cell death ligand-1 (PD-

L1) blockade in SARS-CoV-2 infection.28

Further stratification of dexamethasone-treated patients with

severe COVID-19 by clinical outcome (survival) revealed a signif-

icantly higher frequency of Dexa response monocytes in survi-

vors compared with patients who later died during the course

of their disease (deceased), in whomDexa response statemono-

cytes were low to undetectable (Figures 3D and S3D).
Figure 2. Dexamethasone elicits a unique cell state in a fraction of mo
(A) Fold change-fold change (FC-FC) plot showing the log2 fold changes of differe

COVID-19 Dexa vs. control (y axis) and moderate COVID-19 Dexa vs. control (x

(B) Violin plots depicting expression of previously described dexamethasone-

monocytes stratified by severity and treatment. Significant differential expressio

(C) Heatmap of the average log2 fold change in monocytes from genes identifie

upregulated and downregulated genes were selected.

(D) Functional enrichment of the Dexa core signature genes from (A) and (C) usin

(E) Enrichment of the in vitro generated glucocorticoid signatures fromWang et al

mean module score per donor. Statistical testing using Wilcoxon test.

(F) UMAP visualization of the entire monocyte space (n = 23,416 cells) with ident

(G) Marker gene expression levels for identified monocyte states from (F). Marke

(H) Enrichment of the in vitro generated glucocorticoid up signatures from Wang

scores by donor and cell states, and the resulting p value is indicated.

(I) Enrichment of the GO term response to glucocorticoid in all monocyte states. K

and the resulting p value is indicated.

(J) Enrichment of the GO term response to steroid hormone in all monocyte sta

states, and the resulting p value is indicated.

See also Figure S2.
Given the outcome-dependent transcriptional changes, we

next contrasted the DEGs in all monocytes focusing on dexa-

methasone-treated surviving patients (i.e., responders) and un-

treated control survivors (Figure 3E). Beyond the downregulation

of proinflammatory genes observed in the dexamethasone core

signature, selective analysis of monocyte gene expression in

survivors revealed that dexamethasone treatment was associ-

ated with a reversal of the previously reported transcriptional

dysregulation in monocytes in severe COVID-19.18 Dexametha-

sone treatment led to a downregulation of alarmins, cytokines,

and chemokines and reconstitution of HLA-DRB1, HLA-DRA,

HLA-DPA1, and CD74 expression (Figure 3F). Alarmin expres-

sion in monocytes was lower at 7 days compared with 3 days af-

ter initiation of dexamethasone treatment12 (Figure S3E), indi-

cating a time-dependent effect of dexamethasone on alarmin

gene expression.

In line with these findings, dexamethasone treatment signifi-

cantly reduced the frequency of S100Ahi monocytes in survivors,

but not in non-survivors (Figure 3G). Differential gene expression

analysis of patients with severe COVID-19 (all treated with

dexamethasone) showed that dexamethasone induced the up-

regulation of genes associated with a milder course of disease,

specifically in survivors, whereas monocytes in non-survivors

expressed higher levels of alarmins associated with monocyte

dysregulation (Figure 3H), resembling untreated patients with

severe COVID-19 (Figure S3F). These data indicated that a

non-favorable clinical outcome, i.e., death from COVID-19,

was associated with a failure of monocytes to respond to dexa-

methasone. We had previously identified a dysregulated mono-

cyte state marked by low major histocompatibility complex

(MHC)-II expression and high levels of alarmins, termed ‘‘HLA-

DRloS100Ahi,’’ which was strongly associated with COVID-19

severity.18 Gene set enrichment analysis (GSEA) showed that

dexamethasone treatment reversed this dysfunctional mono-

cyte phenotype in survivors, whereasmonocytes from deceased

patients did not show a reversal of this transcriptional signature,

hence failed to respond to treatment (Figure 3I).

In addition to monocytes, we also tested B cells for outcome-

specific signatures, as they also showed profound transcrip-

tional changes to dexamethasone (Figure 1G). However, only a
nocytes
ntially expressed genes (DEGs) in monocytes from the comparisons of severe

axis). Genes that are DE in both or only one comparison are indicated.

induced genes (TSC22D3, IL1R2, CD163, SAP30, PER1, and ZFP36L2) in

n is indicated with asterisks.

d in (A) stratified by the severity comparisons. For representation, the top 20

g the GO and Hallmark databases (Bonferroni-adjusted p value < 0.05).

.26 in monocytes stratified by COVID-19 severity and treatment represented as

ified monocyte states. The Dexa response state is highlighted.

rs for the Dexa response state are highlighted.

et al.26 in all monocyte states. Kruskal-Wallis (KW) test between mean module

ruskal-Wallis (KW) test between mean module scores by donor and cell states,

tes. Kruskal-Wallis (KW) test between mean module scores by donor and cell
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comparatively small fraction of genes was associated with

outcome, indicating that B cells are not informative in contrast

to themonocytes for stratifying treatment response (Figure S3G).

To evaluate if similar treatment effects as detected in blood

monocytes were also detectable in the lungs and therefore

potentially directly related to organ failure and disease progres-

sion, we analyzed cells from bronchoalveolar lavage (BAL) of

patients with severe COVID-19. First, we analyzed published

single-cell transcriptomes of BAL29 including a total of six pa-

tients with severe COVID-19 patients, four of whom were

treated with the synthetic GC methylprednisolone. We recov-

ered similar patterns as we found in blood monocytes in

response to dexamethasone treatment. Disease outcome-

stratifying markers from the blood monocytes (Figure 3E)

were also highly expressed in BAL myeloid cells of methylpred-

nisolone-treated survivors (n = 2), while blood monocyte

markers associated with treatment failure were higher in treated

deceased patients (n = 2, Figure S3H). As the cohort size in this

published dataset was too limited for robust statistical analysis,

we generated single-cell transcriptomes from BAL samples

collected from twelve patients with severe COVID-19 in the first

two waves in Germany, including seven dexamethasone-

treated and five untreated patients. The dataset comprised a

total of 67,439 cells (Figure S3I; Table S1) and recovered all

major cell types expected in BAL (Figures S3J and S3K). In or-

der to investigate similarities of the transcriptional responses to

dexamethasone between circulating and pulmonary immune

cells, we analyzed the enrichment of the signature of Dexa

response monocytes from blood in BAL monocytes and macro-

phages, stratified by treatment (dexa vs. untreated) and

outcome (survival vs. deceased) (Figure 3J). The Dexa

response signature was significantly enriched in BAL mono-

cytes from dexamethasone-treated survivors, but it was neither

enriched in monocytes from untreated patients nor in dexa-

methasone-treated deceased patients. A similar stratification

was observed in BAL macrophages, albeit to a lesser extent

(Figure 3J). These data indicate that transcriptional responses

to dexamethasone treatment detected in circulating monocytes
Figure 3. Dexamethasone-induced transcriptional modulation of mono

(A) Percentages of Dexa response monocyte state of all monocytes stratified by s

using Wilcoxon test, resulting p values are indicated.

(B) Monocyte relative cluster distribution fromCyTOF analysis for cluster 3 (CD14+

and resulting p values are indicated.

(C) Mean scaled signal intensity of CD163 in myeloid cells (CyTOF) by treatment gr

indicated.

(D) Percentages of Dexa response monocyte state of all monocytes in severe pa

using Wilcoxon test, and resulting p values are indicated.

(E) Volcano plot showing the differentially expressed genes (DEGs) for Dexa vs. c

0.1).

(F) Violin plots for a selection of genes from (E) belonging to the MHC class II, al

(G) Percentages of ‘‘S100Ahi’’ monocyte state of all monocytes stratified by outc

using Wilcoxon test, and resulting p values are indicated.

(H) Volcano plot showing the DEG between severe COVID-19 patients treated w

monocytes (DE parameters: log2FC = 0.25, min.pct = 0.1).

(I) Signature enrichment of the HLA-DRloS100Ahi monocytes from Schulte-Schrep

and outcome.

(J) Enrichment of the Dexa response monocyte signature (n = 30) in both bronc

cohort overview in Figure S3G. Statistical testing using the Wilcoxon test (alterna

See also Figure S3.
are preserved in the lung and likely contribute to outcome ben-

efits of dexamethasone.

In conclusion, induction of a Dexa response monocyte state

in patients with severe COVID-19 treated with dexamethasone

was associated with clinical benefit (survival). In addition, dexa-

methasone treatment exerted specific modulatory effects by

reversing the dysregulated monocyte phenotype in patients

with severe COVID-19, whereas fatal outcome was associated

with a failure to revert the dysregulated monocyte phenotype.

These data link the clinical effect of a pharmacological interven-

tion (dexamethasone) to a molecular phenotype in immune cells

in the blood and in the lung. The data also demonstrate the

versatility of scRNA-seq to reveal mechanisms of action of ther-

apeutic interventions and to identify non-responders to a spe-

cific treatment prior to the clinical endpoint. The results under-

score the causal relevance of monocyte responses in the

pathophysiology of severe COVID-19.18,30

Dexamethasone treatment response is reflected in the
epigenome of CD14+ monocytes early after treatment
initiation
To investigate whether the observed differences in the dexa-

methasone treatment response on the transcriptional level are

reflected by epigenetic profiles in monocytes, we selected pa-

tients with supplemental oxygen but without invasive mechani-

cal ventilation at treatment start (World Health Organization

(WHO) score of 4–5) and generated genome-wide DNA methyl-

ation profiles of blood samples at an earlier stage of treatment

(median 2 days after initiation of dexamethasone treatment)

than for the transcriptome analysis (median of 8 days) (Figure 4A).

Patients were matched in pairs according to clinical status at

treatment initiation and classified based on their future WHO

score (median 9 days later) as either dexamethasone non-re-

sponders (increased WHO score, i.e., clinical deterioration to

intubation and invasive mechanical ventilation, need for addi-

tional organ replacement, or death) or dexamethasone re-

sponders (stable or improved clinical status and WHO score).

DNA methylation profiles of fluorescence-activated cell sorting
cytes is linked to clinical outcome

everity and treatment with each dot representing one donor. Statistical testing

CD16�CD163hi, clustering see Figure S3B). Wilcoxon test for statistical testing,

oup and severity. Wilcoxon test for statistical testing, and resulting p values are

tients with dexamethasone treatment stratified by outcome. Statistical testing

ontrol in severe COVID-19 survivors (DE parameters: log2FC = 0.25, min.pct =

armins, or cytokines/chemokines group.

ome in dexamethasone-treated severe COVID-19 patients. Statistical testing

ith dexamethasone who survived vs. those who were treated but deceased in

ping et al.18 in monocytes of severe COVID-19 patients stratified by treatment

hoalveolar lavage (BAL) COVID-19 monocytes (left) and macrophages (right),

tive = ‘‘greater’’), and resulting p values are indicated.
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Figure 4. Treatment response is reflected in the epigenome of CD14+ monocytes early after treatment initiation

(A) Study design: PBMCs were isolated from patients (WHO score of 4–5 at dexamethasone treatment start) 1–4 days after the start of Dexa treatment. Ten

matching pairs of treatment non-responders/responders were selected based on their increased/not-increased WHO score 5–11 days after Dexa treatment,

respectively. CD14+CD16� monocytes, CD19+ B cells, CD4+ memory T cells, and CD8+ memory T cells were purified using flow cytometry (FACS) and analyzed

on the Infinium MethylationEPIC BeadChip array for genome-wide DNA methylation.

(B) Principal-component analysis (PCA) was performed on the genome-wide DNA methylation datasets of CD14+ monocytes. Histograms on the axes show the

distribution of dexamethasone treatment response group samples.

(C) PC linear regression analysis of covariates. Contribution of dexamethasone treatment response, age, and sex are displayed for PCs 1–4.

(legend continued on next page)
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(FACS)-purified CD14+CD16� monocytes, CD19+ B cells, CD4+

memory T cells, and CD8+ memory T cells (Figure S4A) showed

the strongest differences by cell type without differentiating be-

tween responders and non-responders in the global principal-

component analysis (PCA, Figure S4B). To define treatment

response-related differences, each cell compartment was sub-

setted and analyzed individually. A separation between re-

sponders and non-responders was observed in the PCA for

CD14+ monocytes (Figure 4B), which was not seen in CD19+ B

cells or CD4+ and CD8+ memory T cells (Figure S4C). PC linear

regression analysis of the CD14+monocytes confirmed the high-

est influence to be the dexamethasone treatment-response

group on the first principal component (Figures 4B and 4C). To

further explore the epigenetic differences within CD14+ mono-

cytes between non-responding and responding patients, we

determined significantly differentially methylated positions

(DMPs, Figure 4D). Functional enrichment analysis of pro-

moter-associated DMPs revealed high association of GO terms

such as ‘‘myeloid leukocyte activation,’’ ‘‘response to chemo-

kine,’’ ‘‘myeloid leukocyte migration,’’ and ‘‘regulation of inflam-

matory response,’’ displaying epigenetic remodeling of pro-

moter elements of genes contributing to a proinflammatory

program in CD14+ monocytes (Figure 4E).

Comparing these results to our findings on the transcriptome

level (�8 days after treatment initiation), outcome-specific

monocyte signature genes for severe dexamethasone-treated

COVID-19 patients who deceased (Figure 3H) were overrepre-

sented in the top 1% DMPs (based on combined rank) with an

even stronger overrepresentation in the top 0.1% DMPs, indi-

cating significant differential methylation changes in these signa-

ture genes (Figure 4F). This was supported by a significant

robust rank aggregation (RRA) enrichment analysis (Figure 4G).

Taken together, we observed profound epigenetic differences

in monocytes of dexamethasone non-responders vs. re-

sponders early after treatment initiation, thus preceding the

observed transcriptional changes. Differences were mainly

associated with a proinflammatory program and also showed

enrichment of the outcome signature retrieved from single

monocyte transcriptomes, further supporting the importance of

this gene program to be targeted if dexamethasone therapy is

to become clinically effective.

Dexamethasone-inducedmonocyte signatures enrich in
whole blood transcriptomes of two clinical cohorts and
stratify outcome
Given the clear outcome-associated transcriptional changes,

particularly in the monocyte compartment, we next investigated

whether these changes could be recapitulated in whole blood
(D) Volcano plot of differentially methylated positions (DMPs) in CD14+ monocyte

false discovery rate (FDR) of 0.05 (Benjamini-Hochberg).

(E) Gene Ontology enrichment analysis performed on promoter-associated DMP

(F) Fraction of outcome signature genes frommonocytes (deceased vs. survivors,

combined rank), and the top 0.1% of DMPs.

(G) Volcano plot with marked sites of monocyte outcome signature genes display

Gene names were displayed for DEG sites with an FDR < 0.05. Statistical signific

expression was calculated (robust rank aggregation [RRA], p value = 0.034).

See also Figure S4.
transcriptomes and whether transcriptome information from

early time points after dexamethasone treatment initiation would

be informative to stratify patients according to their clinical

outcome.

To this end, we generated whole blood bulk transcriptomes

from 92 patients of our single-center COVID-19 cohort (Charité,

Pa-COVID-19), sampled at 4 days after treatment initiation (Fig-

ure 5A), 4 days earlier than for the scRNA-seq analysis. PCA re-

vealed expression differences between moderately ill patients,

severely ill patients who survived, and severely ill patients

who later died (Figure 5B), indicating the feasibility to detect

outcome-related differences from whole blood transcriptomes.

We compiled two transcriptome signatures related to fatal

outcome, i.e., for up- and downregulated transcripts, based on

the single-cell monocyte transcriptomes (Figures 2 and 3). Enrich-

ment scores for these signatures were calculated for each patient

and integrated for each patient group. We observed significant

disease severity- and outcome-dependent differences, with

enrichment of the ‘‘deceased upregulated’’ signature in deceased

patients and highest enrichment of the ‘‘deceased downregu-

lated’’ signature in patients with the lowest disease severity

(moderate COVID-19) (Figure S5A). These findings indicated

that outcome-associated monocyte-specific gene signatures

are detectable in whole blood transcriptomes, even at an earlier

time point after treatment initiation (4 vs. 8 days), and that these

signatures could stratify patients by outcome (Figure S5A).

Next, we utilized samples collected from 90 patients in a

Germanmulti-center cohort (CAPNETZ cohort) at an even earlier

time point after initiation of dexamethasone treatment (2 vs.

4 days, Figure 5C). Also in this cohort, we identified differences

between patients according to disease severity and outcome

(moderate, severe survived, and severe deceased) by PCA (Fig-

ure 5D), albeit less clear than in the samples from the single-cen-

ter cohort collected at a later time point of 4 days post treatment

initiation. Accordingly, the single monocyte transcriptome-

derived deceased upregulated signature was not significantly

enriched, but the deceased downregulated signature enriched

with statistically significant differences between the three groups

(Figure S5B).

To assess the likelihood of obtaining an enrichment of the sin-

gle monocyte transcriptome-derived signatures of that size with

the respective significance, we performed a permutation test

with 500 gene sets randomly drawn from each dataset, respec-

tively, and calculated the enrichment scores in deceased and

surviving patients. In contrast to the vast majority of these

random gene sets, we observed a highly specific enrichment

of our original singlemonocyte transcriptome-derived signatures

in both cohorts, particularly of the deceased upregulated
s comparing both dexamethasone response groups. The red line indicates the

s for CD14+ monocytes comparing dexamethasone response groups.

Figure 3H) within all samples on the EPIC array, the top 1% of DMPs (based on

ing differential methylation (red dots: p value < 0.05; pink dots: not significant).

ance of the overlap between differential DNA methylation and differential gene
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Figure 5. Monocyte-specific signatures enrich in whole blood transcriptomes of two validation cohorts and stratify outcome
(A) Schematic representation of the single-center (Charité) COVID-19 cohort used for whole blood transcriptome data analysis sampled on average at 4 days after

dexamethasone treatment initiation. Included sample numbers are indicated.

(B) Principal-component analysis (PCA) plot showing the distribution of the top 5,000 most variable genes present in the single-center cohort, color-coded

according to COVID-19 severity and outcome.

(C) Schematic representation of the multi-center (CAPNETZ) cohort used for whole blood transcriptome data analysis sampled on average 2 days after dexa-

methasone treatment initiation. Included sample numbers are indicated.

(legend continued on next page)
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signature in the single-center cohort and of the deceased down-

regulated signature in the multi-center cohort. (Figures S5C and

S5D.) To further increase the robustness of the enrichment anal-

ysis, we varied the number of genes to be included in the gene

signature and optimized the signature size based on the calcu-

lated enrichment scores and different enrichment between the

groups in both cohorts (Figures S5E and S5F). These optimized

signatures showed a high robustness for stratifying patients ac-

cording to disease severity and outcome in the two independent

cohorts, at early time points after treatment initiation (Figures 5E

and 5F). Investigation of the driving genes of the enrichment

of the outcome-related signature (Figures 5G, 5H, S5G, and

S5H) revealed that the leading edge of the GSEA included

the chemokine CXCL1 together with the alarmins S100A8,

S100A9, S100A11, and S100A12, resembling the monocyte

phenotype in patients with severe acute COVID-19 for the

deceased upregulated signature in the original single-center

cohort (Figure 5G) and that enrichment of the deceased downre-

gulated signature in the deceased patients was strongly driven

by many MHC class II genes (Figure S5G). In the whole blood

transcriptomes of the multi-center cohort sampled at 2 days

post treatment initiation, the leading edge of the enrichment of

the deceased upregulated signature did not yet contain the com-

plete signature at this early time point in patients who later died,

but already showed changes in S100A12 and CXCL1 (Fig-

ure S5H). Yet, the edge of the deceased downregulated signa-

ture was already enriched in MHC class II genes such as

CD74, HLA-DQB1, HLA-DRB1, and HLA-DRA for patients who

later died (Figure 5H). These results further emphasize the role

of dexamethasone in reversing the severe acute COVID-19

phenotype, as early as 2 days after initiation of treatment.

Taken together, clinical outcome-related single monocyte

transcriptome-based gene signatures derived from COVID-19

patients on average 8 days after initiation of dexamethasone

treatment were enriched in whole blood bulk transcriptomes ob-

tained at day 4 post treatment initiation and accurately stratified

patients according to disease severity and outcome. In whole

blood transcriptomes collected 2 days after treatment initiation

in an independent cohort, we could only detect an enrichment

of the gene signature based on downregulated genes, indicating

that dexamethasone treatment effects become apparent in

whole blood transcriptomes between 2 and 4 days after treat-

ment initiation.
(D) PCA illustrating the distribution of the top 5,000 most variable genes presen

outcome.

(E) Boxplots displaying the gene set variation analysis (GSVA) enrichment scor

downregulated signature (right plot) in the single-center cohort, split and colored

Hochberg adjustment were utilized for statistical analysis.

(F) Boxplots displaying the GSVA enrichment scores of the optimized deceased

plot) in the multi-center cohort, split and colored by the COVID-19 severity status

for statistical analysis.

(G) Gene set enrichment analysis (GSEA) of the optimized deceased upregulate

samples is based on expression-level statistics, and the running sum is visualiz

COVID-19 severity status and outcome of the genes included in the leading edg

(H) GSEA of the optimized deceased downregulated signature in the decease

expression-level statistics, and the running sum is visualized. The heatmap depict

19 severity status and outcome of the genes included in the leading edge.

See also Figure S5.
The results demonstrate the versatility of single-cell sequencing

of clinical samples to reveal in vivo effects of pharmacological

treatment and that gene signatures derived from these analyses

can be applied to larger clinical cohorts to stratify study patients

by outcome, even at early time points after treatment initiation.

DISCUSSION

GCs are among the most widely prescribed drugs worldwide and

a cornerstone for the treatment of a variety of acute and chronic

inflammatory conditions. In clinical practice, they are often re-

garded as effective yet rather nonspecific immunosuppressants,

despite an established molecular understanding that both natu-

rally occurring and pharmacologically designed GCs are acting

via specific binding to GC receptors.31,32 Responsiveness to GC

treatment is known to beheterogeneousamongpatients, possibly

influenced by the variety of diverse GC receptor isoforms, which

mediate their differential genomic and non-genomic effects.26,33

To better understand the specificity and the molecular mode

of action of GC treatment in COVID-19, we applied high-content

bulk transcriptomics and high-resolution single-cell technolo-

gies in two clinical cohorts of patients with COVID-19. We pro-

vide evidence that dexamethasone treatment in severe COVID-

19 leads to a highly specific immune modulation. Major changes

of molecular phenotypes occur mainly in the myeloid cell

compartment, where dexamethasone elicits a treatment-spe-

cific cell state in a fraction of monocytes, with induction of genes

with well-known regulatory functions including cell surface re-

ceptors, transcriptional regulators, and translational regulators,

while many chemokines and IL-1B are decreased in expression.

Defining qualitative and quantitative effects of dexamethasone

treatment on the cellular and molecular level supported a spe-

cific immunomodulatory effect, with many changes induced irre-

spective of disease severity. Importantly, these effects are remi-

niscent of changes described previously in other therapeutic

settings, such as rheumatoid arthritis, inflammatory bowel dis-

eases, or allergic asthma,32 for example, the increase of expres-

sion of certain genes with regulatory function including Throm-

bospondin 1 (THBS1), IL1R2, or GC-induced leucine zipper

protein GILZ (TSC22D3). Functional enrichment across cell

types pointed toward strong interference with NF-kB signaling,

which is one of the well-known mechanisms downstream of

GC receptor signaling.21,22
t in the multi-center cohort, color-coded according to COVID-19 severity and

es of the optimized deceased upregulated signature (left plot) and deceased

by the COVID-19 severity status and outcome. Wilcoxon test and Benjamini-

upregulated signature (left plot) and deceased downregulated signature (right

and outcome. Wilcoxon test and Benjamini-Hochberg adjustment were utilized

d signature in the deceased patient group of the Charité cohort. Ranking of

ed. The heatmap depicts the scaled variance-stabilized mean expression per

e.

d patient group of the multi-center cohort. Ranking of samples is based on

s the scaled batch-corrected variance-stabilized mean expression per COVID-
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Most strikingly, the molecular response to dexamethasone

was linked to clinical treatment response and outcome, as

the previously described dysfunctional molecular phenotype

associated with severe acute COVID-19 (HLA-DRloS100Ahi

monocytes)18 was reversed in patients surviving severe

COVID-19. This illustrates that dexamethasone therapy in this

clinical situation is not only immunosuppressive but rather immu-

nomodulatory since expression of genes related to effective im-

mune function was re-established. In fact, a specific Dexa

response state within monocytes, uncovered by single-cell tran-

scriptome analysis, revealed that not all monocytes respond to

treatment. Patients succumbing to the disease did not show a

reversal of the dysfunctional molecular phenotype in the mono-

cyte compartment (HLA-DRloS100Ahi monocytes), accompa-

nied by a lack of the dexamethasone response monocyte cell

state in most of these patients.

The dexamethasone response signature from blood mono-

cytes also enriched in monocytes and macrophages from BAL

samples of dexamethasone-treated survivors, but not of treated

non-survivors or GC-naive patients of our cohort. The role of in-

flammatory and potentially profibrotic monocytes and mono-

cyte-derived macrophages for the development of acute respi-

ratory distress syndrome (ARDS) in COVID-19 has been

documented in numerous studies.34 The reversal of the dysfunc-

tional molecular phenotype of monocytes in the lung, associated

with dexamethasone treatment and positive outcome (survival),

links our findings in circulating immune cells to dexamethasone

treatment-induced protection.

The differences in transcriptional changes following treatment

were preceded by epigenetic changes in the proinflammatory

program of CD14+ monocytes, which also differed between re-

sponders and non-responders. An outcome-related signature

generated from the monocyte transcriptomes (8 days post treat-

ment initiation) was successfully applied to whole blood tran-

scriptomes sampled even earlier within two larger observational

single-center and multi-center cohorts, respectively. The signa-

ture was enriched in whole blood transcriptomes from patients

succumbing to COVID-19 in our single-center study already at

4 days post treatment initiation, indicating early treatment failure.

Testing for generalizability of this potential predictor of treatment

response and outcome in a national multi-center cohort at an

even earlier time point revealed that more than 2 days of treat-

ment are required for molecular outcome stratification.

Several attempts have been made to identify subgroups of pa-

tients with severe COVID-19 who are likely to respond differently

to anti-inflammatory treatment. Two distinct groups of patients

with COVID-related ARDS, similar to the previously described hy-

poinflammatory and hyperinflammatory ARDS subphenotypes,35

were reported to show differential response to corticosteroid

treatment36 and have been proposed for a biomarker-guided

corticosteroid dosing in COVID-19.37 Similarly, peripheral blood

transcriptomes have been used to identify two different endo-

types of patients with severe COVID-19 based on IFN-related

or checkpoint genes, who showed cluster-specific effects of

corticosteroid treatment.38 Attempts to identify different COVID-

19 endotypes or phenotypes in terms of their response to anti-in-

flammatory treatment are particularly important in light of the fact

that several clinical trials initially failed to demonstrate a clear sur-
4330 Cell 187, 4318–4335, August 8, 2024
vival benefit of corticosteroid treatment in COVID-19,4,39 in addi-

tion to the fact that only about one-third of the mechanically venti-

lated severe COVID-19 patients benefit from dexamethasone

therapy.1 There is a long history of research investigating GC

responsiveness,40 based on the known heterogeneity in treatment

response and the variety of unfavorable effects of corticosteroids,

particularly associated with their long-term use. In asthma,

distinct endotypes have been defined based on the level of type

2 inflammation, known to predict response to GC treatment.41

Also in other clinical conditions, e.g., community-acquired pneu-

monia, the significance of steroid treatment is not fully evident,

with clear signs that certain patient groups benefit more from

adjunct corticosteroid treatment than others, thus emphasizing

the importance of early patient stratification.42,43 In our view, the

approachpresented in this study goesone stepbeyondmolecular

stratification and definition of disease endotypes by providing

direct information on therapy response as a form of molecular

therapy monitoring. The potential of whole blood transcriptome-

based signatures to optimize dexamethasone treatment regimens

should be evaluated in a prospective pivotal trial in the future.

Limitations of the study
Our analysis of the effects of dexamethasone treatment was

based on a large prospective, single-center cohort study and

an independent prospective, multi-center cohort study for vali-

dation of the transcriptional signature enrichment associated

with fatal outcome. One important limitation of this approach is

the fact that both cohorts were observational and not primarily

designed to study the effect of dexamethasone treatment. How-

ever, we took advantage of the fact that dexamethasone treat-

ment was only introduced into SOC in the second wave, thus al-

lowing for a well-matched comparison of COVID-19 patients of

similar demographics and disease severity, infected with the

same viral variant (D614G), that differed only by treatment. None-

theless, it would be preferable to conduct studies of this nature

within the setting of randomized controlled trials, designed to

study clinical endpoints as well as mechanisms of action of the

investigated drugs. Thus, adaptive platform trials, such as the

RECOVERY study, designed to rapidly test the effectiveness of

repurposed drugs or new therapies in public health emergen-

cies, would benefit from incorporating high-resolution biomarker

studies to uncover mechanisms and to identify target and risk

populations who would benefit most from the respective treat-

ment or alternative therapies. To this end, global networks of

specialized medical institutions capable of performing highly

standardized, high-resolution methods on study samples at

high throughput are needed to facilitate this accelerated treat-

ment development. While our approach included well-matched

cohorts, the study period was restricted to the early phase of

the pandemic. This is a limitation since immunological and viro-

logical characteristics have changed during the course of the

pandemic. Dexamethasone remains the SOC for patients with

moderate to severe COVID-19, yet, it is unknownwhether it is still

equally effective in re- and breakthrough infections. The use of

corticosteroids in other respiratory infections has been contro-

versial, with potentially detrimental effects in influenza infections

and mixed results in community-acquired pneumonia. However,

it will be difficult to generate new data since it would not be
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ethical to withhold dexamethasone in patients with severe

COVID-19.

Our study has several implications. First, GC treatment in

acute COVID-19 is better characterized as an immunomodula-

tory rather than immunosuppressive therapy. Second, early

outcome predictors could guide personalized therapy by identi-

fying patients not responding adequately to GCs, necessitating

early addition of other immunomodulators such as Janus kinase

inhibitors or IL-6 receptor blockers.44 As high-dose GC therapy

has been reported to increase mortality in hypoxic moderate to

severe patients not requiring mechanical ventilation,6 prolonged

dexamethasone treatment in severe COVID-19 patients might

also increase the risk for secondary infections45 and thereby

might contribute to reduced survival rates in this subgroup of pa-

tients.46 Third, a more precise use of GCs in other medical con-

ditions would be highly desirable, and a more precise stratifica-

tion could be achieved based on clinical trials that incorporate

single-cell resolution biomarker studies.

Taken together, we provide single-cell-level resolved molecu-

lar phenotype information for the immunomodulatory effect of

dexamethasone treatment in patients with COVID-19, which

could be utilized for clinical decision-making regarding therapy

reevaluation for dexamethasone treatment in the future. Com-

bined with transcriptome-based reverse drug target prediction

approaches and randomized controlled trials, this approach

can form the basis for faster drug repurposing solutions for future

emerging infectious diseases, and it may even be a blueprint for

the development of precision medicine for other infectious and

non-infectious diseases.
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(Jena); D. Drömann, P. Parschke, K. Franzen, J. Rupp, N. Käding, F. Waldeck
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Cell 187, 4318–4335, August 8, 2024 4331

https://doi.org/10.1016/j.cell.2024.06.014
https://doi.org/10.1016/j.cell.2024.06.014


ll
OPEN ACCESS Article
from Allergan for a COVID-19-related IIT. N.S. reports grants from the German

Research Foundation (SFB-TR84 C09) and from the German Ministry of Edu-

cation and Research (BMBF) in the framework of CAPSyS (01ZX1604B and

01ZX1304B). A.-E.S. and O.D. thank the DFG – GRK2157 for support.

A.-E.S. thanks FOR-COVID initiative funded by the Bayerisches Staatsministe-

rium für Wissenschaft und Kunst. This work was supported by the Stiftung
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CD161 purified (HP-3G10) Biolegend Cat# 339919; RRID:AB_2562836

CD11b purified (ICRF44) Biolegend Cat# 301337; RRID:AB_2562811
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CD44 purified (BJ18) Biolegend Cat# 338811; RRID:AB_2562835
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HLA-DR purified (L243) Biolegend Cat# 307602; RRID:AB_314680
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PD-L1 175Lu (29.E2A3) Fluidigm Cat# 3175017B; RRID:AB_2687638

CD56 176Yb (NCAM16.2) Fluidigm Cat# 3176008; RRID:AB_2661813

CD8 purified (GN11) DRFZ Berlin N/A

IgM purified (MHM-88) Biolegend Cat# 314502; RRID:AB_493003

CD11c purified (Bu15) Biolegend Cat# 337221; RRID:AB_2562834

CD16 209Bi (3G8) Fluidigm Cat# 3209002B; RRID:AB_2756431

CD14-BV421 (clone M5E2) Biolegend Cat# 301830; RRID:AB_10959324

CD163-PercP-Vio700 (clone REA812) Miltenyi Cat# 130-112-133; RRID:AB_2655489

CD3-FITC (clone UCHT1) Biolegend Cat# 300406; RRID:AB_314060

CD94-FITC (clone DX22) Biolegend Cat# 305504; RRID:AB_314534

NKp80-FITC (clone 4A4.D10) Miltenyi Cat# 130-094-843; RRID:AB_10829948

TCRab-FITC (clone IP26) Biolegend Cat# 306706; RRID:AB_314644

TCRgd-FITC (clone B1) Biolegend Cat# 331208; RRID:AB_1575108

CD20-FITC (clone 2H7) Biolegend Cat# 302304; RRID:AB_314252

CD19-FITC (clone HIB19) Biolegend Cat# 302206; RRID:AB_314236

Amphiregulin-APC (clone AREG559) Ebioscience Cat# 17-5370-42; RRID:AB_2716941

Chemicals, peptides, and recombinant proteins

FcR Blocking Reagent, human Miletnyi Biotec Cat# 130-059-901; RRID:AB_2892112

Proteinase K Sigma-Aldrich Cat# 3115828001

Tempus� Blood RNA Tube ThermoFisher Scientific Cat# 4342792

PAXgene� Blood RNA Tube Becton Dickinson Cat# 762165

SPRIselect Beckmann Coulter Cat# B23318

BD Vacutainer� Lithium Heparin Tubes Becton Dickinson Cat# 367526

Critical commercial assays

BD Single-Cell Multiplexing Kit (human) Becton Dickinson Cat# 633781

BD Rhapsody WTA Amplification Kit Becton Dickinson Cat# 633801

BD Rhapsody Cartridge Kit BectonDickinson Cat# 633733

(Continued on next page)
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BD Rhapsody cDNA Kit BectonDickinson Cat# 633773

High Sensitivity D5000 ScreenTape Agilent Cat# 5067-5592

High Sensitivity D1000 ScreenTape Agilent Cat# 5067-5584

Qubit dsDNA HS Assay Kit ThermoFisher Cat# Q32851

High Sensitivity DNA Kit Agilent Cat# 5067-4626

NovaSeq 6000 S2 Reagent Kit (200 cycles) Illumina Cat# 20040326

NovaSeq 6000 S4 Reagent Kit (200 cycles) Illumina Cat# 20028313

Chromium Next GEM Single Cell 30 GEM,

Library & Gel Bead Kit v3.1

10x Genomics Cat# 1000121

Chromium Next GEM Chip G Single Cell Kit 10x Genomics Cat# 1000120

Single Index Kit T Set A 10x Genomics Cat# 1000213

TruSeq Stranded Total RNA with Ribo-Zero

Globin

Illumina Cat# 20020613

Maxpar� X8 Antibody Labeling Kit Fluidigm Cat# 201146B

Quick-DNA Microprep Kit Zymo Research Cat# D3020

EZ DNA Methylation-Gold Kit Zymo Research Cat# D5006

Infinium MethylationEPIC BeadChip Kit Illumina Cat# WG-317-1002

Zombie Aqua� Fixable Viability Kit BioLegend Cat# 423101

BD Cytofix/Cytoperm� Fixation/

Permeabilization Kit

Becton, Dickinson Cat# 554714

SeraSpot Anti-SARS-CoV-2 IgG microarray Seramun Diagnostica SP-015-4 G-S12 RUO

Deposited data

scRNA-seq raw data This paper EGAS00001007461, EGAS50000000203

bulk RNA-seq raw data This paper EGAS00001007461

processed scRNA-seq count data and

code

This paper https://github.com/knollr/COVID_Dexa

processed bulk RNA-seq count data and

code

This paper https://github.com/knollr/COVID_Dexa

DNA methylation data This paper GSE270901

Code for DNA methylation data analysis This paper https://github.com/knollr/COVID_Dexa

Software and algorithms

Bcl2fastq2 Illumina v2.20

STAR Dobin et al.47 v2.7.3a

Cutadapt Martin et al.48 v1.16

Dropseq-tools https://github.com/broadinstitute/Drop-

seq/

v2.0.0

fastQC Andrews et al.49 0.11.8

10x Genomics Cell Ranger (Software) Zheng et al.,50 10X Genomics 7.0.0

R (bulk and scRNA-seq blood analysis) https://www.cran.r-project.org v4.1.0

R (DNA methylation analysis) https://www.cran.r-project.org v4.2.1

R (scRNA-seq BAL analysis) https://www.cran.r-project.org v4.3.1

Seurat (scRNA-seq blood, R package) Butler et al.,51 Hafemeister et al.,52 Stuart

et al.53
v4.3.0

Seurat (scRNA-seq BAL, R package) Butler et al.,51 Hafemeister et al.,52 Stuart

et al.53
v4.4.0

Harmony (R package) Korsunsky et al.54 v0.1.0

ClusterProfiler (R package) Yu et al.55 v4.0.5

batchelor (R package) Haghverdi et al.56 v1.16.0

AUCell (R package) Aibar et al.57 v1.22.0

DESeq2 (R package) Love et al.58 v1.32.0

(Continued on next page)
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GSVA (R package) Hänzelmann et al.59 v1.40.1

fgsea (R package) Korotkevich et al.60 v1.18.0

ggplot2 (R Package; bulk RNA-seq

analysis)

Wickham et al.61 v3.3.5

ggplot2 (R package; DNA methylation

analysis)

Wickham et al.61 v3.3.6

pheatmap (R package) Kolde et al.62 v1.0.12

sva (R package) Leek et al.63 v3.44.0

minfi (R package) Fortin et al.64 v1.42.0

limma (R package; DNA methylation

analysis)

Ritchie et al.65 v3.52.2

limma (R package; bulk RNA-seq analysis) Ritchie et al.65 v3.48.3

methylGSA (R package) Fortin et al.64 v1.14.0

FlowSOM (R package) Van Gassen et al.66 v3.17

uwot (R package) https://cran.r-project.org/web/packages/

uwot/index.html

v0.1.8

ComplexHeatmap (R package) Gu et al.67 v1.20.0

FlowJo https://www.flowjo.com v10.8

JMP Pro SAS Institute inc. V 16.2.0

Matching (R package) Sekhon et al.68 v4.9-7

OMIQ www.omiq.ai N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Anna C.

Aschenbrenner (anna.aschenbrenner@dzne.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
scRNA-seq and bulk RNA-seq data generated during this study are deposited at the European Genome-phenome Archive (EGA) un-

der access numbers EGAS00001007461 and EGAS50000000203, which is hosted by the EBI and the CRG. DNA methylation data

are deposited on the GEO database under access number GSE270901. All original code has been deposited at GitHub (https://

github.com/knollr/COVID_Dexa) and is publicly available as of the date of publication. Any additional information required to rean-

alyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient cohorts and study flow overview
To determine dexamethasone-specific molecular signatures, samples from patients with dexamethasone treatment and matched

controls enrolled into the Pa-COVID-19 study, a prospective, observational study on patients with COVID-19 conducted at Charité

Universitätsmedizin Berlin17 were analyzed using single-cell transcriptomics, CyTOF and flow cytometry. In addition, matched sam-

ples from patients with stable versus progressive disease under dexamethasone treatment from the same cohort were assessed for

possible influence of the patient’s DNA-methylation status on responsiveness to dexamethasone treatment. In a last step, to assess if

treatment-related signatures can be used to stratify outcome, bulk-sequencingwas performed on samples frompatients treatedwith

dexamethasone recruited into the Pa-COVID-19 study and an independent study, PROVID-CAPNETZ, a prospective, observational,

multi-centered cohort study with adult SARS-CoV-2 positive hospitalized patients to evaluate clinical data, molecular and functional

biomarkers for prognosis, pathomechanisms and treatment strategies of COVID-19 (PROVID) recruited within the competence

network community-acquired pneumonia (CAPNETZ, https://capnetz.de). Grouping and selection of patients and a synopsis on clin-

ical characteristics of all included patients and controls per analysis is given in Table S1.
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Single-cell transcriptomics, CyTOF, and FACS
In order to determine dexamethasone-specific molecular signatures, all 543 patients included from 1 March 2020 to February 28,

2021 into the Pa-COVID-19 study were screened to identify patients treated with dexamethasone (from June 2020 onwards,

following publication of the results of the recovery trial1) and comparable patients without dexamethasone treatment (from March

to May 2020). Disease severity was stratified using the 8-point WHO ordinal scale69 of improvement: WHO score 1 and 2 = ambu-

latory; WHO score 3 = hospitalized without supplemental oxygen; WHO score 4 = hospitalized with low-flow supplemental oxygen;

WHO score 5 = hospitalized with requirement of non-invasive ventilation or high-flow oxygen; WHO score 6 = hospitalized with inva-

sive ventilation;WHO score 7 = hospitalizedwith invasive ventilation and additional organ support;WHO score 8 = death. For analysis

WHO grade%4 was considered as moderate disease, whereas WHO gradeR 5 was considered as severe disease. WHO score at

time point of sampling was used to determine disease severity for these analyses.

Patients meeting one of the following criteria were excluded: age <18 years, no biosamples available, mild disease (maximum

WHO score %3), chronic immunosuppression according to medical history, dexamethasone treatment not following treatment

criteria of the recovery trial1 or any steroid-treatment of control patients recruited early in the pandemic (e.g. hydrocortisone-treat-

ment for septic shock). We also excluded all patients receiving additional immunosuppressive treatments (e.g. TNF-inhibitors, JA-

K-inhibitors, antimetabolites). This resulted in a total of 153 patients. Sampling timepoints were selected towards the end of the dexa-

methasone treatment period, and at corresponding time points based on symptom onset for patients without dexamethasone

treatment, respectively. To obtain comparable groups (glucocorticoid-naı̈ve controls vs. treated patients), multivariate matching

was employed to identify the most suitable matches between groups. Specifically, we used exact matching for treatment with/

without dexamethasone, sex, and maximum recorded value of WHO Ordinal Scale during hospitalization and greedy matching

with Mahalanobis distance68 for age and time interval (in days) between symptom onset and acquisition of blood sample closest

to the end of dexamethasone treatment. If several equivalent matches were available, patient data was reviewed by two clinically

experienced physicians for further details on course of disease (e.g. organ replacement therapy) and pre-existing comorbidities

to find the best matches. The most appropriate matches were selected for the respective analyses depending on sample quality

(e.g. PBMC count), using the same pairs for scRNASeq, CyTOF, and FACS analysis. If needed for CyTOF and FACS analysis, indi-

vidual donors were replaced as equivalent as possible and sampling timepoints were adapted to a maximum of +2 days (for CyTOF)

and +3 days (for FACS, 1 donor only), respectively.

Subject details blood sc transcriptomics subgroup
A total of 66 PBMC samples from 48male patients of the Pa-COVID-19 study were selected, with additional 4 samples included from

2 glucocorticoid-naı̈ve patients from an observational study performed at Bonn university hospital fulfilling the same inclusion criteria

as described above for the Pa-COVID-19 study.70

For analysis of dexamethasone-related signatures, 40 samples collected towards the end of the dexamethasone treatment period

of 40 individuals were analyzed. These included 14 treatment-naive (5 moderately ill, 9 severely ill) and 26 dexamethasone-treated

patients (7 moderately ill, 19 severely ill). The median age of all patients was 62 years (IQR range 55.25-69.75 years). All moderately

affected patients survived, whereas 12 severely ill patients died. Three untreated controls and nine patients treated with dexameth-

asone. Samples included in analysis of dexamethasone treatment effects were obtained at amedian of 8 days (IQR 6.75-9 days) after

initiation of dexamethasone treatment and at a median of 15.5 days (IQR 13.75-18 days) after symptom onset. Control samples were

obtained at a median of 16 days (IQR 14.75-18 days) after symptom onset.

An additional 26 samples frommoderately and severely ill patients were included for comparison and validation of our dataset with

previously defined expression changes, but not for analysis of dexamethasone-related signatures. These include samples collected

during the early phase of hospitalization of glucocorticoid-naive patients (median 9 days (IQR 7.5-10 days) post symptom onset) and

dexamethasone-treated patients (median 6 days (IQR 5-9 days) post symptom onset), as well as early (median 6 days (IQR 5-9 days)

post symptom onset) and late (median 13.5 days (IQR 12.25-16.75 days) post symptom onset) samples of patients treated with dexa-

methasone and the CCR2/CCR5 inhibitor cenicriviroc (CVC71), which showed no major effects on single-cell transcriptomes in our

analyses.

Subject details FACS subgroup
A total of 36 PBMC samples from 36 male individuals (18 treatment-naive and 18 dexamethasone-treated patients) recruited within

Pa-COVID-19 study were analyzed, of which 12 were moderately ill and 24 severely ill. The median age of included patients was 61.5

years (IQR 54-72.25). Samples of dexamethasone-treated patients were obtained at a median of 8 days (IQR 7-10 days) after treat-

ment initiation. Samples were collected at a median of 17 days (IQR 14-18.25 days) after symptom onset for dexamethasone-treated

patients vs. 16.5 days (IQR 15-19.25 days) in the untreated control group. Five severely affected patients died, four of whom were in

the dexamethasone group and one in the control group.

Subject details CyTOF subgroup
Due to expected decreasing sample quality with storage time and therefore reduced processability, optimization of the sample pro-

cessing protocol of whole blood samples was applied (see below) and allowed the analysis of limited available samples taken during
e5 Cell 187, 4318–4335.e1–e12, August 8, 2024
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the very early pandemic phase before dexamethasone and during the early phase of dexamethasone treatment within this study.

Therefore, partial adoption of sampling time points and analyzed individuals was necessary.

A total of 35 samples from 35 patients (1 female, 34males) recruited within the Pa-COVID-19 study were included into this analysis,

17 of whomwere treatment-naive (9 moderately ill, 8 severely ill) and 18 treated with dexamethasone (11moderately ill, 7 severely ill).

The median age of all patients was 61 years (IQR range 54-73 years). All moderately affected patients survived, three severely ill pa-

tients deceased, one untreated patient and two patients treated with dexamethasone.

For determination of dexamethasone-related signatures, samples included into analysis were obtained at a median of nine days

(IQR 6.75 - 9 days) after initiation of dexamethasone treatment and maximum 24 hours after the last dose. Samples from the dexa-

methasone-treated group were collected at a median of 15.5 days (IQR 13.75 - 17.25 days) after symptom onset. Control samples

were obtained at a median of 15 days (IQR 12.5 - 18 days) after symptom onset.

Subject details BAL sc-transcriptomics subgroup
In order to validate our findings from the blood in lung tissue we furthermore analyzed bronchoalveolar lavages (BAL) obtained from

12 patients recruited in the Pa-COVID-19 study. Due to the limited number of available samples, no matching was performed. In line

with the other groups or cohorts, respectively, only immunocompetent glucocorticoid-naive and dexamethasone-treated patients

without any additional immunomodulatory COVID-19-specific treatment were included. Samples from dexamethasone-treated pa-

tients were included into analysis when collected up to 10 days after the end of treatment. Three patients of the BAL analyses (2 treat-

ment-naive, 1 dexamethasone-treated) were also part of the study population analyzed by blood scRNA-seq.

BALs were obtained during bronchoscopy of invasively ventilated COVID-19 patients at the Department of Infectious Dis-

eases and Respiratory Medicine, Charité Universitätsmedizin Berlin according to standard operating procedures. Among the

12 patients 5 were glucocorticoid-naive (3 males, 2 females), who all survived; 7 received dexamethasone treatment (4 males,

3 females) of whom 4 survived and 3 died. The median age of all patients was 59 years (IQR 33-70 years). BALs were collected

at a median of 14 days (IQR 9.5-25 days) after symptom onset from the treatment-naive group and at a median of 23 days (IQR

13-28 days) after symptom onset or 14 days (IQR 8-18 days) after initiation of dexamethasone treatment, respectively, from

treated patients.

Epigenetics
To assess the possible influence of patient’s DNA-methylation status on responsiveness to dexamethasone treatment, we performed

comparative analysis of the included patients from the Pa-COVID-19 study cohort with stable versus progressive disease under

treatment, i.e. which progressed from moderate to severe disease or death after having received at least 2 days of treatment with

a sample collected within the first 4 days of treatment. Control patients without disease progression under treatment were matched

for sex, age, and available early samples after initiation of dexamethasone treatment. If more than one equivalent match was avail-

able, data was reviewed by at least two clinically experienced physicians for pre-existing comorbidities to find the most appro-

priate match.

Subject details epigenetics
A total of 20 samples from 20 dexamethasone-treated patients, 10 males and 10 females, recruited within the Pa-COVID-19 study

were analyzed. All 20 patients required supplemental oxygen at treatment initiation without need of invasive mechanical ventilation

(WHOscore 4-5). Themedian age of all patients was 62 years (IQR 57.25-69.75 years). Ten out of 20 patients (50%) recovered and did

not worsen after initiation of dexamethasone treatment, whereas 10 patients (10/20, 50%) progressed under treatment reflected by

the need of invasive ventilation and/or death. Four patients died. Sampling date for analysis was at a median of 2 days (IQR

2-3.75 days) after initiation of dexamethasone and median 9.5 days (IQR 7.25-11.75 days) after symptom onset.

Bulk transcriptomics
To assess if the treatment-related signatures of dexamethasone-treated patients can be used to stratify outcome, bulk-sequencing

was performed from the earliest available sample of whole blood collected under dexamethasone treatment from moderately

(maximum WHO score %4) to severely ill (maximum WHO score R5) COVID-19 patients recruited into two independent cohorts.

Patients were grouped according to disease severity as described above. First, patients recruited into the Pa-COVID-19 study in Ber-

lin between 03/2020 and 12/2021 were included into the single-center (Charité) bulk subgroup.

Second, for the independent multi-center (CAPNETZ) cohort, samples were obtained from the CAPNETZ foundation. These pa-

tients were recruited across 11 centers (Berlin-Campus Benjamin Franklin, Cottbus, Jena, Bad Arolsen, Dortmund, Bonn, Rotenburg,

Dresden, Gerlingen, Berlin-Charité, Berlin-Neukölln) between 06/2020 and 12/2021.

Subject details single-center bulk subgroup
A total of 92 samples from 92 dexamethasone-treated patients (68 males, 24 females) included into the Pa-COVID-19 study were

included into this subgroup (single-center, Charité). The median age of all patients was 61 years (IQR 49.75-69 years). Thirty-three

patients weremoderately ill and 59 patients severely ill, 18 of whomdied. Samples for this analysis were obtained at amedian 12 days

(IQR 9-15 days) after symptom onset and of 4 days (IQR 3-5 days) after the initiation of dexamethasone treatment, respectively.
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Subject details multi-center bulk subgroup
A total of 90 samples obtained from 90 dexamethasone-treated patients (65 males, 25 females) included into the multi-center

(CAPNETZ) cohort were included into this subgroup. The median age of all patients was 61 years (IQR 52-68 years). A total of

53 patients (65.5%) were moderately ill and 37 (34.4%) were severely ill, 11 of whom (35.5%) died. Samples for this analysis were

obtained at a median of 2 days (IQR 1-3) after the initiation of dexamethasone treatment. Symptom onset was not documented in

the case reporting form of PROVID-CAPNETZ.

Ethics
The Ethics Committee of Charité Universitätsmedizin Berlin approved the following studies: Pa-COVID-19: EA2/066/20, COV-

IMMUN: EA1/068/20. The Ethics Committee of the State Office for Health and Social Affairs Berlin: CVC for COVID-19: 20/

0118 – A1 (AMG). The Institutional Review board of the University Hospital Bonn (073/19 and 134/20) approved the study con-

ducted at University Hospital Bonn. The Ethics Committee of Hannover Medical School approved PROVID-CAPNETZ

(Nr. 301-2008).

The Pa-COVID-19 study is registered in the German and the WHO international registry for clinical studies (DRKS00021688). The

CVC for COVID-19 trial (NCT04500418) and PROVID-CAPNETZ study (NCT04952337) are registered at ClinicalTrials.gov.

The studies were conducted in accordance with the Declaration of Helsinki and current guidelines of Good Clinical Practice.

Informed consent was obtained from all participants or their respective legal representatives. All patients were treated according

to national and international guidelines.

METHOD DETAILS

Details for blood single-cell transcriptomics
Isolation of blood cells for scRNA-seq

scRNA-seq was performed on frozen PBMCs. Briefly, PBMCs were isolated from heparinized peripheral blood by density centrifu-

gation over Pancoll or Ficoll-Paque density centrifugation (density: 1.077 g/ml). Cells were then cryopreserved at -150�C in

RPMI1640 with 40% FBS and 10% DMSO.

BD Rhapsody blood single-cell RNA-seq

Frozen PBMCs were recovered by rapidly thawing frozen cell suspensions in a 37�Cwater bath followed by immediate serial dilution

in pre-warmed RPMI1640+10% FBS (GIBCO) and centrifugation at 300 g for 5 min. After centrifugation, the cells were resuspended

in RPMI1640+10% FBS and processed for whole transcriptome analyses, using the BD Rhapsody Single-Cell Analysis System (BD,

Biosciences) as previously described72. Cells from each sample were labeled with hashtag-oligonucleotide-coupled antibodies,

sample tags (BD Human Single-Cell Multiplexing Kit) following the manufacturer’s protocol. Briefly, a total number of 1x106 cells

were resuspended in 90 ml of Stain Buffer (FBS) (BD PharMingen). The sample tags were added to the respective samples and incu-

bated for 20 min at room temperature. After incubation, 500 ml stain buffer was added to each sample and centrifuged for 5 min at

300 g and 4�C. Samples were washed one more time. Subsequently cells were resuspended in 300 ml of cold BD Sample Buffer and

counted using Improved Neubauer Hemocytometer (INCYTO). Labeled samples were pooled equally in 650 ml cold BD Sample

Buffer. For each pooled sample two BD Rhapsody cartridges were super-loaded with approximately 60,000 cells each. Single cells

were isolated using Single-Cell Capture and cDNA Synthesis with the BD Rhapsody Express Single-Cell Analysis System according

to the manufacturer’s recommendations (BD Biosciences). cDNA libraries were prepared using the BD Rhapsody Whole Transcrip-

tome Analysis Amplification Kit following the BD Rhapsody System mRNA Whole Transcriptome Analysis (WTA) and Sample Tag

Library Preparation Protocol (BD Biosciences). The final libraries were quantified using a Qubit Fluorometer with the Qubit dsDNA

HS Kit (ThermoFisher) and the size-distribution was measured using the Agilent high sensitivity D5000 assay on a TapeStation

4200 system (Agilent technologies). Sequencing was performed in paired-end mode (2*75 cycles) on a NovaSeq 6000 with

NovaSeq 6000 S2 or S4 Reagent Kit v1.5 (200 cycles) chemistry.

Details for DNA methylation
PBMC isolation for methylation analysis

All samples were obtained in Berlin and subjected to standardized processing and stored by the Central Biobank of Charité (ZeBanC)

according to SOPs of the Pa-COVID-19 study.

FACS-based cell isolation for methylation analysis

Frozen PBMC samples were taken up in 37�C RPMI1640 medium (Gibco) containing 20% BSA Fraction V (PAN-Biotech), 1%

10,000 U/ml Penicillin Streptomycin (Thermo Fisher Scientific) and 10 mM Hepes buffer (Biochrom) to quickly thaw. Cells were

washed with PBS (Gibco).

PBMCs were stained using the following fluorescently conjugated monoclonal antibodies: CD3 BV421 (clone UCHT1), CD4

APCFire750 (clone RPA-T4), CD8a BV711 (clone RPA-T8), CD14 PerCP (clone TÜK4), CD16 BV605 (clone 3G8), CD19 PE (clone

HIB19), CD45RA (clone HI100), CD66b APC (clone G10F5), CCR7 AF488 (clone G042H7).

CD14+ Monocytes (CD14+, CD16-, CD66b-), CD19+ B cells (CD3-, CD19+), CD4+ total memory T cells (CD3+, CD4+, CD45RA- and

CD3+, CD4+, CD45RA+, CCR7-) and CD8+ total memory T cells (CD3+, CD8+, CD45RA- and CD3+, CD8+, CD45RA+, CCR7-) were
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sorted via FACS with a BD FACSAria II SORP (Becton Dickinson). Checks for sort purity were performed and ranged between 90%–

99%. Following FACS, cell pellets were flash-frozen in liquid nitrogen.

DNA methylation profiling

From purified cell samples frozen as pellets, genomic DNAwas extracted using Zymo’s Quick-DNAMicroPREP Kit (Zymo Research)

following instructions provided by the manufacturer. DNA concentration was measured using the Qubit dsDNA HS Assay Kit and the

Qubit Fluorometer (Molecular Probes/Life Technologies).

Samples with cell counts <25,000 cells were not subjected to DNA extraction. Instead, the cell pellets were directly taken up in a

mix of 40 ml lysate buffer from the Zymo’s Quick-DNA MicroPREP Kit (Zymo Research) with 1.25 mg/ml Proteinase K (Sigma-Aldrich

3115828001) and incubated for 3 hours at room temperature. Cell lysate was directly used for bisulfite conversion as

described below.

Isolated genomic DNA and cell lysates from Proteinase K digestion were subjected to bisulfite conversion using Zymo’s EZ DNA

Methylation-Gold Kit (Zymo Research) according to manufacturer’s instructions. DNA methylation was assessed using the Infinium

MethylationEPIC Kit (Illumina EPIC-8 BeadChip) following manufacturer’s instructions. Illumina EPIC-8 BeadChips were imaged us-

ing Illumina’s Microarray Scanner iScan.

Details for CyTOF
Antibodies used for CyTOF

All anti-human antibodies pre-conjugated to metal isotopes were obtained from Fluidigm Corporation (San Francisco, USA). All re-

maining antibodies were obtained from the indicated companies as purified antibodies and in-house conjugation was done using the

MaxPar X8 labeling kit (Fluidigm, USA). Antibodies are listed in the key resource table.

Sample processing and antigen staining for CyTOF

Sample processing, cell staining and acquisition was done as previously described.18 In brief, whole blood samples were thawed,

tagged with barcoding antibodies conjugated with different isotopes of Pd or Pt for 30min at 4�C and up to 10 samples were pooled

for surface and intracellular staining. For surface staining, samples were incubated with primary and secondary anti-APC163Dy an-

tibodies for 30min at 4�C, respectively, washed with PBS and fixed overnight. For intracellular staining, samples were permeabilized

with permeabilization buffer (eBiosciecne, San Diego, US), stainedwith the respective antibodies for 30min at room temperature, and

washed and stainedwith iridium intercalator (Fluidigm) for 20min at room temperature. After staining, cells werewashed and stored at

4�C. Mass cytometry measurement was performed on a CyTOF2/Helios mass cytometer (Fluidigm).

Details for bulk transcriptomics
Whole blood RNA isolation

For the single-center (Charité Berlin) and multi-center cohort (CAPNETZ), whole blood RNA isolation strategies were applied. In

cohort 1, whole blood was collected and stored in Tempus tubes (Applied Biosystems), while cohort 2 used the PAXgene system

(BD Medical). RNA was extracted according to the manufacturer’s information.

Bulk RNA sequencing

After RNA extraction, total RNA libraries were generated using the TruSeq Stranded Total RNA with Ribo-Zero Globin kit (Illumina). In

brief, ribosomal and globin mRNA were depleted from 750 ng purified total RNA using biotinylated, target-specific oligos combined

with Ribo-Zero rRNA removal beads; after depletion remaining RNA was purified, fragmented, and primed for cDNA synthesis. 30

ends were adenylated and index adapters were ligated to the ends of the ds cDNA. Selective enrichment of DNA fragments with

ligated adaptor molecules on both ends was performed using Illumina PCR primers in a 15-cycle PCR reaction, followed by a puri-

fication step using SPRIBeads (Beckman Coulter). Libraries were quantified by Qubit dsDNA HS Assay (Thermo Fisher Scientific),

and fragment size distribution was determined using the HS D1000 assay on a Tapestation 4200 system (Agilent). Sequencing

was performed in paired-endmode (2*50 cycles) on a NovaSeq 6000with NovaSeq 6000 S2Reagent Kit v 1.5 (200 cycles) chemistry.

Data was converted into fastq files using bcl2fastq2 v2.20.

BAL single-cell processing and sequencing
BALs were processed and sequenced as described before.30 BAL fluid was filtered through a 70 mm mesh and centrifuged (400 g,

10min, 4�C). The supernatant was removed and cells were washed once with DPBS (GIBCO). Erythrocytes were then removed using

the Red Blood Cell (RBC) lysis buffer (Biolegend). The cells were washed twice and either processed for subsequent scRNA-seq or

cryopreserved in FCS+10% DMSO at -150�C.
Frozen BAL cells were thawed using pre-warmedmedium (RPMI 1640, Gibco; 2% FCS, Sigma; 0.01%Pierce Universal Nuclease,

Thermo Fisher, USA). For multiplexing of multiple BAL donors, cells were labeled with 0.5mg of TotalSeq-A Hashtag antibodies for

30min at 4�C. Subsequently cells were washed three times and up to 4 donors were pooled in equal proportions and passed through

a 40 mm mesh (Flowmi� Cell Strainer, Merck).

The cell suspension was then adjusted to an appropriate concentration to load 16.500- 50.000 cells/reaction into the 10x Geno-

mics Chromium Controller for scRNA-seq. Single Cell 30 reagent kit v3.1 was used for reverse transcription, cDNA amplification and

library construction according to the detailed protocol provided by 10x Genomics and Biolegend. Libraries were quantified by

QubitTM 2.0 Fluorometer (ThermoFisher) and quality was checked using 2100 Bioanalyzer or Tapestation 4150 with High Sensitivity
Cell 187, 4318–4335.e1–e12, August 8, 2024 e8
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DNA kit (Agilent). Sequencing was performed in paired-endmodewith SP, S1, S2 (2x50 cycles) and S4 (2x100 cycles) flowcells using

NovaSeq 6000 sequencer (Illumina).

Monocyte FACS verification
CD163 and amphiregulin expression in monocytes was assessed by flow cytometry. Briefly, after treatment with Zombie Aqua

viability dye (Biolegend, USA), FC receptor blockade (FC Block, Miltenyi), thawed PBMCs were incubated with following surface an-

tibodies: CD14-BV421 (cloneM5E2), CD163-PercP-Vio770 (clone REA812), and for exclusion CD3-FITC (clone UCGT1), CD94-FITC

(clone DX22), NKp80-FITC (clone 4A4.D10), TCRab-FITC (clone IP26), TCRgd-FITC (clone B1), CD20-FITC (clone 2H7), and CD19-

FITC (clone HIB19). Samples were analyzed using a BD Canto II flow cytometer and FlowJo 10.8 software (BD).

SARS-CoV-2 spike protein ELISA
SARS-CoV-2 spike protein-specific antibodies were detected by SeraSpot Anti-SARS-CoV-2 IgGmicroarray-based multiparameter

immunoassay. Samples were processed and measured according to the manufacturer’s instructions (Seramun Diagnostica GmbH,

https://www.seramun.com). In brief, serum samples were pre-diluted 1:101 and added to microarray plates pre-coated with the

SARS-COV-2 receptor-binding domain (RBD) epitope, with negative and positive controls as capture antibodies. Samples were

measured with the accompanying SpotSight plate scanner and results above 160 BAU/ml were regarded as positive, as per the

manufacturer.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of blood single-cell transcriptome data
Data pre-processing of blood scRNA-seq data

After demultiplexing of bcl files using Bcl2fastq2 V2.20 from Illumina and quality control, paired-end scRNA-seq reads were filtered

for valid cell barcodes using the barcode whitelist provided by BD. Cutadapt 1.16 was then used to trim NexteraPE-PE adaptor se-

quences where needed and to filter reads for a PHRED score of 20 or above.48 Then, STAR 2.7.3a was used for alignment against the

Gencode v27 reference genome.47 Dropseq-tools 2.0.0 were used to quantify gene expression and collapse to UMI count data

(https://github.com/broadinstitute/Drop-seq/). For hashtag-oligo based demultiplexing of single-cell transcriptomes and subse-

quent assignment of cell barcodes to their sample of origin the respective multiplexing tag sequences were added to the reference

genome and quantified as well.

Blood scRNA-seq quality control and annotation

Samples were selected and grouped as described above. Analysis of scRNA-seq data was performed using the Seurat pipeline

(v4.3.0).51,73 During preprocessing and quality control (QC), cells that were considered as doublets or negatives after demultiplexing

using the HTODemux function from Seurat (positive.quantile 0.99), singlets that did not exceed 300 unique molecular identifiers

(UMIs), hadmore than 30%mitochondrial genes, showed less than 300 andmore than 3500 features per cell or were present in small

contaminating clusters were excluded from downstream analysis. Additionally, genes that were expressed in less than 5 cells per

cartridge were removed. After QC, a total of 114,181 single-cell transcriptomes of PBMCs were analyzed. The entire dataset was

normalized, scaled, and dimensional reduction was calculated using the standard Seurat functions. For normalization, the

gene expression values were normalized by total UMI counts per cell, multiplied by 10,000 (TP10K) and then log transformed by

log10(TP10k+1). Subsequently, the data was scaled, centered, and regressed against the number of detected transcripts per cell

to correct for heterogeneity associated with differences in sequencing depth. For dimensionality reduction, PCA was performed

on the top 2,000 variable genes identified using the vst method. For two-dimensional representation of the data structure, uniform

manifold approximation and projection (UMAP) was calculated using the first 30 principle components (PCs). Subsequently, the cells

were clustered using the Louvain algorithm based on the first 30 PCs using a resolution of 0.4. Cluster-specific marker genes were

calculated with theWilcoxon rank sum test using the FindAllMakers function (min.pct=0.2, logfc.threshold=0.5). Using the combined

information of cluster marker and literature-known markers, present cell types were annotated: Monocytes (LYZ, S100A8, S100A9),

mDCs (FCER1A, CD1C), pDCs (ITM2C, SOX4), platelets (PPBP, PF4), CD4+ T cells (TCF7, IL7R), CD8+ T cells (CD8A, GZMH), NK

cells (KLRF1, PRF1), B cells (MS4A1, CD79A), plasmablasts (JCHAIN, IGKC), proliferating cells (MKI67, STMN1) and erythrocytes

(HBB, HBA1, HBA2).

Selection of monocytes

Blood monocytes were selected and annotated in a three-step process. First, all monocyte transcriptomes were subsetted from the

PBMC data. This subset was subsequently normalized and scaled, and dimensional reduction was calculated using the standard

Seurat functions. For normalization, the gene expression values were normalized by total UMI counts per cell, multiplied by

10,000 (TP10K) and then log transformed by log10(TP10k+1). Subsequently, the data was scaled, centered, and regressed against

the number of detected transcripts per cell to correct for heterogeneity associated with differences in sequencing depth. For dimen-

sionality reduction, PCA was performed on the top 1000 variable genes identified using the vst method. To adjust for a batch-effect

observed by experimental day, the harmony algorithm (v0.1.0) was applied.54 For two-dimensional representation of the data struc-

ture, uniform manifold approximation and projection (UMAP) was calculated using the first 15 harmony components. Next, mono-

cytes were cleaned from non-monocytes. For this, the cells were clustered using the Louvain algorithm based on the first 15 harmony
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reductions. Clusters showing expression of other cell types (such as NK cells, T cells and B cells) were excluded. Finally, after clean-

ing, the basic Seurat steps were applied again and clusters were calculated using a resolution of 0.7. Cluster-specific marker genes

were calculated with the Wilcoxon rank sum test using the FindAllMakers function (min.pct=0.2, logfc.threshold=0.5). The resulting

monocyte clusters were annotated as IFIhi (IFI6, IFI27, IFI44L), IL1Bhi (IL1B, CCL3, CCL4L2), S100Ahi (S100A12, S100A8, S100A9),

S100AhiCXCLhi (CXCL1, CXCL2, CXCL3, CXCL8), Dexa response (AREG, IL1R2, CD163, TSC22D3), HLAhi (HLA-DPA1, HLA-DRA,

HLA-DRB1), THBDhi (THBD, RGCC, LMNS), PF4+ (PF4), HBhi (HBB) and CD16 C1Q+ (FCGR3A, C1QB, C1QA) monocytes.

Module score calculation

For the module score calculation, the AddModuleScore function from Seurat was applied with the respective gene signatures.

For the interferon enrichment a set of 15 interferon-response genes was used including IFI6, ISG15, IFITM1, ISG20, IFI27, IFI30,

IFIH1, IFIT1, IFIT2, IFIT3, IFITM2, IFITM3, XAF1, MX1 andMX2. For the glucocorticoid signature the top 100 up- and downregulated

genes from Wang et al.26 were extracted and enriched by blood monocyte states.

To check for statistical differences, a Kruskal-Wallis (KW) test was applied for the mean module score per donor against the

respective category of interest, e.g. monocyte states.

Differential gene expression

Differential expression (DE) tests in the blood data were performed using FindMarkers function from Seurat with the Wilcoxon rank

sum test. Genes with a log-fold change greater than 0.25, at least 10% expressed in tested groups and with a bonferroni-corrected p

value %0.05 were considered as significantly differentially expressed genes (DEGs). For calculation of DEGs by cell types, only cell

types with more than 2,000 cells were considered.

Functional enrichment analysis

Gene set ontology enrichment analysis (GOEA) using the DEGs as input was performed on the gene sets from the Gene Ontology

(GO) biological process (BP) database,74,75 the Kyoto Encyclopedia of Genes And Genomes (KEGG) database,76 the Hallmark

gene sets77 and the Reactome gene sets78,79 using the R package clusterProfiler (version 4.0.5).55,80 Ontologies with statistical sig-

nificance (bonferroni-adjusted p value %0.05) were used for presentation. For the common terms in multiple cell types, terms were

filtered for enrichment in at least three different cell types.

Quantification of monocyte states

To compare shifts in the bloodmonocyte states stratified by group and treatment aswell as outcome, the percentages of each cluster

were quantified per sample of the respective groups and visualized together in boxplots. For determination of statistical significant

differences in the distribution a Wilcox test was performed for severity or outcome groups.

Core Dexa signature identification

To identify DEGs common for Dexa treatment despite COVID-19 severity, a fold change (FC) comparison was performed for DEGs

calculated between Dexa vs. ctrl. for both severities independently. Resulting FCs were plotted against each other and commonly

up- and downregulated genes were indicated.

Analysis of BAL single-cell transcriptome data
Re-analysis of BAL monocytes from Sinha et al.

To verify our findings from our scRNA-seq monocyte analysis, we inspected the single-cell whole blood dataset generated by Sinha

et al.12 The monocyte compartment was subsetted based on the original ‘celltype1’ annotation. Subsequently, the monocytes were

normalized, scaled, and visualized using ‘patient’-corrected harmony and UMAP dimensionality reductions. After removal of

contaminating clusters, defined as cells that express cell typemarkers unrelated to monocytes, a total of 2,350monocytes were pre-

sent. ByCD14 and FCGR3A (CD16) expression, themonocytes were annotated as classical or non-classical monocytes. In all mono-

cytes, the average expression of selected Dexa-related genes was calculated stratified by the ‘‘time_split_status’’ information pro-

vided by the authors (including treatment group and duration) and visualized in a heatmap.

Re-analysis of BAL myeloid cells from Liao et al.

To check specific genes identified in this study in the lung, we inspected the single-cell bronchoalveolar lavage (BAL) dataset gener-

ated by Liao et al.29 Here, a total of 6 severe COVID-19 patients were included with n=2 untreated survivors and n=4 methylprednis-

olone-treated patients, of which n=2 deceased. The macrophage and monocyte compartment was subsetted based on the original

cell type annotation, cells were cleaned from contamination and gene expression of 32 selected markers was assessed in a total of

25,191 cells.

BAL scRNA-seq pre-processing, quality control, and annotation

Raw expression data in form of FASTQ files were collected, read quality was assessed using fastQC (version 0.11.8)49 and alignment/

counting was performed using 10x Genomics Cell Ranger (version 7.0.0)50 using a custom reference created from the GRCh38 hu-

man genome reference available from 10x Genomics (refdata-gex-GRCh38-2020-A) and a number of viral genomes including SARS-

CoV-2 (RefSeq:NC_045512.2).

For quality control, transcriptomes were clustered using library size, number of genes, percentage of mitochondrial (%MT) and

ribosomal (%RP) counts. Clusters with %MT > 5 were excluded from the analysis. After QC, a total of 67,439 single-cell transcrip-

tomes of BAL cells remained.
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Datawas loaded into R (version 4.3.1) and stored in a SeuratObject (version 4.1.4). Seurat (version 4.4.0)51,73 was used to normalize

counts, find variable genes, scale data, and compute a PCA embedding. FastMNN from the batchelor package (version 1.16.0)56 was

used to integrate data using ‘‘library’’ as a batch. For annotation, clusters were computed using the Seurat implementation of the

smart local moving algorithm for large-scale modularity-based community detection,81 cell type AUCswere computed using the AU-

Cell package (version 1.22.0)57 and automatic assignment of cell type identity to clusters was performed using annotate_maxAUC of

the SeuratHelper package (version 1.0.0). Annotation was refined using cluster averages of AUC scores and quality metrics.

Cell types annotation markers: Monocytes (CD14, VCAN, FCGR3A), macrophages (MARCO, CD68), DCs (TCF4, CD1C), T cells

(CD8A, CD3D, CD3E), plasmablasts (JCHAIN, IGHGP), neutrophils (CSF3R, NAMPT), erythrocytes (HBA1, HBB) and epithelia

(KRT8, KRT19).

Custom code used for the analysis is available under github.com/saliba-lab/covid19-bal-atlas-integration.

Differential gene expression

Differential expression (DE) tests in the BAL data were performed using FindMarkers function from Seurat with the Wilcoxon rank

sum test. Genes with a log-fold change greater than 0.25, at least 10% expressed in tested groups and with a bonferroni-corrected

p value %0.05 were considered as significantly differentially expressed genes (DEGs). For calculation of DEGs by cell types, eryth-

rocytes and low-quality cells were excluded.

Module score calculation

For the module score calculation in BAL monocytes and macrophages, the AddModuleScore function from Seurat was applied with

the ‘‘Dexa response’’ monocyte state markers (n=30) as a signature. For statistical testing, a Wilcoxon test was performed based on

the mean module score per donor by the respective treatment groups and outcome.

Bulk RNA-sequencing analysis
The ‘STAR: ultrafast universal RNA-seq aligner’ (v2.7.3a)47 was used to align the sequenced reads against the human GENCODE

reference genome v33. Total reads were randomly downsampled to a maximum of 34,195,155 reads per sample. Following the

import of the raw counts using the DESeq258 function DESeqDataSetFromMatrix, genes with a lower total count number than the

included number of samples were excluded from the analysis resulting in 27,669 and 28,784 genes for cohort 1 and cohort 2,

respectively. The count matrices were DESeq2 normalized and a variance stabilizing transformation (vst) was applied. To minimize

the variance introduced by the different study sites in cohort 2, the transformed data was limma batch-corrected65 setting the

study sites and the seasonality as the batch variables. Patient groups were defined as described above. A gene set variation anal-

ysis (GSVA)59 was performed on the transformed data with default parameters using the single-cell RNA-seq monocyte outcome

signature, which was based on the comparison of dexamethasone-treated but deceased patients vs. treated survivors (‘deceased

upregulated’ with 379 genes and ‘deceased downregulated’ with 282 genes). Wilcoxon tests were calculated between the

different conditions and the resulting p values were adjusted utilizing the Benjamini-Hochberg (BH) method. Permutation tests

were performed by drawing 500 random, unique gene sets with the same size as the respective signature. For each gene set,

GSVA enrichment scores were calculated per sample and BH-adjusted p values were computed between surviving and deceased

patients. The likelihood of the enrichment results of the single-cell signatures was computed by dividing the number of gene sets

with lower adjusted p values by the number of permutations. To identify the optimal signature length, signature genes measured in

both cohorts (366 genes in the ‘deceased upregulated’-signature and 275 genes in the ‘deceased downregulated’-signature) were

ordered based on their average log2FC in the scRNA-seq data and a GSVA was performed for all possible signature sizes in each

cohort (starting with an initial size of 10 signature genes). The optimal signature length was defined as the minimum of the mean

adjusted p value distribution of the two cohorts. Genes representing the leading edge of each signature enrichment were assessed

by calculating the expression level statistics from a non-parametric kernel estimation of the cumulative density function of each

gene expression profile per sample and cohort as previously described.59 After computing the mean of the expression level sta-

tistic for each gene over all samples of the deceased patient group of the respective cohort and centering the resulting ranks

around 0, a gene set enrichment analysis (GSEA) was performed per signature and cohort and the leading edge defined as the

subset of the signature including those genes that appear in the ranked list at or before the point at which the running sum reaches

its maximum82 was computed using fgsea (v1.18.0).60

CyTOF: Cell identification and cluster analysis
Major leukocyte populations were identified from two antibody panels designed for CyTOF. Myeloid cells were identified from

panel 2. Monocytes and DCs were obtained from the exclusion of CD3-, CD19- and CD56- cells, and expression of CD14+ and

HLA-DR+ cells. The Monocytes and DCs batch-normalized CyTOF values (described in Schulte-Schrepping et al.18) were first

transformed with the inverse hyperbolic sine function (asinh) and then z-score normalized per marker across all samples and

all cells. They were then clustered using FlowSOM,66 with 25 meta clusters (FlowSOM_k). Clusters were merged in pairs when

their marker expressions were similar, which resulted in 19 clusters (Figure S3B). Similarly, UMAPs were calculated with the

selected markers mentioned above using the R package ‘uwot’ with default parameters (https://github.com/jlmelville/uwot).

The frequency of each cluster was calculated as the percentage of cells in each cluster for each sample in each compartment.
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Statistical testing for the difference in the frequency of each cluster per severe or moderate category was calculated with the Wil-

coxon test. Granulocytes in panel 2 were identified based on the expression or exclusion of CD3-CD19-CD56-CD14-CD15+. Pop-

ulations obtained from panel 1 include:

CD4+Tcells (CD3+CD45+CD19-CD15+CD14+CD8-TCRgd-),CD8+Tcells (CD3+CD45+CD19-CD15+CD14+CD8-TCRgd-) andTCRgd+

cells (CD3+CD45+CD19-CD15+CD14+TCRgd+). Other populations include the B cells (CD45+CD19+CD3-CD14-CD15-) and NK cells

(CD45+CD3-CD19-CD56+CD14-).

Analysis of DNA methylation data
Pre-processing raw methylation data

The raw intensity data files (IDAT) were preprocessed usingminfi version 1.42.0 by quantile normalization. Probeswere filtered based

on not meeting the detection p value threshold against the background (p<0.01), being reported as cross-reactive,83 revisions of Il-

lumina’s manifest (Infinium MethylationEPIC v1.0 13.03.2020), or being at a SNP, using the minfi function dropLociWithSnps. To ac-

count for differences between the 10 matched responder/non-responder pairs (e.g. matched comorbidities, age, sex, etc.) batch

correction was performed using the ComBat function from the sva package version 3.44.0.63

Differential DNA methylation analysis

As the cohort included both female andmale donors, CpGs on sex chromosomes were removed before differential methylation anal-

ysis. Differential methylated positions (DMPs) were identified using the limma package version 3.52.2.65

Enrichment analysis for DNA methylation data
Gene set ontology enrichment analysis adjusting for CpG number per gene using DMPs as input was performed using the methylglm

function from themehylGSA package version 1.14.084 on gene sets from theGeneOntology (GO) biological process (BP) database.75

Enrichment of differentially expressed genes from the scRNA-seq dataset was calculated using the methylRRA function from the

same package. The function utilizes robust rank aggregation (RRA) to adjust multiple p values of each gene for enrichment analysis.62

Data visualization
For data visualization the R packages Seurat (version 4.3.0),73 ggplot2 (version 3.3.5),61 pheatmap (version 1.0.12) or fmsb (version

0.7.5) were used.
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Supplemental figures

Figure S1. Shared effect of dexamethasone treatment across circulating immune cells, related to Figure 1

(A) Percentages of CD45+ leukocytes and concentration of B cells, T cells, and neutrophils in whole blood from CyTOF stratified by treatment and COVID-19

severity. Wilcoxon test for statistical significance, and resulting p values are indicated.

(B) Marker gene expression for identified major cell types in the PBMC space from single-cell RNA-seq data.

(legend continued on next page)
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(C) UMAP of the entire PBMC space from scRNA-seq colored by symptom onset in days after onset (%10 or >10) for untreated patients (control).

(D) Enrichment of the interferon module (n = 15 genes) described for acute COVID-19 monocytes18 in monocytes by time points.

(E) Common differentially expressed genes (DEGs, from Figure 1G) in at least 3 cell types in severe COVID-19. Significant differential expression is indicated with

asterisks.

(F) Functional enrichment of DEGs identified in Figure 1G using the GO biological processes (BP) and Hallmark databases. Displayed terms were common in at

least three cell types.

ll
OPEN ACCESS Article



Figure S2. Mapping of monocyte states to acute COVID-19 and validation of dexamethasone effects, related to Figure 2

(A) Expression of monocyte-state markers from Schulte-Schrepping et al.18 by monocyte states identified in this study.

(B) Enrichment of the in vitro generated glucocorticoid down signatures from Wang et al.26 in all monocyte states.

(C) UMAP visualization of all monocytes extracted from the whole blood scRNA-seq dataset from Sinha et al. (n = 2,350 cells).12

(D) Dexa-inducible gene expression in whole blood monocytes of dexamethasone-treated and control patients separated for time points (3 and 7 days) from

Sinha et al.12
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(legend on next page)
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Figure S3. Proteomics analysis of monocytes and overview of the BAL dexamethasone cohort, related to Figure 3

(A) CD163 protein expression by flow cytometry on CD14+ monocytes of COVID-19 patients who survived stratified by severity and dexamethasone treatment.

Wilcoxon test for statistical testing, and resulting p values are indicated.

(B) Clusteredmarker heatmap of the CyTOF analysis frommyeloid cells with a total of 18 clusters defined by 31 protein markers. Resulting clusters are indicated.

(C) Monocyte relative cluster distribution from CyTOF analysis for clusters 1 (CD14+CD69+PD-L1+) and 16 (CD16+CD69+PD-L1+) in COVID-19 patients who

survived stratified by severity and dexamethasone treatment. Wilcoxon test for statistical testing, and resulting p values are indicated.

(D) Absolute numbers of monocyte in the Dexa response state in severe patients with dexamethasone treatment stratified by outcome. Statistical testing using

Wilcoxon test, and resulting p values are indicated.

(E) Alarmin (S100A8, S100A9, and S100A12) gene expression in whole blood monocytes selected from Sinha et al. (see Figure S2C).12

(F) Gene expression of selected genes from the monocyte outcome signature (Figure 3H) by COVID-19 severity status and outcome in monocytes. Correlation of

the average gene expression of those genes compared with severe controls that survived is indicated.

(G) Volcano plot showing the outcome DEGs between severe COVID-19 patients treated with dexamethasone who survived vs. those who were treated but

deceased in B cells.

(H) Expression of selected markers identified in this study in the bronchoalveolar lavage (BAL) COVID-19 macrophages and monocytes from Liao et al.29

comprising n = 6 severe COVID-19 patients with n = 2 untreated survivors and n = 4 methylprednisolone-treated patients of which 2 deceased.

(I) COVID-19 BAL cohort overview. A total of 12 severe COVID-19 patients were included of which n = 5 were untreated controls and n = 7 received dexa-

methasone of which 3 deceased (for cohort details see Table S1).

(J) UMAP visualization of the cell types identified in the BAL of severe COVID-19 patients (n = 67,439 cells).

(K) Cell type marker for identification of present cell types identified in (H).
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Figure S4. Gating strategy for cell sorting and PCA by treatment response of the epigenetic data, related to Figure 4

(A) FACS sorting strategy for the isolation of CD14+CD16� monocytes, CD19+ B cells, and CD4+ or CD8+ memory T cells for DNA methylation analysis.

(B) PCA of DNA methylomes of all samples analyzed, colored by cell types (upper) and dexamethasone treatment response group (lower).

(C) PCA of DNA methylomes of B cells, CD4+ and CD8+ memory T cells by dexamethasone treatment response.
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Figure S5. Optimization of the single-cell signature for enrichment in whole blood data, related to Figure 5

(A) Boxplots displaying the gene set variation analysis (GSVA) enrichment scores of the original deceased upregulated signature (left plot) and original deceased

downregulated signature (right plot) in the single-center (Charité) cohort split and colored by the COVID-19 severity status and outcome. Wilcoxon test and

Benjamini-Hochberg adjustment were utilized for statistical analysis.

(B) Boxplots displaying the GSVA enrichment scores of the original deceased upregulated signature (left plot) and original deceased downregulated signature

(right plot) in the multi-center (CAPNETZ) cohort split and colored by the COVID-19 severity status and outcome. Wilcoxon test and Benjamini-Hochberg

adjustment were utilized for statistical analysis.

(legend continued on next page)
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(C) p value distribution of GSVA enrichment results of 500 random, unique gene sets in the single-center cohort on a log10 scale. Gene set size was based on the

size of the original deceased upregulated signature (upper plot) and the original deceased downregulated signature (lower plot). p values were computed with a

Wilcoxon test comparing deceased and surviving patients and were Benjamini-Hochberg adjusted. The red dashed line represents the adjusted p value from

GSVA enrichment of the original deceased upregulated and the original deceased downregulated signatures, respectively.

(D) p value distribution of GSVA enrichment results of 500 random, unique gene sets in the multi-center cohort on a log10 scale. Gene set size was based on the

size of the original deceased upregulated signature (upper plot) and the original deceased downregulated signature (lower plot). p values were computed with a

Wilcoxon test comparing deceased and surviving patients and were Benjamini-Hochberg adjusted. The red dashed line represents the adjusted p value from

GSVA enrichment of the original deceased upregulated and the original deceased downregulated signatures, respectively.

(E) Line plot of the deceased upregulated signature optimization illustrating the GSVA p value distribution between deceased and surviving patients with varying

signature size based on the average log2FC from the scRNA-seq data. Signature size varied from 10 to the number of signature genes expressed in both cohorts,

and the distributions were color-coded according to the single-center cohort (blue), the multi-center cohort (yellow), and the mean of the single- andmulti-center

cohorts (black). The red dashed line indicates the optimal gene signature size.

(F) Line plot of the deceased downregulated signature optimization illustrating the GSVA p value distribution between deceased and surviving patients with

varying signature size based on the average log2FC from the scRNA-seq data. Signature size varied from 10 to the number of signature genes expressed in both

cohorts, and the distributions were color-coded according to the single-center cohort (blue), the multi-center cohort (yellow), and the mean of the single- and

multi-center cohorts (black). The red dashed line indicates the optimal gene signature size.

(G) Gene set enrichment analysis (GSEA) of the optimized deceased downregulated signature in the deceased patient group of the single-center cohort. Ranking

of samples is based on expression-level statistics, and the running sum is visualized. The heatmap depicts the scaled variance-stabilized mean expression per

COVID-19 severity status and outcome of the genes included in the leading edge.

(H) GSEA of the optimized deceased upregulated signature in the deceased patient group of the multi-center cohort. Ranking of samples is based on expression-

level statistics, and the running sum is visualized. The heatmap depicts the scaled variance-stabilized mean expression per COVID-19 severity status and

outcome of the genes included in the leading edge.
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