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Large-scale multimodal neural recordings on high-density biosensing

microelectrode arrays (HD-MEAs) offer unprecedented insights into the

dynamic interactions and connectivity across various brain networks.

However, the fidelity of these recordings is frequently compromised by

pervasive noise, which obscures meaningful neural information and

complicates data analysis. To address this challenge, we introduce

DENOISING, a versatile data-derived computational engine engineered to

adjust thresholds adaptively based on large-scale extracellular signal

characteristics and noise levels. This facilitates the separation of signal and

noise components without reliance on specific data transformations. Uniquely

capable of handling a diverse array of noise types (electrical, mechanical, and

environmental) and multidimensional neural signals, including stationary and

non-stationary oscillatory local field potential (LFP) and spiking activity,

DENOISING presents an adaptable solution applicable across different

recording modalities and brain networks. Applying DENOISING to large-scale

neural recordings from mice hippocampal and olfactory bulb networks yielded

enhanced signal-to-noise ratio (SNR) of LFP and spike firing patterns compared

to those computed from raw data. Comparative analysis with existing state-of-

the-art denoising methods, employing SNR and root mean square noise (RMS),

underscores DENOISING’s performance in improving data quality and reliability.

Through experimental and computational approaches, we validate that

DENOISING improves signal clarity and data interpretation by effectively

mitigating independent noise in spatiotemporally structured multimodal

datasets, thus unlocking new dimensions in understanding neural connectivity

and functional dynamics.
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1 Introduction

The intricate exploration of computational neural dynamics

investigated through the coordinated activity of interconnected

neural populations, especially within the hippocampus and

olfactory bulb, has been a cornerstone of contemporary

neuroscience research (Vyas et al., 2020). These regions, central

to spatial contextual learning, episodic memory, and olfactory

processing, demonstrate remarkable neuroplasticity and are key

to understanding the complex interplay of neural circuits in

cognitive functions (Bird and Burgess, 2008; Mori et al., 1999).

The hippocampus, a hub for information flow and synaptic

plasticity, is crucial for the formation and retrieval of memories.

Its ability to undergo structural and functional modifications in

response to stimuli underscores the dynamic nature of neural

networks (Lisman et al., 2017). Similarly, the olfactory bulb (OB)

serves as the initial stage of olfactory processing, transforming

odorant signals into neural representations through its intricate

layers and diverse neuronal interactions. The regions’ unique

capacity for adult neurogenesis offers a window into the

mechanisms underlying sensory perception and memory

integration (Kempermann et al., 2018; Lepousez et al., 2013).

Extracellular neural recordings have long been a fundamental

tool in neuroscience, offering insights into the electrical activity of

neurons in their native environment (Buzsáki et al., 2012). The

evolution of microelectrode arrays (MEAs) has expanded the scope

of these observations, facilitating the simultaneous recording of

multiple neural signals. Among the MEA technologies, high-

density CMOS-based biosensing platforms (HD-MEAs) stand out

due to their unparalleled technical capabilities (Berdondini et al.,

2009; Müller et al., 2015). With the capacity to feature thousands of

electrodes, these arrays can simultaneously capture a detailed

panorama of neural activity across extensive networks, providing

a dense sampling of electrical signals with high spatial and temporal

resolution. This dense array structure allows for an in-depth analysis

of neural interactions, offering a window into the synchronous and

asynchronous patterns that underlie dynamical processes and

functional connectome in multimodal neural networks and

circuits (Hu et al., 2022; Emery et al., 2023a; Amin et al., 2016;

Amin et al., 2017a; Amin et al., 2017b). This technology has

facilitated a shift from the study of isolated neural pathways to

an integrative view of brain’s functional networks, bridging gaps in

our knowledge of how neuronal ensembles coordinate to produce

complex behaviors and cognitive functions (Buzsáki, 2004). HD-

MEAs significantly enhance brain slice studies, merging ex vivo

biosensing precision with brain tissue complexity. This approach

allows for detailed exploration of electrical spiking activity and

rhythmic dynamics of local field potentials (LFPs) under

controlled conditions, thus enabling researchers to investigate

environmental factors, apply pharmacological agents, or

introduce genetic modifications to elucidate their effects on

neural activity (Hu et al., 2022; Emery et al., 2023a; Amin et al.,

2017b; Rossi et al., 2023; Emery et al., 2022; Emery et al., 2023b).

Despite advancements in these electrophysiological

technologies, capturing the full spectrum of neural patterns

within these complex networks remains challenging. The fidelity

of extracellular neural recordings is frequently susceptible to a range

of independent noise sources, including electrical interference from

the recording equipment, mechanical vibrations caused by external

or internal laboratory factors, and environmental noise, such as

electromagnetic fields. Removing noise from extracellular neural

recordings poses several challenges due to the complex nature of

neural signals and the non-stationary characteristics of noise. Neural

signals often exhibit irregular firing patterns and non-Gaussian

distributions, while noise can vary in amplitude and frequency

content over time (Harris et al., 2000). Additionally, the presence

of overlapping signals from multiple neuronal ensembles further

complicates the task of noise removal. Several classical denoising

strategies typically focused on temporal, spatial, or transform

domains (i.e., Wavelet or Fourier) (Patil, 2015), which often fall

short due to oversimplified assumptions about signal and noise

characteristics (Donoho, 1995; Starck et al., 2002). The limited

adaptability of these methods inadequately addresses the

complexity and heterogeneity in large-scale neural recordings.

This limitation not only impedes practical data analysis but also

restricts our understanding of essential neural mechanisms.

Moreover, unsupervised denoising methods may introduce

additional bias, as they might inadvertently emphasize or

suppress certain signal features without ground truth verification,

potentially leading to incorrect scientific inferences by distorting the

underlying neural processes (Kay, 2022). Despite existing classical

methods for denoising, current strategies do not effectively address

the unique challenges posed by large-scale neural recordings

captured by HD-MEAs. This gap underscores the critical need

for new denoising approaches designed explicitly for HD-MEA

data, which can dynamically adapt to its complexity, minimizing

bias and significantly enhancing signal clarity for robust and

accurate neural analysis.

In response to these challenges, we introduce DENOISING, a

computational framework developed to transcend the limitations of

conventional denoising techniques. Leveraging insights from recent

studies highlighting the intricate dynamics and plasticity within the

hippocampus and OB, DENOISING employs an adaptive engine to

enhance the clarity and reliability of multidimensional neural

recordings. Our method dynamically adjusts to the specific

spatiotemporal characteristics (i.e., firing pattern statistics,

network synchrony, burst, and waveform shapes) of extracellular

signals and independent noise, facilitating a more nuanced

separation of signal and noise components. Our approach is

based on a deep understanding of the spatial and temporal

structures of neural activity, informed by the complex interplay

of vast neuronal ensembles within these critical brain regions. These

dynamics are well-documented in the hippocampus (Lisman, 2005;

Buzsáki, 1989; Scharfman, 2007; Bathellier et al., 2008; Luo and Katz,

2001) and the OB (Czanner et al., 2015; Gustafsson, 1996; Krishnan

and Seelamantula, 2013) using various recording methodologies.

This understanding supports the DENOISING method in

identifying similar regions of activity as expected in both the

hippocampus and the OB.

In the following sections, we detail our method’s effectiveness

through its use in analyzing large-scale neural LFP and spike data

from complex hippocampal-cortical and olfactory networks. This

includes demonstrating significant signal-to-noise ratio (SNR)

(Czanner et al., 2015) enhancement, mapping topographical

propagation features, classifying patterns based on their initiation

and transmission, and waveform characteristics. Furthermore, we
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benchmark DENOISING against traditional methods,

demonstrating our approach’s capacity to enhance data quality

and reliability.

Our study illuminates the path toward more accurate and

comprehensive analyses of HD-MEA’s extracellular recordings,

highlighting the potential to unlock new dimensions in our

understanding of large-scale neural connectivity and functional

dynamics and opening new avenues for exploring the

mechanisms of learning, memory, and sensory processing.

2 Materials and methods

2.1 DENOISING framework

We employed an adaptive waveform-based thresholding

technique designed specifically for processing signals captured by

high-density CMOS-based microelectrode arrays. This involves

setting customized thresholds for noise removal based on

multiple signal waveform characteristics, including amplitude

variations, frequency content, and waveform shape irregularities.

The thresholding process is dynamically adjusted in real-time,

leveraging the dense data acquisition capabilities of the arrays to

detect and isolate noise components from true neural signals. The

operational framework employed a composite of these signal

features to define noise versus signal criteria, which are applied

instantaneously to each waveform detected across the array’s

multiple recording channels. This method ensures a robust noise

reduction while preserving the integrity of the biological signal,

making it highly suitable for environments with variable noise

conditions often encountered in high-density array recordings.

To facilitate the application of our DENOISING method, the

complete script, along with example datasets, is available

on our GitHub repository (https://github.com/HayderAminLab/

DENOISING). This resource includes detailed instructions for

running the DENOISING method on both LFP-based and spike-

based data acquired from HD-MEA systems, ensuring that other

researchers can readily implement and validate our approach in

their own studies.

2.2 Animals and acute brain slice preparation

Our study utilized 12-week-old female C57BL/6j mice (Charles

River Laboratories, Germany), and ensured all procedures complied

with European and national animal welfare regulations

(Tierschutzgesetz), with approval license (Landesdirektion

Sachsen; 25–5131/476/14). Brain slices were prepared according

to our previous report (Hu et al., 2022; Emery et al., 2023a).

Following anesthesia with 0.05% inhaled isoflurane (Primal,

Germany), mice were decapitated, and their brains were

extracted and submerged in a chilled sucrose solution for slicing.

Using a Leica Vibratome VT1200S (Leica Microsystems, Germany),

we prepared 300 μm thick horizontal brain slices, cut at 0°C–2°C in

aCSF solution saturated with 95% O2 and 5% CO2 (pH = 7.2–7.4) of

a high sucrose solution containing in mM: 250 Sucrose, 10 Glucose,

1.25 NaH2PO4, 24 NaHCO3, 2.5 KCl, 0.5 Ascorbic acid, 4 MgCl2,

1.2 MgSO4, 0.5 CaCl2. Furthermore, hippocampal and OB slices

were incubated for 45 min at 32°C and then allowed to recover for at

least 1 h at room temperature before recording with HD-MEAs in a

recording aCSF solution containing in mM: 127 NaCl, 2.5 KCl,

1.25 NaH2PO4, 24 NaHCO3, 25 Glucose, 1.2 MgSO4, 2.5 CaCl2, and

the solution was aerated with 95% O2 and 5% CO2.

2.3 Multimodal extracellular recordings and
LFP/spike events detection

Extracellular neural activity was recorded using HD-MEAs

crafted from complementary-metal-oxide-semiconductor

(CMOS) technology, coupled with a bespoke acquisition system

(3Brain AG, Switzerland). The CMOS chip featured

4,096 electrodes organized in a 64 × 64 array with a pitch of

42 μm, creating an active sensing area of approximately 7 mm2, an

ideal dimension for comprehensive recordings from both

hippocampal-entorhinal cortex and olfactory bulb (OB) tissues

at 14 kHz/electrode sampling frequency (Hu et al., 2022; Emery

et al., 2023a). The on-chip amplification circuit allowed band-pass

filtering from 1 Hz to 5 kHz, sufficient to record slow and fast

neural activity. The hippocampal-entorhinal cortical recordings

spanned six layers: dentate gyrus (DG), Hilus, CA3, CA1,

entorhinal cortex (EC), and perirhinal cortex (PC). Similarly,

OB recordings encompassed neuronal signals across five distinct

layers: the olfactory nerve layer (ONL), glomerular layer (GL),

external plexiform layer (EPL, we referred to as the projection

layer), the olfactory cortex (OCx), and granule cell layer (GCL).

Integration of a modular stereomicroscope (Leica Microsystems,

Germany) allowed for simultaneous acute slice imaging and

extracellular recording, facilitating the correlation of spatial

tissue organization with electrode activity. Event detection for

LFPs and multi-unit spiking activity (MUA) was conducted

using commercial software (3Brain AG), where data was first

refined by applying a low-pass filter (1–100 Hz) for LFPs and a

band-pass filter (300–3,500 Hz) for MUA. Following the filtering,

events were detected using hard thresholding alongside precise

timing spike detection (PTSD) algorithms, respectively (Hu et al.,

2022; Emery et al., 2023a). This sequence ensured that the

frequency components suitable for describing LFPs and spikes

were accurately isolated before event detection, improving the

specificity and accuracy of the detected events.

2.4 Topographical spatiotemporal voltage
maps, CATs, and event incidence

To assess the impact of DENOISING in enhancing dynamical

spatiotemporal information in the hippocampus and OB

subregional networks, we computed averaged LFP and spike

event frequencies across their interconnected layers. By

employing high-resolution, multimodal recordings, we generated

dynamic topographical maps for LFP and spike data within

respective 50 ms and 10 ms time bins. Illustrated in pseudo-

color, these maps demonstrate the spatial distribution of

electrical activity per event, accentuating the enhanced clarity of

neuronal interactions after noise removal. Spatiotemporal activity

propagation was quantified by analyzing the center of activity
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trajectories (CATs) (Hu et al., 2022). Furthermore, we determined

long-range event incidence rates and their distributions, leveraging

simultaneous recordings from extensive subnetworks to clarify

decontaminated initiation sites and their propagation across

layers after employing DENOISING.

2.5 Traditional noise-removal methods

DENOISING was evaluated against established noise reduction

techniques in neural recordings, categorized into signal and

transform domain methods. In the signal domain, we applied

one-dimension causal forward-in-time FIR filtering (Gustafsson,

1996) (https://docs.scipy.org/doc/scipy/reference/generated/scipy.

signal.lfilter.html#scipy.signal.lfilter) and the Savitzky-Golay

algorithm (Krishnan and Seelamantula, 2013) for smoothing the

signal by fitting a polynomial to a segment of neural data points via

least squares regression (https://docs.scipy.org/doc/scipy/reference/

generated/scipy.signal.savgol_filter.html). For transform domain

denoising, we utilized Wavelet (WT) and Fourier Transform (FT)

methods, which transform the recorded signals into different

frequency components, where the noise removal or filtering

operation is applied more effectively. WT denoising involves

convolution with a wavelet function to isolate signal frequencies

computed using the PyWavelets package (https://github.com/

PyWavelets/pywt). FT approaches modify signal frequencies in

the frequency domain before an inverse transformation (https://

numpy.org/doc/stable/reference/generated/numpy.fft.ifft.html).

These methodologies provide a foundation to demonstrate

DENOISING’s performance extracting clean neural signals.

2.6 Extracellular waveform characterization
and clustering assessment

We performed unsupervised clustering analysis to group

similar waveform shapes of LFP patterns using principal

component analysis (PCA) clustering with the mean-shift

algorithm (Minka, 2008; Comaniciu and Meer, 2002). PCA was

applied to reduce the dimensionality of the waveform data

while preserving the essential features (https://scikit-learn.org/

stable/modules/generated/sklearn.decomposition.PCA.html). The

mean-shift algorithm was then employed to identify clusters in

the reduced-dimensional space (https://scikit-learn.org/stable/

modules/generated/sklearn.cluster.MeanShift.html). Unlike other

algorithms, such as k-means (Coates and Ng, 2012), mean-shift

does not require the number of clusters to be specified, as it

automatically determines the clusters based on data density.

This approach allowed us to uncover distinct patterns of LFP

activity within the hippocampal and OB slices in raw and

denoised data.

To identify and cluster spiking activity from the recordings, we

employed an unsupervised spike sorting algorithm compatible with

large-scale neural recordings (Hilgen et al., 2017) and available on

GitHub (https://github.com/mhhennig/HS2). The spike sorting

algorithm was modified and implemented to extract various

features, such as spike waveforms, spike amplitudes, and spike

timing, to isolate individual spikes and group them into distinct

clusters corresponding to different neuronal units estimated from

multimodal large-scale neuronal ensembles. This process enabled

us to differentiate between different types of firing electrodes

and discern their spiking patterns within the hippocampal and

OB slices.

Furthermore, we computed silhouette coefficients (SC) to assess

the quality of the clustering results obtained from both LFP

waveform shapes and multi-unit spiking activity (Rousseeuw,

1987). Silhouette coefficients measure the coherence and

separation of clusters, providing a quantitative measure of

clustering quality (https://scikit-learn.org/stable/auto_examples/

cluster/plot_kmeans_silhouette_analysis.html). Higher silhouette

coefficients indicate better-defined and more distinct clusters,

while negative coefficients suggest overlapping or poorly

separated clusters. By computing silhouette coefficients, we could

objectively evaluate the effectiveness of our DENOISING method

through clustering algorithms in capturing the underlying structure

of the neural activity data compared to raw noise-contaminated

data. This highlights the only actual partition of waveforms from the

firing electrodes without the bias of the clustering algorithm used to

obtain them.

2.7 Performance benchmark analysis

To evaluate the performance of DENOISING, we employed

three metrics–a normalized signal-to-noise ratio difference (SNRDR)

(Czanner et al., 2015), SNR distribution (Lecoq et al., 2021) and root

mean square noise (RMS) (Hyndman and Koehler, 2006). SNRDR

offers a normalized measure of improvement, facilitating

meaningful comparisons even when baseline SNR levels vary

widely between recordings. This metric highlights the relative

gains achieved by our denoising method, providing insights into

its efficiency in enhancing signal quality relative to the initial noise

level. SNR distribution evaluates the performance of the denoising

method across the entire large-scale network with high channel

counts. It demonstrates the method’s general applicability and

effectiveness under diverse experimental conditions. RMS is a

statistical measure that quantifies the magnitude of signal

variation, assessing the effectiveness of noise reduction. This

metric further quantifies improvements in signal quality,

complementing the SNR metrics by offering a direct measure

of the denoising impact on signal magnitude. The dynamic range

of the SNR using the logarithmic decibel scale (SNRS) is

defined as:

SNRdB
Signal � 10 log10 SNRSignal( )

The normalized SNRDR is defined as the normalized difference

between the (SNR) of the denoised signal and the SNR of the raw

signal, given as:

SNRDR �
SNRdB

denoised − SNRdB
raw( )

SNRdB
raw

× 100

In addition, to determine the distribution of SNR in large-

scale recordings, we computed SNR as the ratio of mean firing

activity in all active channels to standard deviation across the

time domain.
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Furthermore, the RMS measures the magnitude of the varying

components of biosignals. It provides a single number that

represents the noise level in a way comparable across raw and

denoised conditions. The RMS is defined as:

RMSnoise �

������
∑N
i�1

xi( )
2

N

√√

Where xi denotes the individual values of the firing electrodes

(signals), and N represents the number of data samples.

2.8 Data and statistical analysis

All analyses used in this study were developed and implemented

with custom-written Python scripts available on our Lab’s

GitHub (https://github.com/HayderAminLab/DENOISING). Any

employed packages are cited accordingly. All statistical analyses

were performed with Python and Originlab 2022. All data in this

work were expressed as the mean ± standard error of the mean

(SEM). Differences between groups were examined for statistical

significance, where appropriate, using one-way analysis of variance

(ANOVA) or Kolmogorov-Smirnov test followed by Tukey’s

posthoc testing. p < 0.05 was considered significant.

3 Results

3.1 DENOISING principles

We implemented the DENOISING method as a novel approach

for denoising extracellular large-scale recordings obtained from

hippocampal and olfactory bulb slices. The primary objective of

our method was to effectively remove noise while preserving the

essential features of the signals, thereby enhancing the clarity and

precision of LFP and spike patterns (Figure 1). The method is

implemented through waveform-based thresholding, which

operates directly on the time-domain representation of the

signals. This method involves setting a threshold level based on

the characteristics of the waveforms and removing signal segments

below this threshold, which are considered noise. We separately

applied waveform-based thresholding to both LFP (Figures 1A–C)

and spike (Figures 1D–F) signals to ensure optimal denoising

performance for each signal type. The DENOISING method

utilized several identifiers derived from network-wide features to

enhance the noise-removal process and improve its adaptability to

different datasets. These identifiers were used to set up a template

containing specific values of spatiotemporal pattern features, which

could be cast off for testing with other datasets. The network features

included - firing frequency (synchrony), number of firing electrodes

(adapted to the structural clusters identified by optical imaging

FIGURE 1

DENOISING Principles and Implementation. (A) LFP signal rastergram from hippocampal-cortical recordings, illustrating waveform-based

thresholding (black points indicate raw data with noise). (B) Detailed rastergram highlighting noise reduction and preservation of essential signal features

(red points indicate the detected noise channels after DENOISING). (C) LFP waveform features are used in denoising to enhance clarity in spatiotemporal

LFP events. (D–F) Analogous to (A–C), for olfactory bulb spike recordings, showcasing spike-based feature application in denoising.
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information combined with electrophysiology recordings), event

duration (min-max range), event amplitude, and bursting

frequency. Following the integration of denoising parameters and

their automated application to the hippocampal and OB recorded

datasets, the DENOISING method exhibited a substantial reduction

in independent noise artifacts, as depicted in network-wide activity

represented in 5-min raster plots (Figure 1).

3.2 Validation with multimodal neural
recordings

To underscore the physiological validity of our neural

recordings, we initially focused on exploiting multimodal neural

recordings derived from extracellular LFP and spike signals within

well-characterized hippocampal-cortical and olfactory bulb circuits

(Hu et al., 2022; Emery et al., 2023a). These systems are known for

their intricate spatiotemporal dynamics, including specific initiation

sites and subsequent propagation across distinct neural layers. Such

detailed mapping is crucial for understanding the complex interplay

of neural activities that underpin cognitive and sensory processing

(Vyas et al., 2020; Bird and Burgess, 2008; Mori et al., 1999). We

applied the DENOISING framework to process these recordings,

intended not only to assess its noise reduction capabilities but also to

demonstrate that our approach preserves the biological fidelity of

these dynamic neural interactions.

Representative event traces from key regions of the

hippocampal-cortical network regions (i.e., CA1, CA3, and EC)

and OB (i.e., GL, PL, and GCL) were analyzed. These traces captured

a diverse array of LFP and spike biosignal signatures both in their

raw, unprocessed state and following noise reduction using

DENOISING across multiple categories of noise examples

(Figure 2). The significant denoising performance of our method

for both LFP and multi-unit spiking-based patterns was

demonstrated in—i) effectively discarded spatiotemporal

segments of unwanted noise, even when the stringent hard

threshold and PTSD algorithms detected events. This precision

was evident in representative traces from CA1 and GL electrodes

(Figures 2A, B), highlighting the method’s ability to discern genuine

neural activity from noise. ii) identified and eliminated non-

physiological signals contaminated with independent noise,

including 50 Hz environmental noise (Figure 2A; EC electrode)

FIGURE 2

DENOISING Impact on Multimodal Bioelectrical Signal Clarity and Circuit Dynamics. (A,B) Showcases DENOISING’s precision in hippocampal-

cortical and OB circuits, effectively isolating genuine neural activities from noise across CA1, CA3, EC, GL, PL, and GCL regions. Illustrated are

examples of successfully discarded spatiotemporal segments of unwanted noise, elimination of non-physiological signals, suppression of inductive

coupling noise, and removal of spurious spiking patterns, ensuring fidelity in neural signal interpretation. Red arrows highlight instances where

spikes detected by the PTSD algorithm were effectively clarified by DENOISING, showcasing the method’s capability to ensure accurate signal

interpretation. (C,D)Depict the integration of DENOISING-processed neural activity with anatomical landmarks, constructing spatial maps that reveal

the organization of neural activity through extracellular discharges in false-color time-lapse frames, highlighting the significant noise reduction

achieved compared to raw frames. (E,F) Center-of-activity trajectories (CATs) from LFP and spiking events delineate information transfer within

neural circuits, demonstrating DENOISING’s impact on refining data interpretation by revealing true global circuit dynamics illustrated through the

propagation paths of CATs and their timing. (G) Illustrates the spatial propagation of rhythmic electrical patterns in raw and post-DENOISING,

revealing authentic firing patterns and enhancing the fidelity of neural spatiotemporal signal interpretation by elucidating intricate dynamics of

neural activity.
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and mechanical artifacts stemming from perfusion glitches

(Figure 2B; PL electrode). This capability underscores the

method’s robustness in preserving the fidelity of neural

recordings. iii) suppressed inductive coupling noise originating

from CMOS-chip electrical wiring before signal amplification.

DENOISING enhanced the accuracy of neural signal

interpretation by distinguishing and attenuating false signals with

similar frequency and amplitude to neural oscillations, as evidenced

by traces in (Figures 2A, B; CA3 and GCL electrodes). iv) removed

falsely detected spurious spiking patterns embedded within the

physiological spiking activity observed across electrodes in CA1,

CA3, EC, and GL regions (Figures 2A, B). This ensures the extracted

spiking activity reflects the true neuronal firing dynamics,

facilitating more precise insights into neural circuit function and

information processing within these critical brain regions. v)

rectified false signal patterns that emerged from dysregulated

chip calibration, as illustrated in traces from PL and GCL

electrodes (Figure 2B). The auto-zeroing circuit integrated into

the CMOS-chip, is regularly calibrated to the electrode’s DC

voltage, which could be impaired due to various noise sources

and light effects, leading to signal contamination.

Next, to elucidate the profound impact of DENOISING in

identifying and mitigating independent noise across the entire

spatiotemporal functional landscape within our recorded

subnetworks, we integrated large-scale activity with the brain

network’s anatomical landmarks. We overlaid the computed

mean of firing patterns obtained from LFP and spike recordings

onto optical images of hippocampal-cortical and OB circuits; then,

we constructed maps that revealed the spatial organization of neural

activity (Figures 2C, D). These maps encoded extracellular

discharges in false-color time-lapse frames depicting full LFP and

spiking events. The frames, with time steps of 50 ms for LFP and

10 ms for spiking events, showcased the global noise-embedded

contamination across layers in raw data frames compared to the

denoised frames. This visualization underscored the substantial

reduction in noise achieved by DENOISING, enhancing the

clarity and precision of the recorded neural activity. We further

constructed center-of-activity trajectories (CATs) from LFP and

spiking events to delineate information transfer and processing

pathways within the neural circuits. A striking disparity between

raw and denoised frames (in events time and amplitude) was

observed in the averaged-CAT patterns, emphasizing the pivotal

role of DENOISING in refining data interpretation and uncovering

the true global circuit dynamics emerging from population activity

(Figures 2E, F).

Simultaneous recordings from all multimodal network layers

were leveraged to compute the generation site and trace the spatial

propagation of rhythmic electrical patterns. This analysis illustrated

the remarkable significance of DENOISING in providing clarity to

unveil the authentic firing patterns obscured by noise in the raw

data. The spatial maps of rhythmic electrical patterns elucidated the

intricate dynamics of neural activity and highlighted the

transformative effect of DENOISING in enhancing the fidelity of

neural signal interpretation (Figure 2G).

In summary, the integration of robust DENOISING techniques

with detailed spatial analyses significantly advances the

interpretation of neural activity within key brain networks. This

approach aligns functional insights with underlying neural

structures, enhancing signal clarity and ensuring that observed

behaviors match known anatomical features. This synergy offers

crucial insights into complex neural interactions and their

physiological implications. These enhanced denoising capabilities

could impact the understanding of prolonged depolarization states

and the synchronization within neural networks, potentially offering

new avenues for research into neural connectivity and its role in

cognitive and sensory processing.

3.3 DENOISING for waveform
characterization

Analysis of oscillatory activity waveforms is pivotal for

understanding the diverse functionalities within neural circuits.

Waveform shapes can indicate different types of neuronal activity

and are vital in identifying distinct neuronal types in specific brain

regions and their roles in processing information (Cole and Voytek,

2017). Accurately characterizing waveform features from large-scale

neural recordings is essential for decoding the intricate activities

within brain networks. This necessitates enhancing signal clarity

through meticulous noise reduction, ensuring that the subtle

nuances of neural interactions are not lost.

To further evaluate the impact of our DENOISING method, we

applied PCA and the Mean-Shift algorithm to LFPs extracted from

raw and denoised hippocampal and OB recordings. On raw data,

PCA depicted a jumbled cluster of signals, indicating a lack of

distinct grouping among waveform features. However, post-

DENOISING, PCA delineated between groups of data, with

color-coded waveforms distinctly belonging to their respective

clusters (Figures 3A, B). This stark differentiation underscores

DENOISING’s capability to significantly enhance the discriminability

and clarity of neural signals, allowing for a more nuanced interpretation

of complex network activities.

Furthermore, silhouette coefficient analysis quantitatively

confirmed the superior clustering performance in denoised data

over raw recordings (Figures 3C, D).

Expanding our analysis, we employed an advanced spike sorting

technique to scrutinize spiking activities within these recordings

(Hilgen et al., 2017). This process also benefited markedly from the

DENOISING process, revealing more defined and distinguishable

clusters of spike waveforms. These were coherently matched with

their groups identified through PCAmaps, reinforcing the denoising

method’s effectiveness (Figures 3E, F). The application of silhouette

coefficients re-emphasized a statistical foundation for asserting the

significant enhancement in clustering quality attributable to our

denoising technique, underscoring its effectiveness in refining the

analysis of complex neural signals (Figures 3G, H).

3.4 Benchmarking with traditional noise
removal approaches

Employing SNR distribution analysis, calculated as the mean

over standard deviation, we observed a pronounced enhancement in

both LFP and spiking activity data post-DENOISING (Figures

4A–D). Specifically, the SNR in hippocampal-cortical and OB

LFPs denoised data yielded a 38.8 and 53-fold increase,

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Hu et al. 10.3389/fbioe.2024.1390108



respectively, over raw data (Figures 4A, B). Similarly, spiking activity

analysis revealed significant gains, with a 78.8-fold increase in

hippocampal-cortical regions and a 16-fold improvement in OB

regions (Figures 4C, D).

While classical noise reduction methods have not been

explicitly documented in the context of large-scale extracellular

recordings and HD-MEAs, we aimed to rigorously evaluate the

performance of DENOISING compared to these established

techniques–specifically, Wavelet Transform, Fourier Transform,

and Savitzky-Golay filter. Our objective was to comprehensively

assess DENOISING’s efficacy in enhancing signal clarity and

accuracy, which is critical for deciphering the nuanced

dynamics of neural activity within the hippocampal-cortical and

OB networks.

Further comparative analysis employed the RMS parameter

and normalized SNR of denoised data to raw, illustrating

DENOISING’s superiority. Radar plots displayed that denoised

data exhibited significantly higher SNR (Figure 4E) and lower RMS

values (Figure 4F) for both LFPs and spikes, outperforming

classical noise-removal methods. These findings underscore the

advanced capability of DENOISING in refining neural signal

analysis, setting a new benchmark for the analysis of complex

extracellular recordings.

4 Discussion

We have introduced DENOISING, a computational framework

validated with experimental multimodal data to enhance fidelity and

clarity through dynamic noise mitigation on large-scale bioelectrical

signals. The adaptive nature of the method allowed for handling a

wide range of noise, including electrical, mechanical, and

environmental sources, ensuring robust noise removal while

preserving the essential features of a diverse array of extracellular

LFP and spike signals. This capability is particularly relevant in the

context of recent advancements in large-scale biosensing HD-MEAs

and their application in monitoring neural dynamics across various

spatial and temporal scales. By facilitating precise observations of

network-wide activity, our approach enabled a deeper

understanding of the interconnected processes governing brain

function, which has profound implications for areas critical to

learning, memory, and sensory processing.

Central to our results is the improved accuracy in waveform

clustering, spike sorting, and CAT analysis, allowing for more

precise identification and categorization of neural signals and

network dynamics. This precision is critical for understanding

the nuanced activities within neural circuits and contributes to a

more explicit interpretation of neural communication patterns.

FIGURE 3

Advanced Waveform Analysis and Clustering Enhancement via DENOISING. (A,B) Utilizing PCA and Mean-shift algorithm on LFPs

from hippocampal-cortical and OB recordings illustrates the transformation from indistinguishable clusters in raw data to clearly defined

color-coded waveform groups post-DENOISING, highlighting the method’s success in improving signal discriminability. (C,D) Silhouette

coefficient (SC) analysis further quantifies this clustering enhancement (p < 0.0001 ANOVA). (E,F) Advanced spike sorting techniques

reveal more distinct spike waveform clusters from hippocampal-cortical and OB recordings. (G,H) Silhouette coefficients (SC) underscoring the

statistical improvement in clustering quality due to DENOISING, emphasizing its pivotal role in refining complex neural signal analysis (p <

0.0001 ANOVA).
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Through significant SNR improvements and RMS noise reduction

analyses, our methodology provided compelling evidence of its

performance that transcends traditional methods. This

enhancement not only improved the quality and reliability of

neural data but also enabled the detection of subtle neural

activity, thus unveiling obscured neural dynamics and

interactions that were previously indiscernible.

Furthermore, our study aligns with the growing body of research

emphasizing the critical need for high-fidelity neural data to

understand complex brain functions and disorders (Hu et al.,

2022; Emery et al., 2023a; Li et al., 2023; Vázquez-Guardado

et al., 2020), necessitating multi-purpose denoising methods

(Lecoq et al., 2021; Eom et al., 2023; Li et al., 2021).

In addressing the specific process of our DENOISING

method, it is important to clarify that while the algorithm

proficiently identifies and improves the clarity of signals

associated with significant LFP and spike events, it does not

alter or reconstruct signal components outside of these detected

events. This is evident in Figure 2, where only meaningful neural

activities are highlighted, emphasizing the adaptive nature of our

filter in focusing on significant neural events. This selective

filtering is vital for accurately interpreting SNR improvements

shown in Figure 4, as it directly relates to the assessed signal

quality rather than indiscriminately altering the entire

data spectrum.

While the DENOISING framework has shown substantial

efficacy in enhancing the clarity of extracellular recordings

through dynamic adjustment and noise separation, it does not

incorporate the application of deep learning approaches

exemplified by other methods (Lecoq et al., 2021; Eom et al.,

2023; Li et al., 2021). However, by not utilizing a machine

learning backbone or extensive training datasets, DENOISING

offers a significant computational advantage compared to

other methods. It requires considerably less computational

resources and time, bypassing the need to train a neural

network, which is computationally intensive and requires large

datasets. This makes DENOISING more accessible for real-time

applications and suitable for environments with limited

computational capabilities, providing a practical solution for

immediate noise reduction without the overhead of training

and model optimization. However, integrating a deep learning

component into our framework represents a compelling avenue

for future research, which could potentially offer improved

adaptability and precision in noise reduction and signal

FIGURE 4

SNR and RMS Enhancements in Neural Signals Post-DENOISING. (A–D) Depict the significant improvements in SNR distribution for both LFP and

spiking activities in hippocampal-cortical and OB recordings following DENOISING application, with significant increases up to 38.8 and 53 times for

LFPs, and 78.8 and 16 times for spiking activities, respectively. (LFPs, p < 10−8, Spikes p < 10−20 Kolmogorov-Smirnov test). Rug lines under distributions

clarify data points by marking their positions on distribution axes, not representing density. (E,F) Comparative analysis with classical noise reduction

techniques through radar plots demonstrates DENOISING’s superior performance, showcasing markedly higher normalized SNR (E) and lower RMS (F)

values, thereby affirming its exceptional capability in enhancing signal clarity and accuracy over traditional methods and raw data prior-DENOISING. (SNR

LFPs, p < 10−3, SNR Spikes, p < 10−6 ANOVA, RMS LFPs, p < 10−7, and RMS Spikes, p < 10−6 ANOVA, for DENOISING compared to FT, WT, and

Savitzky-Golay).

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Hu et al. 10.3389/fbioe.2024.1390108



processing by harnessing the power of large-scale neural datasets

for training purposes.
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