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SUMMARY

Computer-vision and machine-learning (ML) approaches are being developed to provide scalable, unbi-

ased, and sensitive methods to assess mouse behavior. Here, we used the ML-based variational

animal motion embedding (VAME) segmentation platform to assess spontaneous behavior in humanized

App knockin and transgenic APP models of Alzheimer’s disease (AD) and to test the role of AD-related neu-

roinflammation in these behavioral manifestations. We found marked alterations in spontaneous

behavior in AppNL-G-F and 5xFAD mice, including age-dependent changes in motif utilization, disorganized

behavioral sequences, increased transitions, and randomness. Notably, blocking fibrinogen-microglia in-

teractions in 5xFAD-Fggg390–396A mice largely prevented spontaneous behavioral alterations, indicating

a key role for neuroinflammation. Thus, AD-related spontaneous behavioral alterations are prominent in

knockin and transgenic models and sensitive to therapeutic interventions. VAME outcomes had

higher specificity and sensitivity than conventional behavioral outcomes. We conclude that spontaneous

behavior effectively captures age- and sex-dependent disease manifestations and treatment efficacy in

AD models.

INTRODUCTION

Behavioral alterations, the defining manifestations of neurolog-

ical disorders, are intricate and multifaceted, posing challenges

to accurate definition and measurement. Thus, our knowledge

of disease-induced behavioral alterations is incomplete and

largely limited to domain-specific and task-oriented behavioral

tests. Analyzing complete sequences of spontaneous behavior

can offer deep insight into disease-induced behavioral changes

and may provide unbiased and scalable measures of brain

dysfunction to evaluate disease progression and therapeutic

interventions.1 Until recently, this has not been feasible. How-

ever, advances in computer-vision and machine-learning (ML)

techniques for pose estimation (DeepLabCut,2,3 SLEAP,4 and

LightningPose5) and behavioral segmentation (MoSeq6 and

variational animal motion embedding [VAME]7,8) make it

possible to deconstruct full sequences of spontaneous mouse

behavior into brief postural units (motifs or syllables) and reveal

their sequence and hierarchical structure. These emerging

methods expand the depth, breadth, and sensitivity of behav-

ioral quantifications and may provide insights into disease

pathogenesis.9

Alzheimer’s disease (AD) begins several decades before the

clinical onset of dementia with progressive amyloid accumula-

tion preceding significant tau pathology and neurodegenera-

tion.10,11 During this extended preclinical period prior to the
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dementia diagnosis, many patients develop behavioral

or neuropsychiatric changes, including agitation, irritability,

decreased motivation, loss of empathy, and depression, which

increase the risk of transition to mild cognitive impairment and

AD.12–14 Thus, these behavioral changes may be the earliest

symptoms of preclinical stages of AD.13,14 This extended period

of incipient and subtle behavioral alterations holds significant

promise for investigations of early AD pathogenesis and thera-

peutic interventions, particularly given the recent development

of ML approaches that may effectively harness both large-scale

and precise behavioral data.

Humanized App knockin (KI) and APP transgenic mouse

models mimic certain aspects of AD pathogenesis, including

progressive amyloidosis, gliosis, and neuroinflammation, as

well as network hyperexcitability and cognitive impairment,

albeit to different degrees of severity across models and par-

adigms.15–27 However, our understanding of alterations in

spontaneous behavior in AD models has been limited by the

technical challenges of assessing non-task-oriented behavior.

Previously, we described the VAME ML architecture and iden-

tified motif usage alterations in APP/PS1 transgenic mice.7

Here, we advanced the development of our VAME ML pipeline

with analytical tools to assess organization of behavioral

sequences of spontaneous behavior, disease progression,

and sex-dependent effects in humanized AppNL-G-F KI and

5xFAD transgenic mice. We also validated spontaneous

behavioral outcomes for assessing therapeutic interventions

by testing the role of AD-related neuroinflammation in 5xFAD

mice with or without Fggg390–396A expression, which inhibits

fibrinogen-microglia interactions and reduces AD-related

neuroinflammation.21,22,28 We conclude that spontaneous

behavior effectively captures age- and sex-dependent early

disease manifestations and treatment efficacy in AD models

with higher sensitivity and specificity than conventional behav-

ioral outcomes.

RESULTS

Aged AppNL-G-F mice have mild spatial memory deficits

and severe amyloidosis and gliosis

First, we used the Morris water maze test to determine whether

aged AppNL-G-F mice develop spatial learning and memory def-

icits. Consistent with previous findings,16–19,23 22-month-old

AppNL-G-F mice exhibited mild learning and memory deficits in

the Morris water maze relative to their wild-type (WT) littermate

controls (Figures 1A and 1B). In the hidden platform (spatial)

component, AppNL-G-F mice showed deficits in distance

(p = 0.025) and latency (p = 0.017) (Figure 1A). In the probe trial

(platform removed), AppNL-G-F mice had no preference for the

target quadrant (Figure 1B), indicating memory impairment.

However, their time in the target quadrant was not significantly

different from WT littermate controls (p = 0.108, Figure 1B). As

expected,15 22-month-old AppNL-G-F mice had robust AD-

related pathology, including amyloid deposition and neuroin-

flammation (Figures 1C and 1D). Unlike APP transgenic

mice,21,25 App KI mice seem to develop milder cognitive

changes.16–19,23 As suggested,15,20 App KI micemaymodel pre-

clinical stages of AD, characterized by progressive amyloidosis

and gliosis without prominent cognitive deterioration, tau pathol-

ogy, or neurodegeneration.

VAME deconstructs sequences of mouse behavior into

postural motifs

To study spontaneous behavioral manifestations in AppNL-G-F

mice, we built upon our ML pipeline and deconstructed com-

plete sequences of spontaneous mouse behavior during explo-

ration of an open arena. To improve upon the original VAME

method,7 we used refined algorithms for egocentric alignment

of body parts, clustering of motifs into behavioral communities,

and advanced kinematic and network analyses (see STAR

Methods). Using these revised approaches, we studied sponta-

neous behavior for 25 min in an open arena to capture innate

spontaneous behaviors that are not prompted by an external

behavioral task or reward. Ventral-view videos (25 frames per

second) of 13-month-old AppNL-G-F mice (n = 18) and littermate

WT controls (n = 14) (Figure 2A) allowed continuous visibility of

limbs and other body parts that define mouse behavior. A

DeepLabCut supervised neural network was used for pose esti-

mation of nine body parts: nose, four paws, center, and the base,

mid-point, and tip of the tail (Figure 2B). We then generated allo-

centric (relative to arena) and egocentric (relative to mouse cen-

ter) x and y coordinates and speeds of the defined body parts

(Figure 2C).

Egocentric x and y coordinates captured full motion of the nine

body parts within the mouse left-right and rostral-caudal axes,

respectively, relative to themouse center (Figure 2D). Egocentric

coordinates of seven body parts (nose, four paws, center, and

tail base) were fed into VAME to train an unsupervised dynamical

model, which assessed postural patterns across a sliding win-

dow of 16 frames (640-mswindow) to identify 30 distinct postural

motifs.7 We compared k-means and hidden Markov model

(HMM) algorithms for clustering the latent space embeddings

into motifs and performed a logistic regression (classifier) anal-

ysis to assess the probability of either approach to correctly clas-

sify AppNL-G-F and WT mice (Figure S1A). The k-mean algorithm

had a higher overall probability of classifying genotype correctly

than HMM (93.8%vs. 90.6%) andwas used to generate a unique

sequence of motifs for each mouse (Figure 2E). Thus, each motif

represents a brief sequence of behavior that is consistently iden-

tified across mice and over time.

To assess motif specificity across sex and genotypes, we

used uniform manifold approximation and projection (UMAP)

and kinematic analyses. We found that each motif had a well-

delimited UMAP location with smooth transitions between mo-

tifs (Figure 2F), indicating specificity of motif features and con-

tinuity of behavioral postural motion across motifs. Notably,

motifs of each mouse fully overlapped with the corresponding

motifs of the other mice regardless of sex and genotype (Fig-

ure S1B), indicating that motif identification was consistent

throughout the cohort. Kinematics analyses of egocentric coor-

dinates of the 30motifs also revealed high specificity regardless

of sex and genotype (Figures 2G, S1C, and S2), enabling us to

precisely study mouse behavior. Thus, VAME can identify

postural patterns in motion time series without supervised

annotation, permitting reliable and unbiased behavioral

segmentation.

2 Cell Reports 43, 114870, November 26, 2024

Resource
ll

OPEN ACCESS



Male and female AppNL-G-Fmice develop prominent age-

dependent alterations in spontaneous behavior

Next, we determined whether VAME can detect spontaneous

behaviordeficits inyoung (6months) andmiddle-aged (13months)

AppNL-G-F mice compared to age-matched littermate controls.

While 6-month-old AppNL-G-F mice did not display deficits (Fig-

ure S1D), we found that motif usage was markedly altered in

13-month-old AppNL-G-F mice, with significant (q < 0.05) alter-

ations in eight of 30 identified motifs, as shown by false discovery

rate testwithBenjamini-Hochberg correction formultiple compar-

isons (FDR-BH) (Figure 3A). Kinematic and video analyses of the

eight motifs affected in AppNL-G-F mice revealed that the motifs

belong to the following generic behavioral categories: walk

(motif 0), fast explore (motif 5), slow explore (motif 15), rear (mo-

tifs 2, 6), run (motifs 12 and 18), and sit up (motif 19) (Figures 3B,

3C,S2, andS3A). Thus,AppNL-G-Fmiceexhibit robust age-depen-

dent behavioral alterations in spontaneous behavior.

To assess gene and sex interactions, we analyzed the time

spent in the eight App-affected motifs by two-way ANOVA (sex

and genotype). Notably, VAME identified consistent and robust

A B

C D

Figure 1. Aged AppNL-G-F mice show robust AD-related pathology and mild impairments in the Morris water maze

Spatial learning andmemory of 22-month-old AppNL-G-Fmice (n = 16; eight females and eight males) andWT littermate controls (n = 21; 11 females and 10males)

were tested in the Morris water maze.

(A) Distance swum (left) and latency (right) in the hidden (spatial) and visible (cued) platform components of the Morris water maze test. AppNL-G-F mice had mild

deficits in distances (p = 0.025) and latencies (p = 0.017) in the spatial component of the Morris water maze. p values were determined by repeated two-way

ANOVA.

(B) Time spent in the target (platform removed) and nontarget quadrants during the 24-h probe trial after 10 sessions of hidden training. AppNL-G-F and WT mice

did not perform differently at the target quadrant (p = 0.108). However, WT (p = 0.007), but not AppNL-G-F (p = 0.999), mice had a target quadrant preference.

p values were determined by one-way ANOVA and Bonferroni post hoc test.

(C) Representative images of hippocampus and cortex stained for 82E1-positve Ab deposits and Iba1-positive microglia show severe amyloidosis and micro-

gliosis in 22-month-old AppNL-G-F mice.

(D) Quantification of hippocampal and cortical area (%) occupied by 82E1-positve Ab deposits or by Iba1-positive microglia in 22-month-old AppNL-G-F (n = 14)

and WT (n = 15) mice. ***p < 0.01 by Student’s t test. Values are mean ± SEM.
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differences in motif use between male and female controls (Fig-

ure 3D). However, the effects of App genotype and the direction

of disease-associated changes in motif use were remarkably

consistent across females and males, indicating that VAME

can resolve sex and genotype interactions.

Hierarchical clustering of motifs reveals behavioral

communities

To leverage information about motif organization, we used hier-

archical clustering of motif-motif transitions to identify higher-

order behaviors. These analyses revealed a distinct hierarchical

A B

C

D

E

F

G

Figure 2. VAME segmentation of behavioral motifs during exploration in an open arena

(A) Workflow. Mice were recorded from below at 25 frames per second (25 Hz) for 25 min (�37,500 frames/mouse) in a circular arena 12 inches in diameter.

DeepLabCut (DLC) was used for pose estimation of nine body parts. VAMEwas used to identify behavioral motifs. Custom scripts were used to define egocentric

coordinates, communities, and transition sequences.

(B) DLC pose estimation of nine defined body parts (ventral view).

(C) Allocentric (relative to arena) and egocentric (relative tomouse center) x and y coordinates (pixels) and allocentric speeds of the nine defined body parts (B) of a

representative AppNL-G-F mouse recorded over 2 min at 25 Hz.

(D) Egocentric coordinates relative to center (yellow) for the defined body parts (B) over 4 min in a representative AppNL-G-F mouse (1 point per 40 ms; 9,600

frames). Note the left-right and rostral-caudal motion range of all body parts.

(E) Motif sequence (5-s mode) for (C). VAME model trained on egocentric coordinates for nose, paws, center, and tail base.

(F) UMAP representation of the 30 motifs identified by VAME for all mice (n = 32; 18 AppNL-G-F and 14 WT mice). Motifs occupy distinct locations with smooth

transitions as expected for continuous behavioral sequences; 10,000 random frames shown from the entire cohort and duration.

(G) Egocentric coordinates in the rostral-caudal (y axis, top) and left-right (x axis, middle) axes of the nine body parts for the 30 identified motifs (n = frames; 32

mice). Points are the average location across all mice for the first 20 frames (800 ms) from motif identification. Allocentric center speed (bottom) across the full

cohort (n = frames; 32 mice). Motifs show specific and distinct coordinates and speeds. Values are mean ± SEM.
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organization among the 30 motifs, which was used to cluster

the motifs into 11 behavioral communities (Figures 4A

and S2) according to total usage and the likelihood of sequen-

tial use (as opposed to pose similarity). The probability matrix of

motif-motif transitions consistently showed that motifs within

each community formed distinct clusters (Figure 4B), demon-

strating highly structured behavioral dynamics. Notably, motifs

of the same community were similarly affected by App (Fig-

ure 4C, top), validating the concept that communities represent

cohesive behaviors. Communities were generically labeled as

groom, rear, walk, run, walk-up, fast- and slow-explore, sit-

down, and sit-up (see STAR Methods for definition and dendro-

gram cost function).

Although the VAME training data included only egocentric

coordinates (relative to mouse center) without allocentric

speed information, communities displayed distinct allocentric

speeds consistent with the represented behaviors. Female,

but not male, AppNL-G-F mice moved faster than sex-matched

WT controls, particularly in the communities walk, run, and

fast and slow-explore (Figure 4C, bottom). Thus, clustering

postural motifs into behavioral communities provides an inter-

pretable and ethologically relevant organization of mouse

behavior in the context of disease-associated alterations.

To assess the distribution of genotypes and interindividual

variability of mice, we also clustered motifs and mice hierar-

chically based on motif usage. We detected significant

differences in clustering between AppNL-G-F and WT mice

(p = 0.0015, Mann-Whitney rank-sum test) (Figure 4D), indicating

abnormalities in the overall motif use profile. AppNL-G-Fmice also

showed a well-defined gradient of behavioral impairment, indi-

cating that spontaneous behavioral changes capture interindi-

vidual variability.

A

B C

D

Figure 3. Middle-age AppNL-G-F mice display robust behavioral alterations in motif use

Spontaneous behavior of 13-month-old AppNL-G-Fmice (n = 18; eight females and 10 males) and WT littermate controls (n = 14; eight females and six males) was

recorded for 25 min in a circular open arena.

(A) Thirty behavioral motifs were identified by VAME. Motif use (relative to sex-matched WT littermates) of 30 identified motifs for all mice. Relative to littermate

controls, AppNL-G-Fmice displayed usage alterations in eight motifs. **q < 0.01, *q < 0.05 by false discovery rate with Benjamini-Hochberg correction for multiple

comparisons (FDR-BH).

(B) Kinematic analyses of egocentric coordinates of the defined body parts for the first 10 frames (400 ms) of the eight motifs significantly affected in AppNL-G-F

mice (A, q < 0.05 by FDR-BH; n = frames; 32 mice).

(C) Schematic of body part positions for the indicated motifs. Data points are the average location for 10 frames after motif identification (n = frames; 32 mice).

Motifs show precise and distinct coordinates.

(D) Absolute motif use (in seconds) by genotype and sex for the eight motifs altered in AppNL-G-F mice (A). Males and females differed in their use of motifs

0, 2, 5, and 12, but AppNL-G-F expression affected both sexes similarly. p values were determined by two-way (genotype and sex) ANOVA. Values are

mean ± SEM.
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A B

C

D

E

Figure 4. Hierarchical clustering of motifs identifies behavioral communities and reveals experience-dependent alterations in AppNL-G-F

mice

(A) Cost-function-based hierarchical organization of motifs into 11 communities based on motif transitions and motif use at the cohort level (n = 32; 18 AppNL-G-F

and 14 WT mice). Motifs with higher probability of transitions and closer hierarchical distance were clustered into communities on the dendrogram. Node size is

proportional to motif use. Red borders and branches indicate significant differences between AppNL-G-F and WT mice by FDR-BH for 30 motifs and 11 com-

munities, respectively.

(B) Matrix depicting the probability of forward transitions from motifi (rows) to motifj (columns) at the cohort level (n = 32; 18 AppNL-G-F and 14 WT mice). Motifs

were organized according to the dendrogram order found in (A).

(C) Motif use (relative to sex-matchedWT littermates) (top) and speeds (bottom) organized by community. Top: motifs in the same community had reliably similar

AppNL-G-F effects, consistent with the notion that each community reflects a tightly associated set of postural units. **q < 0.01, *q < 0.05 by FDR-BH for indicated

communities. Bottom: allocentric speed of mouse center in motifs organized by community for female andmale AppNL-G-Fmice andWT controls. Relative to sex-

matched controls, female, but not male, AppNL-G-F mice performed ambulatory motifs with excessive allocentric speed. Red indicates disease-affected motifs.

(legend continued on next page)
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Experience-dependent modulation of behavioral motifs

and communities is altered in AppNL-G-F mice

Next, we investigated whether motif and community use is

modulated by time and genotype asmice gain experience during

their 25-min exploration of the open arena. We found that

motifs and communities were strongly modulated by time and

genotype. Interestingly, communities that show habituation

(decreased use over time) in WT mice (B-walk, C-run, and

E-fast-explore) were underrepresented in AppNL-G-F mice,

whereas communities that showed sensitization (increased

use over time) in WT mice (AIV-rear, F-slow-explore, and

H-sit-up) were overrepresented in AppNL-G-F mice (Figure 4E).

Similar results were found at the motif level (Figure S3B). Thus,

AppNL-G-F mice displayed abnormal habituation and sensitiza-

tion responses to the environmental context in virtually all iden-

tified behaviors. Similar habituation and context-dependent def-

icits have been observed in APP transgenic and App KI mice, as

judged by total distance traveled in the OF test.16,24,27

Network analysis of motif transitions reveals increased

randomness and altered behavioral sequences inAppNL-

G-F mice

Deconstructing the full sequence of motif-motif transitions may

ultimately provide a more sensitive measure of brain function

than unitary motif analyses (Figures 2, 3, and 4). To address

the overall structure of full behavioral sequences, we used the

discrete Markov chain model to assess the probability of motif

transitions during 25 min of exploration in the open arena (Fig-

ure 5A). This model assesses stochastic infinite sequences of

events (e.g., motifs) in which the probability of each event de-

pends on previous events.29,30 To assess the predictability of

behavior, we fitted Markov chain models at a range of or-

ders (0–3; 640-ms timesteps) (Figure 5B and Table S1).30 In

AppNL-G-F mice, particularly females, behavioral sequences

were less predictable than in WT mice at all orders, indicating

increased entropy or randomness in behavioral organization.

To assess the probability of transitions between motifs, we

usedCytoscape31 to generate an unbiased network visualization

and graphed the top 20% most probable transitions between

motifs at the cohort level (n = 32 mice). As expected from the

transition probability matrix (Figure 4B), we found that motifs

were well organized into communities (Figures 5C and 5D). Inter-

estingly, ambulatory behaviors were the hub around which the

rest of the behaviors were arranged. AppNL-G-F mice had sub-

stantial increases in the probability of transitions, particularly be-

tween motifs of different communities, resulting in decreased

dwell time in ambulatory hub motifs (Figure 5C). Notably,

AppNL-G-F mice prematurely transitioned from ambulatory com-

munities (fast exploration or running) to slower exploratory be-

haviors (walk-up, sit-up, or slow exploration) and were more

likely to engage in this behavioral sequence than WT controls

(Figure 5D).

Finally, we calculated motif delta indices to score the aggre-

gatedmotif differences between AppNL-G-F andWTmice with re-

gard to motif transition probability, motif use, and motif speed.

We found that AppNL-G-F mice had significant abnormalities in

delta indices of motif transitions and motif use, and there was

a trend toward impaired motif speed delta index (Figures 5E

and 5F). Overall, full behavioral sequence analyses revealed sig-

nificant alterations in the organization of behavioral structure in

AppNL-G-F mice, characterized by increased transitions and

randomness, and premature escape of fast ambulatory behav-

iors to engage in slow and static exploration.

Spontaneous behavioral alterations in 5xFAD mice are

rescued by blocking fibrinogen-microglia interactions

The blood coagulation factor fibrinogen is deposited in the brain

of patients with AD and is a key mediator of neurotoxic microglia

polarization and cognitive impairment in mouse models of

AD.21,22,32,33 To define spontaneous behavior alterations in a

second AD model and determine whether these alterations are

sensitive to therapeutic intervention, we studied 8- to

10-month-old 5xFADmice expressingWT fibrinogen or amutant

fibrinogen (Fggg390–396A) that lacks the inflammatory CD11b re-

ceptor-binding site and thus prevents CD11b receptor-mediated

interactions with microglia.22,33 Fggg390–396A reduces AD-related

pathogenesis, including amyloid burden, dystrophic neurites,

synaptic loss, microgliosis, and neuroinflammation in 5xFAD-

Fggg390–396A mice relative to 5xFAD mice.21,22,34 We found that

5xFAD mice had prominent ML behavioral alterations in 17 of

30 motifs (Figure 6A). Remarkably, nearly all of these 5xFAD-

dependent alterations were ameliorated in 5xFAD-Fggg390–396A

mice, indicating global restoration of spontaneous behavior,

including motif use and speeds (Figures 6A and 6B).

We also calculated delta indices for motif transitions, motif

use, and motif speed to score the aggregated differences be-

tween 5xFAD, 5xFAD-Fggg390–396A, and control mice. We

found that 5xFAD-dependent abnormalities in the motif transi-

tion and motif speed delta indices were ameliorated in 5xFAD-

Fggg390–396A mice (Figures 6C and 6D). Direct comparisons of

the control groups, WT (Fgg+/+), and Fggg390–396A mice revealed

no significant differences in the usage of any of the motifs (Fig-

ure S4A). Thus, Fggg390–396A does not change spontaneous

behavior in a non-AD background. No sex effects were seen in

5xFAD and 5xFAD-Fggg390–396A mice (Figure S4B). Overall, this

global restoration of spontaneous behavior shows that fibrin-

ogen contributes to AD-related behavioral alterations and that

ML alterations are susceptible to therapeutic intervention.

Kinematic and video analyses of the motifs that were signifi-

cantly improved in 5xFAD-Fggg390–396A mice were assigned to

the following generic behavioral categories: run (motif 2), walk-

up (motifs 6, 11, and 28), groom-up (motif 17), groom-down (mo-

tifs 10 and 12), and walk (motif 27) (Figures 6E and S5). These

categories were confirmed by the hierarchical behavioral

(D) Hierarchical organization of motifs and subjects based on motif use relative to sex-matched WT littermates (n = 32; 18 AppNL-G-F and 14WTmice). AppNL-G-F

and WT mice exhibited different clustering (p = 0.0015 by Mann-Whitney rank-sum test).

(E) Percentage of time spent in identified communities in 5-min bins during 25min of exploration in an open arena. Community usageswere stronglymodulated by

time (experience), and AppNL-G-F mice exhibited impaired time-dependent responses. p values were determined by repeated one-way ANOVA. Values are

mean ± SEM.
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A B

C D

E F

G

Figure 5. Deconstructing full sequences of spontaneous behavior reveals disorganized behavioral sequences, increased motif transitions,

and randomness in AppNL-G-F mice

Full behavioral sequences of motif transitions in 13-month-old AppNL-G-F mice (n = 18; eight females and 10 males) and WT littermate controls (n = 14; eight

females and sixmales) were annotated at 25 Hz during 25min of open-arena exploration (�37,500 potential transitions per mouse) and analyzed with the discrete

Markov chain model.

(A) Community transition sequences (black) and center speed (blue) of an AppNL-G-F mouse during 60 s of behavioral exploration.

(legend continued on next page)
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dendrogram, which showed significant 5xFAD-dependent us-

age alterations in eight of nine identified behavioral communities

(FDR-BH, q < 0.05) (Figure 7A, red branches). Furthermore, in a

representative selection of 5xFAD-affected motifs (Figure 7B),

motif use over time was strongly modulated by genotype, and

5xFAD-Fggg390–396A mice largely showed full or partial recovery

to performances seen in control mice (p < 0.05, two-way

ANOVA). Hierarchical clustering of motif usage and mice also re-

vealed prominent disease-associated differences (Figure 7C).

Together, these results indicate that fibrinogen is a key mediator

of behavioral abnormalities in 5xFAD mice. They also suggest

that alterations in spontaneous behavior detected by VAME

are responsive to AD-related therapeutic interventions and pro-

vide unbiased and sensitive outcomes for assessment of

treatments.

Behavioral transition network analysis reveals

therapeutic restoration in 5xFAD-Fggg390–396A mice

Todeterminewhether 5xFADmicehavedisease-associatedalter-

ations of motif transitions, we generated transition networks at

the cohort level for 5xFAD and 5xFAD-Fggg390–396A mice relative

to controls (Figure 7D). As in AppNL-G-F mice (Figure 5C), motifs

were well organized into communities, and ambulatory behaviors

(run, walk) formed the hub of the transition network. 5xFAD mice

had marked abnormalities in the probability of most transitions,

and the transition network was characterized by increased transi-

tions between motifs and reduced probability of dwelling in the

same motif (self-transitions). Thus, both AppNL-G-F and 5xFAD

mice exhibit behavioral instability, suggesting that the abnormal-

ities in behavioral structure are an early preclinical feature of AD-

related pathogenesis that progresses during clinical stages. To

determine whether the motif transition network can be restored

by blocking fibrinogen-microglia interactions, we compared

5xFAD-Fggg390–396A mice and controls. We found that most of

the 5xFAD-dependent alterations in transitions were rescued or

greatly mitigated in 5xFAD-Fggg390–396A mice (Figure 7D), indi-

cating restoration of behavioral sequences.

Classifier analyses reveal VAME outcomes provide

better sensitivity and specificity than conventional

behavioral outcomes

To directly compare the specificity and sensitivity of VAME to

those of conventional behavioral outcomes, we performed clas-

sifier analysis (logistic regression) using VAME outcomes (motif

usage) or conventional open field (OF) outcomes (distance,

speed, time, and location) obtained from the same videos (Fig-

ure S6). The genotype classifier using VAME outcomes had a

specificity (WT classified as WT) of 92.9% and a sensitivity

(AppNL-G-F classified as AppNL-G-F) of 83.3%, whereas the geno-

type classifier using conventional OF outcomes had much lower

specificity (50.0%) and sensitivity (77.8%) (Figure 5G). Similarly,

for all genotypes, VAME outcomes for the 5xFAD cohort also had

better sensitivity and specificity than conventional outcomes,

categorizing 100% of mice correctly (Figure 6F). Thus, VAME

analysis is more sensitive and specific than conventional out-

comes for AppNL-G-F and 5xFAD mice. Notably, only the VAME

outcomes differentiated 5xFAD-Fggg390–396A from control mice,

suggesting caution in interpreting therapeutic interventions in

mouse models, as conventional approaches may not fully cap-

ture remaining disease phenotypes in rescued mice. Finally, to

compare our VAME approach with keypoint-MoSeq,35 we per-

formed a side-by-side comparison using the same AppNL-G-F

andWT behavioral videos. Although VAME and keypoint-MoSeq

used two different algorithms to segment the behavior into mo-

tifs or syllables, both approaches identified behavioral alter-

ations in AppNL-G-F mice (Figure S7).

DISCUSSION

We studied spontaneous behavior in humanized AppNL-G-F and

5xFAD mice using the ML-based VAME segmentation platform

(https://github.com/EthoML/VAME).7 We found that AppNL-G-F

mice exhibit robust age-dependent impairments in spontaneous

behavior, including motif utilization, disorganized behavioral se-

quences, increased transitions, and randomness, indicating that

these behavioral alterations reflect disease progression. Sponta-

neous behavior was altered in both male and female AppNL-G-F

mice, but females were particularly vulnerable to changes in

motif usage, motif speed, and randomness of behavioral se-

quences. 5xFAD mice had more pronounced abnormalities

in spontaneous behavior than controls and AppNL-G-F mice,

indicating a gene-dose-dependent effect. Interestingly, both

AppNL-G-F and 5xFADmice displayed overlapping abnormalities,

including increased motif speed, a higher number of transitions,

and reduced motif dwell time. These results suggest that these

distinct mouse models share common mechanisms underlying

AD-related pathogenesis. These results also indicate that

AD-related spontaneous behavioral alterations do not require

APP overexpression and are likely linked to the pathologically

elevated levels of amyloid in AppNL-G-F mice.16,19 We also tested

the role of neuroinflammation in AD-related spontaneous behav-

ioral alterations by blocking fibrinogen-microglia interactions in

5xFAD-Fggg390–396A mice. Notably, the organization of sponta-

neous behavior was largely restored in 5xFAD-Fggg390–396A

(B) Leave-one-out log likelihood estimates of orders 0 and 1 for the Markov chain model of community transitions. AppNL-G-F mice, particularly females, had less

predictable behavior. p values were determined by two-way (genotype and sex) ANOVA.

(C and D) Cytoscape network visualization of the top 20%most probable motif transitions depicting topological proximity of associated motifs and communities

(color code) and significant alterations of motif use (circular borders) and motif transitions (arrows) in AppNL-G-F mice. AppNL-G-F mice had increased transitions

(red arrows) and reduced dwell time inmotifs (blue dashed arrows) (C).AppNL-G-Fmice systematically favored transitions from fast ambulatory to slow exploratory

communities (D).

(E) Transition difference matrix depicting the delta probability of transitions between AppNL-G-F and WT mice. Blue and red indicate reduced or increased

probability of transition, respectively, in AppNL-G-F mice relative to controls.

(F) Delta indices (AppNL-G-F WT mice) of motif transition probability, motif use, and motif speed. **p < 0.01, *p < 0.05 by t test.

(G) Classifier analyses (logistic regression) of ML outcomes (motif use) versus conventional open field (OF) outcomes (distance, speed, time, and location)

obtained from the same videos in AppNL-G-F mice. ML outcomes were more sensitive and specific than conventional outcomes. Values are mean ± SEM.
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mice, indicating that AD-related spontaneous behavioral

changes are sensitive to therapeutic interventions and driven

by neuroinflammation.

Spontaneous behavioral alterations and AD

pathogenesis

A major question is whether behavioral alterations in sponta-

neous behavior are mechanistically related to AD pathogenesis

and are therefore driven by the same biological pathways and

mechanisms of cognitive decline. Several observations suggest

that this is the case. First, AppNL-G-F and 5xFAD mice shared

behavioral alterations (e.g., increased motif speed, elevated

number of transitions, and reduced dwell time in motifs), sug-

gesting that these deficits are caused by common mechanisms

of disease pathogenesis, such as familial ADmutations or abnor-

mally high amyloid levels. It is worth noting that AppNL-G-F and

5xFAD mice, in addition to differing in being knockin and trans-

genic models, have distinct sets of familial AD mutations and

patterns of amyloid deposition.16,36,37 Second, spontaneous

behavioral abnormalities were age dependent and therefore

tracked the progression of AD-related pathological and cognitive

alterations.16,19,23 Third, and more importantly, spontaneous

A

B

C D

E

F

Figure 6. Pronounced 5xFAD-dependent alterations in spontaneous behavior are prevented by blocking fibrinogen-microglia interactions in

5xFAD-Fggg390–396A mice

Spontaneous behavior of 8- to 10-month-old 5xFADmice (n = 13; seven females and six males), 5xFAD-Fggg390–396Amice (n = 12; six females and six males), and

controls (n = 22; 10 females and 12 males) was recorded for 60 min in a circular open arena. The control group includedWT (n = 13; six females and seven males)

and Fggg390–396A (n = 9; four females and five males) mice, as their behavior did not differ (Figure S4A). See Figure S4B for sex effects.

(A) Motif use of 30 VAME-identified motifs for all mice. Relative to controls, 5xFAD mice displayed motif use alterations in 17 motifs (red asterisks). Relative to

5xFAD mice, 5xFAD-Fggg390–396A showed significant improvements in many motifs (blue asterisks). ***q < 0.001, **q < 0.01, *q < 0.05 by FDR-BH. F, female; M,

male.

(B) 5xFAD mice performed motifs at higher speeds, which was prevented in 5xFAD-Fggg390–396Amice. Genotype and motif effects were determined by two-way

ANOVA (p values).

(C) Motif transition subtraction matrix depicting the delta probability of transitions between 5xFAD and control mice. Blue and red indicate reduced or increased

probability of transition, respectively, in 5xFAD mice relative to controls.

(D) Delta indices of motif transition probability, motif use, and motif speed (n = 47 mice; 13 5xFAD, 12 5xFAD-Fggg390–396A, and 22 control mice). ***p < 0.001,

*p < 0.05 by one-way ANOVA and Bonferroni post hoc test for multiple comparisons.

(E) Time inmotif (seconds) by genotype for the eight 5xFAD-affected motifs restored in 5xFAD-Fggg390–396Amice (A, q < 0.05 by FDR-HB). ***p < 0.001, **p < 0.01,

*p < 0.05 by one-way ANOVA and Bonferroni post hoc test for multiple comparisons.

(F) Classifier analyses (logistic regression) of ML outcomes (motif use) versus conventional OF outcomes (distance, speed, time, and location) obtained from the

same videos. ML outcomes were more sensitive and specific than conventional outcomes. Values are mean ± SEM.
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A

B

C D

Figure 7. Pronounced 5xFAD-dependent alterations in community usage andmotif transition networks are prevented in 5xFAD-Fggg390–396A

mice

(A) Hierarchical organization of motifs into communities based on motif transitions and motif use at the cohort level (n = 47 mice; 13 5xFAD, 12 5xFAD-

Fggg390–396A, and 22 control mice). Node size is proportional to motif use. Significant differences (indicated in red) between 5xFAD and control mice were

determined by FDR-BH for 30 motifs and nine communities.

(B) Time in motif (%) of a representative motif for each disease-affected community (A) during the 60 min of exploration in an open arena. 5xFAD mice exhibited

profound deficits, which were largely prevented in 5xFAD-Fggg390–396A mice. p values were determined by repeated one-way ANOVA with Bonferroni post hoc

test for multiple comparisons. Values are mean ± SEM.

(C) Hierarchical organization of motifs and mice based on motif use relative to sex-matched control littermates.

(D) Cytoscape was used to visualize the top 20% most probable motif transitions to depict topological proximity of associated motifs and

communities (color code) and significant alterations of motif use (borders) and motif transitions (arrows) for control versus 5xFAD mice (top) and control versus

5xFAD-Fggg390–396A mice (bottom).
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behavioral abnormalities in 5xFAD mice were prevented by an

AD-related therapeutic intervention, Fggg390–396A, that prevents

CD11b receptor-mediated interactions with microglia22,33 and

reduces AD-related pathogenesis, including amyloid burden,

dystrophic neurites, synaptic loss, microgliosis, and neuroin-

flammation.21,22,34 Thus, our findings suggest that abnormalities

in spontaneous behavior are mechanistically related to AD path-

ogenesis and may offer mechanistically relevant endpoints for

assessing AD-related pathways and therapeutic interventions

in mouse models.

Although we did not test other neurodegenerative models to

assess the disease selectivity of the motif abnormalities, we hy-

pothesize that the structure of spontaneous behavior (e.g., tran-

sition networks) will exhibit selective or even pathognomonic el-

ements for different disorders (e.g., AD versus Parkinson’s

disease models). Overall, unbiased and high-throughput ML ap-

proaches such as the one we used to assess spontaneous

behavior address a major unmet need in translational research

by identifying translationally relevant, functional outcome mea-

sures in AD preclinical models. The current approach does not

directly assess cognitive functions, but our findings suggest

that these outcomes capture key elements of AD pathogenesis,

such as inflammation, that could complement traditional task-

oriented behavioral approaches.

Behavioral or neuropsychiatric changes, such as depression,

agitation, anxiety, apathy, irritability, delusions, or sleep disrup-

tions, are often apparent years before cognitive decline or de-

mentia. These behavioral changes are associatedwith increased

risk of dementia and AD,13,14 suggesting that they contribute to

AD pathogenesis.13,14 ML approaches have been developed to

predict these behavioral abnormalities in AD patients by using

data on sleep patterns and physical activity collected by actigra-

phy from wearable devices.38 It is important to emphasize that

our results and conclusions apply solely to mouse models of

AD and that our ML pipeline currently has no clinical application.

However, ML approaches to assess spontaneous behavior in

humans, as we have done in mice, can provide early functional

outcomes for disease diagnosis and the assessment of treat-

ments and have the potential to reveal and quantify AD-related

behavioral manifestations that are otherwise difficult to observe.

Fibrinogen blockade protects from neurobehavioral

abnormalities

Our findings show that VAME is a high-throughput approach for

unbiased assessment of therapeutic interventions. In patients

and mouse models of AD, fibrinogen extravasates in the brain

at sites of impaired blood-brain barrier integrity and cerebrovas-

cular dysfunction, which are early features of AD pathogen-

esis.21,39–42 Fibrinogen is converted to fibrin, which is deposited

at sites of microglia activation in the AD brain. Fibrin is present at

increased levels in APOE4 AD patients, correlates with the

severity of cerebral amyloid angiopathy, and is detected in amy-

loid-related imaging abnormalities.32,43,44 The binding of Ab to

fibrinogen inhibits fibrin degradation, resulting in chronic fibrin

deposition in the AD brain.32 Biomarker studies further support

the notion that fibrinogen elevation in plasma and cerebrospinal

fluid is an early biomarker of dementia risk and is associated with

progression of cognitive decline in AD.39,45–48 Notably, we found

that genetic blockade of fibrinogen-microglia interactions in

5xFAD-Fggg390–396A mice reduced virtually all the motif usage

abnormalities found in 5xFAD mice. These findings, coupled

with the restoration of the impaired transition networks in

5xFAD-Fggg390–396A mice, suggest that fibrinogen is a key driver

of the disorganization of behavioral sequences in 5xFAD mice.

Our results are consistent with the reduced expression of neuro-

degenerative and oxidative stress genes in microglia and

protection against cognitive impairment in 5xFAD-Fggg390–396A

mice.21,22 Accordingly, a fibrin-targeting antibody that selec-

tively inhibits microglia activation without adverse anticoagulant

effects protects from neurodegeneration and suppresses AD-

related gene networks in 5xFAD mice.28,34 Fibrin-targeting

immunotherapy is currently in phase 1 clinical trials.49

ML approaches for behavioral segmentation

ML approaches for behavioral segmentation have the potential

to detect subtle or overlooked behavioral abnormalities linked

to early brain dysfunction. For example, MoSeq has uncovered

previously undetected patterns of spontaneous behavior asso-

ciated with epileptic activity, providing a behavioral biomarker

of brain dysfunction.9 MoSeq and VAME are based on unsuper-

vised dimensionality reduction methods, which analyze the

implicit structure and patterns of postural motion to identify

the most relevant features that capture the spatiotemporal

variability of the data to define brief stereotypical postural

units. MoSeq6 and keypoint-MoSeq35 use a statistical

framework known as autoregressive hidden Markov model

(AR-HMM),6,50,51 whereas VAME1,7 uses deep recurrent neural

networks and variational autoencoders, providing two well-es-

tablished complementary approaches.7,52,53 In a side-by-side

comparison of VAME and keypoint-MoSeq, these two ap-

proaches for behavioral segmentation differed in motif/syllable

distributions but both identified robust behavioral alterations in

AppNL-G-F mice.

VAME works with ventral imaging to assess the movement of

seven body parts (four paws, nose, center, and tail base) relative

to the mouse center (egocentric coordinates). Although VAME

segmentation does not incorporate additional variables such

as mouse speed, height, or location, motifs with ambulatory ki-

nematics (e.g., run or fast-explore) exhibited higher allocentric

speeds than stationary motifs (e.g., groom or sit). This finding

suggests that VAME segmentation and egocentric coordinates

reflect allocentric speeds. This property might be important

when assessing disease models that have locomotor abnormal-

ities, since adding speed into the neural network may bias motif

clustering toward differences in speeds among genotypes and

dilute other aspects of behavioral features.

Communities and transition networks for assessing

behavioral organization

Clustering motifs into communities provides a hierarchical orga-

nization of mouse behavior that incorporates the probability of

motif-motif transitions, thereby grouping motifs according to

the likelihood of sequential use rather than pose similarity. The

resulting communities represent cohesive postural sequences

of ethologically relevant behavior. Indeed, motifs in the same

communities responded to AppNL-G-F and 5xFAD in similar
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ways in both direction and magnitude, suggesting that commu-

nities cluster disease-relevant behaviors. The same commu-

nities were also apparent in the unsupervised layout of transition

networks, amethod that relies on the overall topological connec-

tivity among motifs and is not biased by prior community assign-

ments. By creating and calculating global delta indices (transi-

tions, usage, and speed indices), we found that transitions

were particularly sensitive to AppNL-G-F and 5xFAD, suggesting

that the core abnormality in AD models is the disorganization

of behavioral sequences rather than the total time spent in

each behavior. While sex and genotype interactions are difficult

to detect and assess with conventional behavioral tests, VAME

captured robust differences in the spontaneous behavior of

males and females, making it an ideal platform to assess sex-ge-

notype interactions.

Scalable and sensitive methods for assessing mouse

behavior

Scalable, sensitive, and unbiased methods for behavioral phe-

notyping are essential for basic and translational neuroscience

efforts aimed at phenotyping or assessing therapeutic interven-

tions in mouse models of neurodegenerative disease. The abil-

ity to scale ML approaches to large cohorts of mice also facil-

itates well-powered evaluation of treatment effectiveness

across sex and dosages. Moreover, when we assessed the

specificity and sensitivity of ML (motif usage) and conventional

behavior (distance, speed, and location) outcomes from the

same behavioral videos, the ML outcomes classified genotypes

and treatments with greater specificity and sensitivity. Remark-

ably, ML, but not conventional, outcomes distinguished

rescued 5xFAD-Fggg390–396A mice from controls, indicating

that conventional approaches lack sufficient sensitivity and

specificity to capture remaining disease phenotypes in rescued

mice, which may result in an overestimation of the beneficial ef-

fects of the intervention.

Limitations of the study

Our findings suggest that ML approaches to assess sponta-

neous behavior provide a direct, sensitive, and unbiased mea-

sure of brain dysfunction induced by AD-related mechanisms in

mouse models. A limitation of our study assessing sponta-

neous behavior is that specific behavioral domains (e.g., cogni-

tive functions) and functional brain topology were not explicitly

assessed. Thus, future studies will be needed to mechanisti-

cally determine the contribution of distinct behavioral domains,

neural systems, or brain regions to the identified spontaneous

behavioral changes. For example, our ML approach may be

directly applied to study spontaneous behavior during learning

and memory tasks. Another limitation of the study is that it does

not resolve whether impairments of spontaneous behavior are

driven by biological pathways and mechanisms of cognitive

decline. It remains to be determined whether some of these

outcomes could represent biomarkers of cognitive dysfunction.

Despite these unresolved questions, we speculate that unbi-

ased ML approaches will improve translatability of preclinical

testing by providing rigorous quantification of disease-induced

behavioral alterations to assess the construct and predictive

validity of mouse models of neurodegenerative diseases.
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice

AppNL�G-F mice were obtained from Drs. Takaomi Saido and Takashi Saito (RIKEN Brain Science Institute, Japan).15 We studied

male and female homozygous AppNL�G-F/NL�G-F mice expressing humanized Ab and the familial Alzheimer’s disease (FAD) Swedish

(K670N, M671L), Artic (E693G), and Iberian (717, I) mutations on the C57BL/6J background.15 To obtain wildtype (WT) littermate

controls, we crossed heterozygous AppNL�G-F/+ mice to produce homozygous AppNL�G-F/NL�G-F mice and App+/+ (WT) littermate

controls of both sexes. Homozygous AppNL�G-F/NL�G-F mice are referred to as AppNL�G-F mice. Heterozygous AppNL�G-F/+ mice

were not studied.

5xFAD mice were from The Jackson Laboratory (Jax 0087030).37 We studied male and female heterozygous 5xFAD mice

overexpressing both human amyloid beta precursor protein (APP) with the Swedish (K670N, M671L), Florida (I716V), and London

(V717I) FAD mutations and human presenilin 1 (PS1) with the M146L and L286V FAD mutations on the C57BL/6J background.37

Fggg390–396A mice were from Dr. Jay Degen (University of Cincinnati, OH, USA) and bred in the Akassoglou Lab.54 Heterozygous

5xFAD mice were crossed with wildtype (WT) mice to produce heterozygous 5xFAD and WT mice on the C57BL/6J background. Ho-

mozygous Fggg390–396A/g390–396A mice were crossed with 5xFAD-Fggg390–396A/g390–396A mice to produce 5xFAD-Fggg390–396A/g390–396A

and Fggg390–396A/g390–396A mice. Homozygous Fggg390–396A/g390–396A mice are referred to as Fggg390–396A mice. Experimental mice of

the same sex were group-housed with access to water and food ad libitum in a controlled environment with a 12-h light-dark cycle.

Mouse cohorts and experimental groups

YoungAppNL�G-F cohort: 5–6-month-oldAppNL�G-Fmice (n = 13; 7 females and 6males; mean age, 6.17 ± 0.62 [SD]months) andWT

littermate controls (n = 11; 8 females and 3 males; 5.98 ± 0.75 months). Middle-age AppNL�G-F cohort: 11–15-month-old AppNL�G-F

mice (n = 18; 8 females and 10males; mean age, 13.25 ± 1.59 [SD] months) andWT littermate controls (n = 14; 8 females and 6males;

13.27 ± 1.40 months). Young and middle-age AppNL�G-F cohorts were behaviorally tested in an open arena to assess spontaneous

behavior. To assess spatial learning and memory, advanced-age 19–25-month-old AppNL�G-F mice (n = 17; 9 females and 8 males;

mean age 21.88 ± 2.18 months) andWT littermate controls (n = 22; 12 females and 10males; 22.42 ± 1.98 months) were tested in the

Morris water maze. These three cohorts are referred to as 6-, 13- and 22-month-old AppNL�G-F mice, respectively. To assess spon-

taneous behaviors in the 5xFAD-Fggg390–396A mice, 8–10-month-old 5xFAD mice (n = 13; 7 females and 6 males; mean age, 8.78 ±

0.89months), 5xFAD-Fggg390–396Amice (n = 12; 6 females and 6males; 9.06 ± 0.85months), Fggg390–396Amice (n = 9; 4 females and 5

males; 9.32 ± 0.82 months), and WT mice (n = 13; 6 females and 7 males; 9.14 ± 1.01 months) were behaviorally tested in an open

arena. Because there were no significant differences in motif usage between Fggg390–396A and WT mice (Figure S4A), these two

groups of mice were combined and treated as control group. This cohort is referred to as the 9-month-old 5xFAD-Fggg390–396Amice.

Behavioral experiments were performed in sex-balanced time blocks (morning and afternoon) by investigators who were unaware

of the genotype of the mice. Sex effects are reported in the manuscript. All mice were bred and housed at the Gladstone Institutes

vivarium, a UCSF AAALAC-approved facility. All mouse experiments were approved by the Institutional Animal Care and Use Com-

mittee of the University of California, San Francisco, and were conducted in accordance with the NIH guidelines for the care and use

of laboratory animals.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Amyloid b (N) (82E1) Anti-Human Biotin IBL RRID: AB_10705565

Iba1 Wako RRID: AB_839504

Experimental models: Organisms/strains

AppNL�G-F: C57BL/6-App<tm3(NL-G-F)Tcs> RIKEN; Dr. Saido RRID:IMSR_RBRC0634415

5XFAD: B6.Cg-Tg (APPSwFlLon, PSEN1*M146L*L286V)6799Vas/Mmjax Jackson Laboratory; RRID:MMRRC_034848-JAX37

B6.Fggg390–396A Dr. Jay Degen (University

Of Cincinnati, Cincinnati,

OH, USA)
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METHOD DETAILS

Behavioral experiments

Spontaneous behavior in an open arena

Mice were handled and habituated to the chamber and experimenter before testing. Naturalistic behavior was recorded in an acrylic

cylindrical chamber (12 inches in diameter and 14 inches high) for 25 (AppNL�G-F cohort) or 60 (5xFAD-Fggg390–396A cohort) minutes

during the day, avoiding the first and last 2 h of the lights-on period. Male or female mice were tested in alternating blocks to ensure

balanced experimental groups throughout the day. The chambers were cleaned with 70% ethanol between trials.

Morris water maze

Twenty-two-month-old AppNL�G-Fmice (n = 17; 9 females and 8 males) andWT littermate controls (n = 22; 12 females and 10 males)

were tested in the Morris water maze. As previously described,27 the water maze pool (122 cm diameter) contained opaque white

water with a 14-cm2 platform submerged 1 cm below the surface. Distinct visual cues were placed on the four walls surrounding

the maze. For the hidden platform training, mice were trained to locate the hidden platform over 10 sessions (two sessions per

day, 3–4 h apart), each with two trials (60 s each, 15 min apart). The platform location remained constant, and entry points were

changed semi-randomly between trials. A 24-hour-probe trial of 60 s (platform removed) was performed after the last day of hidden

platform training. For the visible platform test, mice were trained to locate a platform marked with a visual cue (black and green pole;

2 3 15 cm) on top of the platform over 3 sessions (each consisting of two trials, 15 min apart). The visible platform was in the same

location used in hidden platform training. Latency, speed, and distance were monitored with an EthoVisionXT video-tracking system

(Noldus Information Technology). Three AppNL�G-F mice were excluded from analysis because they failed to locate the visible plat-

form and had combined latencies and distances for the visible training 3 SD above the mean of WT mice.

Videography for machine-learning analysis

Mice exploring an open circular chamber were recorded from below in RBG color (AppNL�G-F cohort) or monochrome

(5xFAD-Fggg390–396A cohort) video at 25 frames per second with a 1.3 MP GigE camera (acA1300-60gc; Basler) and a varifocal

lens (4.5–12.5 mm; Computar) using EthoVisionXT (Noldus Information Technology). Four adjustable light bricks (Panel Go; Lume

Cube) lit the chambers from below for homogeneous illumination of the paws and other body features. Videos were converted

from mpg to mp4 format before machine-learning analysis.

Pose estimation

To capture mouse postural movement, we used DeepLabCut (DLC, version 2.1.8.2),2 a supervised deep-learning tool which tracks

animal posture by using deep convolutional neural networks pretrained on ImageNet.55 To create supervised annotations for the

AppNL�G-F cohort, 10 frames were extracted from each of the 32 videos, and 9 body parts (nose, paws, center, tail base, mid-tail,

tail tip) were manually labeled in each extracted frame. The network (ResNet-50) was trained up to 106 iterations until the error

converged (train error: 1.01 pixels, 0.75 mm; test error: 5.02 pixels, 3.73 mm) and precise virtual skeletons were estimated for all

mice. Supervised annotations for the 47 videos of the 5xFAD-Fggg390–396A cohort were created by using the same approach, with

20 frames from 13 representative videos labeled manually (106 iterations; train error: 1.44 pixels, 1.06 mm; test error: 5.30 pixels,

3.94 mm). Google Colaboratory (Colab Pro GPU) was used for DLC network training, video analysis, and labeled video creation.

DLC pose-tracking results were exported to CSV files for further analysis.

Behavioral segmentation and sequencing

To study behavioral manifestations in AD mouse models, we further developed our unsupervised behavioral segmentation and

sequencing tool, Variational Animal Motion Embedding (VAME).7 We used this tool to identify multidimensional clusters of postural

motions (motifs) from egocentric spatiotemporal coordinates derived from DeepLabCut pose estimation, thereby permitting calcu-

lation of kinematic variables to precisely identify cohesive ethologically-relevant behaviors. For the AppNL�G-F cohort, custom

MATLAB code (version 2021b; MathWorks) was used to align mouse coordinates along the midline for every frame. The midline

was defined as a vector from the mouse center to the tail-base and the center of the mouse was defined as the origin (0,0). For

the 5xFAD-Fggg390–396A cohort, pose data was egocentrically aligned using the VAME alignment module using the nose-tailbase

axis.7 In both cohorts, mid-tail and tail tip coordinates were not included in the VAME training data, as these body parts reflect a

time-lagged version of mouse motion. The remaining seven egocentrically-aligned coordinates and associated DLC confidence

values for each cohort were used to train separate VAME networks until the test-training loss had converged. We used the standard

RNN network as defined as default configuration in the original publication7 with the default number of latent features (zdims in the

config.yaml = 30), time window size in seconds (time_window in config.yaml = 16 frames or 0.64 s), and number of motif clusters

(n_clusters in the config.yaml = 30). Latent information (30 z-dimensions) was used to identify 30 k-means- or HMM-clustered motifs

in the training data, and each frame was assigned a motif within a sliding time window of 16 frames (±320 ms). Because k-means

demonstrated higher probability of correct genotype classification using logistic regression compared to HMM (93.8% vs. 90.6%)

(Figure S1A), k-means was chosen to identify motifs. DeepLabCut-labeled motif videos and community videos were generated

for visual inspection of VAME-identified postural motions. VAME outputs associated with AppNL�G-F mice were exported to
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MATLAB and a Jupyter notebook for post-processing. VAME outputs associated with 5xFAD-Fggg390–396A mice were exported to a

separate Google Colab notebook for post-processing (see Code Availability for download link).

An independent VAME model was created for each of the two cohorts, to maximize detection of disease-associated alterations

observed within these distinct AD mouse models. Therefore, motifs and communities expressed by the respective control/WT an-

imals differ across the two VAME models.

Uniform manifold approximation (UMAP)

We used the UMAP dimensionality reduction approach (umap-learn Python package) to visualize the topology of latent vectors pro-

duced by ethoML for AppNL�G-Fmice. A random sample of 10,000 frames was selected from the full cohort and segmented into cor-

responding genotype and sex groups to generate comparison manifolds (male vs. female and AppNL�G-F vs. WT), as well as a UMAP

manifold of the respective 30 motifs identified by ethoML for each cohort.

Motif and community usage

Motif and community use were defined as the total number of frames or seconds a mouse performed a given motif or community

during the naturalistic behavior assay. ForAppNL�G-Fmice, differences inmotif use between genotypes relative toWTwere assessed

in sex-matched normalized data by false discovery rate with Benjamini-Hochberg test for multiple comparisons as described.56 Sig-

nificant App-affected motifs (q < 0.05) were analyzed by two-way ANOVA to assess genotype and sex interactions. Changes in motif

and community use over time were assessed by repeated measures one-way ANOVA in 5-min bins. The 5xFAD-Fggg390–396A cohort

was analyzed in the samemanner. 5xFAD-affected motifs restored in 5xFAD-Fggg390–396Amice (q < 0.05) were analyzed by one-way

ANOVA and Bonferroni post hoc test for multiple comparisons.

Motif usage correlation cluster analyses

Correlation cluster analyses were performed on a matrix of motif usages for all mice in a given cohort in order to group motifs that

were used to a similar extent, and to rank mice according to their motif usage patterns. We first calculated the Pearson’s correlation

between pairs of columns containing each subject’s motif usage relative to the average total usage of that motif by sex-matched

control mice, then subtracted each element of the resultant correlation matrix from 1 to obtain the dissimilarity matrix. The linkage()

and dendrogram() MATLAB functions were used to obtain and visualize a hierarchical cluster tree that grouped motifs with similar

usage patterns across mice. Correlations betweenmice with similar motif usage patterns were found according to the samemethod.

By applying this clustering approach to both dimensions of the motif usage matrix, both motifs and mice with similar motif usage

patterns were grouped and ordered according to the out permutation order of the dendrogram() function.

Motif transition matrix

To create the motif transition matrix at the cohort level, we created a 2D histogram of motif-motif transitions observed over all trials.

To focus on transitions from one motif to another, the diagonal was set to zero, and each row was normalized to the total number of

times a mouse transitioned out of that motif. The resulting asymmetric transition matrix, T, was used to determine the motif transition

alteration index (TAI) and was used as an input to the hierarchical community dendrogram function.

Hierarchical community dendrogram

A hierarchical motif-community dendrogram at the cohort level was generated in a Jupyter notebook with the NetworkX Python

library. Using the transition probability matrix and motif usage for the full cohort, we implemented a cost function (Equation 1) to

iteratively merge clustered nodes with higher transition probabilities relative to each other.

cost = min

�

usagei +
usagej

probi;j+probj;i

�

: (Equation 1)

To identify behavioral communities of associated motifs, we inspected kinematic and speed trends for each motif according to

dendrogram-order. For the AppNL�G-F cohort, communities (A–H) were identified by segmenting the dendrogram at height = 3. Com-

munity A had distinct kinematics and genotype effects within the branched clusters and was therefore further segmented into 4 com-

munities (Figures 4A, 4C and S2). For the 5xFAD-Fggg390–396A cohort, communities (A–H) were similarly identified by segmenting at

height = 3. Community B had distinct kinematics and genotype effects within the branched clusters and was therefore further

segmented into three communities. Communities A and BI had similar kinematics and together constituted the Groom-up commu-

nity. Within community BIII, motifs 1, 0, and 21 were associated with rearing, whereas motifs 11, 6, and 28 were associated with rapid

ambulatory wall approach and rear initiation (Figure S5). These two sets of motifs were differentially color-coded and respectively

grouped into the BII/BIII Rear community and the BIII Walk-up community.

Transition network analyses and visualization

Transition probabilities between motifs revealed important information about the organization of behavior in healthy and disease-

model mice. We used Cytoscape for network visualization of motif transition trends for AppNL�G-F mice. Node size represents the
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non-normalized time in a motif across all mice. Directional edges show the highest 20% of transitions; edge width is proportional to

transition probability. Significant differences between genotypes (AppNL�G-F vs. WT) are indicated at the node level with red borders

(solid, overexpressed; dashed, underexpressed) and at the transition level with edge color (solid red, overexpressed; dashed blue,

underexpressed). To identify disease-associated alterations in sequential motif transitions, we used a discreet Markov Chain model

to identify altered ‘‘self-edges’’ (i.e., probability of staying in a given state).

edge weight =
transitionsi;j

usagei

This definition satisfies a property of the transition probability matrix such that the sum of transition probabilities out of motif i is

equal to 1. It also allows for estimates of the probability that the mouse will return to the same motif. For example, once the mouse

starts exhibiting a motif that could be called an ‘‘absorbing’’ state, it would continue to do so for the rest of the observation period; in

this case, the transition probability of returning to this motif would be exactly 1.

5xFAD and 5xFAD-Fggg390–396A mice were analyzed in a similar manner. We found the union of the set of transitions was

significantly affected by 5xFAD-affected motifs and significantly restored in 5xFAD-Fggg390–396A mice. We then used Cytoscape

to visualize the highest 20% of transitions in the case of control mice vs. 5xFAD mice (Figure 7D, top), and control mice vs.

5xFAD-Fggg390–396A mice (Figure 7D, bottom).

For the transition network statistics, we used the false discovery rate with Benjamin-Hochberg multiple testing adjustment. To es-

timate the change in the log odds (or the log odds ratio) between the two genotypes of transitioning from motif i to motif j, we used

the generalized linear mixed effects model (implemented in the glmer function, with family argument set to binomial, in the lme4

package in R) with a random effect for each mouse.

Evaluation of order of Markov chain models and pseudo Bayes factors

Order of Markov chain models

ForAppNL�G-Fmice, we defined 11 communities (AI, AII, AIII, AIV, B, C, D, E, F, G, and H) for each frame over the 25-min period of open

arena exploration (see community glossary below) and fit Markov chain models of different orders (0, 1, 2, and 3)30 to determine

whether behavior exhibited in the recent past could predict future behavior. We evaluated these models in the context where time

was discretized in consecutive 640 ms intervals.

The models were evaluated using a Leave-One-Out Cross Validation (LOOCV) framework to prevent overfitting. The LOOCV

framework was implemented separately for WT and AppNL�G-F mice. The parameters (probability or transition probabilities) of the

different models were estimated using the observations from all but onemouse and the log likelihood of the sequence of communities

exhibited by the held-out mouse was evaluated by using the fitted parameters.

For the order 0 model, the probability of the ith mouse exhibiting community c at any observed 640-ms interval is estimated as

pi
c =

Ni
c

N

where N denotes the total number of 640 ms intervals over the period of observation and Ni
c denotes the number of intervals where

the ith mouse displayed community c. This estimate for all mice but the ith mouse, pi0

c, is given by the sample mean of the probability

estimates in these mice:

pi0

c =

P

M

j = 1;jsi

pj
c

M � 1

whereM is the number ofmice in the group. The leave-one-out log likelihood estimate of the order 0model for the observed sequence

of communities in the ith mouse is then given by

L
i
0 =

X

11

c = 1

Ni
c:log

�

pi0

c

�

Transition probabilities underlie the models of order greater than 0. Let s denote a state in these models. The communities them-

selves would be the states for the order 1 model, ordered pairs of communities would encode states for the order 2 model, and or-

dered triplets of communities would encode states for the order 3 model. The estimate of the transition probability from state s to

community c for the ith mouse, qi
sc is given by

qi
sc =

Ni
sc

Ni
s
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where Ni
s denotes the number of 640 ms intervals mouse i spent in state s. Ni

sc denotes the number of times mouse i transitions to

community c from state s. This estimate for all but the ith mouse, qi0

sc, is similarly estimated by the sample mean. The leave-one-out

log likelihood estimate of the order k (k > 0) model for the observed sequence of communities in the ith mouse is then given by

L
i
k =

X

Sk

s = 1

X

11

c = 1

Ni
sc:log

�

qi0

sc

�

Pseudo Bayes factors. The estimate of the log of pseudo Bayes factors57 for the Markov chain model comparison between order k

and order l is

logPBFkl =

X

M

i = 1

�

L
i
k � L

i
l

�

Delta indices for motif transitions, motif use, and motif speed

To compare the impact of disease and therapeutic interventions on ML behavioral measures at the individual and group levels, we

created a set of three summary measures (delta indices) that quantify the magnitude of behavioral changes. For visual comparison

across the three delta index types in Figures 5F and 6D, individual subject index scores were normalized to the control group’s mean

index value for that index type.

The Transition Delta Index (TDI) is a summary measure that quantifies how the motif transition probability matrix differs as a func-

tion of genotype group membership. Mathematically, the TDI is the grand sum of the matrix depicting the absolute difference

between the transition probability matrix of the ith subject of a particular group and the transition probability matrix of the baseline

control group averageC (Figures 5E and 6C). The TDI is normalized by the inverse of number of possible transitions betweenmmotifs

(m2) to ensure invariance to the number of motifs identified in a given experiment.

The TDI can be formulated by the given expression below,

TDI =
X

m

jTi � T
C
j

m2

where,

m is the number of motifs,

Ti denotes the transition probability matrix of the ith subject of genotype group, and

T
C
denotes the group-average transition probability matrix of the appropriate baseline control group.

The Use Delta Index (UDI) is a summary measure that quantifies how the motif usages are altered across genotype. Mathemati-

cally, it is the grand sum of thematrix depicting absolute difference between an array consisting of themotif usages (in percent) of the

ith subject of a particular genotype and the mean motif usage (in percent) across all motifs for all subjects in the Control group C. This

grand sum is further normalized with respect to the total number of motifs identified in a given experiment.

The UDI can be formulated by the given expression below,

UDI =
X

m

jUi � U
C
j

m

where, m is the number of motifs

Ui denotes the of the ith subject of the genotype group

U
C
denotes the mean motif usage across all motifs for all subjects in the control group.

The Speed Delta Index (SDI) is a summary measure that quantifies how the motif speeds are altered across genotype. Mathemat-

ically, it is the grand sum of arrays depicting the absolute difference between an array consisting of the motif speeds of the ith subject

of a particular genotype and the mean motif speed across all motifs for all subjects in the control group. This grand sum is further

normalized with respect to the total number of motifs identified in the given experiment.

The SDI can be formulated by the given expression below,

SDI =
X

m

jSi � S
C
j

m

Where

m is the number of motifs

Si denotes the motif speed array of the ith subject of the genotype group, and

S
C
denotes the mean motif speed across all motifs for all subjects in the Control group.
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Keypoint-MoSeq

To compare VAMEwith alternative behavioral sequencing platforms, a separate analysis for themiddle-age 13-month-oldAppNL�G-F

mice was conducted on the same videos at the University of Alabama at Birmingham in the laboratory of Dr. Erik Robeson, employing

keypoint-MoSeq for the independent identification of pose trajectories (i.e., syllables). The pose trajectories were derived from

egocentric coordinates obtained through the DeepLabCut pose estimation, which was previously examined using VAME, as detailed

earlier. Adhering to the established procedures outlined in the keypoint-MoSeq repository (https://github.com/dattalab/keypoint-

moseq/), we executed the standard workflow to predict syllables for each video frame. The supercomputing cluster at the University

of Alabama at Birmingham (A100 GPUs) was used for keypoint-MoSeq training and analysis.

For egocentric alignment, the anterior reference point was determined using the nose, while the posterior reference point was iden-

tified as the base of the tail. A hyperparameter, kappa, was configured at a value of 10000 to ensure a comparable syllable length to

the output generated by VAME. Notably, during the analysis, themiddle of the tail and the tail tip were excluded fromboth training and

subsequent analysis.

To create a model in keypoint-MoSeq, pose trajectories were derived from a Principal Component Analysis (PCA) of the egocen-

trically-aligned key point time series extracted from DeepLabCut. Subsequently, an autoregressive hiddenMarkov model (AR-HMM)

was fitted to the pose trajectory data over 50 iterations. Finally, a complete keypoint-MoSeq model was created using the provided

documentation and trained for 500 iterations. Keypoint-MoSeq outputs including individual trial data, cumulative data frames, and

statistical summaries were sent to Gladstone for statistical analysis.

For the side-by-side comparison between VAME and keypoint-MoSeq, we created independent models. Thus, the motifs in

Figure S7 are different from those in the rest of the manuscript.

Community glossary

The VAMEprobabilistic algorithm assigned amotif to each frame by determining themotif with the dominant likelihood given the eight

previous and following frames. We therefore note that VAME community videos contain some flexibility in behavioral expression.

Glossary definitions represent the most dominant behavior and were determined by observing community videos and kinematics

(Figure S2), which reveal ethologically-relevant behaviors not obvious to human observers. For AppNL�G-F mice, we defined the

11 identified communities as described below:

AI, Groom. Grooming behavior. Mouse is stationary, sometimes sitting back on its hind legs, and bends neck down then rapidly

moves paws over ears and nose with head movement toward the mouse’s right (Video S1).

AII, Rear: Rearing behavior. Fully extended rearing posture, supported against the chamber wall with head movement to the

mouse’s left (Video S2).

AIII, Rear: Rearing behavior. Supported rearing against the chamber wall with body curvature to the mouse’s right (Video S2).

AIV, Rear: Rearing behavior. Partially to fully extended rearing posture, not supported by the chamber wall. Motifs observed show

the initiation of an unsupported rear and subsequent extension to a full rear (Video S2).

B, Walk: Slow locomotor ambulation behavior. Walks across the center of the chamber or circles the chamber perimeter. Motifs

observed demonstrate the initiation of slow movement with the head extending outward in no particularly consistent direction

(Video S3).

C, Run: Fast locomotor ambulation behavior. Motifs observed show rapid movement along the arena perimeter (Video S4).

D,Walk-up: Exploratory behavior. Slowly taking a few steps forward and sniffing, often with one or two lifted front paws and a slight

raise of the torso and head (Video S5).

E, Fast-explore: Exploratory behavior. Moving forward with side-to-side sweeping of the head, neck angled up. Motifs observed

demonstrate return from a raised posture and rapid forward ambulation (Video S6).

F, Slow-explore: Exploratory behavior. Slow forward movement interrupted by pauses, sniffing upwards, and neck extensions

(Video S7).

G, Sit-down: Sitting on rump with rounded back, with side-to-side nose movement and forward head extension (Video S8).

H, Sit-up: Sitting back on hindlimbs (hindlimbs vertically aligned with center) and resting without full extension into an unsupported

rear (Video S9).

Histology and immunohistochemistry

AppNL�G-F mice were anesthetized and transcardially flush-perfused with 0.1 M phosphate buffer (PB), and brains were extracted

and drop-fixed in 4% phosphate-buffered paraformaldehyde at 4�C for 48 h. After rinsing with PB saline (PBS), brains were trans-

ferred to 30% sucrose in PBS at 4�C for 24 h and coronally sectioned with a sliding microtome. Ten subseries of floating sections

(30 mm) were collected per mouse and kept at �20�C in cryoprotectant medium until use. Each subseries contained sections

throughout the rostrocaudal extent of the forebrain. Brain sections were washed 3 times for 10 min with PBS to remove cryoprotec-

tant medium and once with 0.5% Triton X-100 (PBTx) to permeabilize the tissue. Endogenous peroxidases were blocked with a

15-min incubation with 3% hydrogen peroxide and 10% methanol in PBS. Sections were subsequently washed three times for

10 min each in PBSTx. Nonspecific binding was blocked with a blocking solution containing 10% normal donkey serum (Jackson

ImmunoResearch, 017-000-121) and 0.2% gelatin (Sigma-Aldrich, G2500) in PBSTx for 1 h. Brain sections were incubated

overnight with biotinylated 82E1 mouse anti-Ab antibody (IBL, 10326) at 1:250 dilution for staining or rabbit anti-Iba1 antibody
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(Wako, 019–19741) in 3% normal donkey serum 0.2% gelatin and PBSTx at 4�C. For anti-Iba1 staining, after washes, brain sections

were incubated with biotinylated donkey anti-mouse antibody (Jackson Labs) at 1:500 dilution for 2.5 h at room temperature. Un-

bound detection antibodies were removed with three washes of 10 min with 0.5% PBSTx and one wash with PBS for 10 min.

Iba1 and 82E1 stainings were developed with an avidin-biotin complex (ABC) kit (Vector Laboratories, PK-6100) according to manu-

facture protocol and sections were incubated for 1 h at room temperature. Brain sections were subsequently washed three times for

10 min each with PBS at room temperature and incubated with diaminobenzidine (DAB; Vector Labs) for colorimetric development.

Sections were then washed three times for 10 min each with PBS and mounted in 1.2% gelatin in H2O and allowed to dry. After two

5-min washes in xylene, brain sections were permanently mounted on slides and coverslipped for analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis

Statistical analyses and graphs were done with SPSS (28.0.1.1), MATLAB (2018b), or Prism 10. Statistical tests and p or q values are

indicated in the figure or figure legends. Briefly, false discovery rate (FDR) with Benjamin-Hochberg correction for multiple compar-

isons (q values) was used to assess genotype effect on motif or community usage or speeds among all motifs and communities. two-

way ANOVA was used to assess sex, genotype, and sex–genotype interaction effects on motif use and log likelihood estimates.

Repeated one-way ANOVA was used to assess genotype effects on motif use changes over time. Pseudo Bayes factors was

used to assess Markov chain model comparisons of orders and experimental groups. N represents number of mice or frames

and is indicated in the figure or figure legends. Values are mean ± SEM. Numbers of males and females per experimental group

are indicated in figure legends and text. Null hypotheses were rejected by double-tailed tests with an alpha value of 0.05.

Probability of transitions between motifs for the motif transition networks were calculated by a generalized linear mixed-effects

model (GLMM) to model the disease-associated differences in the rate of transitions between every pair of identified motifs in the

AppNL�G-F and 5xFAD cohorts. Specifically, two numbers representing the number of frames showing a transition from the first motif

to the secondmotif in the evaluated pair of motifs and the total number of frames spent in the first motif (in the pair) were recorded for

each mouse in the two cohorts. For the AppNL�G-F cohort, this pair of numbers was modeled by using a GLMM assuming a binomial

probability error distribution with a random effect for each mouse and a fixed effect capturing the log odds ratio representing the

differences in log odds of transitioning between the first and second motifs for the AppNL�G-F mice versus the WT mice. The

control mice in the 5xFAD cohort included both WT and Fggg390–396A mice. Since their motif usage did not differ (Figure S4A),

these two groups were combined into a single control group. The random effects for the GLMM included an animal model (control,

Fggg390–396A, and 5xFAD-Fggg390–396A) effect, a separate mouse-specific effect sampled hierarchically within the animal model, and

a fixed effect capturing the disease-specific log odds ratio. The GLMM was implemented by using the glmer function in the lme458

package in R.59

We performed a binomial (WT vs. AppNL�G-F) or multinomial (control, Fggg390–396A, and 5xFAD-Fggg390–396A) logistic regression

classifier analyses to assess the sensitivity and specificity of VAME outcomes (motif use of the 30 motifs; Figures S6G and S6M)

and conventional behavioral outcomes in the open field (23 variables including speed, distance, duration in the different arenas;

Figures S6A–S6E and S6H–S6L). We used forward stepwise conditional method for variable entry and removal (<0.05) for all mice

(no held out group was tested). For WT vs. AppNL�G-F: ML outcomes the model included constant and motifs 6 and 28 (entry order)

(correct classification: WT = 92.9% and AppNL�G-F = 83.3%; AIC = 24.652); conventional behavior outcomes model included

middle inactive (correct classification: WT = 50.0% and AppNL�G-F = 77.8%; AIC = 37.052). For control, Fggg390–396A, and 5xFAD-

Fggg390–396A: ML outcomes the model included intercept and motifs 2, 28, 22, 4, and 11 (entry order) (correct classification: control =

100%, Fggg390–396A = 100%, and 5xFAD-Fggg390–396A = 100%; AIC = 24.002); conventional behavior outcomesmodel included inter-

cept andmiddle distance, wall speed, and center inactive (entry order) (correct classification: control = 90.9%, Fggg390–396A = 69.2%,

and 5xFAD-Fggg390–396A = 50.0%; AIC = 70.857). For HMM and k-means, HMM model included constant and motifs 9, 25, and 10

(entry order) (correct classification: WT = 92.9% and AppNL�G-F = 88.9%; overall, 90.6%; AIC = 20.029); k-means model included

constant andmotifs 17 and 7 (entry order) (correct classification: WT = 94.4% andAppNL�G-F = 92.8%; overall, 93.8%; AIC = 34.749).
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