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Abstract

Summary: Amino acid scales are crucial for sequence-based protein prediction tasks, yet no gold standard scale set or simple scale selection 
methods exist. We developed AAclust, a wrapper for clustering models that require a pre-defined number of clusters k, such as k-means. 
AAclust obtains redundancy-reduced scale sets by clustering and selecting one representative scale per cluster, where k can either be 
optimized by AAclust or defined by the user. The utility of AAclust scale selections was assessed by applying machine learning models to 24 
protein benchmark datasets. We found that top-performing scale sets were different for each benchmark dataset and significantly 
outperformed scale sets used in previous studies. Noteworthy is the strong dependence of the model performance on the scale set size. 
AAclust enables a systematic optimization of scale-based feature engineering in machine learning applications.

Availability and implementation: The AAclust algorithm is part of AAanalysis, a Python-based framework for interpretable sequence-based pro-
tein prediction, which is documented and accessible at https://aaanalysis.readthedocs.io/en/latest and https://github.com/breimanntools/aaanalysis.

1 Introduction

Starting with the influential works of Sneath (1966), Bigelow 
(1967), Zimmerman et al. (1968) in the 1960s, amino acids 
have been described by numerical indices or scales reflecting 
their physicochemical properties, such as volume, polarity, or 
charge. The AAindex database (Kawashima et al. 2008) cur-
rently contains 566 experimentally measured or computa-
tionally derived indices published in 149 studies over six 
decades. Since the first version of AAindex in 1988 (Nakai 
et al. 1988), this database has been a valuable source for gen-
eral protein bioinformatic tools based on biophysical proper-
ties, such as the ExPASy server (Gasteiger et al. 2005), and 
for scale-based feature engineering in machine learning (Chen 
et al. 2018, Liu et al. 2019, Chen et al. 2021). However, the 
AAindex database is highly redundant—e.g., over 120 scales 
are dedicated to polarity and -helix propensity. While sub-
sets of AAindex (Gasteiger et al. 2005, Chen et al. 2018, Liu 
et al. 2019, Chen et al. 2021) are commonly used in 
sequence-based machine learning applications, typically se-
lected based on heuristic criteria, a universally accepted 
“gold-standard” scale set has so far been lacking.

Redundancy increases the data dimensionality, leading po-
tentially to a bias toward repetitive information and overfit-
ting in machine learning applications (Pudjihartono et al. 
2022). Reducing such redundancies can improve the efficiency 
and performance of algorithms, while also enhancing their 
general interpretability (Ding and Peng 2005). Redundancy 

reduction is a common step in a variety of bioinformatics 
applications, such as summarizing gene ontology (Ashburner 
et al. 2000) term lists (e.g., via REVIGO (Supek et al. 2011)), 
or creating redundancy-reduced protein sequence sets (e.g., via 
CD-HIT (Fu et al. 2012)). These methods are designed to 
cluster data based on similarity measures, such as semantic or 
sequence similarity, and then select a single representative per 
cluster. In this vein, we introduce AAclust, a clustering frame-
work leveraging Pearson correlation as a similarity measure to 
select redundancy-reduced amino acid scale sets. Using 
machine learning models, we assessed the performance of 
AAclust scale selections against “gold standard,” randomly 
selected, and principal component (PC)-based scales.

2 Material and methods

2.1 Dataset collation
2.1.1 Amino acid scales

We assembled a set of 586 amino acid scales (SCALES, 
Supplementary Table S1) by first obtaining 553 scales from 
AAindex that do not contain missing values. We included 21 
further scales regarding accessible surface area from Lins 
et al. (2003) and 12 hydrophobicity scales from Koehler et al. 
(2009) because of their relevance for protein folding 
(Savojardo et al. 2021) and backbone dynamics (Quint et al. 
2010). Each scale was min–max normalized to the range of 
[0, 1].
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2.1.2 Scale sets for benchmarking

Scale sets selected by AAclust were compared against three 
groups of baseline scale sets:

� standard: Three “gold standard” sets, two from previous 
studies comprising 7 (Meiler et al. 2001, Tang et al. 2021) 
and 12 (Pazos 2021) scales (Supplementary Table S1), 
and all 586 scales from SCALES. 

� pc-based: All scales from SCALES transformed using PC 
analysis into 20 PCs, each serving as a single scale, named 
P1–P20. 

� random: Subsets of varying size assembled by randomly 
sampling scales from SCALES. 

2.1.3 Datasets of protein sequences

We collated 12 protein sequence datasets (Supplementary 
Tables S1 and S2) from previous studies targeting distinct 
binary classification tasks: six datasets were used to predict 
entire protein sequence properties, while the other six served 
to predict residue properties in specific sequence positions. 
These groups are referred to as “sequence prediction” 
and “residue prediction” dataset, respectively, with individ-
ual dataset names based on the prediction task 
(“SEQ_dataset_name” or “AA_dataset_name”). For residue 
predictions, we used three amino acid window sizes (n¼5, 
9, 13), resulting in a total of 24 benchmark datasets. Each 
benchmark dataset was balanced by randomly sampling 400 
data points without replacement for each class at either the 
protein or residue level, yielding a total of 800 samples per 
dataset. Classes in our binary prediction tasks are defined as 
positive (labelled 1) and negative (labelled 0), such as soluble 
versus insoluble proteins. See Supplementary Table S2 for 
details on the class labelling.

2.2 AAclust: k-optimized clustering

AAclust is a clustering wrapper (Talavera 2005, Solorio- 
Fern�andez et al. 2016) framework extending clustering models 
that require a pre-defined number of clusters k, such as 
k-means (MacQueen 1967), thereby eliminating the need to 
specify k in advance. It automatically partitions scale sets into 
k clusters by maximizing the within-cluster Pearson correla-
tion to surpass a user-defined minimum threshold min_th. 
Two alternative quality measures are employed: the minimum 
pairwise Pearson correlation among all cluster members 
(“min_corall”) or the minimum Pearson correlation between 
the cluster center and all cluster members (“min_corcenter”). 
The minimum correlation across all clusters can be maximized 
using either min_corall or min_corcenter.

Optimizing k in a three-step procedure (Fig. 1a), AAclust 
first estimates the lower bound of k, then refines it through 
recursive clustering (using min_corall or min_corcenter), and 
optionally merges smaller clusters into larger ones based on 
Pearson correlation or Euclidean distance. AAclust is con-
trolled by three parameters:

� min_th: Sets the Pearson correlation threshold (between 0 
and 1, default min_th¼0.3) to define the minimum corre-
lation for all clusters. 

� Center: Determines whether min_th applies to the cluster 
center (true) or all cluster members (false), using either 
min_corcenter or min_corall, respectively. 

� Merge: Enables (true) or disables (false) the optional 
merging step. 

To obtain redundancy-reduced scale sets, AAclust selects 
one representative scale per cluster, closest to its center. 
Alternatively, users can set k to a pre-defined number of 
scales. Both methods are referred to as “k-optimized” and 
“k-based” approaches (Fig. 1b), respectively.

2.3 Quality measures of clustering

To evaluate cluster quality (Fig. 1c), we clustered all scales 
from SCALES by seven clustering models used with the 
k-optimized AAclust approach and three clustering models 
that do not require a pre-specified k, referred to as “k-free” 
clustering models (Supplementary Table S2). Three com-
monly used clustering quality measures (Wiwie et al. 2015, 
Ronan et al. 2016, Ahmad and Khan 2019) were employed: 
silhouette coefficient (SC) (Rousseeuw 1987, Kaufman and 
Rousseeuw 2009), Calinski Harabasz score (CH) (Calinski 
and Harabasz 1974), and Bayesian information criterion 
(BIC) (Schwarz 1978) (Supplementary Table S3).

2.4 Evaluation procedure for scale selections

To assess AAclust scale selections (Fig. 1c), we compared 
them to “standard,” “pc-based,” and “random” scale sets. 
AAclust was employed with seven clustering models, testing 
different k-optimized AAclust settings and assessing various 
scale set ranges for k-based approaches.

Each scale set served as a feature set for 24 benchmark 
datasets using three machine learning models with default 
settings: random forest, support vector machine, and logistic 
regression. Model performance was measured by accuracy 
(ACC) using five-fold cross validation. To minimize model- 
dependent bias, we averaged accuracy across all folds and 
models (“mean accuracy”), using it as the quality measure 
for each scale set.

3 Results

3.1 Evaluation of clustering

We comprehensively evaluated the quality of clusters 
derived from the entire SCALES dataset by AAclust 
approaches and k-free clustering models (Supplementary Fig. S1) 
using the BIC, SC, and CH quality measures. We first optimized 
k-optimized AAclust settings for seven models, such as hierarchi-
cal agglomerative clustering (HAC). The best performance was 
achieved by k-means when using merging, min_corcenter, and 
min_th¼ 0. Five of the seven k-optimized AAclust approaches 
outperformed k-free models (Fig. 1d), with the highest BIC 
scores around 25 clusters, declining linearly thereafter (Fig. 1e). 
Comparing all k-optimized against k-based approaches (with 
equal number of clusters) showed a significant (P< .001) impact 
of merging on the clustering quality, improving BIC but worsen-
ing CH, while k-based approaches generally enhanced SC and 
CH (Supplementary Fig. S1).

The difference between the k-optimized and k-based 
AAclust settings are exemplified for the HAC clustering mod-
els and 100 randomly selected scales (Supplementary Fig. 
S1b). Without merging, seven clusters of varied size with an 
interquartile range (IQR) of 1–25 scales are obtained. 
Applying merging in a k-optimized setting yields four evenly 
sized clusters with an IQR of 22–28 scales, while using the 
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Figure 1. AAclust algorithm, workflow, and evaluation. (A–C) Overview of the AAclust algorithm, settings, and evaluation workflow. (D, E) Evaluation of 

AAclust clustering using Bayesian information criterion (BIC), silhouette coefficient (SC), and the Calinski Harabasz score (CH). (D) Comparison of the best 

k-optimized AAclust approaches against k-free clustering models. (E) Relation between the number of clusters and the quality measures for k-based 

AAclust approaches. (F, G) Evaluation of AAclust scale selection. (F) The number of ranks of best-performing clustering models for k-based AAclust 

approaches. (G) Comparison of best-performing (for each benchmark dataset) k-based AAclust approaches against baseline scale sets: “standard” (gray), 

“pc-based” (yellow), and “random” (brown). Differences were tested by paired Wilcoxon signed-rank test, Benjamini-Hochberg correction (�P< .05, 
��P< .01, ���P< .001). (H) Relation between the number of scales and the aggregated prediction performance for k-based AAclust approaches. “x: n” 

indicates the minimum number of scales n for a top-5% performance.
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k-based approach with k¼ 4 forms two large and two small 
clusters only comprising 1 and 2 scales. Since AAclust selects 
for each cluster one representative scale, the merging step has 
a significant impact on the subsequent scale selection.

3.2 Evaluation of scale selection

We compiled 24 benchmark datasets (Supplementary Fig. S2), 
including 6 for “sequence prediction” and 18 for “residue pre-
diction,” to assess AAclust scale selections (Supplementary 
Fig. S3). These selections were used as features for machine 
learning models, with their average accuracy (“mean accu-
racy”) on the benchmark datasets indicating the quality of the 
scale set.

3.2.1 Evaluation of AAclust scale selection

We evaluated k-based AAclust scale selections by obtaining 
scale sets of size ranging between 2 and 585 scales for seven 
clustering models (Supplementary Fig. S3). The top- 
performing approaches were ranked for each dataset sepa-
rately, showing similar mean accuracy values. The best-ranked 
models had the fewest scales (median: 103, IQR: 50–167), 
and the model rank positively correlated with the number of 
scales (Spearman’s correlation¼ 0.16, P< .05). Some cluster-
ing models, such as HAC (single), performed weakly in clus-
tering (Fig. 1d and e) but well in prediction (Fig. 1f), while 
others exhibited the opposite trend, such as k-means.

AAclust-based strategies (k-optimized and k-based) signifi-
cantly improved mean accuracy over the three baseline scale 
sets (Fig. 1g, Supplementary Fig. S4). Notably, k-based 
approaches had a slightly better performance than k-opti-
mized approaches, albeit with higher variability 
(Supplementary Table S4). For most datasets and scale set 
ranges, k-based AAclust approaches outperformed randomly 
sampled sets (Supplementary Fig. S3). However, pc-based sets 
were superior for ranges with n 20 scales.

3.2.2 Correlation of clustering quality and prediction 
performance

For the k-based AAclust approaches, we examined correla-
tions between clustering quality, the number of scales, and 
the scale set quality (as quantified by machine learning model 
performance). The prediction performance was averaged 
across seven clustering models for each scale set size and 
benchmark dataset (MEAN_ACC_dataset). We then hierar-
chically clustered these 24 benchmark datasets into two 
groups (D1 and D2, Supplementary Fig. S5).

We aggregated the model performance for D1 and D2 
(“ACCjD1” and “ACCjD2”) and explored Pearson correla-
tions across four scale set ranges. Correlations between the 
model performance and the number of scales were mainly 
positive, particularly for the 2–29 range and D2. For larger 
scale set ranges, these correlations diverged, varying by clus-
tering model and dataset. After min–max normalization, 
most clustering models achieved a normalized accuracy 
95% for D1 with few scales (e.g., 3 for k-means), while more 
than 35 were required for D2 (Fig. 1h). Remarkably, pc- 
based sets achieved optimal results with just 5 scales (i.e., the 
first PCs) for D1, but required all 20 for D2 (Supplementary 
Fig. S6).

3.2.3 Effect of AAclust settings on prediction performance

We evaluated the impact of k-optimized AAclust settings on 
prediction performance for dataset groups D1 (ACCjD1) and 

D2 (ACCjD2). Generally, prediction performance was lower 

for D1 than for D2, and the best results for D2 were obtained 

with min_th between 0 and 0.6 without merging, where 

HAC (average) for D1 and k-means for D2 performed best 

(Supplementary Fig. S7).
Analyzing cluster merging showed that k-based approaches 

performed significantly (P< .001) lower for D1, while for 

D2, k-based and k-optimized (without merging) approaches 

were significantly better (P< .001) than those using merging. 

Disabling the “Center” parameter significantly (P< .01– 

.001) improved D2 performance. Assessing merging impact 

on min–max normalized accuracy values showed that smaller 

scale sets are preferred for D1 and larger for D2, consistent 

with prior results (Fig. 1h). Overall, our results emphasize 

that the optimal scale selection depends on the clustering 

model and the protein dataset.

3.3 Use case of optimizing scale selections 

by AAclust

To illustrate the application of AAclust, we present a short 

case study for a viral capsid dataset (“SEQ_CAPSID”), part of 

our sequence prediction benchmark datasets (Supplementary 

Tables S1 and S2). This dataset was utilized for the binary 

classification of viral capsid (and non-capsid) proteins, which 

form a shell enclosing viral genetic material, crucial for se-

quence annotation in metagenomic projects (Galiez 

et al. 2016).
Each protein was represented by a vector of length k, 

where k is the number of used scales (clusters), and each 

value corresponds to the average value of a selected scale 

over its complete sequence. We tested different sizes of k, 

ranging from 2 to 29 scales, and compared the prediction 

performance of classical machine learning models, such ran-

dom forest or support vector machine, against the number of 

scales and three clustering quality measures: BIC, SC, and 

CH (Supplementary Fig. S5d).
The results demonstrated cluster model-specific differen-

ces. For example, approaches based on HAC (average) 

showed slightly better performance compared to k-means. 

Additionally, the correlation between accuracy and CH was 

positive for HAC (average) and negative for k-means within 

the 2–29 scale set range. This case study underscores the 

practical utility of AAclust in comparing optimized feature 

sets for scale-based protein prediction tasks.

3.4 AAclustTop60

We compiled the 60 best scale sets from all AAclust 

approaches into “AAclustTop60” (Supplementary Fig. S8 

and Supplementary Table S3). This collection comprises 48 

top-ranked sets for 24 benchmark datasets (Supplementary 

Table S4) and 12 top-ranked sets for dataset groups D1 and 

D2. We ranked these sets by average prediction performance 

and clustering quality, showing an anti-correlation (Pearson’s 

r ¼ 0.77, P< .01), whereby the number of scales correlated 

negatively with the former and positively with the latter. On 

average, sets in AAclustTop60 contained 125 ± 121 scales 

(median: 98, IQR: 48–154) obtained using various AAclust 

settings. The variation in AAclustTop60 underlines that the 

optimal scale set depends on the protein prediction tasks.
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4 Implementation

AAclust is integrated in AAanalysis, a Python framework for 
interpretable sequence-based protein prediction. Besides 
AAclust, AAanalysis also provides the complete scale sets 
(SCALES), the 12 protein datasets, and the AAclustTop60.

For systematic optimization of sequence-based feature en-
gineering using AAclust, we recommend the following steps:

1) Test all sets of AAclustTop60 as distinct features to es-
tablish baseline models and identify the best k-optimized 
AAclust settings, clustering models, and scale set ranges. 

2) For the best clustering models, test (a) k-optimized 
AAclust approaches encompassing the best settings, and 
(b) k-based AAclust approaches within the optimal scale 
set range. 

3) If the optimal range is within 2–20 scales, test pc-based 
scale sets. 

Alternatively, AAclustTop60 scale sets could serve as ini-
tial population for genetic algorithms to optimize feature 
engineering (Telikani et al. 2022). Clustering models compat-
ible with AAclust require a pre-defined number of clusters 
and should be implemented in scikit-learn or work 
accordingly.

5 Conclusion

We introduced AAclust, a clustering wrapper framework for 
selecting redundancy-reduced amino acid scale sets. Using 
Pearson correlation, AAclust optimizes the number of clusters 
and selects one scale per cluster. Our benchmarking experi-
ments show that (a) no single “gold standard” scale set exists, 
(b) the scale set size is a crucial and dataset-dependent optimi-
zation factor, and (c) AAclust scale selections significantly im-
prove the performance of machine learning methods. 
Additionally, we collated the 60 best-performing scale sets 
(AAclustTop60) and provided a three-step application guide.

Although scale-based machine learning approaches have 
limitations (Raimondi et al. 2019), particularly in perfor-
mance compared to deep learning-based protein embeddings 
(i.e., scale-like residue representations generated using pro-
tein large language models such as ProtT5 (Elnaggar et al. 
2022)), their advantage lies in their interpretability, which 
remains challenging for deep learning models (Greener et al. 
2022). Overall, AAclust tailors scale sets to specific protein 
prediction tasks, enabling systematic and interpretable 
sequence-based feature engineering.
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