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Network state changes in sensory thalamus
represent learned outcomes

Masashi Hasegawa 1,2,4, Ziyan Huang 1,4, Ricardo Paricio-Montesinos 1 &

Jan Gründemann 1,2,3

Thalamic brain areas play an important role in adaptive behaviors. Never-

theless, the population dynamics of thalamic relays during learning across

sensory modalities remain unknown. Using a cross-modal sensory reward-

associative learning paradigm combined with deep brain two-photon calcium

imaging of large populations of auditory thalamus (medial geniculate body,

MGB) neurons in male mice, we identified that MGB neurons are biased

towards reward predictors independent of modality. Additionally, functional

classes of MGB neurons aligned with distinct task periods and behavioral

outcomes, both dependent and independent of sensorymodality. During non-

sensory delay periods, MGB ensembles developed coherent neuronal repre-

sentation as well as distinct co-activity network states reflecting predicted task

outcome. These results demonstrate flexible cross-modal ensemble coding in

auditory thalamus during adaptive learning and highlight its importance in

brain-wide cross-modal computations during complex behavior.

Relaying sensory information from subcortical areas to sensory cor-

tices is a fundamental function of thalamus1,2, yet we are only starting

to understand the computational role of individual sensory thalamic

nuclei in flexible encoding during adaptive behaviors3–7. Auditory

thalamus (medial geniculate body, MGB) flexibly encodes sensory

information across associative learning8–12, and populations of indivi-

dual MGB neurons exhibit diverse single cell response adaptations to

conditioned tone stimuli in a behavioral state-dependent manner

during fear learning5. In addition to learning-related auditory response

plasticity, MGB neurons process cross-modal sensory inputs in a

complex manner10,13. For example, visual stimuli enhance MGB tone

responses non-linearly10, while tactile stimuli affect MGB tone

responses bidirectionally13, indicating that, similar to cortical and col-

licular brain areas, MGB processes cross-modal sensory inputs in

addition to its auditory relay function14–17. Thesedata suggest thatMGB

is an active computational unit which processes complex information

across sensory modalities upon adaptive behaviors. Nevertheless, it

remains unknown how large-scale neuronal dynamics in auditory

thalamus represent sensory stimuli of different modalities that change

their assigned value and expected outcome during flexible learning.

Here, we show that sensory thalamus dynamically encodes sensory as

well as task-related information, adapting its neural dynamics and

network state to varying task rules.

Results
Auditory thalamusneurons display various responsepatterns to
cross-modal sensory stimuli in reward associative learning
Wedeveloped a cross-modal sensoryGo/Nogo reversal learning task in

mice to test for neuronal population dynamics during sensory learning

and for cognitive flexibility upon changing reward contingencies. Mice

(N = 8 animals) were trained to associate counterbalanced auditory

(12 kHz tone) and visual (rightward drifting grating) stimuli as Go

(reward predictor) or Nogo (not rewarded) cues (Fig. 1a–c). Oncemice

learned the task at expert level (Initial learning), the reward con-

tingencywas reversed and the previous Go cue becamenon-predictive

of the reward, while the previous Nogo cue turned into a reward-

predictor (Reversal learning). Animals learned the initial rule within ~10

days (Figs. 1d–f and Supplementary Fig. 1). Upon reversal of the reward

contingencies, task performance dropped initially, yet mice learned

the new stimulus-reward rule again with a similar learning rate (N = 8
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Fig. 1 | Auditory thalamus neurons exhibit diverse responses and dynamic bias

towards reward predictors upon cross-modal reversal learning. a Behavioral

setup schematic. b Design of the Go/Nogo reversal learning paradigm. c Trial

structure, response types and their outcomes. Hit: correct lick and reward delivery.

Miss: no lick to Go stimulus. False Alarm (FA): lick to Nogo stimulus. Correct

Rejection (CR): no-lick to Nogo/Catch. Miss and FA are followed by timeouts.

d, e Performance and d-prime transition of one example mouse. Threshold:

d-prime> 1.5. d-prime is calculated fromHit and FA responses. fNumberof sessions

to learning criterion (N = 8 mice). Stimulus-reward association sequence (auditor-

y→visual vs. visual→auditory) is counterbalanced acrossmice (N = 4 for each group).

g d-prime transition around learning threshold are similar between initial and

reversal learning (mean± SEM,N = 8mice).h d-prime values of Jaws (N = 7) andGFP

(N = 4) groups on Day 10. i Lens implantation scheme and example two-photon

max. intensity projection of MGB (enhanced contrast visualization). Bottom: Ca2+

traces from example neurons in distinct trials (mean± SEM). j, k Single cell activity

in Go and Nogo trials during initial and reversal learning (N = 8 mice) sorted by the

mean stimulus amplitude of Go trials. Cell IDs are matched across Go and Nogo

trials. Black and gray triangles represent the stimulus and delay period onset.

l Proportion of stimulus-responsive cells from the data shown in (j and k). The

transition of the proportion of stimulus-responsive cells from naive to expert

phases in the initial learning (left) and reversal learning (right). The proportions of

the stimulus-responsive cells were altered from Naive to Expert phases in both

initial and reversal learning (both p <0.0001, Chi-square, two-sided).m Proportion

of Go-responsive cells in naive and expert phases in initial and reversal learning

(N = 8 mice). The proportion of Go-responsive cells increased from naive to expert

(both p =0.0156, sign-rank test, two-sided). Boxplots in Fig. 1f, h show median,

lower and upper quartiles (box edges), maximum and minimum values without

outliers. Values beyond the 1.5*interquartile range from the lower or upper quar-

tiles are considered outliers.
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mice, Figs. 1d–g and Supplementary Fig. 1). Optogenetic inhibition of

MGB activity perturbed the task learning (Fig. 1h and Supplementary

Fig. 2). These data indicate that mice flexibly associate sensory stimuli

with reward outcome across initial and reversal learning and MGB is

required for acquisition of the task.

To track the activity patterns of MGB neurons during learning, we

performed longitudinally in vivo two-photon calcium imaging of large

populations of individual MGB neurons through a gradient refractive

index (GRIN) lens across all stages of the learning paradigm (Fig. 1i,

Supplementary Movie 1). At first, we investigated how MGB neurons

responded to cross-modal sensory stimuli and how their responses

were altered across reward associative learning by analyzing all

recorded neurons, including longitudinally tracked cells and non-

tracked cells. During naive and expert phases of initial and reversal

learning, MGB neurons exhibited a large variety of distinct response

patterns to the auditory tone as well as the visual stimulus and com-

binations thereof (Fig. 1i–k, Supplementary Fig. 3), indicating that

subsets of MGB neurons are inherently responsive to cross-modal

sensory stimuli. Nevertheless, the learning-induced reward association

of the Go stimulus during initial or reversal learning altered the pro-

portion of stimulus-responsive MGB neurons towards the Go stimulus

regardless of the sensory modality (Figs. 1l, m, Supplementary Fig. 3).

These results demonstrate that auditory thalamus processes cross-

modal sensory information during discriminatory reward learning and

that MGB responsiveness is dynamically biased towards reward pre-

dictors independent of stimulus modality.

Functional neuronal subgroups predict task-outcome in MGB
Next, we separatedMGB neurons into functional subgroups by using a

k-means-based cluster analysis approach using longitudinally tracked

cells (Supplementary Fig. 4a). MGB neurons exhibited distinct stable,

learning-enhanced as well as learning-inhibited responses to the

reward-predicting Go stimuli (Fig. 2a, b). These learning-related func-

tional clusters in MGB emerged regardless of the modality of the Go

stimulus (Fig. 2a, b, right). In addition to stimulus-driven responses,

subsets of MGB neurons developed ramping activity during the non-

sensory, pre-reward delay period of Go trials (Ramp-up or Ramp-down

clusters), during which the animal has to retain the stimulus type (Go

vs. Nogo) and prepare for the action. This ramping activity was specific

to the Go stimulus, given that only a small proportion of neurons

exhibited ramping activity during Nogo delay periods (Supplementary

Fig. 4b-f). Furthermore, ramping activity was only observed in Hit

trials, not FA trials, indicating that this activity is correlated with task

outcome (Supplementary Fig. 5).

We then compared the activity patterns of the same neurons

across expert states in initial and reversal learning when the animals

are successfully performing the task and found task-specific MGB

neurons that are active during distinct trial epochs irrespective of the

sensory modality (Fig. 2c, left). In contrast, a second modality-specific

group of MGB neurons was modulated by the trial epoch in a sensory

modality-specific manner (Fig. 2c, middle). These results demonstrate

that reward learning drives heterogeneous neuronal plasticity in MGB

that flexibly reflects task features and reward outcomes in a modality-

driven as well as modality-independent manner.

Functional plasticity in MGB is not exclusively driven by beha-
vioral variables
During the cross-modal Go/Nogo paradigm, mice adapted their

behavior flexibly and reversibly. Behavioral variables such as body

movement, licking9,18,19 or arousal level20 affect neural activity in a

brain-wide manner. Depending on the trial epoch, ~5.7–38.6% of

MGB neurons exhibited correlations of Ca2+ activity with behavioral

variables (Supplementary Figs. 6a, b, threshold: |r| = 0.2). However,

the behavioral modulation of Ca2+ activity was not systematically

changed across learning (Supplementary Figs. 6c, d). In addition, we

found that the strength of the correlation of Ca2+ activity and

locomotion or pupil size in neurons that were tracked across the

behavioral paradigm was unchanged or even decreased after

learning and upon behavioral adaptation (Supplementary

Figs. 6e, f). In addition to locomotion and arousal, the number of

licks during the pre-reward delay period increased after learning

(Supplementary Figs. 6g, h). Nevertheless, anticipatory licking did

not systematically modulate MGB activity during expert phases

(Supplementary Figs. 6i, j) and did not correlate with the proportion

of ramping cells during the delay period (Supplementary Fig. 6k).

Taken together, these results indicate that subsets of individual

MGB neurons correlate with behavioral variables such as locomo-

tion, pupil size and licking, yet changes in behavior are not the main

driver of functional plasticity and changes in learning-related

activity in MGB.

Learning induces coherent neuronalpopulation representations
during reward-preceding periods
In addition to the classification of individual stable and plastic MGB

neurons, we next asked if and how the neural population representa-

tion of MGB changes upon learning. To answer this question, we cal-

culated the trial-by-trial population vector correlation (PVC,

Pearsons’s r)21–23 from all recorded neurons of one session, including

longitudinally tracked andnon-tracked cells. Throughout an individual

session as well as across learning, the PVC of the stimulus period (Go

and Nogo trials) remained stable (Figs. 3a, b, and Supplementary

Figs. 7 and 8). In contrast, the PVC specifically increased during the

reward-preceding delay period of Go trials once mice learned the

stimulus-reward contingency in initial learning and flexibly adapted to

the previous non-rewarded delay period after reversal learning

(Figs. 3c, d, Supplementary Figs. 7 and 8). Thus, upon associative

learning, the neuronal representation of theMGBpopulation becomes

more similar during the reward-preceding delay period in a sensory

modality-independent fashion (Supplementary Figs. 7 and 8). The PVC

increase was specific to the outcome and not the action given that it

occurred only during the delayperiod of Hit, but not FalseAlarm trials,

where mice incorrectly licked to a Nogo stimulus (Figs. 3e, f, and

Supplementary Figs. 9 and 10). Furthermore, the delay period PVC

increase was present in trials with and without anticipatory licking

(Fig. 3g) indicating that enhanced PVCs during the delayperiod are not

driven by the preparatory behavior of the animal or lick impulsivity.

Removing delay cells (i.e., Ramp-up and Ramp-down cells, see

Figs. 2a, b; see Supplementary Fig. 11 for the removal of unspecific

subclusters) did not affect the increase in PVC (Fig. 3h), indicating that

the change in population representation during the delay period is

driven by the total population of MGB neurons.

Associative reward learning changes the co-activity network
structure in MGB
Next, we analyzed how the co-activity network structure changes

across learning inMGBusing longitudinally tracked cells bycomputing

the weighted undirected graphs of MGB population activity24,25. Here,

nodes in the co-activity network represent individual MGB neurons

and edges the positive pairwise Pearson’s correlation coefficients of

neural activity between all neuron pairs (Fig. 4a). During the delay

periods of the Go trials, the hubness (average of the activity correla-

tions between all cell pairs) increased from the naive to the expert

phases, while it was unaffected in the Nogo trials (Fig. 4b). Further-

more, the mean shortest path length between any two neurons

became shorter in the expert phase in the Go trials, which is consistent

with a global increase of hubness (Fig. 4b). Local co-activity structures

representedby the cluster coefficient of triaddid not increase from the

naive to expert phases (Supplementary Fig. 12a), indicating that the

observed changes are a global event in the totalMGBpopulation.Upon

reversal learning, the co-activity structure during the delay period was
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actively remodeled, both globally (hubness and path length) and

locally (cluster coefficient) (Fig. 4b, Supplementary Fig. 12a), indicating

that MGB co-activity network structure is dynamic during changing

stimulus-reward contingencies. Furthermore, removing the cluster of

delay ramping neurons (or a similar number of random neurons) from

the analysis did not affect the changes in the co-activity network

structure (Supplementary Figs. 12b, c). These results indicated that the

general MGB population mediates the remodeling of the co-activity

network. Anti-correlation networks (negative Pearson’s r) remained

unchanged in all learning stages (Supplementary Fig. 13). In summary,

global co-activity network structures in MGB changed dynamically

during the reward-preceding delay period and flexibly re-adjusted

after learning in a modality-unspecific fashion. Changes in co-activity

structures during the stimulus period were less consistent and limited

to the reversal learning period (Supplementary Fig. 14). Altogether,

these results demonstrate that the functional co-activity structure in

MGB can be rapidly re-organized through associative reward learning

and learning rule switches, which could help to support the cognitive

processing of task-relevant information24,25.

Discussion
Recent work has shed light on the role of sensory thalamus in adaptive

behaviors3,4, while the neural dynamics of sensory thalamus in flexible

learningof complex tasks acrossmultiple sensorymodalities remained

elusive. Here, we combined a cross-modal (auditory and visual)

reward-associative learning paradigm with longitudinal deep-brain

two-photon calcium imaging in medial geniculate body (MGB) and

demonstrated that sensory thalamus dynamically encodes sensory as

well as task-related information, adapting its neural responses to

varying task rules.

We find that auditory thalamus exhibits adaptive processing of

auditory and visual information (Figs. 1i–m and Supplementary

Figs. 15 and 16) similar to sensory cortices15,16. Responses of MGB

neurons to auditory and visual stimuli are plastic andmodulated upon

cross-modal stimulus-reward learning (Fig. 1l, m), indicating that sen-

sory encoding in MGB is dynamic upon cognitively demanding tasks

irrespective of the sensory modality (Supplementary Fig. 3). A subset

of MGB neurons developed ramping activity during the reward-

preceding delayperiod (Fig. 2a–c), duringwhich the animal has to hold

Single cell plasticity across learning
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Fig. 2 | Reward learning induces heterogeneous single cell plasticity in a task-

and modality-specific fashion. a Functional subgroups of MGB neurons in initial

learning. Left: Heatmaps of single-cell activities before and after learning in initial

learning.Cellswere clustered into functional subgroupsdepending on their activity

patterns (n = 164 cells from 6 mice). Middle: Average calcium traces (mean± SEM)

of the functional subgroups shown on the left side. Right: Proportion of cells in

each cluster. Each dot represents the data from the individual mouse. Red and

green dots represent the type of stimulus-reward association. b Learning-related

functional subgroups in reversal learning (N = 6 mice, n = 175 cells). Figure struc-

tures are the same as (a). c Functional subgroups exhibiting task and modality-

specific plasticity in the two expert phases in initial and reversal learning (N = 6

mice, n = 154 cells). Left: Average calcium traces (mean ± SEM) of the task-specific

functional subgroups. Middle: Average calcium traces (mean ± SEM) of the

modality-specific functional subgroups. Right: Proportion of cells in each cluster.
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the predictive information of the stimulus about the trial outcome,

which could reflect reward anticipation11 or short-term memory to

guide the next action26, similar to cortical and thalamic areas of the

mousemotor system27. Reciprocal loops betweenmotor thalamus and

cortex have been shown to be necessary tomaintain ramping activities

in either region during delay periods27, suggesting that, similar to the

motor system, auditory thalamus could cooperatively maintain delay

ramping activity together with auditory and other cortices.

On the population level, learning can either increase28,29 or

decrease30,31 trial-by-trial correlation, whilst other cognitive factors

such as attention32,33 exhibit a bi-directional influence. In our reversal

learning task, the neuronal representation of sensory stimuli in audi-

tory thalamus was stable across learning, regardless of whether they

were predictive of a reward (Go cue) or not (Nogo cue). These findings

are similar to previous observations for conditioned stimulus pre-

sentations in aversive auditory fear learning5. In contrast to the sti-

mulus period, the MGB population response (trial-by-trial correlation)

became more coherent across trials during the non-sensory pre-

reward delay period, once mice learned the task-reward rule, irre-

spective of the sensory modality (Figs. 3a–d, Supplementary

Figs. 7 and 8). This trial-by-trial population vector correlation increase

during the delay period was specific to Hit trials, but not False Alarm
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trials (Figs. 3e, f, Supplementary Figs. 9), indicating that the re-

organization of the population activity during the delay period is

dependent on the predicted task outcome and not the general reward

preparation and consumption movement per se (e.g., licking, Fig. 3g).

Recently, trial-by-trial correlations were suggested to account for the

optimization of information communication between upstream sen-

sory information encoding and downstream read-out guiding beha-

viors in different population representation subspaces34–36. Together,

our findings link changes in population dynamics of auditory thalamus

to a wider brain network that is implicated in functions of task

representation37, short term memory27,38, outcome-dependent

actions39 and reward anticipation11.

Co-activity network structure during the reward-preceding delay

period was remodeled across associative learning regardless of the

sensory modality, while it remained by-and-large stable during the

stimulus period (Fig. 4b, Supplementary Figs. 12 and 14). The distinct

changes of co-activity network states between the stimulus and delay

periods may result in differential information transfer to downstream

areas to prime information integration andguidebehavioral outputs in

Go or Nogo trials7,40,41. While the global co-activity network changed

upon learning (i.e., path length and hubness), the local co-activity

network (i.e., cluster coefficient) did not systematically change during

the delay period, and ramping cells did not contribute to the

enhancement of the co-activity network (Supplementary Fig. 12). This

suggests that the activity of the total MGB population supports the

functional network structure and not individual functional subgroups

of neurons. Upon reversing the stimulus-reward contingency, the co-

activity structures were dynamically remodeled not only during the

delay but also during the stimulus periods (Supplementary Fig. 14),

which indicates that reward-associative learning with changing sti-

mulus contingencies might depend on a learning rule that results in

the generalization of the Go stimulus from a sensory representation

towards a predictive state representation that could be flexibly

assigned to future learning rule updates. It remains to be tested if and

how these changes are mediated and whether they are generated

locally or if they are co-dependent on external activity, e.g., primary or

associative cortical brain areas42.

What are the neuralmechanisms that guide functional plasticity in

MGB from naive to expert phases across reward associative learning?

Given the sparse local recurrent connectivity within mouse sensory

thalamus1,43,44 andnegligible proportionsof local inhibitoryneurons5,45,

local microcircuit plasticity is unlikely to drive changes in response

patterns. Plausible scenarios could include changes of synaptic plas-

ticity, neuromodulation or adaptations of long range bottom-up

excitatory46,47 and/or inhibitory3,4 inputs. In addition, corticothalamic

feedback2,48 could stabilize changes in MGB population activity upon
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Fig. 4 | Learning re-organizes MGB co-activity structure. a Co-activity matrix

construction andnetworkanalysis. The co-activitymatrix represents the cell-by-cell

pair-wise Pearson’s correlation (r) from all concatenated time series vectors of the

delay periods (Dts) from all trials (see left matrix for construction of time series

vector). The co-activity strength is visualized by line thickness in a circular plot for

each cell pair (r >0.3, dots indicate individual neurons). Global MGB co-activity

strength is quantified by hubness and shortest path length. Dtsn: 2 s time series

during delay period in trial n. ri,j: Pearson’s correlation of calcium activity between

cell i and j. Hi: hubness of cell i to all its neighbors. L1,2: path length between cell 1

and 2. b, Left: Representative circular plots show an example MGB co-activity

network structure at different learning stages of Go and Nogo trials for one

representative mouse before and after learning the rule switch. Right: Changes of

hubness and path length across all neuron pairs in each learning stage which are

baselined to the values in the naive Go (Stimulus 1) or Nogo (Stimulus 2) condition

(N = 210 neurons from 6 mice, 3000 bootstraps). Error bars: 95 % confidence

interval of mean.
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learning, either directly or di-synaptically via the thalamic reticular

nucleus (TRN). Future studies will need to test how distinct circuit

elements and their combination can affect functional population level

plasticity in auditory thalamus as well as other thalamic nuclei.

While reward learning biased the sensory responses of subsets of

MGB neurons towards reward-associated Go stimuli during the task

regardless of sensory modality (Figs. 1l, m, Supplementary Fig. 3), the

sensory responses in off-task non-rewarded mapping sessions before

and after learning (i.e., passivemeasurements of tuning tomultimodal

sensory stimuli) were not biased to the on-task Go stimuli (Supple-

mentary Figs. 15 and 16). Specificmultisensory enhancement to the Go

stimulus, which was previously observed during appetitive learning in

MGB10, did not take place during off-task, non-rewarded sessions

(Supplementary Figs. 17 and 18). This couldbedue to a fast devaluation

of reward-conditioned stimuli11. Finally, while uni- and multisensory

responses could be altered on the single cell level (Supplementary

Figs. 15 and 16), sensory stimuli could be reliably decoded from the

MGB population activity across learning (Supplementary Fig. 19). The

complementary mechanisms of single cell plasticity and population-

level stability of sensory coding could be crucial to allow for dynamic

neuronal representations upon learning, while ensuring stable repre-

sentations of the environment5,49 balancing relay and cognitive func-

tions of MGB.

Increasing evidence driven by dense electrophysiological

recording techniques and deep brain imaging of identified cell types in

head-fixed or freely moving animals reveals diverse functions of indi-

vidual neurons in different thalamic nuclei during learning and adap-

tive behavior. For example, neurons in paraventricular thalamus

exhibit heterogeneous response adaptation during cue-reward learn-

ing and reward seeking, which are suppressed by fearful stimuli50,51.

Similarly, neuronal responses in MGB are adaptive to reward- (see

above) and aversive-outcome5,12 predicting sensory stimuli during

associative learning. Furthermore, sensory responses in higher order

somatosensory and visual thalamus are modulated by attention and

reward-predicting stimuli even by non-classical modalities similar to

our findings52,53. Despite these response similarities, it is currently

unclear if and how distinct thalamic areas including first order ‘relay

nuclei’ as well as higher-order and non-sensory thalamus interact

together with cortex and other brain areas to shape learning. Multisite

large-scale recording approaches54,55 and (all-optical) perturbations of

information flow between thalamic subnuclei and their non-thalamic

inputs and outputs might help to reveal the distributed population

code during adaptive behavior.

Altogether, our study reveals that auditory thalamus displays

flexible adaptations of single cell responses and co-activity network

states that align not only with sensory but also task-period and

outcome-relevant information, which change bi-directionally upon

updated stimulus contingencies in reward-associative learning, high-

lighting the role of sensory thalamus in complex neural computations

for adaptive behaviors as part of a wider network of thalamic nuclei for

cognitive function.

Methods
Animals
All experiments were performed in accordance with the institutional

guidelines of University of Basel or DZNE, Bonn and were approved by

the Cantonal Veterinary Office of Basel-Stadt, Switzerland or the

Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-

Westfalen, Germany, respectively. Six to 10-week-old (at the start of

the experiment)male C57BL/6 Jmicewere used throughout this study.

Animals were housed on a 12-h light / dark cycle at an ambient tem-

perature (22 °C) and humidity (55 %) and had free access to food and

water until the initiationof the behavioral experiment. Throughout the

behavioral experiment, animals were placed under food restriction

and their body weights were maintained at 85–90% of their free-

feeding weights. Well-being was monitored daily through the entire

experimental period. No statistical methods were applied to pre-

determine the sample size for each experiment. The investigator was

not blinded for surgery, behavioral and imaging experiments or data

analysis.

Surgical procedures
Buprenorphine (0.1mg/kg) was subcutaneously injected ~30min

before surgery for analgesia. Then, mice were anesthetized with iso-

flurane (1.5−2.0%maintenance) through theoxygen-enriched air (95%,

1–3 l/min, Oxymat III, Weinmann). Anesthesia level was monitored via

breathing rates and foot and tail reflexes before and during surgery.

Mice were placed in a stereotaxic apparatus (Model 1900, Kopf

Instruments), and their body temperature was maintained through a

heating pad (Rodent warmer, 53800M, Stoelting). Their eyes were

covered by an eye protective cream (Bepanthen Augen und Nasen-

salbe, Bayer). A mixture of Lidocaine (10mg/kg) and Ropivacaine

(3mg/kg) was injected under the skin over the skull for local anes-

thesia. Stereotaxic viral injections were performed as previously

described5. Briefly, a small craniotomy was performed above the

medial geniculate body (MGB, AP: −3.28, ML: −1.9, DV: −3.0mm) by

using a stereotaxic drill (Model 1911, Kopf) with a burr drill bit (105-

0135-225, Kyocera). A pulled glass pipette (2-000-001, Drummond

Scientific)filledwith AAV vectorwas slowly lowered into the brainwith

the help of a micropositioner (Model 2650, Kopf). AAV2/

1.syn.jGCaMP7s56 (Addgene, 104487-AAV1, ca 500 nl, diluted by sterile

PBS, 1-2x) was injected into MGB with a pressure ejection system

(Picospritzer, Parker). One to twoweeks after viral injection, a gradient

refractive index (GRIN) lens (0.6mm diameter, 7.3mm length or

1.0mm diameter, 4mm length, Inscopix) was implanted during the

second surgery (anesthesia and analgesia, see above). 0.6mm lenses

were implanted as previously described5. Briefly, a 0.8mm diameter

craniotomy was performed above MGB (drill: 105-0709.400, Kyocera)

and a small track was cut with a 0.7mm sterile needle. Next, the GRIN

lens was slowly advanced into the brain using the Micropositioner

(Model 2650). For the implantation of 1.0mm diameter lenses, a

1.2−1.3mm craniotomy was performed above MGB using a hand drill

(503599, World Precision Instrument) with a burr drill bit (200 µm

diameter, C1.104.002, Bösch Dental). Tissue above MGB was slowly

aspirated through a sterile blunt needle (27G, Endo irrigation cannula)

connected to a suction system. Sterilized phosphate buffer saline

(PBS) was used to irrigate the brain until the bleeding stopped around

the aspirated site. Next, the 1.0mm lens was slowly advanced into the

brain with themicropositioner. Both, 0.6 and 1.0mm lenses werefixed

to the skull with light curable glue (Loctite 4305, Henkel). A custom-

made head bar was attached to the skull next to the GRIN lens, and the

skull was sealed with Scotchbond (3M), Vetbond (3M) and dental

acrylic (Paladur, Kulzer, Orth Jet, Lang Dental and/or C&B Super-Bond,

Sun Medical). Meloxicam (5mg/kg) was injected subcutaneously after

the surgery for post-operative analgesia.

For optogenetic experiments, either AAV2/5-hsyn-Jaws-KGC-GFP-

ER257 (Addgene, 65014-AAV5, ca 500nl, diluted by sterile saline, 2x) or

AAV2/5-hSyn-EGFP (Addgene, 50465-AAV5, ca 500 nl, diluted by sterile

saline, 2x) was bilaterally injected intoMGB (AP: −3.2, ML: ±2, DV: −3.0/

−3.3mm) using the same methods as described above. Following the

AAV injection, opticalfiberswere bilaterally implanted aboveMGB (AP:

−3.2, ML: ±2, DV: −3 mm) using the Micropositioner on the same sur-

gery. Other surgical procedures including anesthesia and local

analgesia were the same as for GRIN lens implantations. Systemic

analgesia was provided via carprofen in the drinking water (0.067mg/

ml) from ca. 12–24 h pre-surgery to ca. 72 h post-surgery.

Behavioral apparatus
The behavioral apparatus was housed in a light shield chamber under a

custom-built two-photon microscope (Independent NeuroScience
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Services (INSS), UK). Mice were head-fixed by a custom-designed

holding system and placed on a running-wheel connected to a rotary

encoder (E6A2-CS3E, Omron) to measure locomotion. Auditory and

visual stimuli were presented with a speaker (ES1, Tucker Davis Tech-

nologies, placed at upper-right, 10 cm from the mouse head) and a

7-inch screen (Adafruit 1667, placed 10 cm from the right side of the

mouse face at a parallel angle), respectively. The screen system was

modified to minimize the light exposure to photomultiplier tubes

(PMTs) during a visual stimulus presentation in the two-photon

imaging58,59. During the experiment, the gray background was con-

tinuously presented from the screen. A lick spout was mounted on the

custom-built retractable stage controlled by Trinamic motion control

language (TMCL). A reward (soy milk) was delivered by a custom-

designed peristaltic pump system by using a micropump (mp6, Bartels

Mikrotechnik). A licking of a reward spout was detected by a lick

detector modified from the detector described in a previous study60.

The experiments were controlled by a custom-written program in

MATLAB (MathWorks, Psychophysics Toolbox, http://psychtoolbox.

org) with NI USB-6008 (National Instruments) and RZ 6 (Tucker Davis

Technologies), and the timing of TTL input/output of behavioral events

were recorded by RZ 6 at 50 kHz sampling rate.

In vivo two-photon calcium imaging
In vivo two-photon calcium imaging was performed using a custom-

built two-photon microscope (INSS, UK). The microscope was equip-

ped with a resonant scanning system and a pulsed Ti:sapphire laser

(λ = 940 nm, Chameleon Vision S, Coherent). A motorized three-axis

system (Zabermotor) connectedwith amicroscope head (Z-direction)

and breadboard under the behavioral apparatus (X-Y directions)

enabled locating an objective lens above the GRIN lens. The micro-

scope system was controlled by ScanImage software (Vidrio Technol-

ogies). Green and red fluorescent photons were collected with an

objective lens (x16, 0.80 NA, Nikon). Photons were separated by a

dichroic mirror (T565lpxr, long pass, Chroma) and barrier filters

(green: ET510/80m, red: ER630/75m), and measured by PMTs

(PMT2101, Thorlab). The imaging frame was 512 × 512 pixels, and the

frame rate was ~30Hz. Fields of views (FOVs) of two-photon images

were ~330 µm×330 µm (at 3.0x zoom, 1.0mm diameter GRIN lens,

N = 6mice) or ~400 µm×400 µm(at 2.5x zoom,0.6mmdiameterGRIN

lens, N = 2 mice). Note that GRIN lens FOVs do not correspond to the

actual size of the imaged brain areas due to the spatially non-uniform

optical distortion inherent to GRIN lenses61.

Two-photon Image Processing
Two-photon images were processed using Suite2P62. The images were

motion-corrected, and regions of interest (ROIs) were automatically

generated. Next, experimenters curated ROIs and sorted them as

neurons or not. A small portion ofROIswere drawnusing amanual ROI

drawing function of Suite2p. A neuropil signal was also calculated for

each ROI by Suite2P. A correction coefficient (0.7) was multiplied with

the neuropil signal, and each ROI signal was subtracted from this value

and handled as Ca2+ signal of individual neurons. For behavioral ses-

sions, we selected 2–3 sessions per learning phase (initial naive, initial

expert, reversal naive and reversal expert) for each mouse. The naive

phase consisted of the first 2–3 behavioral sessions, and the expert

phase consisted of the 2–3 sessions in which d-prime (d’, discrimin-

ability index)63 reached over 1.5. Across these selected sessions, we

tracked the same ROIs wherever possible. The ROI tracking procedure

was done separately for behavioral and sensorymapping sessions. The

same ROI signals, or matched cell data, were used for the following

analyses: k-means clustering of the Go/Nogo task (Figs. 2a–c, Supple-

mentary Fig. 4), co-activity network structure analysis (Fig. 4 and

Supplementary Figs. 12–14), correlation analysis for behavioral vari-

ables andCa2+ signals (Supplementary Figs. 6a–f) aswell as the sensory

mapping analysis (Supplementary Figs. 15–19) unless stated otherwise.

For the trial-by-trial population vector correlation analysis, co-activity

network structure analysis as well as decoder training (see below), Ca2+

signals of individual neurons were detrended and lowpass filtered to

5Hz with a Butterworth filter.

Longitudinal cell tracking and signal extraction
Two-photon images acquired in the first imaging session were used as

template. In the following sessions,we returned to this template image

plane at the beginning of two-photon imaging. To return to the same

imaging plane, several cellswith bright signals and clear contours were

used as reference cells. A custom, tightlyfit head bar andholder design

prevents angular rotation of the image plane aiding the reliably iden-

tification of the same imaging plane to track asmany individual cells as

possible. To extract calcium signals from the tracked cells across

imaging sessions, “RoiMatchPub” (https://github.com/ransona/

ROIMatchPub) was used as described above (“Two-photon Image

Processing”). RoiMatchPub matches the data of regions of interest

(ROI) across sessions based on Matlab files generated by Suite2p

(https://github.com/MouseLand/suite2p; see also https://suite2p.

readthedocs.io/en/latest/multiday.html). RoiMatchPub uses a semi-

automatic cell tracking algorithm. At first, a template two-photon

image was prepared, i.e., the max-intensity projection (MIP) two-

photon image acquired in the first imaging session, as well as the MIP

images of the following sessions. Then, ROIsweremanuallymatched in

the General User Interface of RoiMatchPub between the first template

two-photon image and two-photo images in following sessions (e.g., 1st

session image – 2nd session image, 1st session image – 3rd session image,

1st session image and 4th session image and so on).

Sensory mapping
Before the start of the sensorymapping sessions,micewerehead-fixed

under the custom-built two-photonmicroscope and habituated to the

behavioral apparatus and environment for minimum 3 days. Each

session startedwith a 1min habituation period. Auditory (4, 8, 12, 16 or

20 kHz pure tones at 75 dB, 2 s), visual (Upward, downward, rightward

or leftward sine wave drifting gratings, 100% contrast, 2 Hz, 0.05 cycle

per degree, 2 s) or multisensory stimuli (combination of auditory and

visual stimuli, e.g., 4 kHz pure tone with upward drifting grating, 2 s)

were presented. The sensory stimuli were presented in a pseudo-

randomorder. Each auditory, visual and themultisensory stimuluswas

presented 8 times (e.g., 4 kHz pure tone, rightward grating, and the

combination of them were presented for 8 times), and a total of 240

trials (8 trials x 30 stimulus types of uni andmultisensory stimuli) were

performed in one session per day. Inter-trial interval (ITI) was 6-9 s. For

one mouse, each stimulus was presented 5 times and a total of 150

trials / session were performed. Sensory mapping was performed for

2-3 consecutive sessions before and after the sensory Go/Nogo

reversal learning paradigm.

Behavioral training in a sensory Go/Nogo reversal learning task
Following sensory mapping sessions, mice were pre-trained to lick a

spout to receive a liquid reward (soy milk) for 1–2 days under head-

fixation. Next, the animals were trained to perform a sensory Go/Nogo

task, which consisted of Go trials (30%), Nogo trials (35%) and catch

trials (35%) (total number of trials: 140 per session). At the beginning of

each trial, a 6–13 s ITI was initiated. Then, either an auditory stimulus

(Go cue, 12 kHz pure tone, 75 dB, 2 s), a visual stimulus (Nogo cue,

rightward drifting grating, 2 s) or no stimulus (2 s blank period, catch

trial) was presented. The sensory stimulus or blank periodwas followed

by a delay period (2 s) without any sensory stimulus. At the end of the

delay period, a response window (1.5 s) was initiated and a retractable

lick spout moved forward to the mouse. Go trials required mice to lick

the spout (Hit) to obtain a reward (8-10 µl soyamilk), otherwise the trial

was considered as an error (Miss). In Nogo trials, mice were required to

withhold the lick response (Correct Rejection, CR). If themice licked the
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spout in theNogo trial, the trial was considered as an error (False Alarm,

FA). In catch trials mice were required to withhold the lick response

(catch-CR). If mice licked the spout, the trial was considered as an error

(catch-FA). If mice accidentally touched the spout too early (within

200ms after the response window onset) (e.g., due to grooming), the

contact was not considered as a response. Catch trials were introduced

to ensure that mice identify the Go cue as a reward predictor. Task

performances for Nogo and catch trials developed similarly (Figs. 1d, e,

and Supplementary Fig. 1). Thus, the task performances in those trials

were combined to calculate the task performance index, d-prime (d’) as

follows: d’ = Z (Hit ratio) - Z (False alarm ratio). Hit and False alarm ratios

were calculated as follows: Hit ratio = the number of Hit trials/(the

number of Hit trials + the number of Miss trials); False alarm ratio = the

number of false alarm trials/(the number of false alarm trials + the

number of correction rejection trials). If the ratio reached 1.0, the ratio

was adjusted to calculate d’63. Z is the inverse cumulative distribution

function, and Z (Hit ratio) and Z (False alarm ratio) were calculated by

using the qnorm function (https://de.mathworks.com/matlabcentral/

fileexchange/48978-qnorm-matprobabilities-dblmean-matsigmas-bool

useapproximation). Once d’ reached values above 1.5 for three con-

secutive days, mice were considered experts and a reversal learning

paradigm was initiated. Upon reversal learning, the stimulus-reward

contingency was switched. In the group in which the auditory stimulus

was presented as a Go cue, the visual stimulus was now presented as a

Go cue and rewarded and vice versa for animals in which the visual

stimulus was initially presented as a Go cue. Once d’ reached values

above 1.5 for three consecutive days, mice were considered reversal

experts. The order of the stimulus-reward contingency was counter-

balanced between mice, i.e., four mice were trained to the auditory

stimulus as a Go cue first and four mice were trained to the visual

stimulus as a Go cue first. Specific cases of data exclusion: Mice were

trained for amaximumof28 sessions.Due to slower learning, oneout of

eightmice reachedonly two reversal expert sessions before the training

had tobe terminated. Furthermore, in twoout of eightmice the training

had to be briefly suspended due to technical issues, which did not have

a major impact on task performance after re-initiation of the paradigm.

In one mouse, an imaging artifact gradually appeared from the lateral

edges of the two-photon image in one session. Data from the later stage

of this session was excluded from the analysis. In one mouse, the data

recordingof one sessionwas aborted in themiddle of the sessiondue to

the malfunction of the acquisition system. Since the number of trials

reachedmore than half of the session, the data obtained in this session

was included for the data analyzes.

Optogentic inhibition
Behavioral training procedures were the same as mentioned. The

auditory stimulus was presented as a Go cue, while the visual stimulus

waspresented as aNogo cue.No stimuluswas presented in catch trials.

Optogenetic inhibition was applied to all Go, Nogo and Catch trials

during a stimulus presentation period for 2 swith a 250ms ramp-down

period at the end of optogenetic inhibition to avoid rebound activity

after inhibition57. 9mW (atfiber tip) of 617 nm light (Thorlabs,M617F2)

was bilaterally delivered to MGB via a 400 µmoptical fibers (Thorlabs,

M98L01) and cannulas on each side (DORIC, multimode, 0.37 NA).

Video recording
Mouse behavior was monitored during the experiment with a CMOS

camera (a2A2590-60umPRO, Basler) equipped with a CCTV lens

(Moritex ML-M1616UR) and a band-pass filter (DB850, Midwest) (N = 7

mice) or a Raspberry Pi Camera Module 2 with a shortpass filter

(FES850, Thorlabs) controlled by Raspberry Pi 3 model B+ (N = 1

mouse). Either camera systemwas locatedon the left side of themouse

together with a custom-made infrared LED system (830nm). In the

CMOS camera system, each frame acquisition was synchronized with

the acquisition of a two-photon image (ca. 30Hz) through ScanImage.

In the raspberry Pi camera system, each frame was acquired at ca.

30Hz in free-run mode and image acquisition was monitored by

internally-generated TTLs. During offline analysis, the tongue and

pupil were detected and tracked by animal pose estimation using

DeepLabCut (DLC)64. The experimenter manually labeled the tongue

and the eight points on the edges of the pupil (top, top-right, right,

bottom-right, bottom, bottom-left, left, top-left) for each mouse to

train the model. Videography based licking-behavior was detected if

the tonguewas trackedbyDLC for at least two consecutive frames. The

pupil area was calculated by using a circle fit function65 (fitcircle,

https://mathworks.com/matlabcentral/fileexchange/15060-fitcircle-

m?s_cid=ME_prod_FX) from available data points at each frame. Pupil

area data was smoothed by using a Hampel filter (MATLAB built-in

function, number of neighbors, 10; number of standard

deviations, 1.0).

Mean individual cell activity during Go and Nogo trials
Heatmaps were used to visualize mean activities of individual MGB

neurons pooled from allmice across learning (N = 8mice, Fig. 1i, j). For

the naive phase, the data of the first training session in both initial and

reversal learning were used to show the unconditioned responses to

sensory stimuli. For the expert phase, the data from the session with

the highest d’ in both initial and reversal learning were used to show

well-conditioned responses to the sensory stimuli. The calcium data

was baselined to themean during 0.5 s before stimulus presentation in

each trial. The data of individual calcium traces were averaged across

Go and Nogo trials separately (maximum 42 trials for Go trials, and

maximum 49 trials for Nogo trials in a single session). Cell IDs were

sorted according to the amplitude of the mean sensory response

during the stimulus presentation (2 s) in the Go trials.

Proportion of stimulus-responsive cells in the sensory Go/
Nogo task
Stimulus-responsiveness was determined through a two-step proce-

dure. First, we performed a signed-rank test to examine if the sensory

response of each cell was significantly different from zero. In each cell,

the sensory response during the stimulus presentation (2 s) was aver-

aged in Go and Nogo trials. Then, the means of the sensory responses

pooled across Go or Nogo trials were used for a signed-rank test of

each cell. Cells with statistical significance in the signed-rank test were

selected for response thresholding (threshold:median z-score > ± 0.2).

In addition, for auditory stimulus trials, the sensory response during

the stimulus onset (0.3 s) was averaged and analyzed in the same

manner as described above to catch fast-adapting MGB neurons. If a

neuron was classified as sensory responsive during the whole 2 s sti-

mulus presentation period or as onset responsive, the neuron was

included as auditory responsive. Neurons where then classified as Go,

Nogo or ‘both’ responsive cells depending on the trial type. Neurons

that did not pass the detection threshold were classified as non-

responsive cells.

K-means cluster analysis
K-means cluster analysis wasperformed to sort individual neurons into

functional subgroups. The calcium traces of matched individual neu-

rons (N = 6 mice, n = 210 cells) were averaged across Go or Nogo trials

for 2–3 sessions in each training phase (naive, expert, reversal naive

and reversal expert). The mean Go or Nogo responses of each neuron

were concatenated betweennaive and expert phases in both initial and

reversal learning (time-series concatenation). The time-series for each

cell was composed of the concatenated stimulus and delay periods of

native and expert training phases, while initial and reversal learning

were treated as independent observations. This times series under-

went principal component analysis followed by k-means clustering

(cosine distance) to sort the individual neurons into functional clus-

ters. Thirty clusters were generated, and clusters showing similar
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activity patterns were merged manually5. After generating the merged

clusters, cell IDs in each merged cluster were separated to the initial

and reversal learning data. To track the activity patterns of the MGB

neurons between the two expert phases in initial and reversal learning,

we performed k-means cluster analysis by using the data of the two

expert phases in the initial and reversal learning (Fig. 2c, Supplemen-

tary Figs. 4a–c). After the preprocessing described above, the data of

the two expert phases were concatenated between initial and reversal

learning, then k-means clustering was performed.

Correlation analysis between behavioral variables and neuronal
activity
Correlations betweenbehavioral variables (locomotion, pupil size) and

single cell Ca2+ traces were calculated as the Pearson’s correlation

coefficient in Hit trials across learning (Supplementary Figs. 6a-f). The

first session in the naive phase and the sessionwith the highest d-prime

in the expert phase were selected in both initial and reversal learning.

Pupil, locomotion and calcium data of day-matched cells was down-

sampled to 5Hz. Cells that exhibited correlations between the beha-

vioral variable and the calcium data of |r| > 0.2 and p <0.05 were

considered as significantly correlated. R-value distributions were

compared between the naive and expert phase in both initial and

reversal learning by a Kolmogorov-Smirnov test (ks-test2, MATLAB).

Tomeasure the changeof correlation across learning, the difference of

|r| values between naive and expert phases in matched cells was

measured for stimulus, delay and ITI periods (signed-rank test). The

pupil data was analyzed in the samemanner except that the pupil data

was smoothed by a Hampel filter (see above) and z-scored (Supple-

mentary Figs. 6b, d, f).

Anticipatory licking analysis
Anticipatory licking was quantified during the delay period. To visua-

lize how the number of anticipatory licks change across learning, the

proportion of trials with anticipatory licking was plotted as a function

of the number of anticipatory licks per trial. The number of trials with

or without anticipatory licking was pooled from all mice in each

training phase, and this pooled data was used for chi-square testing

(Supplementary Fig. 6g). The probability of anticipatory licks per time

bin was calculated across mice (Supplementary Fig. 6h). For visuali-

zation purposes, lick probability was smoothed by amoving average (5

frames, movmean, MATLAB). To examine how anticipatory licking

influenced MGB activity during the delay period, Ca2+ traces of Hit

trials with and without anticipatory licking were separated and base-

lined to the mean Ca2+ fluorescence 150ms before the delay period

onset (Supplementary Fig. 6i, same baseline duration for Supplemen-

tary Fig. 6j).

Trial-by-trial population vector correlation
Trial-by-trial population vector correlation (PVC, Pearson’s r) was

analyzed in naive (2–3 sessions) and expert stages (2–3 sessions) in

both initial and reversal learning. Thedefinitionof the naive and expert

stages is described above (“Two-Photon Image Processing”). Some

mice learned the task quickly and d-prime exceeded 1.5 in the third

behavioral session in the naive stage. In this case, two sessions were

included in the analysis of the naive stages. One mouse reached only

two reversal expert sessions before the training had to be terminated.

Before the construction of the population vector, calcium data for

each cell was baselined to the mean of the 2 s pre-stimulus period on a

trial-by-trial basis. Next, the mean calcium responses during the sti-

mulus and delay periods were calculated and the population vector

constructed. PVCs were calculated across the stimulus and delay per-

iods of all trials and plotted as a N-by-N correlation matrix per session

(N = number of trials). Mean correlation values from all trial pairs in

each session were used for summary statistics. A linear mixed model

was used to compare the difference of R values (fixed effect: naive vs

expert, random effect: mouse ID). For a fair comparison between trials

with and without anticipatory licking, only sessions with more than 6

trials with and without anticipatory licking each were included in the

analysis (Fig. 3g). Reversal learning was excluded from the analysis of

anticipatory licking due to low trial numbers. To examine the con-

tribution of ramping cells to the PVC during the Go delay period ramp-

up and ramp-down cells were removed from the PV, and PVC values of

the Go delay period were re-calculated. The same number of cells as

ramp-up and ramp-down cells were randomly removed to generate the

shuffle dataset (nShuffle = 30, Supplementary Fig. 11).

Weighted graph-based analysis of MGB co-activity network
structure
Undirectedweighted graph that represents the relationship of calcium

activity between MGB neurons were computed based on matched cell

data (n = 210 neurons). In the graph, nodes and edges stand for cell

identities and the pairwise Pearson’s correlation coefficients between

two neuronpairs, respectively. The calcium activity data was baselined

to the mean of the 2 s pre-stimulus period of each trial. The pair-wise

correlation coefficient of the time-series data (2 s) during the stimulus

and delay periods was calculated between all cell pairs in Go and Nogo

trials. Each graph with the number of nodes M, which are identical to

the number of matched cells is represented by its adjacency M-by-M

symmetricmatrix C where each element rij is the Pearson’s correlation

coefficients (−1 ≤ r ≤ 1) between two nodes (neurons) i and j. Positive

and negative edges were analyzed separately (Supplementary Fig. 13).

The strength of the global co-activity network structure among MGB

neurons was quantified by hubness, i.e., the mean of the pair-wise

activity correlation of each node to all the others:

Hi =
1

m

X

m

j = 1

ri,j ð1Þ

We estimated the global communication efficiency between any

two nodes by measuring the geodesic (shortest) path length in the

graph. First, a weighted graph with the length between two nodes, i

and j as Lij = 1/rij was created. Next, the shortest path length between

any two nodes was computed using Dijkstra’s algorithm among 3903

cell pairs. The local co-activity network structures were quantified by

the cluster coefficient of the triad. The cluster coefficient of the triad

was calculated among 50376 triads66. wij is the edge weight between

any two nodes. ŵij is the normalized edge weight by the maximum

weight in the adjacency matrix between cell i and j:

Ci =
1

kiðki � 1Þ

X

j,k

ðŵijŵikŵjkÞ
1=3

ð2Þ

ŵij =wij=maxðwÞ

The same number of cells as ramp-up and ramp-down cells were

randomly removed to generate the shuffle dataset (nShuffle = 30,

Supplementary Fig. 12). Network structure was recalculated using the

shuffle dataset. Functional connectivity parameters were calculated

using the BrainConnectivity toolbox (https://github.com/jblocher/

matlab-network-utilities/tree/master/BrainConnectivity)67. Plotting

and confidence interval calculation were adapted from DABEST tool-

box (https://github.com/ACCLAB/DABEST-Matlab)68.

General sensory responsiveness
To quantify the general sensory responsiveness of MGB neurons

before and after the Go/Nogo learning in sensory mapping session

(Supplementary Fig. 15), the calcium data during the stimulus pre-

sentation (2 s) was split in half (0−1 s and 1−2 s). The mean of the cal-

cium data during these two periods was handled as individual data

Article https://doi.org/10.1038/s41467-024-51868-8

Nature Communications |         (2024) 15:7830 10



points. Next, it was tested whether individual MGB neurons were

responsive to auditory, visual and/or multi-sensory stimulus through

the same two-step procedures as described above. In multi-sensory

trials, the data fromall visual grating directionswere averaged, and the

sensory response to auditory frequencies was tested. In Supplemen-

tary Fig. 15c, cells were defined as excited/inhibited if they were

responsive to any auditory frequency or grating direction. In Supple-

mentary Fig. 15d, the response amplitude of the cells that were

responsive to at least one of the sensory stimuli in pre-learning was

compared to the response amplitude of the same sensory stimuli in

post-learning sessions. In Supplementary Fig. 15e, change of peak

tuning frequency or grating direction was calculated if a cell was

responsive to any frequency/direction in both pre- and post-learning

session. In Supplementary Figs. 15g, h, the time series of the averaged

population response and the response amplitude of the cells with the

significant response to the reward-associated stimulus in Go/Nogo

training (12 kHz, rightward drifting grating, 12 kHz with rightward

drifting grating) were compared between the pre- and post-learning

session. In Supplementary Fig. 15i, the change of peak tuning fre-

quency or grating direction was calculated if a cell was responsive to

the conditioned stimulus (12 kHz, rightward-drifting grating, 12 kHz

with rightward drifting grating) both in pre- and post-learning session.

K-means clustering of tuning curves
To sort MGB neurons into groups with similar frequency tuning pat-

terns, k-meanclustering (‘correlation’distance)wasperformedwith 20

features (5 frequencies, multi-/uni-sensory and pre/post training)

(Supplementary Fig. 17). Sensory responses to the auditory (4, 8, 12, 16

and 20 kHz) and multi-sensory stimuli (4, 8, 12, 16 and 20 kHz with

drifting gratings) were averaged across trials and sessions (1-3 ses-

sions). Visual stimulus feature (i.e., grating directions) was collapsed in

multi-sensory trials. The calcium data in the response period was

baselined to 0.5 s before stimulus presentation. The mean of the cal-

cium activity during the stimulus presentation (2 s) was used to gen-

erate frequency tuning curves. F: mean calcium response during

stimulus presentation period.m: cell number (pooled across 6mice). f:

auditory frequency. Clustering matrix:

m= 1,2, . . . 233

f 1 . . . f 5 : 4, 8, 12, 16, 20 kHz

To examine if frequency tuning curves were stable or plastic,

similarity of the frequency tuning curves between pre- and post-

learning sessions for each cell was quantified by Pearson’s correlation

(R) in auditory and multi-sensory trials separately. The distribution of

Pearson’s R pooled across all cells was compared between auditory

andmulti-sensory trials by ks-test (Supplementary Fig. 17c) to examine

in which trial the frequency tuning curve would be more plastic or

stable.

Multi-sensory index
The multi-sensory index was calculated by the division of the average

response inmulti-sensory trials (AV) to the sum of average response in

uni-sensory trials (A: auditory trials, V: visual trials). Cells with a non-

significant response in both AV and A trials were excluded frommulti-

sensory index calculation. Cells with different calcium response sign in

multi-sensory response and sum of uni-sensory response were exclu-

ded (AfV � ðAf +V Þ<0 ). Absolute value of sensory response was taken

to demonstrate the principle of multi-sensory integration (linear or

non-linear). Visual grating directions were averaged in multi-sensory

response as well as uni-sensory response. First order exponential fit-

ting was conducted to reveal the trend of data distribution for each

auditory frequency (Supplementary Fig. 17d). Multi-sensory indexes of

all individual cells and all auditory frequencies were compared

regardless of response sign and amplitude (Supplementary Fig. 18).

Two-dimensional two-sample ks-test was performed to test if the dis-

tribution of themulti-sensory index was comparable between pre- and

post-learning (See, Supplementary Table 1).

Multisensory indexf =
AfV
�

�

�

�

�

�

Af +V
�

�

�

�

�

�

f =4, 8, 12, 16, 20 kHz ð3Þ

Single cell correlation analysis across multisensory mapping
sessions
Single cell averaged peri-stimulus time histograms (PSTH) of uni- and

multisensory trials for stimulus features (auditory frequency, grating

direction) in pre- and post-learning were sorted by stimulus amplitude

(0–2 s) and plotted as heat maps (Supplementary Fig. 16). Next, the

Pearson’s correlation between the response time series of individual

neurons before and after learningwas calculated and average across all

cells (Supplementary Fig. 16)69.

Decoder analyses
Linear support vector machine (SVM) decoders were trained on the

stimulus period (normalized by 1 s pre-stimulus baseline) for all

tracked neurons in each multi-sensory mapping session for each

animal. Time series data were down-sampled to 3 Hz to avoid

overfitting. The decoders trained on individual sessions were tested

in a pair-wise manner for all sessions (Supplementary Fig. 19a). For

modality decoding (Supplementary Fig. 19b), decoders were

trained on 70 % of the data and tested on a 30 % hold-out test-set.

Same numbers of trials from each modality were selected for

training and testing in 50 iterations to avoid a biased accuracy

measurement due to unbalanced trial number in each modality (50

% multi-sensory, 16.7 % auditory, 13.3 % visual). For auditory fre-

quency decoding (Supplementary Fig. 19c), trial sub-sampling was

not necessary since each auditory frequency was presented for a

same number of trials. Uni-sensory and multi-sensory trials were

combined in one dataset. Visual stimulus feature was collapsed in

multi-sensory trials leaving only frequency labels (4, 8, 12, 16 and

20 kHz). Train/test ratio remained 70/30 (140 training trials, 60 test

trials). Simple accuracy (modality: x / 27 trials, frequency: x / 60

trials, x = number of correct decoded trials) in all iterations were

averaged yielding pair-wise session decoding accuracy. Shuffle data

(n = 100) were generated by circular permutation of the down-

sampled time series features for each train/test iteration (n = 50)

fromwhichmean accuracy values of shuffle iterations were taken to

depict chance decoding accuracy and further averaged to yield pair-

wise session decoding accuracy (Supplementary Figs. 19b, c).
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Histology
After training, mice were transcardially perfused with phosphate buf-

fer saline (PBS) followed by ca. 40ml 4 % paraformaldehyde (PFA) in

PBS. Immediately after perfusion, brains were removed and post-fixed

in 4 % PFA overnight at 4 °C. Then, brains were stored in PBS at 4 °C

until dissection. 150 µm coronal slices were prepared using a vibra-

tome (Campden Instruments) and immunostained for calretinin as an

anatomical marker as described previously5. Briefly, after PBS washes,

brain slices were immersed in blocking solution (10% normal horse

serum, S-2000-20, Vector Laboratories) with 0.5 % Triton (T8787,

Sigma-Aldrich) in PBS for 2 h at room temperature. Next, slices were

incubated in primary antibody (goat anti-calretinin, 1:1000, CG1,

Swant) in carrier solution (1% normal horse serum with 0.5% Triton

PBS) overnight at 4 °C. Sliceswerewashed again in 0.5%Triton PBS and

incubated for 2 h at room temperature or overnight at 4 °C in sec-

ondary antibody (donkey anti-goat 647, 1:1000, A-21447, Thermo-

Fisher) in carrier solution. After final washes by PBS, slices were

mounted on slides and cover slipped using 22 × 50mm, 0.16−0.19mm

thick cover glass (FisherScientific). Images were acquired with a

LSM700 confocal microscope (Zeiss), Axio Scan Slide Scanner (Zeiss)

or Olympus BX63. Acquired images were post-processed with ImageJ

(https://imagej.nih.gov/ij/) to locate the implantation site of the GRIN

lenses.

Statistical methods
Statistical analysis was performed in MATLAB (MathWorks). Alpha

level was set at 0.05 and Bonferroni correction was applied to statis-

tical tests (see Supplementary Table 1). Chi-square test, rank sum test,

signed-rank test, linearmixedmodel (LMM), two-sample Kolmogorov-

Smirnov test (ks-test2) and two-dimensional two-sample Kolmogorov-

Smirnov test (https://github.com/brian-lau/multdist) were performed

for datasets indicated in Supplementary Table 1. Data are presented as

mean± SEMunless otherwise stated. Statistical results and p values are

presented in Supplementary Table 1.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
Data to generate Figs. 1–4 and Supplementary Figs. 1–19 of this paper

can be accessed in Source Data Main and Supplement, respectively.

Statistical results are shown in Supplementary Table 1. The data gen-

erated in this study has been deposited in the German Neuroinfor-

matics Node (https://doi.org/10.12751/g-node.7xxnmw). Source data

are provided in this paper.

Code availability
Custom-written code to generate figures and Supplementary Figs. has

been deposited in the German Neuroinformatics Node (https://doi.

org/10.12751/g-node.1rfzbn).
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