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Transcriptomic changes in oligodendrocytes 
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outcomes of Parkinson’s disease
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Abstract 

Several prior studies have proposed the involvement of various brain regions and cell types in Parkinson’s disease 

(PD) pathology. Here, we performed snRNA-seq on the prefrontal cortex and anterior cingulate regions from a small 

cohort of post-mortem control and PD brain tissue. We found a significant association of oligodendrocytes (ODCs) 

and oligodendrocyte precursor cells (OPCs) with PD-linked risk loci and report several dysregulated genes and path-

ways, including regulation of tau-protein kinase activity, regulation of inclusion body assembly and protein pro-

cessing involved in protein targeting to mitochondria. In an independent PD cohort with clinical measures (681 

cases and 549 controls), polygenic risk scores derived from the dysregulated genes significantly predicted Montreal 

Cognitive Assessment (MoCA)-, and Beck Depression Inventory-II (BDI-II)-scores but not motor impairment (UPDRS-III). 

We extended our analysis of clinical outcome prediction by incorporating differentially expressed genes from three 

separate datasets that were previously published by different laboratories. In the first dataset from the anterior cingu-

late cortex, we identified an association between ODCs and BDI-II. In the second dataset obtained from the substantia 

nigra (SN), OPCs displayed an association with UPDRS-III. In the third dataset from the SN region, a distinct subtype 

of OPCs, labeled OPC_ADM, exhibited an association with UPDRS-III. Intriguingly, the OPC_ADM cluster also demon-

strated a significant increase in PD samples. These results suggest that by expanding our focus to glial cells, we can 

uncover region-specific molecular pathways associated with PD symptoms.

Keywords Parkinson’s disease, Oligodendrocytes, Oligodendrocyte precursor cells, snRNA-seq, Polygenic risk scores, 

PD symptoms

Introduction
Parkinson’s disease (PD) is the second most common 

neurodegenerative disorder. It is characterized by the 

pathologic aggregation of alpha-synuclein and its pathol-

ogy is known to progress in a predictable spatiotemporal 

manner. �e spread of the disease pathology commences 

in the olfactory bulb and the lower brainstem and moves 

through the substantia nigra pars compacta (SN) in the 

midbrain, eventually reaching the meso- and neocortical 

areas [1, 2]. PD arises from a complex interplay of various 

factors, such as aging, genetic predisposition, and envi-

ronmental factors. While the cause of PD is unknown in 
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most cases, specific mutations in genes such as LRRK2 

and GBA1 have been identified to significantly increase 

the risk of developing the disease, although likely by 

affecting different molecular pathways. �is may be one 

reason why the impact of LRRK2 and GBA1 mutations 

on clinical presentations may differ [3]. In recent dec-

ades, transcriptome profiling has emerged as a preemi-

nent methodology for exploring human pathologies at 

the molecular and cellular level. In PD, alpha-synuclein 

pathology has been shown to be associated with the tran-

scriptional programs of various brain cell types, includ-

ing neurons and glial cells [4]. Furthermore, although 

the degeneration of dopaminergic neurons (DA) in PD 

primarily occurs in the SN region, Lewy bodies can form 

in other brain regions, such as the limbic system and the 

prefrontal cortex [5]. �e aim of our study is to identify 

transcriptional changes between available brain sam-

ples from neocortex with LRRK2 or GBA1 mutations 

and those from Healthy Controls, and to correlate these 

changes with clinical outcomes.

Results and discussion
In this study, we performed single-nucleus RNA-

sequencing (snRNA-seq) on the prefrontal cortex (PFC) 

and anterior cingulate (ACC) brain regions from the 

same individuals (2 LRRK2 PD, 2 GBA1 PD and 2 Healthy 

Controls) (Fig. 1A and Table S1). After data cleaning and 

quality control (see Methods), 88,876 high-quality single 

nuclei were retained. �e clustering of these high-quality 

nuclei identified 13 clusters covering major cell types in 

the brain, i.e. excitatory neurons (ExN), inhibitory neu-

rons (InN), oligodendrocytes (ODCs), oligodendro-

cyte precursor cells (OPCs), microglia (MG), astrocytes 

(Astro) and vascular cells (Vas) (Fig. 1B). While ~ 50% of 

the total nuclei were annotated as ODCs, only 4.3 and 

0.5% of nuclei accounted for OPCs and Vas cells, respec-

tively (Fig. 1C). �e observed proportions of various cell 

populations in our data aligned with histopathological 

studies, indicating ODCs as the predominant glial cell 

population [6]. On average, we obtained 7406 high-qual-

ity nuclei per sample ranging from 3.6 to 16.5% of the 

total nuclei (Fig. 1C and Table S2). While the percentage 

of each cell type varied across the samples, no significant 

differences (see Methods) in cell type proportions were 

observed between brain regions or mutation groups 

(Fig.  1D, E and Table  S2). �e clusters were annotated 

based on the expression of well-known cell-type markers 

(Fig. 1F and Table S3). �e top 5 markers of each cell type 

cluster are shown in Fig. 1G.

Integration of snRNA-seq data, which includes 

all expressed genes, with PD genome-wide associa-

tion studies (GWAS) [7] showed the significant asso-

ciation (adjusted P < 0.01) of ODCs, OPCs and MG with 

PD-linked risk loci (Fig. 2A and Table S4). Next, we per-

formed differential expression gene analysis to identify 

dysregulated genes between PD and controls in ODCs 

and OPCs. While 1040 and 543 genes were differentially 

expressed between GBA1 and control samples in ODCs 

and OPCs, respectively, only 278 genes in ODCs and 

108 genes in OPCs were differentially expressed between 

LRRK2 and control samples (Fig. 2B and Table S5). Using 

all the DEGs, MAGMA indicated that OPCs had the 

highest association with PD-linked risk loci (Fig. 2C and 

Table  S6). �e most prominent MAGMA association 

was observed among DEGs in OPCs when comparing 

LRRK2 vs HC, aligning with earlier findings indicating 

highest LRRK2 expression in OPCs [8]. Enriched bio-

logical processes in up-regulated DEGs (Fig.  2D and 

Table S7) exhibited negative regulation of inclusion body 

assembly (in GBA1/Control ODCs), regulation of micro-

tubule nucleation (in LRRK2/Control ODCs), positive 

regulation of tau-protein kinase activity (in GBA1/Con-

trol OPCs) and regulation of protein polymerization (in 

LRRK2/Control OPCs). On the other hand, enriched 

biological processes in down-regulated DEGs exhib-

ited protein processing involved in protein targeting to 

mitochondria (in GBA1/Control ODCs), regulation of 

potassium ion transport (in LRRK2/Control ODCs), 

modulation of chemical synaptic transmission (in GBA1/

Control OPCs) and cholesterol biosynthetic process (in 

LRRK2/Control OPCs). �e low overlap between DEGs 

of LRRK2 or GBA1 compared to Healthy Controls, along 

with the distinct enriched biological processes in LRRK2 

and GBA1 DEGs, indicates that GBA1 and LRRK2 muta-

tions have unique molecular impacts in PD.

Next, we performed polygenic prediction in an inde-

pendent PD cohort from Tuebingen (681 cases and 549 

controls), which has a uniquely rich and detailed set of 

PD clinical measures. Polygenic Risk Scores (PRS) were 

calculated using the GWAS summary statistics for PD 

excluding the data from our Tuebingen cohort (see 

Methods). We computed six different PRS derived from 

six gene lists obtained through our analysis of differ-

ential expression in ODCs, OPCs and MG (Table  S8). 

All the scores significantly predicted case–control sta-

tus (Table  S8). Subsequently, we conducted prediction 

of PD measures among patients. We focused on Uni-

fied Parkinson Disease Rating Scale-III (UPDRS-III), 

Montreal Cognitive Assessment (MoCA) and Beck 

Depression Inventory-II (BDI-II) among PD patients (N 

ranges from 379 to 514). Significant associations were 

observed between GBA1_OPC_DEG score with MoCA 

(P-value = 0.055, Table  1), LRRK2_ODC_DEG and 

LRRK2_OPC_DEG scores with BDI-II (P-value = 0.054 

and P-value = 0.002, respectively). No significant associa-

tions with clinical outcomes were found using PRS based 
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Fig. 1 Overview of snRNA-seq profiling in the human post-mortem brain tissues. A Schematic overview of the experimental plan (see Table S1). 

B Uniform manifold approximation and projection (UMAP) visualization of the snRNA-seq clusters from 88,876 high quality nuclei. C Percentage 

of nuclei for each cell type across samples, mutation group and brain regions (see Table S2). D UMAP embeddings of nuclei colored by mutation 

group and brain regions. E Barplot displaying the distribution of cell-type percentage sample-wise. F Violin plot illustrating the expression 

distribution of known gene markers (see Table S3). G Genes most up-regulated in identified cell types: excitatory neurons (ExN), inhibitory neurons 

(InN), oligodendrocytes (ODCs), oligodendrocyte precursor cells (OPCs), microglia (MG), astrocytes (Astro) and vascular cells (Vas)
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on DEGs in MG (Table 1). It is noteworthy that none of 

the scores were able to predict motor examination meas-

ures i.e. UPDRS-III. Expanding beyond region-specific 

prediction, we computed a general PRS using all SNPs 

as a control. As anticipated, we observed an association 

with UPDRS-III (P-value = 0.076) but not with non-

motor symptoms (Table S8).

In order to confirm and broaden our findings beyond 

cortical regions, we utilized three distinct single-cell 

datasets for predicting PD measures using PRS derived 

from DEGs in ODCs and OPCs [9–11] (Table S9). Using 

a dataset from the first study focusing on the ACC region 

[9], we uncovered an association between ODC DEGs 

and BDI-II (P-value = 0.066, Fig.  3A and Table  S10). In 

the second study centered on the SN region [10], we 

discovered a substantial association between the OPC 

DEGs and UPDRS-III (P-value = 0.012, Fig.  3B and 

Table  S10), indicating a potential specificity to different 

brain regions. To further uncover the association of PD 

measures and subtypes of OPCs and ODCs, we used 

snRNA-seq generated by Kamath and colleagues [11], 

providing well-defined subtypes within the SN region. As 

a positive control, we first used DEGs from a highly vul-

nerable DA neuronal subpopulation, marked by SOX6_

AGTR1. Indeed, as expected the PRS derived from DEGs 

in SOX6_AGTR1, were significantly associated with all 

three PD measures i.e. UPDRS-III, MoCA and BDI-II 

(P-value < 0.1, Fig. 3C and Table S10). Intriguingly, besides 

SOX6_AGTR1, we found an association of the OPC_

ADM subtype with UPDRS-III (P-value = 0.052, Fig.  3C 

and Table  S10). In addition, BDI-II was associated with 

the OPC_ADM, OPC_HOXD3 and ODC_ENPP6_EMI-

LIN subtypes (P-value < 0.1). It’s crucial to highlight that 

the OPC_ADM population showed a notable increase in 

PD samples (Fig. 3 of Kamath et al. [11]). Enriched bio-

logical processes in OPC_ADM DEGs exhibited distinct 

Fig. 2 Association of PD susceptibility with ODCs and OPCs. A Multi-marker analysis of genomic annotation (MAGMA) gene set enrichment 

based on all the 88,876 high quality nuclei showed significant associations with oligodendrocytes (ODCs) and oligodendrocyte precursor cells 

(OPCs) (see Table S4). B Number of differentially expressed genes (DEGs) in each comparison and cell-type (see Table S5). C MAGMA gene set 

enrichment based on DEGs in LRRK2 vs HC (upper) and in GBA1 vs HC (lower) (see Table S6). D Gene ontology enrichment analysis of up-regulated 

(left) or down-regulated (right) genes. Top five biological process terms for each gene list are indicated. Enrichr combined score is calculated 

by the logarithmic transformation of the p-value obtained from Fisher’s exact test, multiplied by the z-score representing the deviation 

from the expected rank (see Table S7)
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terms like regulation of myelination and glial cell dif-

ferentiation whereas OPC_HOXD3 exhibited terms 

like regulation of receptor-mediated endocytosis, neu-

roblast proliferation and energy reserve metabolic pro-

cess (Fig.  3D and Table  S11). ODC_ENPP6_EMILIN 

displayed terms related to unfolded protein and chap-

erone-mediated protein complex assembly (Fig.  3D and 

Table  S11). Similar processes have recently been found 

to be enriched in PD-associated oligodendrocytes [12], 

suggesting that oligodendrocytes are affected by protein 

folding stress in PD and antigen processing/presentation 

as reviewed by Sutter and Crocker [13].

To summarize, in this short report, we found a high-

est and significant association of PD GWAS risk loci in 

ODC and OPC expressed genes within PD GWAS risk 

loci and revealed several dysregulated genes and path-

ways, including regulation of tau-protein kinase activity, 

regulation of inclusion body assembly and protein pro-

cessing involved in protein targeting to mitochondria. 

It is now widely acknowledged that oligodendrocytes 

and/or precursor cells play a role in supporting neurons 

through mechanisms beyond the insulating function of 

myelin [14–16]. �erefore, it is tempting to speculate that 

the abnormally regulated pathways, which extend beyond 

myelination, such as those involved in metabolic support 

to neurons, may contribute to the pathology of PD. ODCs 

form dynamic myelin sheaths around axons, which are 

essential for higher brain functions such as learning and 

memory. Additionally, they offer vital metabolic sup-

port to neurons, underscoring their significant contribu-

tion to overall brain function. OPCs are integrated into 

local neural circuits and play roles in synaptic and axonal 

remodeling, phagocytosis, and immunomodulation. 

Here, we would also address certain limitations of our 

study. We recognize that the sample sizes of the newly 

generated data in this study are comparatively small, pri-

marily due to the challenge of obtaining these rare sam-

ples from brain banks, given the rarity of the mutations. 

�erefore, we utilized three distinct single-cell datasets 

from previously published studies to validate our find-

ings. However, it is crucial to highlight that not all data-

sets exhibit uniform distribution in terms of age, gender, 

and mutations. Additionally, we are currently expanding 

our Tuebingen cohort to enhance the predictive power 

of clinical outcomes. We have incorporated clinical 

data from newly received (in July 2024) PD patient data 

Table 1 Polygenic prediction of Parkinson’s measures in the Tuebingen patient sample

The bold P-values are significant values i.e. P-value < 0.1

Linear regression using the sex, age and genetic principal components as control variables

* Denotes significance at P ≤ 0.1

** Denotes significance at P ≤ 0.05

UPDRS Unified Parkinson Disease Rating Scale, ODC Oligodendrocytes, OPC Oligodendrocytes precursor cells, MG Microglia, DEG Differentially expressed genes

UPDRS-III Montreal cognitive 
assessment

Beck 
depression 
inventory-II

N 514 450 379

GBA1 model

 GBA1_ODC_DEG standardized beta − 0.0297 0.002 − 0.060

P value 0.549 0.959 0.299

 GBA1_OPC_DEG standardized beta 0.003 0.088 0.014

P value 0.947 0.055* 0.782

 GBA1_MG_DEG standardized beta 0.024 0.006 0.025

P value 0.622 0.895 0.665

Adj. R2 0.037 0.143 0.022

Model P value 8.8 ×  10–4 4.4 ×  10–13 0.044

LRRK2 model

 LRRK2_ODC_DEG standardized beta 0.038 − 0.074 0.099

P value 0.388 0.101 0.054*

 LRRK2_OPC_DEG standardized beta 0.005 0.025 − 0.152

P value 0.892 0.567 0.0002**

 LRRK2_MG_DEG standardized beta − 0.027 0.010 − 0.045

P value 0.546 0.810 0.373

Adj. R2 0.038 0.14 0.049

Model P value 7.2 ×  10–4 8.1 ×  10–13 9.5 ×  10–4
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(n = 358) and conducted polygenic predictions of Par-

kinson’s measures using this replicate cohort. Indeed, we 

found associations between differentially expressed poly-

genic risk scores and non-motor symptoms (Table S12). 

However, the results do not fully match those in Table 1, 

indicating that clinical prediction outcomes are highly 

dependent on sample size and genetic background. In 

the future, it will be essential to integrate and replicate 

the results in a larger cohort characterized by a balanced 

metadata. It is noteworthy that in line with our results, 

previous studies indicate a significant enrichment of PD 

heritability in glial cell types like oligodendrocytes and 

astrocytes [17–19]. Two decades ago, Wakabyashi et al., 

observed an abnormal accumulation of alpha-synuclein 

in the oligodendrocytes within the substantia nigra of 

PD patients [20]. By integrating GWAS results with sin-

gle-cell transcriptomic data, Bryois et  al., and Agarwal 

et  al., observed oligodendrocytes and oligodendrocyte 

precursor cells to be significantly associated with PD 

[18, 19]. Moreover, while the loss of DA neurons in the 

SN region of the midbrain is a well-known pathological 

hallmark of PD closely associated with motor symptoms, 

it is important to note that PD patients also encounter 

various non-motor symptoms, including cognitive and 

psychopathological manifestations, which are associated 

with prefrontal cortex dysfunction [21]. Szabolcs and col-

leagues found higher rates of psychiatric morbidity (espe-

cially mood disorders, cognitive impairment, anxiety 

Fig. 3 Polygenic prediction of PD measures using the ODCs and OPCs DEGs in publicly available datasets. A–C Prediction of clinical outcomes 

using Feleke et al. [9] from anterior cingulate cortex region (A), Lee et al. [10] from substantia nigra region (B) and Kamath et al. [11] from substantia 

nigra region (C) (see Table S10). D Gene ontology enrichment analysis of DEGs in predictive subpopulation of cell-types in Kamath et al. [11] 

from substantia nigra region. Top five biological process terms for each gene list are indicated (see Table S11)
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disorders, schizophrenia) in the premotor phase of PD 

and these were more common in PD patients before PD 

diagnosis [22]. In line with this, the polygenic predic-

tions in this study showed notable associations with non-

motor symptoms, suggesting a crucial involvement of 

glial cells in neuropsychiatric symptoms that may extend 

beyond the SN region of the midbrain. On the other 

hand, a significant correlation was observed between the 

OPC subpopulation in the substantia nigra (OPC_ADM) 

and PD motor symptoms. �is suggests that region-spe-

cific alterations in molecular pathways and gene expres-

sion changes in glial cells contribute to distinct clinical 

outcome predictions. Altogether, we anticipate that our 

study will serve as a valuable resource and prompt fur-

ther research into the involvement of oligodendrocytes 

and oligodendrocyte precursor cells in the pathology of 

PD.

Methods
Samples used in this study

�e research was conducted using fresh-frozen post-

mortem brain tissues obtained from four PD patients, 

two of which had the LRRK2 p.G2019S mutation and 

the other two had the GBA1 mutation (one with p.L444P 

and one with p.E326K), along with two healthy controls. 

All donors were males, aged between 65 and 80, and PD 

patients had Lewy body Braak stages of 5–6. Two brain 

regions, namely the prefrontal cortex and anterior cingu-

late cortex, were investigated for each donor. All tissues 

were procured from the Netherlands brain bank except 

one LRRK2 brain from UCL Queen Square Brain Bank 

for Neurological Disorders, following the policies and 

regulations of the institutional ethics board at the Univer-

sity Hospital Tuebingen in Germany. For transcriptome 

analysis, single nuclei were extracted from all samples, 

and snRNA-seq was performed. �e clinical characteris-

tics of the donors have been elaborated in Table S1.

Generation of single nuclei from postmortem human 

brains

�e process of isolating nuclei entails the utilization of a 

detergent lysis technique, where a detergent is employed 

to break down the cellular membranes, followed by the 

centrifugal separation of the nuclei. In brief, 300  mg of 

post-mortem brain tissue was dounce-homogenized in 

2 ml of Nuclei EZ Prep Lysis Buffer (Sigma Aldrich, MA, 

USA) spiked with 0.2  U  μl−1 RNase inhibitor (Sigma 

Aldrich, MA, USA), 3.3  μl DTT (�ermo Fisher Scien-

tific, MA, USA) and 33 μl of 10% Triton X100 which were 

added before incubating on ice for 5 min in a final volume 

of 10  ml. Homogenized tissue was washed with 3–4 ml 

washing buffer which was fresh PBSB 1% and then was 

filtered through a 70-μm cell strainer (BD Bioscience, 

NY, USA). �en using a long tube, 10  ml of 1.8  M ice-

cold sucrose cushion solution is added to each sample i.e. 

the roughly 3  ml lysate. After carefully and completely 

discarding the supernatant and the sucrose cushion layer 

containing debris and myelin, 1 ml PBS buffer added to 

resuspend the nuclei and 4  ml nuclei suspension buffer 

(1% BSA-PBS solution). It was finally centrifuged on 

500 g for 5 min. At the end, 2 μl DAPI (Sigma Aldrich, 

MA, USA) with the concentration of 1:100 was added 

to stain the nuclei. Final centrifugation step on 500 g for 

5 min was preceded by incubating the DAPI added sus-

pension for 15–20 min in the cold & dark room on the 

rotation wheel at 4 C. Sorting buffer which consists of 

99 μl PBS and 1 μl RNase inhibitor (Sigma Aldrich, MA, 

USA) was added to resuspend the nuclei and make them 

ready for quality/quantity inspection and then to run on 

a 10 × genomic chromium controller. Quality assessment 

was performed using fluorescence-activated cell sorting 

(FACS) to detect all DAPI-positive events, i.e. individual 

nuclei comprising more than 95% of all events.

Droplet-based snRNA-seq using 10 × Genomics

Single-nuclei suspension concentration was determined 

by automatic cell counting (DeNovix CellDrop, DE, USA) 

using an AO/PI viability assay (DeNovix, DE, USA) and 

counting nuclei as dead cells. Single-nucleus gene expres-

sion libraries were generated using the 10 × Chromium 

Next gel beads-in-emulsion (GEM) Single Cell 3’ Rea-

gent Kit v3.1 (10 × Genomics, CA, USA) according to 

manufacturer’s instructions. In brief, cells were loaded 

on the Chromium Next GEM Chip G, which was subse-

quently run on the Chromium Controller (10 × Genom-

ics, CA, USA) to partition cells into GEMs. Cell lysis and 

reverse transcription of poly-adenylated mRNA occurred 

within the GEMs and resulted in cDNA with GEM-spe-

cific barcodes and transcript-specific unique molecular 

identifiers (UMIs). After breaking the emulsion, cDNA 

was amplified by PCR, enzymatically fragmented, end-

repaired, extended with 3  A-overhangs, and ligated to 

adapters. P5 and P7 sequences, as well as sample indices 

(Chromium i7 Multiplex kit, 10 × Genomics, CA, USA), 

were added during the final PCR amplification step. �e 

fragment size of the final libraries was determined using 

the Bioanalyzer High-Sensitivity DNA Kit (Agilent, CA, 

USA). Library concentration was determined using the 

Qubit dsDNA HS Assay Kit (�ermo Fisher Scientific, 

MA, USA). snRNA libraries were pooled and paired-end-

sequenced on the Illumina NovaSeq 6000 platform (Illu-

mina, CA, USA).

snRNA-seq quality control

Samples were demultiplexed using Illumina’s bcl2fastq 

conversion tool and the 10 × Genomics pipeline Cell 
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Ranger count v6.0.1 to perform alignment against the 

10 × Genomics pre-built Cell Ranger reference GRCh38-

2020-A (introns included), filtering, barcode counting, 

and UMI counting. As a default, a cut-off value of 200 

unique molecular identifiers expressed in at least 3 cells 

was used to select nuclei of sufficient complexity for fur-

ther analysis. Each sample’s count was normalized by the 

SCTransform method in Seurat v4.1.0 [23] with mito-

chondrial reads regressed out. Two approaches were 

combined for quality control: (1) Doublets and multiplets 

were filtered out using DoubletFinder v2.0.3 [24] for each 

individual sample; (2) outliers with a high ratio of mito-

chondrial and ribosomal counts (each > 10%) and cells 

with low a number of genes (N < 1000) were removed. 

�e core statistical parameters of DoubletFinder used 

to build artificial doublets for true doublet classification 

were determined automatically using recommended set-

tings. After applying these filtering steps on 105,781 

input nuclei, the dataset contained 88,876 high-quality 

single nuclei that were eligible for further analysis. We 

used the speckle R package v0.99.7 to analyze differ-

ences in cell type proportions [25]. We used the propeller 

function with CellType, SamplID and Mutation/Region 

columns from the Seurat MetaData object as input for 

clusters, sample and group, respectively.

Cell annotations and differential expression

After combining all samples into a single Seurat object, 

genes were projected into principal component space 

using the principal component analysis (RunPCA). Har-

mony R package [26] was used for integration as well 

as for removing unwanted effects across subjects. �e 

first 12 PC dimensions of data processed with Harmony 

were used as inputs into the FindNeighbours, FindClus-

ters [at 0.1 resolution obtained out of a range of tested 

resolutions (0.1, 0.2, 0.5, 1.0)] and RunUMAP functions 

of Seurat. In brief, a shared-nearest-neighbor graph was 

constructed on the basis of the Euclidean distance met-

ric in principal component space, and cells were clus-

tered using the Louvain algorithm. �e RunUMAP 

function with default settings was used to calculate 2D 

UMAP coordinates and search for distinct cell popula-

tions. Cluster markers and differential expression testing 

was performed on Seurat “RNA” assay containing seurat 

log-normalized counts using default Wilcoxon method 

implemented in Seurat v4.1.0. Differential gene expres-

sion test between cases and controls was performed for 

each cell type using the Wilcoxon ranked sum method 

implemented within the FindMarkers function  with 

min.pct of 0.25 and logfc of 0.25 (Adjusted P-Value < 

0.05). Gene ontology enrichment analysis for biological 

processes was performed using EnrichR [27]. In addi-

tion, hierarchical clustering of enriched GO terms was 

performed for a set of paired comparisons, including 

LRRK2 vs. HC and GBA1 vs. HC brains, in which differ-

entially expressed genes showed significant enrichment 

(Adjusted P-Value < 0.05).

Cell-type association with genetic risk of PD

Association analysis of cell type-specific expressed 

genes with genetic risk of PD was performed at NIH as 

described previously [28], using Multi-marker Analysis 

of GenoMic Annotation (MAGMA) v2.0.2, in order to 

identify disease-relevant cell types in the data [29, 30]. 

MAGMA, as a gene set enrichment analysis method, 

tests the joint association of all SNPs in a gene with the 

phenotype, while accounting for LD structure between 

SNPs. Competitive gene set analysis was performed on 

SNP p-values from the latest PD GWAS summary sta-

tistics including 23andMe data and the publicly available 

European subset of 1000 Genomes Phase 3 was used as 

a reference panel to estimate LD between SNPs. SNPs 

were mapped to genes using NCBI GRCh37 build (anno-

tation release 105). Gene boundaries were defined as the 

transcribed region of each gene. An extended window of 

10 kb upstream and 1.5 kb downstream of each gene was 

added to the gene boundaries.

Polygenic risk scores (PRS)

Using summary statistics data from PD meta GWAS 

(https:// pdgen etics. org/ resou rces “GWAS META5 sum-

mary stats”), we performed a comprehensive annota-

tion using the Region Annotation function in Annovar 

[31] to find all genes corresponding to the SNPs in the 

whole genome and then generated the GWAS gene list. 

We performed an overlap analysis between the GWAS 

annotated genes and gene lists obtained from our dif-

ferential expression comparisons in ODCs and OPCs. 

Next, we retrieved SNPs in each of the gene lists, includ-

ing MAF, beta, and p-value from the base data summary 

statistics. For the prediction, we used imputed genotypes 

of 681 cases and 549 controls from the Tuebingen cohort 

[32], which were not included in the base data “GWAS 

META5 summary stats”. To construct polygenic risk 

score (PRS) models, we utilized the R package PRSice2 

v2.3.5 [33]. LD reference was not required as our target 

sample has more than 500 samples (https:// chois hingw 

an. github. io/ PRSice/ step_ by_ step/). We applied clump-

ing procedure using  r2 > 0.1 and 1000 kb as the clumping 

parameters in PRSice2 and a p-value of 0.05 was cho-

sen as the threshold to exclude non-significant SNPs. In 

other words, lead SNPs with a p-value of 0.05 from the 

LD-clumped list were included in the calculation of PRS 

used in the regression models. �e null model is a logis-

tic regression model that measures the power of covari-

ates including age, sex, and genetic principal components 
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(PC1-4) in the prediction of PD status, whereas the full 

model adds the PRS to the null model, thereby isolating 

the additive influence of the PRS on risk prediction. �e 

 R2 was also adjusted for an estimated PD prevalence of 

0.005 on the liability scale. To predict the clinical meas-

ures, we followed a strategy similar to our previous work 

[34] i.e. PRS were included in a linear regression model 

using the “lm” function in R and standardized beta was 

obtained using the “lm.beta” function.

Publicly available datasets used in this study

We used three published snRNA-seq datasets from 

human postmortem specimens: (1) Feleke et  al., ante-

rior cingulate cortex [9] (n = 7 per group PD vs Controls, 

proportion female: control = 1/7, PD = 5/7), (2) Lee et al., 

substantia nigra [10] (n = 6 PD vs n = 13 Controls, pro-

portion female: control = 4/13, PD = 3/6), and (3) Kamath 

et  al., substantia nigra [11] (n = 7 PD vs n = 8 Controls, 

proportion female: control = 6/8, PD = 2/7). With the 

exception of Kamath et al., DEGs were directly obtained 

from the respective studies. DEGs between cases and 

controls from Kamath et  al., were calculated using the 

Wilcoxon ranked sum method as implemented in Seu-

rat’s FindMarkers function (Seurat v4.3.0.1). DEGs were 

computed for each cell type subpopulation based on sub-

populations defined in Kamath et al. Filtered gene expres-

sion matrices and subpopulation annotations for Kamath 

et  al. data were downloaded from Single Cell Portal 

(https:// singl ecell. broad insti tute. org/ single_ cell/ study/ 

SCP17 68/) and converted into Seurat objects for log-nor-

malization and differential gene expression analysis.
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