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With progressive digitalization of healthcare systems worldwide, large-scale
collection of electronic health records (EHRs) has become commonplace.
However, an extensible framework for comprehensive exploratory analysis
thataccounts for data heterogeneity is missing. Here we introduce ehrapy, a
modular open-source Python framework designed for exploratory analysis
of heterogeneous epidemiology and EHR data. ehrapy incorporatesa

series of analytical steps, from data extraction and quality control to the
generation of low-dimensional representations. Complemented by rich
statistical modules, ehrapy facilitates associating patients with disease
states, differential comparison between patient clusters, survival analysis,
trajectory inference, causal inference and more. Leveraging ontologies,
ehrapy further enables data sharing and training EHR deep learning
models, paving the way for foundational models in biomedical research. We
demonstrate ehrapy’s features in six distinct examples. We applied ehrapy
to stratify patients affected by unspecified pneumoniainto finer-grained
phenotypes. Furthermore, we reveal biomarkers for significant differences
insurvivalamong these groups. Additionally, we quantify medication-class

effects of pneumonia medications on length of stay. We further leveraged
ehrapy to analyze cardiovascular risks across different data modalities.
We reconstructed disease state trajectories in patients with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) based onimaging data.
Finally, we conducted a case study to demonstrate how ehrapy can detect
and mitigate biases in EHR data. ehrapy, thus, provides aframework that
we envision will standardize analysis pipelines on EHR dataand serve as a
cornerstone for the community.

Electronic healthrecords (EHRs) are becomingincreasingly common
due to standardized data collection' and digitalization in healthcare
institutions. EHRs collected at medical care sites serve as efficient
storage and sharing units of healthinformation?, enabling the informed
treatment of individuals using the patient’s complete history”.
Routinely collected EHR data are approaching genomic-scale size and
complexity*, posing challenges in extracting information without
quantitative analysis methods. The application of such approaches
to EHR databases™* ™ has enabled the prediction and classification of
diseases'®", study of population health'?, determination of optimal

treatment policies™", simulation of clinical trials® and stratification
of patients®.

However, current EHR datasets suffer from serious limitations,
such as data collection issues, inconsistencies and lack of data diver-
sity. EHR data collection and sharing problems often arise due to
non-standardized formats, with disparate systems using exchange
protocols, such as Health Level Seven International (HL7) and Fast
Healthcare Interoperability Resources (FHIR)". In addition, EHR data
are stored in various on-disk formats, including, but not limited to,
relational databases and CSV, XML and JSON formats. These variations
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pose challenges with respect to data retrieval, scalability, interoper-
ability and data sharing.

Beyond format variability, inherent biases of the collected data
can compromise the validity of findings. Selection bias stemming
from non-representative sample composition can lead to skewed
inferences about disease prevalence or treatment efficacy'®'. Filtering
bias arises through inconsistent criteria for datainclusion, obscuring
true variable relationships®. Surveillance bias exaggerates associa-
tions between exposure and outcomes due to differential monitoring
frequencies®. EHR data are further prone to missing data*?*, which
can be broadly classified into three categories: missing completely at
random (MCAR), where missingness is unrelated to the data; missing
atrandom (MAR), where missingness depends on observed data; and
missing not at random (MNAR), where missingness depends on unob-
served data®>?. Information and coding biases, related to inaccuracies
in datarecording or coding inconsistencies, respectively, can lead to
misclassification and unreliable research conclusions®**. Data may
even contradict itself, such as when measurements were reported for
deceased patients®*”’. Technical variation and differing data collec-
tion standards lead to distribution differences and inconsistencies in
representation and semantics across EHR datasets?®?, Attrition and
confoundingbiases, resulting from differential patient dropout rates
or unaccounted external variable effects, can significantly skew study
outcomes®****, The diversity of EHR data that comprise demographics,
laboratory results, vital signs, diagnoses, medications, x-rays, written
notes and even omics measurements amplifies all the aforementioned
issues.

Addressing these challenges requires rigorous study design,
careful data pre-processing and continuous bias evaluation through
exploratory dataanalysis. Several EHR data pre-processing and analysis
workflows were previously developed*** ¥, but none of them enables
the analysis of heterogeneous data, provides in-depth documenta-
tion, isavailable as a software package or allows for exploratory visual
analysis. Current EHR analysis pipelines, therefore, differ considerably
in their approaches and are often commercial, vendor-specific solu-
tions®®. This is in contrast to strategies using community standards
for the analysis of omics data, such as Bioconductor® or scverse*.
As aresult, EHR data frequently remain underexplored and are com-
monly investigated only for a particular research question*. Even in
such cases, EHR data are then frequently input into machine learning
models with serious data quality issues that greatly impact prediction
performance and generalizability*.

To address this lack of analysis tooling, we developed the EHR
Analysis in Python framework, ehrapy, which enables exploratory
analysis of diverse EHR datasets. The ehrapy package is purpose-built
toorganize, analyze, visualize and statistically compare complex EHR
data. ehrapy can be applied to datasets of different data types, sizes,
diseases and origins. To demonstrate this versatility, we applied ehrapy
to datasets obtained from EHR and population-based studies. Using
the Pediatric Intensive Care (PIC) EHR database®, we stratified patients
diagnosed with ‘unspecified pneumonia’ into distinct clinically rel-
evant groups, extracted clinical indicators of pneumonia through
statistical analysis and quantified medication-class effects on length
of stay (LOS) with causal inference. Using the UK Biobank** (UKB), a
population-scale cohort comprising over 500,000 participants from
the United Kingdom, we employed ehrapy to explore cardiovascu-
lar risk factors using clinical predictors, metabolomics, genomics
and retinal imaging-derived features. Additionally, we performed
image analysis to project disease progression through fate mappingin
patients affected by coronavirus disease 2019 (COVID-19) using chest
x-rays. Finally, we demonstrate how exploratory analysis with ehrapy
unveils and mitigates biases in over 100,000 visits by patients with dia-
betesacross130 US hospitals. We provide online links to additional use
cases that demonstrate ehrapy’s usage with further datasets, including
MIMIC-II (ref. 45), and for various medical conditions, such as patients

subject toindwelling arterial catheter usage. ehrapy is compatible with
any EHR dataset that can be transformed into vectors andis accessible
as a user-friendly open-source software package hosted at https://
github.com/theislab/ehrapy and installable from PyPI. It comes with
comprehensive documentation, tutorials and further examples, all
available at https://ehrapy.readthedocs.io.

Results

ehrapy: aframework for exploratory EHR data analysis
Thefoundation of ehrapyis arobust and scalable data storage backend
thatiscombined withaseries of pre-processing and analysis modules.
Inehrapy, EHR dataare organized as adata matrix where observations
are individual patient visits (or patients, in the absence of follow-up
visits), and variables represent all measured quantities (Methods).
These data matrices are stored together with metadata of observa-
tions and variables. By leveraging the AnnData (annotated data) data
structure thatimplements this design, ehrapy builds upon established
standards and is compatible with analysis and visualization functions
provided by the omics scverse*® ecosystem. Readers are also available
in R, Julia and Javascript*. We additionally provide a dataset module
with more than 20 publicloadable EHR datasets in AnnData format to
kickstart analysis and development with ehrapy.

For standardized analysis of EHR data, it is crucial that these data
are encoded and stored in consistent, reusable formats. Thus, ehrapy
requiresthatinput dataare organizedinstructured vectors.Readers for
common formats, such as CSV, OMOP* or SQL databases, are available
in ehrapy. Data loaded into AnnData objects can be mapped against
several hierarchical ontologies**' (Methods). Clinical keywords of
free text notes can be automatically extracted (Methods).

Powered by scanpy, which scales to millions of observations®
(Methods and Supplementary Table 1) and the machine learninglibrary
scikit-learn®?, ehrapy provides more than 100 composable analysis
functions organized in modules from which custom analysis pipelines
can be built. Each function directly interacts with the AnnData object
and adds all intermediate results for simple access and reuse of infor-
mation to it. To facilitate setting up these pipelines, ehrapy guides
analysts through a general analysis pipeline (Fig. 1). At any step of an
analysis pipeline, community software packages can be integrated
without any vendor lock-in. Because ehrapy is built on open standards,
it can be purposefully extended to solve new challenges, such as the
development of foundational models (Methods).

Inthe ehrapy analysis pipeline, EHR data are initially inspected for
quality issues by analyzing feature distributions that may skew results
and by detecting visits and features with high missing rates that ehrapy
can then impute (Methods). ehrapy tracks all filtering steps while
keepingtrack of population dynamics to highlight potential selection
and filtering biases (Methods). Subsequently, ehrapy’s normalization
and encoding functions (Methods) are applied to achieve a uniform
numerical representation that facilitates dataintegration and corrects
for dataset shift effects (Methods). Calculated lower-dimensional rep-
resentations cansubsequently be visualized, clustered and annotated
to obtain a patient landscape (Methods). Such annotated groups of
patients can be used for statistical comparisons to find differences
infeatures among them to ultimately learn markers of patient states.

Asanalysis goals can differ between users and datasets, the ehrapy
analysis pipeline is customizable during the final knowledge inference
step. ehrapy provides statistical methods for group comparison and
extensive support for survival analysis (Methods), enabling the dis-
covery of biomarkers. Furthermore, ehrapy offers functions for causal
inference to go from statistically determined associations to causal
relations (Methods). Moreover, patient visits in aggregated EHR data
can be regarded as snapshots where individual measurements taken
at specific timepoints might not adequately reflect the underlying
progression of disease and result from unrelated variation due to, for
example, day-to-day differences™ . Therefore, disease progression
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Fig.1|Schematic overview of EHR analysis with ehrapy. a, Heterogeneous
health data are first loaded into memory as an AnnData object with patient visits
as observational rows and variables as columns. Next, the data can be mapped
against ontologies, and key terms are extracted from free text notes. b, The EHR
dataare subject to quality control where low-quality or spurious measurements
areremoved orimputed. Subsequently, numerical data are normalized, and

categorical data are encoded. Data fromdifferent sources with data distribution
shiftsare integrated, embedded, clustered and annotated in a patient landscape.
¢, Further downstream analyses depend on the question of interest and can
include the inference of causal effects and trajectories, survival analysis or
patient stratification.

modelsshouldrely on analysis of the underlying clinical data, as disease
progression in anindividual patient may not be monotonous in time.
ehrapy allows for the use of advanced trajectory inference methods to
overcome sparse measurements®>°, We show that this approach can
order snapshotsto calculate apseudotime that can adequately reflect
the progression of the underlying clinical process. Given a sufficient
number of snapshots, ehrapy increases the potential to understand
disease progression, which is likely not robustly captured within a
single EHR but, rather, across several.

ehrapy enables patient stratification in pneumonia cases

To demonstrate ehrapy’s capability to analyze heterogeneous data-
sets from a broad patient set across multiple care units, we applied
our exploratory strategy to the PIC* database. The PIC database is
asingle-center database hosting information on children admitted

to critical care units at the Children’s Hospital of Zhejiang University
School ofMedicine in China. It contains 13,499 distinct hospital admis-
sions of12,881individual pediatric patients admitted between 2010 and
2018 for whom demographics, diagnoses, doctors’ notes, vital signs,
laboratory and microbiology tests, medications, fluid balances and
morewere collected (Extended Data Figs. 1and 2a and Methods). After
missing data imputation and subsequent pre-processing (Extended
Data Figs. 2b,c and 3 and Methods), we generated a uniform mani-
fold approximation and projection (UMAP) embedding to visualize
variation across all patients using ehrapy (Fig. 2a). This visualization
of the low-dimensional patient manifold shows the heterogeneity of
the collected datain the PIC database, with malformations, perinatal
and respiratory being the most abundant International Classification
of Diseases (ICD) chapters (Fig. 2b). The most common respiratory
disease categories (Fig. 2c) were labeled pneumonia and influenza
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(n=984). We focused on pneumonia to apply ehrapy to a challeng-
ing, broad-spectrum disease that affects all age groups. Pneumonia
is a prevalent respiratory infection that poses a substantial burden
on public health®® and is characterized by inflammation of the alveoli
and distal airways®°. Individuals with pre-existing chronic conditions
are particularly vulnerable, as are children under the age of 5 (ref. 61).
Pneumonia can be caused by arange of microorganisms, encompass-
ing bacteria, respiratory viruses and fungi.

We selected the age group ‘youths’ (13 months to 18 years of age)
for further analysis, addressing a total of 265 patients who dominated
the pneumonia cases and were diagnosed with ‘unspecified pneu-
monia’ (Fig. 2d and Extended Data Fig. 4). Neonates (0-28 d old) and
infants (29 d to12 months old) were excluded from the analysis as the
disease context is significantly different in these age groups due to
distinct anatomical and physical conditions. Patients were 61% male,
had atotal of 277 admissions, had amean age at admission of 54 months
(median, 38 months) and had an average LOS of 15 d (median, 7 d). Of
these, 152 patients were admitted to the pediatric intensive care unit
(PICU), 118 to the general ICU (GICU), four to the surgical ICU (SICU)
and three to the cardiac ICU (CICU). Laboratory measurements typi-
cally had 12-14% missing data, except for serum procalcitonin (PCT),
a marker for bacterial infections, with 24.5% missing, and C-reactive
protein (CRP), amarker of inflammation, with 16.8% missing. Measure-
ments assigned as ‘vital signs’ contained between 44% and 54% miss-
ing values. Stratifying patients with unspecified pneumonia further
enables a more nuanced understanding of the disease, potentially
facilitating tailored approaches to treatment.

To deepen clinical phenotyping for the disease group ‘unspeci-
fied pneumonia’, we calculated a k-nearest neighbor graph to cluster
patients into groups and visualize these in UMAP space (Methods).
Leiden clustering® identified four patient groupings with distinct
clinical features that we annotated (Fig. 2e). To identify the labora-
tory values, medications and pathogens that were most characteristic
for these four groups (Fig. 2f), we applied ¢-tests for numerical data
and g-tests for categorical data between the identified groups using
ehrapy (Extended Data Fig. 5 and Methods). Based on this analysis,
we identified patient groups with ‘sepsis-like, ‘severe pneumonia
with co-infection’, ‘viral pneumonia’ and ‘mild pneumonia’ pheno-
types. The ‘sepsis-like’ group of patients (n = 28) was characterized
by rapid disease progression as exemplified by an increased num-
ber of deaths (adjusted P < 5.04 X107, 43% (n=28), 95% confidence
interval (Cl): 23%, 62%); indication of multiple organ failure, such
as elevated creatinine (adjusted P< 0.01, 52.74 + 23.71 umol L™) or
reduced albumin levels (adjusted P<2.89 x107%,33.40 £ 6.78 gL™);
and increased expression levels and peaks of inflammation markers,
including PCT (adjusted P<3.01x107% 1.42 + 2.03 ng ml™), whole
blood cell count, neutrophils, lymphocytes, monocytes and lower
platelet counts (adjusted P< 6.3 x1072,159.30 +142.00 x 10° per
liter) and changes in electrolyte levels—that is, lower potassium
levels (adjusted P< 0.09 x1072,3.14 + 0.54 mmol L™). Patientswhom we
associated with the term ‘severe pneumoniawith co-infection’ (n = 74)
were characterized by prolonged ICU stays (adjusted P<3.59 x107*,
15.01+29.24 d); organ affection, such as higher levels of creatinine
(adjusted P<1.10 x107*,52.74 + 23.71 pumol L") and lower platelet count
(adjusted P<5.40 x107%,159.30 +142.00 x 10’ per liter); increased
inflammation markers, such as peaks of PCT (adjusted P<5.06 x107%,
1.42+2.03 ng ml™), CRP (adjusted P<1.40 x107%,50.60 + 37.58 mg L ™)
and neutrophils (adjusted P< 8.51 x107%,13.01 + 6.98 x 10° per liter);
detection of bacteria in combination with additional pathogen fun-
gals in sputum samples (adjusted P<1.67 x 1072, 26% (n="74), 95% CI:
16%, 36%); and increased application of medication, including anti-
fungals (adjusted P<1.30 x107*, 15% (n = 74), 95% CI: 7%, 23%) and
catecholamines (adjusted P< 2.0 x 1072, 45% (n = 74),95% Cl: 33%, 56%).
Patients in the ‘mild pneumonia’ group were characterized by posi-
tive sputum cultures in the presence of relatively lower inflammation

markers, such as PCT (adjusted P<1.63 x107,1.42 + 2.03 ng ml™) and
CRP (adjusted P<0.03 X107, 50.60 +37.58 mg L™), while receiving
antibiotics more frequently (adjusted P<1.00 x 107,80% (n = 78), 95%
ClI:70%,89%) and additional medications (electrolytes, blood thinners
and circulation-supporting medications) (adjusted P<1.00 x 1075, 82%
(n=78),95% Cl: 73%, 91%). Finally, patients in the ‘viral pneumonia’
group were characterized by shorter LOSs (adjusted P<8.00 x107%,
15.01+29.24 d), alack of non-viral pathogen detectionin combination
with higher lymphocyte counts (adjusted P< 0.01,4.11+ 2.49 x 10° per
liter), lower levels of PCT (adjusted P< 0.03 x1072,1.42 +2.03 ng ml™)
and reduced application of catecholamines (adjusted P<5.96 x1077,
15% (n=97),95% Cl: 8%, 23%), antibiotics (adjusted P < 8.53 x107%, 41%
(n=97),95% Cl: 31%, 51%) and antifungals (adjusted P<5.96 x 107, 0%
(n=97),95% ClI: 0%, 0%).

To demonstrate the ability of ehrapy to examine EHR data from
different levels of resolution, we additionally reconstructed a case
from the ‘severe pneumonia with co-infection’ group (Fig. 2g). In this
case, the analysis revealed that CRP levels remained elevated despite
broad-spectrum antibiotic treatment until a positive Acinetobacter
baumannii result led to a change in medication and a subsequent
decrease in CRP and monocyte levels.

ehrapy facilitates extraction of pneumoniaindicators

ehrapy’s survival analysis module allowed us to identify clinical
indicators of disease stages that could be used as biomarkers
through Kaplan-Meier analysis. We found strong variance in overall
aspartate aminotransferase (AST), alanine aminotransferase (ALT),
gamma-glutamyl transferase (GGT) and bilirubin levels (Fig. 3a), includ-
ing changes over time (Extended DataFig. 6a,b), inall four ‘unspecified
pneumonia’ groups. Routinely used to assess liver function, studies
provide evidence that AST, ALT and GGT levels are elevated during
respiratory infections®, including severe pneumonia®, and can guide
diagnosis and management of pneumoniain children®’. We confirmed
reduced survival in more severely affected children (‘sepsis-like
pneumonia’and ‘severe pneumonia with co-infection’) using Kaplan-
Meier curves and a multivariate log-rank test (Fig. 3b; P<1.09 x107%%)
through ehrapy. To verify the association of this trajectory with altered
AST, ALT and GGT expression levels, we further grouped all patients
based onliver enzyme reference ranges (Methods and Supplementary
Table 2). By Kaplan—-Meier survival analysis, cases with peaks of GGT
(P<1.4x107%58.01+2.03UL"),ALT(P<2.9%x1072,43.59+38.02UL™)
and AST (P<4.8x107™,78.69 + 60.03 U L™) in ‘outside the norm’ were
foundto correlate with lower survivalinallgroups (Fig. 3c and Extended
DataFig. 6), inline with previous studies®*®. Bilirubin was not found to
significantly affect survival (P<2.1x107,12.57 + 21.22 mg dI™).

ehrapy quantifies medication class effect on LOS
Pneumoniarequires case-specific medications due toits diverse causes.
Todemonstrate the potential of ehrapy’s causal inference module, we
quantified the effect of medication on ICU LOS to evaluate case-specific
administration of medication. In contrast to causal discovery that
attempts to find a causal graph reflecting the causal relationships,
causal inference is a statistical process used to investigate possible
effects when altering a provided system, as represented by a causal
graph and observational data (Fig. 4a)°®. This approach allows identify-
ing and quantifying theimpact of specificinterventions or treatments
on outcome measures, thereby providing insight for evidence-based
decision-making in healthcare. Causal inference relies on datasets
incorporating interventions to accurately quantify effects.

We manually constructed a minimal causal graph with ehrapy
(Fig. 4b) onrecords of treatment with corticosteroids, carbapenems,
penicillins, cephalosporins and antifungal and antiviral medications as
interventions (Extended DataFig. 7and Methods). We assumed that the
medications affect disease progression proxies, such asinflammation
markers and markers of organ function. The selection of ‘interventions’
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curves demonstrate lower survival for ‘sepsis-like’ and ‘severe pneumonia with
co-infection’ groups. ¢, Kaplan-Meier survival curves for children with GGT
measurements outside the norm range display lower survival.

is consistent with current treatment standards for bacterial pneumonia
and respiratory distress®%. Based on the approach of the tool
‘dowhy” (Fig.4a), ehrapy’s causalmodule identified the application of
corticosteroids, antivirals and carbapenems to be associated
with shorter LOSs, in line with current evidence®’°72 In contrast,
penicillins and cephalosporins were associated with longer LOSs,
whereasantifungal medication did not strongly influence LOS (Fig. 4c).

ehrapy enables deriving population-scalerisk factors

To illustrate the advantages of using a unified data management and
quality control framework, such as ehrapy, we modeled myocardial
infarction risk using Cox proportional hazards models on UKB* data.
Large population cohortstudies, such as the UKB, enable the investiga-
tion of common diseases across awide range of modalities, including
genomics, metabolomics, proteomics, imaging data and common
clinical variables (Fig. 5a,b). From these, we used a publicly available
polygenicrisk score for coronary heart disease” comprising 6.6 million
variants, 80 nuclear magnetic resonance (NMR) spectroscopy-based
metabolomics™ features, 81 features derived from retinal optical coher-
ence tomography”’ and the Framingham Risk Score” feature set,
whichincludes known clinical predictors, such as age, sex, body mass

index, blood pressure, smoking behavior and cholesterol levels. We
excluded features with more than 10% missingness and imputed the
remaining missing values (Methods). Furthermore, individuals with
events up to1year after the sampling time were excluded from the
analyses, ultimately selecting 29,216 individuals for whom all men-
tioned data typeswere available (Extended DataFigs. 8 and 9 and Meth-
ods).Myocardialinfarction, as defined by our mapping to the phecode
nomenclature™, was defined as the endpoint (Fig. 5¢). We modeled
the risk for myocardial infarction 1 year after either the metabolomic
sample was obtained or imaging was performed.

Predictive performance for eachmodality was assessed by fitting
Cox proportional hazards (Fig. 5¢) models on each of the feature sets
using ehrapy (Fig. 5d). The age of the first occurrence served as the
time to event; alternatively, date of death or date of the last record in
the EHR served as censoring times. Models were evaluated using the
concordance index (C-index) (Methods). The combination of multiple
modalities successfullyimproved the predictive performance for coro-
nary heart disease by increasing the C-indexfrom 0.63 (genetic) to 0.76
(genetics,age and sex) and to 0.77 (clinical predictors) with 0.81 (imag-
ing and clinical predictors) for combinations of feature sets (Fig. 5e).
Our finding is in line with previous observations of complementary
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inflammation markers as disease progression proxies together with medications
asinterventions to assess the causal effect on length of ICU stay. ¢, Determined
causal effect strength on LOS in days of administered medication categories.

effects between different modalities, where abroader ‘major adverse
cardiac event’ phenotype was modeledin the UKB achieving a C-index
of 0.72 (ref. 78). Adding genetic dataimproves predictive potential, as
itisindependent of sampling age and has limited prediction of other
modalities”. The addition of metabolomic data did not improve pre-
dictive power (Fig. 5¢e).

Imaging-based disease severity projection via fate mapping

To demonstrate ehrapy’s ability to handle diverse image data and
recover disease stages, we embedded pulmonary imaging data
obtained from patients with COVID-19 into alower-dimensional space
and computationally inferred disease progression trajectories using
pseudotemporal ordering. This describes a continuous trajectory or
ordering of individual points based on feature similarity®. Continuous
trajectories enable mapping the fate of new patients onto precise states
to potentially predict their future condition.

In COVID-19, a highly contagious respiratory illness caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), symp-
toms range from mild flu-like symptoms to severe respiratory distress.
Chest x-rays typically show opacities (bilateral patchy, ground glass)
associated with disease severity®.

We used COVID-19 chest x-ray images from the BrixIA** data-
set consisting of 192 images (Fig. 6a) with expert annotations of
disease severity. We used the BrixIA database scores, which are
based on six regions annotated by radiologists, to classify

disease severity (Methods). We embedded raw image features using
a pre-trained DenseNet model (Methods) and further processed this
embedding into anearest-neighbors-based UMAP space using ehrapy
(Fig. 6b and Methods). Fate mapping based on imaging information
(Methods) determined a severity ordering from mild to critical cases
(Fig. 6b-d).Imageslabeled as ‘normal’ are projected to stay within the
healthy group, illustrating the robustness of our approach. Images of
diseased patients were ordered by disease severity, highlighting clear
trajectories from ‘normal’ to ‘critical’ states despite the heterogene-
ity of the x-ray images stemming from, for example, different zoom
levels (Fig. 6a).

Detecting and mitigating biases in EHR data with ehrapy

To showcase how exploratory analysis using ehrapy can reveal and
mitigate biases, we analyzed the Fairlearn® version of the Diabetes
130-US Hospitals® dataset. The dataset covers 10 years (1999-2008) of
clinical records from 130 US hospitals, detailing 47 features of diabetes
diagnoses, laboratory tests, medications and additional datafromup
to14 d of inpatient care of 101,766 diagnosed patient visits (Methods).
It wasoriginally collected to explore the link between the measurement
of hemoglobin Alc (HbAlc) and early readmission.

The cohort primarily consists of White and African American
individuals, with only aminority of cases from Asian or Hispanic back-
grounds (Extended Data Fig. 10a). ehrapy’s cohort tracker unveiled
selection and surveillance biases whenfiltering for Medicare recipients
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for further analysis, resulting in a shift of age distribution toward an age
of over 60 yearsinaddition to anincreasing ratio of White participants.
Using ehrapy’s visualization modules, our analysis showed that HbAlc
was measured in only 18.4% of inpatients, with a higher frequency in
emergency admissions compared to referral cases (Extended Data
Fig.10b). Normalization biases can skew data relationships when stand-
ardizationtechniquesignore subgroup variability or assumeincorrect
distributions. The choice of normalization strategy must be carefully
considered to avoid obscuring important factors. When normalizing
the number of applied medications individually, differences in dis-
tributions between age groups remained. However, when normal-
izing both distributionsjointly with age group as an additional group
variable, differencesbetween age groups were masked (Extended Data
Fig.10c). To investigate missing data and imputation biases, we intro-
duced missingness for the number of applied medications according
to an MCAR mechanism, which we verified using ehrapy’s Little’s test
(P<0.01x107%), and an MAR mechanism (Methods). Whereas imput-
ing the mean in the MCAR case did not affect the overall location of
the distribution, itled to anunderestimation of the variance, with the
standard deviation dropping from 8.1in the original datato 6.8 in the
imputed data (Extended Data Fig. 10d). Mean imputation in the MAR
case skewed bothlocationand variance of the mean from16.02t014.66,
with astandard deviation of only 5.72 (Extended Data Fig.10d). Using
ehrapy’s multiple imputation based MissForest® imputation on the
MAR dataresultedin amean of 16.04 and a standard deviation of 6.45.

To predict patient readmission in fewer than 30 d, we merged the three
smallest race groups, ‘Asian’, ‘Hispanic’ and ‘Other’. Furthermore, we
dropped the gender group ‘Unknown/Invalid’ owing to the small sam-
ple size making meaningful assessmentimpossible,and we performed
balanced random undersampling, resulting in 5,677 cases from each
condition. We observed an overall balanced accuracy of 0.59 using a
logistic regression model. However, the false-negative rate was highest
for the races ‘Other’ and ‘Unknown’, whereas their selection rate was
lowest, and this model was, therefore, biased (Extended DataFig. 10e).
Using ehrapy’s compatibility with existing machine learning packages,
we used Fairlearn’s ThresholdOptimizer (Methods), whichimproved
theselectionratesfor‘Other’ from0.32 to 0.38 and for ‘Unknown’ from
0.23 to 0.42 and the false-negative rates for ‘Other’ from 0.48 to 0.42
and for ‘Unknown’ from 0.61to 0.45 (Extended Data Fig. 10e).

Discussion

Clustering offers a hypothesis-free alternative to supervised classifi-
cation when clear hypotheses or labels are missing. It has enabled the
identification of heart failure subtypes® and progression pathways®
and COVID-19 severity states®, This concept, whichis central toehrapy,
further allowed us to identify fine-grained groups of ‘unspecified
pneumonia’ cases in the PIC dataset while discovering biomarkers and
quantifying effects of medicationson LOS. Suchretroactive characteri-
zation showcases ehrapy’s ability to put complex evidence into context.
This approach supports feedback loops to improve diagnostic and
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therapeutic strategies, leading to more efficiently allocated resources
in healthcare.

ehrapy’s flexible data structures enabled us to integrate the
heterogeneous UKB data for predictive performance in myocardial
infarction. The different data typesand distributions poseda challenge
for predictive models that were overcome with ehrapy’s pre-processing
modules. Our analysis underscores the potential of combining
phenotypic and health data at population scale through ehrapy to
enhancerisk prediction.

By adapting pseudotime approaches that are commonly used in
other omics domains, we successfully recovered disease trajectories
from raw imaging data with ehrapy. The determined pseudotime,
however, only orders data but does not necessarily provide a future
projection per patient. Understanding the driver features for fate
mapping inimage-based datasets is challenging. The incorporation
of image segmentation approaches could mitigate this issue and
provide a deeper insight into the spatial and temporal dynamics of
disease-related processes.

Limitations of our analysesinclude the lack of control for informa-
tive missingness where the absence of information represents informa-
tioninitself*. Translation from Chinese to English in the PIC database
can cause information loss and inaccuracies because the Chinese
ICD-10 codesare seven characters long compared to thefive-character
Englishcodes. Incompleteness of databases, such as the lack of radiol-
ogy images in the PIC database, low sample sizes, underrepresenta-
tion of non-White ancestries and participant self-selection, cannot
be accounted for and limit generalizability. This restricts deeper
phenotyping of, for example, all “‘unspecified pneumonia’ cases
with respect to their survival, which could be overcome by the use of

multiple databases. Our causal inference use case is limited by unre-
corded variables, suchas Sequential Organ Failure Assessment (SOFA)
scores, and pneumonia-related pathogens that are missinginthe causal
graph due to dataset constraints, such as high sparsity and substantial
missing data, which risk overfitting and can lead to overinterpretation.
We counterbalancedthis by employing several refutation methods that
statistically reject the causal hypothesis, such as aplacebo treatment,
arandom commeon cause or an unobserved common cause. The longer
hospital stays associated with penicillins and cephalosporins may be
dataset specific and stem from higher antibiotic resistance, their use
as first-line treatments, more severe initial cases, comorbidities and
hospital-specific protocols.

Most analysis steps can introduce algorithmic biases where
results are misleading or unfavorably affect specific groups. This is
particularly relevant in the context of missing data?> where deter-
mining the type of missing data is necessary to handle it correctly.
ehrapy includes an implementation of Little’s test’®, which tests
whether data are distributed MCAR to discern missing data types.
For MCAR data single-imputation approaches, such as mean, median
or mode, imputation can suffice, but these methods are known to
reduce variability® 2. Multiple imputation strategies, such as Multiple
Imputation by Chained Equations (MICE)* and MissForest®, asimple-
mented in ehrapy, are effective for both MCAR and MAR data®>**%,
MNAR data require pattern-mixture or shared-parameter models that
explicitly incorporate the mechanism by which data are missing®.
Because MNAR involves unobserved data, the assumptions about the
missingness mechanism cannot be directly verified, making sensitivity
analysis crucial®. ehrapy’s wide range of normalization functions and
grouping functionality enables to account for intrinsic variability
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within subgroups, and its compatibility with Fairlearn®* can poten-
tially mitigate predictor biases. Generally, we recommend to assess
all pre-processing in aniterative manner with respect to downstream
applications, such as patient stratification. Moreover, sensitivity analy-
sis can help verify the robustness of all inferred knowledge”.

These diverse use cases illustrate ehrapy’s potential to suffi-
ciently address the need for a computationally efficient, extendable,
reproducible and easy-to-use framework. ehrapy is compatible with
major standards, such as Observational Medical Outcomes Partner-
ship (OMOP), Common Data Model (CDM)*, HL7, FHIR or openEHR,
with flexible support for common tabular data formats. Once loaded
into an AnnData object, subsequent sharing of analysis results is
made easy because AnnData objects can be stored and read plat-
form independently. ehrapy’s rich documentation of the application
programming interface (API) and extensive hands-on tutorials make
EHR analysis accessible to both novices and experienced analysts.

As ehrapy remains under active development, users can expect
ehrapy to continuously evolve. We areimproving support for the joint
analysis of EHR, genetics and molecular data where ehrapy serves as
abridge between the EHR and the omics communities. We further
anticipate the generation of EHR-specific reference datasets, so-called
atlases’, to enable query-to-reference mapping where new datasets
get contextualized by transferring annotations from the reference
to the new dataset. To promote the sharing and collective analysis of
EHR data, we envision adapted versions of interactive single-cell data
explorers, such as CELLXGENE® or the UCSC Cell Browser'*’, for EHR
data. Such web interfaces would also include disparity dashboards®
to unveil trends of preferential outcomes for distinct patient groups.
Additional modules specifically for high-frequency time-series data,
natural language processing and other datatypesare currently under
development. With the widespread availability of code-generating
large language models, frameworks such as ehrapy are becoming
accessible to medical professionals without coding expertise who can
leverageitsanalytical power directly. Therefore, ehrapy, together witha
lively ecosystem of packages, has the potential to enhance the scientific
discovery pipeline to shape the era of EHR analysis.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Alldatasets that were used during the development of ehrapy and the
use cases were used according to their terms of use as indicated by
each provider.

Design and implementation of ehrapy
Aunified pipeline as provided by our ehrapy framework streamlines the
analysis of EHR data by providing an efficient, standardized approach,
which reduces the complexity and variability in data pre-processing
and analysis. This consistency ensures reproducibility of results and
facilitates collaboration and sharing within the research community.
Additionally, the modular structure allows for easy extension and
customization, enabling researchers to adapt the pipeline to their
specific needs while building on a solid foundational framework.

ehrapy was designed from the ground up as an open-source effort
withcommunity support. The package, as well as all associated tutorials
and dataset preparation scripts, are open source. Development takes
place publicly on GitHub where the developers discuss feature requests
and issues directly with users. This tight interaction between both
groups ensures that we implement the most pressing needs to cater
the most important use cases and can guide users when difficulties
arise. The open-source nature, extensive documentation and modular
structure of ehrapy are designed for other developers to build upon
and extend ehrapy’s functionality where necessary. This allows us to
focus ehrapy on the most important features to keep the number of
dependencies to aminimum.

ehrapy was implemented in the Python programming lan-
guage and builds upon numerous existing numerical and scientific
open-source libraries, specifically matplotlib'”, seaborn'®?, NumPy'%,
numba'®, Scipy'®, scikit-learn** and Pandas'*°. Although taking con-
siderable advantage of all packages implemented, ehrapy also shares
the limitations of these libraries, such as a lack of GPU support or
small performance losses due to the translation layer cost for opera-
tions between the Python interpreter and the lower-level C language
for matrix operations. However, by building on very widely used
open-source software, we ensure seamless integration and compat-
ibility with abroad range of tools and platforms to promote community
contributions. Additionally, by doing so, we enhance security by allow-
ingalarger pool of developers toidentify and address vulnerabilities'”’.
Allfunctions are grouped into task-specific modules whose implemen-
tationis complemented with additional dependencies.

Data preparation

Dataloaders. ehrapy is compatible with any type of vectorized data,
where vectorized refers to the data being stored in structured tables
in either on-disk or database form. The input and output module of
ehrapy provides readers for common formats, such as OMOP, CSV
tables or SQL databases through Pandas. When reading in such data-
sets, the data are stored in the appropriate slots in a new AnnData*®
object. ehrapy’s data module provides access to more than 20 public
EHR datasets that feature diseases, including, but not limited to, Par-
kinson’s disease, breast cancer, chronic kidney disease and more. All
dataloaders return AnnData objects to allow forimmediate analysis.

AnnData for EHR data. Our framework required a versatile data struc-
ture capable of handling various matrix formats, including Numpy'*®
for general use cases and interoperability, Scipy'” sparse matrices for
efficient storage, Dask'*® matrices for larger-than-memory analysis and
Awkward array'”’ forirregular time-series data. We needed a single data
structure that not only stores data but also includes comprehensive
annotations for thorough contextual analysis. It was essential for this
structure to be widely used and supported, which ensures robustness
and continual updates. Interoperability with other analytical packages
was a key criterion to facilitate seamless integration within existing
tools and workflows. Finally, the data structure had to support both

in-memory operations and on-disk storage using formats such as HDF5
(ref.110) and Zarr™, ensuring efficient handling and accessibility of
large datasets and the ability to easily share them with collaborators.

All of these requirements are fulfilled by the AnnData format,
which is a popular data structure in single-cell genomics. At its core,
an AnnData object encapsulates diverse components, providing a
holistic representation of data and metadata that are always aligned
indimensions and easily accessible. A datamatrix (commonly referred
toas‘X’) stands as the foundational element, embodying the measured
data. This matrix canbe dense (as Numpy array), sparse (as Scipy sparse
matrix) or ragged (as Awkward array) where dimensions do not align
within the data matrix. The AnnData object can feature several such
datamatrices stored in ‘layers’. Examples of such layers can be unnor-
malized or unencoded data. These data matrices are complemented
by an observations (commonly referred to as ‘obs’) segment where
annotations on the level of patients or visits are stored. Patients’ age
orsex, forinstance, are often used as such annotations. The variables
(commonly referred toas ‘var’) section complements the observations,
offering supplementary details about the features in the dataset, such
as missing data rates. The observation-specific matrices (commonly
referred to as ‘obsm’) section extends the capabilities of the AnnData
structure by allowing the incorporation of observation-specific matri-
ces. These matrices can represent various types of information at the
individual celllevel, such as principal component analysis (PCA) results,
t-distributed stochastic neighbor embedding (t-SNE) coordinates or
other dimensionality reduction outputs. Analogously, AnnData fea-
tures a variables-specific variables (commonly referred to as ‘varm’)
component. The observation-specific pairwise relationships (com-
monly referred to as ‘obsp’) segment complements the ‘obsm’ section
by accommodating observation-specific pairwise relationships. This
can include connectivity matrices, indicating relationships between
patients. The inclusion of an unstructured annotations (commonly
referred to as ‘uns’) component further enhances flexibility. This seg-
mentaccommodates unstructured annotations or arbitrary data that
might not conformto the structured observations or variables catego-
ries. Any AnnData object can be stored on disk in h5ad or Zarr format
to facilitate data exchange.

ehrapy natively interfaces with the scientific Python ecosystemvia
Pandas"?and Numpy'®. The development of deep learning models for
EHR data™is further accelerated through compatibility with pathmI™,
aunified framework for whole-slide image analysis in pathology, and
scvi-tools™, which provides data loaders for loading tensors from
AnnData objects into PyTorch"® or Jax arrays™ to facilitate the devel-
opment of generalizing foundational models for medical artificial

intelligence".

Feature annotation. After AnnData creation, any metadata can
be mapped against ontologies using Bionty (https://github.com/
laminlabs/bionty-base). Bionty provides access to the Human
Phenotype, Phecodes, Phenotype and Trait, Drug, Mondo and Human
Disease ontologies.

Key medical terms stored inan AnnData object in free text canbe
extracted using the Medical Concept Annotation Toolkit (MedCAT)".

Data processing

Cohort tracking. ehrapy provides a CohortTracker tool that traces
all filtering steps applied to an associated AnnData object. To
calculate cohort summary statistics, the implementation makes use
of tableone'?® and can subsequently be plotted as bar charts together
with flow diagrams' that visualize the order and reasoning of filtering
operations.

Basic pre-processing and quality control. ehrapy encompasses
a suite of functionalities for fundamental data processing that are
adopted from scanpy*but adapted to EHR data:
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1

Regress out: To address unwanted sources of variation, a
regression procedure is integrated, enhancing the dataset’s
robustness.

Subsample: Selects a specified fraction of observations.
Balanced sample: Balances groups in the dataset by random
oversampling or undersampling.

Highly variable features: The identification and annotation
of highly variable features following the ‘highly variable
genes’ function of scanpy is seamlessly incorporated, provid-
ing users with insights into pivotal elements influencing
the dataset.

To identify and minimize quality issues, ehrapy provides several

quality control functions:

1L

2.

Basic quality control: Determines the relative and absolute
number of missing values per feature and per patient.
Winsorization: For data refinement, ehrapy implements a
winsorization process, creating a version of the input array less
susceptible to extreme values.

Feature clipping: Imposes limits on features to enhance dataset
reliability.

Detect biases: Computes pairwise correlations between
features, standardized mean differences for numeric features
between groups of sensitive features, categorical feature

value count differences between groups of sensitive features
and feature importances when predicting a target variable.
Little’s MCAR test: Applies Little’s MCAR test whose null
hypothesis is that data are MCAR. Rejecting the null hypothesis
may not always mean that data are not MCAR, nor is accepting
the null hypothesis a guarantee that data are MCAR. For more
details, see Schouten et al.'.

Summarize features: Calculates statistical indicators per
feature, including minimum, maximum and average values.
This can be especially useful to reduce complex data with
multiple measurements per feature per patient into sets of
columns with single values.

Imputation is crucial in data analysis to address missing values,

ensuring the completeness of datasets that can be required for
specificalgorithms. The ‘ehrapy’ pre-processing module offersarange
of imputation techniques:

1

2.

Explicit Impute: Replaces missing values, in either all columns
or a user-specified subset, with a designated replacement value.
Simple Impute: Imputes missing values in numerical data using
mean, median or the most frequent value, contributing to a
more complete dataset.

KNN Impute: Uses k-nearest neighbor imputation to fill in
missing values in the input AnnData object, preserving local
data patterns.

MissForest Impute: Implements the MissForest strategy for im-
puting missing data, providing a robust approach for handling
complex datasets.

MICE Impute: Applies the MICE algorithm for imputing data.
This implementation is based on the miceforest (https://
github.com/AnotherSamWilson/miceforest) package.

Data encoding can be required if categoricals are a part of the

dataset to obtain numerical values only. Most algorithms inehrapy are
compatible only with numerical values. ehrapy offers two encoding
algorithms based on scikit-learn™:

1

One-Hot Encoding: Transforms categorical variables into
binary vectors, creating a binary feature for each category
and capturing the presence or absence of each categoryina
concise representation.

2.

Label Encoding: Assigns a unique numerical label to each category,
facilitating the representation of categorical data as ordinal
values and supporting algorithms that require numerical input.

To ensure that the distributions of the heterogeneous data are

aligned, ehrapy offers several normalization procedures:

1.

tion of the ComBa

Log Normalization: Applies the natural logarithm function to
the data, useful for handling skewed distributions and reduc-
ing the impact of outliers.

. Max-Abs Normalization: Scales each feature by its maximum

absolute value, ensuring that the maximum absolute value for
eachfeatureis 1.

. Min-Max Normalization: Transforms the data to a specific

range (commonly (0, 1)) by scaling each feature based on its
minimum and maximum values.

. Power Transformation Normalization: Applies a power trans-

formation to make the data more Gaussian like, often useful for
stabilizing variance and improving the performance of models
sensitive to distributional assumptions.

. Quantile Normalization: Aligns the distributions of multiple

variables, ensuring that their quantiles match, which can be
beneficial for comparing datasets or removing batch effects.

. Robust Scaling Normalization: Scales data using the interquar-

tile range, making it robust to outliers and suitable for datasets
with extreme values.

. Scaling Normalization: Standardizes data by subtracting

the mean and dividing by the standard deviation, creating a
distribution with a mean of 0 and a standard deviation of 1.

. Offset to Positive Values: Shifts all values by a constant offset

to make all values non-negative, with the lowest negative value
becoming 0.

Dataset shifts can be corrected using the scanpy implementa-
t'> algorithm, which employs a parametric and

non-parametricempirical Bayes framework for adjusting datafor batch
effects thatis robust to outliers.

Finally, a neighbors graph can be efficiently computed using

scanpy’simplementation.

Embeddings. To obtain meaningful lower-dimensional embeddings
that can subsequently be visualized and reused for downstream algo-
rithms, ehrapy provides the following algorithms based on scanpy’s
implementation:

1

t-SNE: Uses a probabilistic approach to embed
high-dimensional data into a lower-dimensional space, em-
phasizing the preservation of local similarities and revealing
clustersin the data.

UMAP: Embeds data points by modeling their local neighbor-
hood relationships, offering an efficient and scalable tech-
nique that captures both global and local structures in
high-dimensional data.

Force-Directed Graph Drawing: Uses a physical simulation to
position nodes in a graph, with edges representing pairwise
relationships, creating a visually meaningful representation
that emphasizes connectedness and clustering in the data.

. Diffusion Maps: Applies spectral methods to capture the

intrinsic geometry of high-dimensional data by modeling
diffusion processes, providing a way to uncover underlying
structures and patterns.

Density Calculation in Embedding: Quantifies the density of
observations within an embedding, considering conditions or
groups, offering insights into the concentration of data points
indifferent regions and aiding in the identification of densely
populated areas.
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Clustering. ehrapy further provides algorithms for clustering and
trajectory inference based on scanpy:

1. Leiden Clustering: Uses the Leiden algorithm to cluster
observations into groups, revealing distinct communities
within the dataset with an emphasis on intra-cluster cohesion.

2. Hierarchical Clustering Dendrogram: Constructs a dendro-
gram through hierarchical clustering based on specified group
by categories, illustrating the hierarchical relationships among
observations and facilitating the exploration of structured
patterns.

Feature ranking. ehrapy provides two ways of ranking feature contri-
butions to clusters and target variables:

1. Statistical tests: To compare any obtained clusters to obtain
marker features that are significantly different between the
groups, ehrapy extends scanpy’s ‘rank genes groups’. The
original implementation, which features a ¢-test for numerical
data, is complemented by a g-test for categorical data.

2. Featureimportance: Calculates feature rankings for a target
variable using linear regression, support vector machine or
random forest models from scikit-learn. ehrapy evaluates the
relative importance of each predictor by fitting the model
and extracting model-specific metrics, such as coefficients or
feature importances.

Dataset integration. Based on scanpy’s ‘ingest’ function, ehrapy facili-
tates theintegration of labels and embeddings from a well-annotated
reference dataset into a new dataset, enabling the mapping of
cluster annotations and spatial relationships for consistent compara-
tive analysis. This process ensures harmonized clinical interpretations
across datasets, especially useful when dealing with multiple experi-
mental diseases or batches.

Knowledge inference
Survival analysis. ehrapy’simplementation of survival analysis algo-
rithmsis based on lifelines'*:

1. Ordinary Least Squares (OLS) Model: Creates a linear regression
model using OLS from a specified formula and an AnnData
object, allowing for the analysis of relationships between
variables and observations.

2. Generalized Linear Model (GLM): Constructs a GLM from a
given formula, distribution and AnnData, providing a versatile
framework for modeling relationships with nonlinear data
structures.

3. Kaplan-Meier: Fits the Kaplan-Meier curve to generate survival
curves, offering a visual representation of the probability of
survival over time in a dataset.

4. CoxHazard Model: Constructs a Cox proportional hazards
model using a specified formula and an AnnData object,
enabling the analysis of survival data by modeling the hazard
rates and their relationship to predictor variables.

5. Log-Rank Test: Calculates the Pvalue for the log-rank test,
comparing the survival functions of two groups, providing
statistical significance for differences in survival distributions.

6. GLM Comparison: Given two fit GLMs, where the larger encom-
passes the parameter space of the smaller, this function returns
the Pvalue, indicating the significance of the larger model and
adding explanatory power beyond the smaller model.

Trajectory inference. Trajectory inference is a computational
approachthatreconstructs and models the developmental paths and
transitions within heterogeneous clinical data, providinginsightsinto

thetemporal progression underlying complex systems. ehrapy offers
several inbuilt algorithms for trajectory inference based on scanpy:

1. Diffusion Pseudotime: Infers the progression of observations
by measuring geodesic distance along the graph, providing
a pseudotime metric that represents the developmental
trajectory within the dataset.

2. Partition-based Graph Abstraction (PAGA): Maps out the
coarse-grained connectivity structures of complex manifolds
using a partition-based approach, offering a comprehensive
visualization of relationships in high-dimensional data
and aiding in the identification of macroscopic connectivity
patterns.

Because ehrapy is compatible with scverse, further trajectory
inference-based algorithms, such as CellRank, can be seamlessly
applied.

Causal inference. ehrapy’s causal inference module is based on
‘dowhy”. It is based on four key steps that are all implemented
inehrapy:

1. Graphical Model Specification: Define a causal graphical model
representing relationships between variables and potential
causal effects.

2. Causal Effect Identification: Automatically identify whether a
causal effect can be inferred from the given data, addressing
confounding and selection bias.

3. Causal Effect Estimation: Employ automated tools to estimate
causal effects, using methods such as matching, instrumental
variables or regression.

4. Sensitivity Analysis and Testing: Perform sensitivity analysis
to assess the robustness of causal inferences and conduct
statistical testing to determine the significance of the
estimated causal effects.

Patient stratification. ehrapy’s complete pipeline from pre-processing
to the generation of lower-dimensional embeddings, clustering, sta-
tistical comparison between determined groups and more facilitates
the stratification of patients.

Visualization
ehrapy features an extensive visualization pipeline that is customizable
and yet offers reasonable defaults. Almost every analysis function is
matched with at least one visualization function that often shares the
namebutis available through the plotting module. For example, after
importing ehrapy as ‘ep’, ‘ep.tl.umap(adata)’ runs the UMAP algorithm
onanAnnDataobject, and ‘ep.pl.umap(adata)’ would then plot ascatter
plot of the UMAP embedding.

ehrapy further offers a suite of more generally usable and modifi-
ableplots:

1. Scatter Plot: Visualizes data points along observation or
variable axes, offering insights into the distribution and
relationships between individual data points.

2. Heatmap: Represents feature values in a grid, providing a
comprehensive overview of the data’s structure and patterns.

3. Dot Plot: Displays count values of specified variables as dots,
offering a clear depiction of the distribution of counts for each
variable.

4. Filled Line Plot: Illustrates trends in data with filled lines,
emphasizing variations in values over a specified axis.

5. Violin Plot: Presents the distribution of data through mirrored
density plots, offering a concise view of the data’s spread.

6. Stacked Violin Plot: Combines multiple violin plots, stacked to
allow for visual comparison of distributions across categories.
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7. Group Mean Heatmap: Creates a heatmap displaying the mean
count per group for each specified variable, providing insights
into group-wise trends.

8. Hierarchically Clustered Heatmap: Uses hierarchical clustering
to arrange datain a heatmap, revealing relationships and
patterns among variables and observations.

9. Rankings Plot: Visualizes rankings within the data, offering a
clear representation of the order and magnitude of values.

10. Dendrogram Plot: Plots a dendrogram of categories defined
inagroup by operation, illustrating hierarchical relationships
within the dataset.

Benchmarking ehrapy

We generated a subset of the UKB data selecting 261 features and
488,170 patient visits. We removed all features with missingness rates
greater than 70%. To demonstrate speed and memory consumption
for various scenarios, we subsampled the data to 20%, 30% and 50%.
We ran a minimal ehrapy analysis pipeline on each of those subsets
and the full data, including the calculation of quality control metrics,
filtering of variables by a missingness threshold, nearest neighbor
imputation, normalization, dimensionality reduction and clustering
(Supplementary Table 1). We conducted our benchmark on a single
CPU with eight threads and 60 GB of maximum memory.

ehrapy further provides out-of-core implementations using
Dask'* for many algorithmsin ehrapy, such as our normalization func-
tions or our PCA implementation. Out-of-core computation refers
to techniques that process data that do not fit entirely in memory,
using disk storage to manage data overflow. This approach is cru-
cial for handling large datasets without being constrained by system
memory limits. Because the principal components get reused for other
computationally expensive algorithms, such as the neighbors graph
calculation, it effectively enables the analysis of very large datasets.
We are currently working on supporting out-of-core computation for
all computationally expensive algorithms in ehrapy.

We demonstrate the memory benefits in a hosted tutorial where
the in-memory pipeline for 50,000 patients with 1,000 features
required about 2 GB of memory, and the corresponding out-of-core
implementation required less than 200 MB of memory.

The code for benchmarking is available at https://github.com/
theislab/ehrapy-reproducibility. The implementation of ehrapy is
accessibleat https://github.com/theislab/ehrapy together with exten-
sive APl documentation and tutorials at https://ehrapy.readthedocs.io.

PIC database analysis

Study design. We collected clinical data from the PIC* version 1.1.0
database. PIC is a single-center, bilingual (English and Chinese) data-
base hosting information of children admitted to critical care units
at the Children’s Hospital of Zhejiang University School of Medicine
in China. The requirement for individual patient consent was waived
becausethestudy did notimpact clinical care, and all protected health
information was de-identified. The database contains 13,499 distinct
hospital admissions of 12,881 distinct pediatric patients. These patients
were admitted to five ICU units with 119 total critical care beds—GICU,
PICU, SICU, CICU and NICU—between 2010 and 2018. The mean age of
the patients was 2.5 years, of whom 42.5% were female. The in-hospital
mortality was 7.1%; the mean hospital stay was 17.6 d; the mean ICU
stay was 9.3 d; and 468 (3.6%) patients were admitted multiple times.
Demographics, diagnoses, doctors’ notes, laboratory and microbiol-
ogy tests, prescriptions, fluid balances, vital signs and radiographics
reports were collected from all patients. For more details, see the
original publication of Zeng et al.”*,

Study participants. Individuals older than 18 years were excluded from
the study. We grouped the datainto three distinct groups: ‘neonates’
(0-28 d of age; 2,968 patients), ‘infants’ (1-12 months of age; 4,876

patients) and ‘youths’ (13 months to 18 years of age; 6,097 patients).
We primarily analyzed the ‘youths’ group with the discharge diagnosis
‘unspecified pneumonia’ (277 patients).

Data collection. The collected clinical data included demographics,
laboratory and vital sign measurements, diagnoses, microbiology and
medication information and mortality outcomes. The five-character
English ICD-10 codes were used, whose values are based on the
seven-character Chinese ICD-10 codes.

Dataset extraction and analysis. We downloaded the PIC database of
version1.1.0 from Physionet' to obtain17 CSV tables. Using Pandas, we
selected all information with more than 50% coverage rate, including
demographics and laboratory and vital sign measurements (Fig. 2). To
reduce the amount of noise, we calculated and added only the mini-
mum, maximum and average of all measurements that had multiple
values per patient. Examination reports were removed because they
describe only diagnostics and not detailed findings. All further diag-
noses and microbiology and medication information were included
into the observations slot to ensure that the data were not used for
the calculation of embeddings but were still available for the analysis.
Thisensured that any calculated embedding would notbe divided into
treated and untreated groups but, rather, solely based on phenotypic
features. We imputed all missing data through k-nearest neighbors
imputation (k=20) using the knn_impute function of ehrapy. Next,
we log normalized the data with ehrapy using the log norm function.
Afterwards, we winsorized the data using ehrapy’s winsorize function
to obtain 277 ICU visits (n = 265 patients) with 572 features. Of those
572 features, 254 were stored in the matrix Xand the remaining 318 in
the ‘obs’ slot in the AnnData object. For clustering and visualization
purposes, we calculated 50 principal components using ehrapy’s pca
function. The obtained principal component representation was then
used to calculate a nearest neighbors graph using the neighbors func-
tion of ehrapy. The nearest neighbors graph then served as the basis
for a UMAP embedding calculation using ehrapy’s umap function.

Patient stratification. We applied the community detection algo-
rithm Leiden with resolution 0.6 on the nearest neighbor graph using
ehrapy’s leiden function. The four obtained clusters served as input
for two-sided t-tests for all numerical values and two-sided g-tests
for all categorical values for all four clusters against the union of all
three other clusters, respectively. This was conducted using ehrapy’s
rank feature groupsfunction, which also corrects Pvalues for multiple
testing with the Benjamini-Hochberg method'”. We presented the four
groups and the statistically significantly different features between
the groups to two pediatricians who annotated the groups with labels.

Our determined groups can be confidently labeled owing to their
distinct clinical profiles. Nevertheless, we could only take into account
clinical features that were measured. Insightful features, such aslung
function tests, are missing. Moreover, the feature representation
of the time-series data is simplified, which can hide some nuances
between the groups. Generally, deciding on a clustering resolution
is difficult. However, more fine-grained clusters obtained via higher
clustering resolutions may become too specific and not generalize
well enough.

Kaplan-Meier survival analysis. We selected patients with up to
360 h of total stay for Kaplan-Meier survival analysis to ensure a suf-
ficiently high number of participants. We proceeded with the AnnData
object prepared as described in the ‘Patient stratification’ subsection to
conduct Kaplan-Meier analysis among all four determined pneu-
monia groups using ehrapy’s kmf function. Significance was tested
through ehrapy’s test kmf logrank function, which tests whether
two Kaplan-Meier series are statistically significant, employing
a chi-squared test statistic under the null hypothesis. Let h,(t) be the
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hazard ratio of group i at time ¢ and c a constant that represents a
proportional change in the hazard ratio between the two groups, then:

Ho © hy(t) = hy(D)

H, : hy(t) = cxhy(t),c #1

This implicitly uses the log-rank weights. An additional Kaplan-
Meier analysis was conducted for all children jointly concerning the
liver markers AST, ALT and GGT. To determine whether measurements
wereinside or outside the normrange, we used reference ranges (Sup-
plementary Table 2). Pvalues less than 0.05 were labeled significant.

Our Kaplan-Meier curve analysis depends on the groups being
well defined and shares the same limitations as the patient stratifica-
tion. Additionally, the analysisis sensitive to the reference table where
we selected limits that generalize well for the age ranges, but, due to
children of different ages being examined, they may not necessarily
be perfectly accurate for all children.

Causal effect of mechanism of action on LOS. Although the dataset
was not initially intended for investigating causal effects of interven-
tions, we adapted it for this purpose by focusing onthe LOS inthe ICU,
measured in months, as the outcome variable. This choice aligns with
the clinical aim of stabilizing patients sufficiently for ICU discharge. We
constructed a causal graph to explore how different drug administra-
tions could potentially reduce the LOS. Based on consultations with
clinicians, we included several biomarkers of liver damage (AST, ALT
and GGT) and inflammation (CRP and PCT) in our model. Patient age
was also considered arelevant variable.

Because several different medications act by the same mecha-
nisms, we grouped specific medications by their drug classes This
grouping was achieved by cross-referencing the drugs listed in the
dataset with DrugBankrelease 5.1(ref. 126), using Levenshtein distances
for partial string matching. After manual verification, we extracted the
corresponding DrugBank categories, counted the number of features
per category and compiled alist of commonly prescribed medications,
asadvised by clinicians. This approach facilitated the modeling of the
causalgraph depictedinFig. 4, where aninterventionis defined as the
administration of at least one drug from a specified category.

Causalinference was then conducted with ehrapy’s ‘dowhy*’-based
causal inference module using the expert-curated causal graph.
Medication groups were designated as causal interventions, and the
LOS was the outcome of interest. Linear regression served as the esti-
mation method for analyzing these causal effects. We excluded four
patients from the analysis owing to their notably long hospital stays
exceeding 90 d, which were deemed outliers. To validate the robustness
of our causal estimates, we incorporated several refutation methods:

 Placebo Treatment Refuter: This method involved replacing the
treatment assignment with a placebo to test the effect of the
treatment variable being null.

« Random Common Cause: A randomly generated variable was
added to the data to assess the sensitivity of the causal estimate
to the inclusion of potential unmeasured confounders.

- Data Subset Refuter: The stability of the causal estimate was
tested across various random subsets of the data to ensure that
the observed effects were not dependent on a specific subset.

* Add Unobserved Common Cause: This approach tested the
effect of an omitted variable by adding a theoretically relevant
unobserved confounder to the model, evaluating how much an
unmeasured variable could influence the causal relationship.

« Dummy Outcome: Replaces the true outcome variable with a
random variable. If the causal effect nullifies, it supports the
validity of the original causal relationship, indicating that the
outcome is not driven by random factors.

« Bootstrap Validation: Employs bootstrapping to generate
multiple samples from the dataset, testing the consistency of
the causal effect across these samples.

The selection of these refuters addresses a broad spectrum of
potential biases and model sensitivities, including unobserved con-
founders and data dependencies. This comprehensive approach
ensuresrobust verification of the causal analysis. Each refuter provides
anorthogonal perspective, targeting specific vulnerabilities in causal
analysis, which strengthens the overall credibility of the findings.

UKB analysis
Study population. We used information from the UKB cohort, which
includes 502,164 study participants from the general UK population
without enrichment for specific diseases. The study involved the
enrollment of individuals between 2006 and 2010 across 22 different
assessment centers throughout the United Kingdom. The tracking of
participants is still ongoing. Within the UKB dataset, metabolomics,
proteomics and retinal optical coherence tomography data are avail-
ableforasubset of individuals without any enrichment for specific dis-
eases. Additionally, EHRs, questionnaire responses and other physical
measures are available for almost everyonein the study. Furthermore, a
variety of genotype informationis available for nearly the entire cohort,
including whole-genome sequencing, whole-exome sequencing, geno-
typing array data as well as imputed genotypes from the genotyping
array**. Because only the latter two are available for download, and are
sufficient for polygenic risk score calculation as performed here, we
used theimputed genotypesin the presentstudy. Participants visited
the assessment center up to four times for additional and repeat meas-
urements and completed additional online follow-up questionnaires.
In the present study, we restricted the analyses to data obtained
from the initial assessment, including the blood draw, for obtaining
the metabolomics data and the retinal imaging as well as physical
measures. This restricts the study populationto 33,521 individuals for
whom all of these modalities are available. We have a clear study start
point for eachindividual with the date of their initial assessment center
visit. The study population has amean age of 57 years, is 54% female and
is censored at age 69 years on average; 4.7% experienced an incident
myocardial infarction; and 8.1% have prevalent type 2 diabetes. The
study population comes from six of the 22 assessment centers due to
theretinalimaging being performed only at those.

Data collection. For the myocardial infarction endpoint definition, we
relied onthefirstoccurrence dataavailable inthe UKB, which compiles
the first date that each diagnosis was recorded for a participantin a
hospitalin ICD-10 nomenclature. Subsequently, we mapped these data
to phecodes and focused on phecode 404.1 for myocardial infarction.

The Framingham Risk Score was developed on data from 8,491
participantsin the Framingham Heart Study to assess general cardio-
vascular risk”. Itincludes easily obtainable predictors and is, therefore,
easily applicableinclinical practice, although newer and more specific
risk scores exist and might be used more frequently. It includes age, sex,
smoking behavior, blood pressure, total and low-density lipoprotein
cholesterol as well as information on insulin, antihypertensive and
cholesterol-lowering medications, all of which are routinely collected
inthe UKB and used in this study as the Framingham feature set.

The metabolomics data used in this study were obtained using
proton NMR spectroscopy, a low-cost method with relatively low
batch effects. It covers established clinical predictors, such as albu-
min and cholesterol, as well as a range of lipids, amino acids and
carbohydrate-related metabolites.

Theretinal optical coherence tomography-derived features were
returned by researchers to the UKB””°. They used the available scans
and determined the macular volume, macular thickness, retinal pig-
ment epithelium thickness, disc diameter, cup-to-disk ratio across
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different regions as well as the thickness between the inner nuclear
layer and external limiting membrane, inner and outer photoreceptor
segments and the retinal pigment epitheliumacross different regions.
Furthermore, they determined a wide range of quality metrics for
each scan, including the image quality score, minimum motion
correlation and inner limiting membrane (ILM) indicator.

Data analysis. After exporting the data from the UKB, all timepoints
were transformed into participant age entries. Only participants with-
out prevalent myocardial infarction (relative to the first assessment
center visitat which all data were collected) were included.

The data were pre-processed for retinal imaging and metabo-
lomics subsets separately, to enable a clear analysis of missing data
and allow for the k-nearest neighbors-based imputation (k = 20)
of missing values when less than 10% were missing for a given
participant. Otherwise, participants were dropped from the analyses.
The imputed genotypes and Framingham analyses were available
for almost every participant and, therefore, notimputed. Individuals
without them were, instead, dropped from the analyses. Because
genetic risk modeling poses entirely different methodological
and computational challenges, we applied a published polygenic
risk score for coronary heart disease using 6.6 million variants’.
This was computed using the plink2 score option on the imputed
genotypes available in the UKB.

UMAP embeddings were computed using default parameters
on the full feature sets with ehrapy’s umap function. For all analyses,
the same time-to-event and event-indicator columns were used. The
eventindicatorisaBoolean variable indicating whether amyocardial
infarction was observed for a study participant. The time to event is
defined as the timespan between the start of the study, in this case
the date of the first assessment center visit. Otherwise, itis the times-
pan from the start of the study to the start of censoring; in this case,
this is set to the last date for which EHRs were available, unless a par-
ticipant died, in which case the date of deathis the start of censoring.
Kaplan-Meier curves and Cox proportional hazards models were fit
using ehrapy’s survival analysis module and the lifelines?* package’s
Cox-PHFitter function with default parameters. For Cox proportional
hazards models with multiple feature sets, individually imputed and
quality-controlled feature sets were concatenated, and the model was
fitonthe resulting matrix. Models were evaluated using the C-index'”
as ametric. It can be seen as an extension of the common area under
the receiver operator characteristic score to time-to-event datasets,
in which events are not observed for every sample and which ranges
from 0.0 (entirely false) over 0.5 (random) to 1.0 (entirely correct).
Cls for the C-index were computed based on bootstrapping by sam-
pling 1,000 times with replacement from all computed partial hazards
and computing the C-index over each of these samples. The percentiles
at2.5% and 97.5% then give the upper and lower confidence bound for
the 95% Cls.

InallUKB analyses, the unit of study for astatistical test or predic-
tive modelis always anindividual study participant.

The generalizability of the analysis is limited as the UK Biobank
cohort may not represent the general population, with potential selec-
tion biases and underrepresentation of the different demographic
groups. Additionally, by restricting analysis to initial assessment
data and censoring based on the last available EHR or date of death,
our analysis does not account for longitudinal changes and can intro-
duce follow-up bias, especially if participants lost to follow-up have
different risk profiles.

In-depth quality control of retina-derived features. A UMAP plot
of the retina-derived features indicating the assessment centers
shows a cluster of samples that lie somewhat outside the general
population and mostly attended the Birmingham assessment
center (Fig. 5b). To further investigate this, we performed Leiden

clustering of resolution 0.3 (Extended Data Fig. 9a) and isolated this
groupin cluster 5. When comparing cluster 5 to the rest of the popula-
tion in the retina-derived feature space, we noticed that many indi-
viduals in cluster 5 showed overall retinal pigment epithelium (RPE)
thickness measures substantially elevated over the rest of the popula-
tionin both eyes (Extended Data Fig. 9b), which is mostly a feature of
this cluster (Extended Data Fig. 9¢). Toinvestigate potential confound-
ing, we computed ratios between cluster 5 and the rest of the popula-
tion over the ‘obs’ DataFrame containing the Framingham features,
diabetes-related phecodes and genetic principal components. Out
of the top and bottom five highest ratios observed, six are in genetic
principal components, which are commonly used to represent genetic
ancestry in a continuous space (Extended Data Fig. 9d). Additionally,
diagnoses for type 1and type 2 diabetes and antihypertensive use are
enrichedin cluster 5. Further investigating the ancestry, we computed
log ratios for self-reported ancestries and absolute counts, which
showed no robust enrichment and depletion effects.

Acloserlookat three quality control measures of the imaging pipe-
linerevealed that cluster 5was anoutlierin terms of either image quality
(Extended Data Fig. 9e) or minimum motion correlation (Extended
DataFig. 9f) and the ILMindicator (Extended Data Fig. 9g), all of which
can be indicative of artifacts in image acquisition and downstream
processing®. Subsequently, we excluded 301 individuals from cluster
Sfromallanalyses.

COVID-19 chest-x-ray fate determination

Dataset overview. We used the public BrixIA COVID-19 dataset, which
contains 192 chest x-ray images annotated with BrixIA scores®’. Hereby,
six regions were annotated by a senior radiologist with more than
20 years of experience and a junior radiologist with a disease severity
score ranging from O to 3. A global score was determined as the sum
of all of these regions and, therefore, ranges from O to 18 (S-Global).
S-Global scores of O were classified as normal. Images that only had
severity values up tolinall six regions were classified as mild. Images
with severity values greater than or equal to 2, but a S-Global score of
less than 7, were classified as moderate. All images that contained at
leastone 3inany of the six regions with aS-Global score between 7 and
10 were classified as severe, and all remaining images with S-Global
scores greater than 10 with at least one 3 were labeled critical. The
dataset and instructions to download the images can be found at
https://github.com/ieee8023/covid-chestxray-dataset.

Dataset extraction and analysis. We first resized all images to
224 x 224 Afterwards, the images underwent a random affine trans-
formation that involved rotation, translation and scaling. The rota-
tion angle was randomly selected from a range of —45° to 45°. The
images were also subject to horizontal and vertical translation, with the
maximum translation being 15% of the image size in either direction.
Additionally, the images were scaled by a factor ranging from 0.85 to
1.15. The purpose of applying these transformations was to enhance the
dataset andintroduce variations, ultimately improving the robustness
and generalization of the model.

To generate embeddings, we used a pre-trained DenseNet
model with weights densenet121-res224-all of TorchXRayVision'*’.
A DenseNet is a convolutional neural network that makes use of
dense connections between layers (Dense Blocks) where all layers
(with matching feature map sizes) directly connect with each other.
To maintain a feed-forward nature, every layer in the DenseNet
architecture receives supplementary inputs from all preceding
layers and transmits its own feature maps to all subsequent layers.
The model was trained on the nih-pc-chex-mimic_ch-google-openi-
rsna dataset™°.

Next, we calculated 50 principal components on the feature
representation of the DenseNet model of all images using ehrapy’s
pca function. The principal component representation served as
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input for a nearest neighbors graph calculation using ehrapy’s neigh-
bors function. This graph served as the basis for the calculation of a
UMAP embedding with three components that was finally visualized
using ehrapy.

Werandomly picked arootinthe group ofimages that waslabeled
‘Normal’. First, we calculated so-called pseudotime by fitting a tra-
jectory through the calculated UMAP space using diffusion maps as
implemented in ehrapy’s dpt function®’. Each image’s pseudotime
value represents its estimated position along this trajectory, serving
as a proxy for its severity stage relative to others in the dataset. To
determine fates, we employed CellRank>**° with the PseudotimeKernel.
Thiskernel computes transition probabilities for patient visits based on
the connectivity of the k-nearest neighbors graph and the pseudotime
values of patient visits, which resembles their progression through a
process. Directionality isinfused in the nearest neighbors graphin this
process where the kernel either removes or downweights edgesin the
graph that contradict the directional flow of increasing pseudotime,
thereby refining the graph to better reflect the developmental trajec-
tory. We computed the transition matrix with asoft threshold scheme
(Parameter of the PseudotimeKernel), which downweights edges that
point against the direction of increasing pseudotime. Finally, we cal-
culated a projection on top of the UMAP embedding with CellRank
using the plot projection function of the PseudotimeKernel that we
subsequently plotted.

This analysis is limited by the small dataset of 192 chest x-ray
images, which may affect the model’s generalizability and robustness.
Annotation subjectivity from radiologists can further introduce vari-
ability in severity scores. Additionally, the random selection of a root
from ‘Normal’ images can introduce bias in pseudotime calculations
and subsequent analyses.

Diabetes 130-US hospitals analysis

Study population. We used data from the Diabetes 130-US hospitals
dataset that were collected between1999 and 2008. It contains clinical
care information at 130 hospitals and integrated delivery networks.
The extracted database information pertains to hospital admissions
specifically for patients diagnosed with diabetes. These encounters
required a hospital stay ranging from 1d to 14 d, during which both
laboratory tests and medications were administered. The selection
criteriafocused exclusively oninpatient encounters with these defined
characteristics. More specifically, we used a version that was curated by
the Fairlearnteam where the target variable ‘readmitted’ was binarized
and a few features renamed or binned (https://fairlearn.org/main/
user_guide/datasets/diabetes_hospital_data.html). The dataset con-
tains 101,877 patient visits and 25 features. The dataset predominantly
consists of White patients (74.8%), followed by African Americans
(18.9%), with other racial groups, such as Hispanic, Asian and Unknown
categories, comprising smaller percentages. Females make up aslight
majority in the data at 53.8%, with males accounting for 46.2% and a
negligible number of entries listed as unknown or invalid. A substantial
majority of the patients are over 60 years of age (67.4%), whereas those
aged 30-60 years represent 30.2%, and those 30 years or younger
constitute just 2.5%.

Data analysis. All of the following descriptions start by loading the
Fairlearn version of the Diabetes 130-US hospitals dataset using
ehrapy’s dataloader as an AnnData object.

Selection andfiltering bias. An overview of sensitive variables was gener-
ated using tableone. Subsequently, ehrapy’s CohortTracker was used
totrack the age, gender and race variables. The cohort was filtered for
allMedicare recipients and subsequently plotted.

Surveillance bias. We plotted the HbAlc measurement ratios using
ehrapy’s catplot.

Missing data and imputation bias. MCAR-type missing data for the
number of medications variable (‘'num_medications’) wereintroduced
by randomly setting 30% of the variables to be missing using Numpy’s
choicefunction. We tested that the dataare MCAR by applying ehrapy’s
implementation of Little’s MCAR test, which returned a non-significant
P value of 0.71. MAR data for the number of medications variable
(‘num_medications‘) were introduced by scaling the ‘time_in_hospital’
variable to have a mean of 0 and a standard deviation of 1, adjusting
these values by multiplying by 1.2 and subtracting 0.6 to influence
overall missingness rate, and then using these valuesto generate MAR
datain the ‘num_medications’ variable via a logistic transformation
and binomial sampling. We verified that the newly introduced missing
values are not MCAR with respect to the ‘time_in_hospital’ variable by
applying ehrapy’simplementation of Little’s test, which was significant
(0.01 x107%). The missing data were imputed using ehrapy’s mean
imputation and MissForest implementation.

Algorithmic bias. Variables ‘race’, ‘gender’, ‘age’, ‘readmitted’, ‘readmit_
binary’ and ‘discharge_disposition_id’ were movedto the ‘obs’slot of the
AnnData object to ensure that they were not used for model training.
Webuiltabinary label ‘readmit_30_days’ indicating whether a patient
hadbeenreadmitted in fewer than 30 d. Next, we combined the ‘Asian’
and‘Hispanic’ categoriesinto asingle ‘Other’ category within the ‘race’
columnof our AnnData object and then filtered out and discarded any
samples labeled as ‘Unknown/Invalid’ under the ‘gender‘ column and
subsequently moved the ‘gender’ data to the variable matrix X of the
AnnData object. All categorical variables got encoded. The data were
split into train and test groups with a test size of 50%. The data were
scaled, and alogistic regression model was trained using scikit-learn,
which was also used to determine the balanced accuracy score. Fair-
learn’s MetricFrame function was used to inspect the target model
performance against the sensitive variable ‘race’. We subsequently fit
Fairlearn’s ThresholdOptimizer using the logistic regression estimator
with balanced_accuracy score as the target object. The algorithmic
demonstration of Fairlearn’s abilities on this dataset is shown here:
https://github.com/fairlearn/talks/tree/main/2021_scipy_tutorial.

Normalization bias. We one-hot encoded all categorical variables with
ehrapy using the encode function. We applied ehrapy’simplementation
of scaling normalization with and without the ‘Age group’ variable
as group key to scale the data jointly and separately using ehrapy’s
scale_norm function.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Physionet provides access to the PIC database® at https://physionet.
org/content/picdb/1.1.0 for credentialed users. The BrixIAimages® are
available at https://github.com/BrixIA/Brixia-score-COVID-19. The data
used in this study were obtained from the UK Biobank** (https:/www.
ukbiobank.ac.uk/). Access to the UK Biobank resource was granted
under application number 49966. The data are available to research-
ers upon application to the UK Biobank in accordance with their data
access policiesand procedures. The Diabetes 130-US Hospitals dataset
isavailable at https://archive.ics.uci.edu/dataset/296/diabetes+130-u
s+hospitals+for+years+1999-2008.

Code availability

The ehrapy source code is available at https://github.com/theislab/
ehrapy under an Apache 2.0 license. Further documentation, tutorials
and examples are available at https://ehrapy.readthedocs.io. We are
actively developing the software and invite contributions from the
community.
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Jupyter notebooks to reproduce our analysis and figures, including
Conda environments that specify all versions, are available at
https://github.com/theislab/ehrapy-reproducibility.
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Extended Data Fig. 1| Overview of the paediatric intensive care database analysis and all tables in blue were discarded based on coverage rate. Despite the
(PIC). The database consists of several tables corresponding to several data high coverage rate, we discarded the ‘OR_EXAM_REPORTS' table because of the
modalities and measurement types. All tables colored in green were selected for lack of detail in the exam reports.
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Extended Data Fig. 5| Feature rankings of stratified patient groups. Scores reflect the z-score underlying the p-value per measurement for each group. Higher

scores (above 0) reflect overrepresentation of the measurement compared to all other groups and vice versa. (a) By clinical chemistry. (b) By liver markers. (c) By

medication type. (d) By infection markers.
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the polygenic risk score for coronary heart disease used in this work substantially
enriches myocardial infarction risk in its top 5% percentile. Kaplan-Meier
estimators with 95 % confidence intervals are shown. (g) UMAP visualization

of the metabolomics features colored by the assessment center shows no
discernable biases. (A-G) n=29,216.

Nature Medicine



Resource https://doi.org/10.1038/s41591-024-03214-0

A B Cluster 5 in retina feature space C
| 400
4001 400 o, g
Cluster T =5
e0 = g- | 300 -‘g
£ 3004 = 300 =
o1 ® s 250 §f E
g o2 3 i g B2
2 .3 £ 200, g 200 y !I z 200 %E”
.4 k<1 2 : 150 §=
& i s
- & 1001 E 100 100 3
oc
50 &
04 0
UMAP1 Cluster0-4  Cluster 5 Cluster 0-4  Gluster5
D Cluster 5 vs Cluster 0-4 E F G
Genetic PC 10 ST 80
Taking antihypertensive N z § 40000
Type 2 diabstes 2 05 & g
Genetic PC 5 60 p § § 20000 2
Type 1 diabetes 8 g & [ g 2 5
: 3 g o0 B& 2 o 8
Genstic PC 2 3 405 = g = 3 2
Genetic PC 7 g 5 g
Genetic PC 1 209 0§ET -200005
Genstic PC 8 E £
Genetic PC 3 o —40000
0
- = [] UMAP1 UMAPA UMAP1
Log-fold change
Extended DataFig. 9 | UK-Biobank retina derived feature quality control. bottom 5fieldsin obs dataframe between cluster 5 and the rest of the population.
(a) Leiden Clustering of retina derived feature space. (b) Comparison of ‘overall (e) Image Quality of the optical coherence tomography scan as reported in the
retinal pigment epithelium (RPE) thickness’ values between cluster 5 (n =301) UKB. (f) Minimum motion correlation quality control indicator. (g) Inner limiting
and the rest of the population (n = 28,915). (c) RPE thickness in the right eye membrane (ILM) quality control indicator. (D-G) Data are shown for the right eye
outliers on the UMAP largely corresponds to cluster 5. (d) Log ratio of top and only, comparable results for the left eye are omitted. (A-G) n=29,216.

Nature Medicine



Resource

https://doi.org/10.1038/s41591-024-03214-0

B
Initial cohort
= 101768
(n ) Percentage of visits with HbA1c measurement
Medicare (%) Medicare p<0,001
False 001
% - X
Ags (%) = True 19,8% p<0,001
Gendor ()| 2| 11350raracs
Race (%) Age
[ 30 years or younger
Medicare cohort I 30-60 years g
= Over 60 <
{n=32439) er 60 years _E 15 13.2%
Medicars (%) Gender £ 4076/30856 11,8%
Age (%) 5 Female g 1584/13416
== Male E
Gender (%) [ ] own 510
Race (%) <
%) Race £
= African American
i 5
m Unknown 0
Emergency Referral Other
admission type
Original distributions Di: ions under joint normalizati Di: ions under ization
Age group 8 Ags group 8 Age group
I Younger than 30 W Younger than 30 I Younger than 30
Older than 30 8 Older than 30 6 QOlder than 30
0% 10% 20% 30% 40% 0% 10% 20% 30% 40%
MCAR missing data and imputation 030 MAR missing data and imputation
0.200- —— Complete: 16.02 £8.13 ' — Complete: 16.02 £8.13
—— MCAR: 16.02 £8.14 0.25] — MAR: 14.66.2 7.2
0.175 —— MCAR Mean imputed: 16.02 & 6.81 ; — MAR M_ean |mput§d: 1466 £572
0.150 - —— MAR MissForest imputed: 16.04 + 6.45
0.204
2 01254
2 z
& 0.100+ g 0.154
0.0751 a
0.050 0.104
00251 0.05-
T =
T A RN 0.00 .
P R LT DT T LUV RN
g | OO PR ISR
20 40 60 ¢
T R
. R ,
80
Unmiti prediction of 30-day ission Th imi iction of 30-day
Race
African American
Caucasian
Other
Unknown

Balanced
accuracy

Selection False negative
rate rate

Extended DataFig. 10 | See next page for caption.

Balanced
accuracy

Selection False negative
rate rate

Nature Medicine



Resource

https://doi.org/10.1038/s41591-024-03214-0

Extended Data Fig.10 | Bias detection and mitigation study on the Diabetes
130-US hospitals dataset (n = 101,766 hospital visits, one patient can have
multiple visits). (a) Filtering to the visits of Medicare recipients results in an
increase of Caucasians. (b) Proportion of visits where Hbl1Ac measurements are
recorded, stratified by admission type. Adjusted P values were calculated with
Chisquared tests and Bonferroni correction (Adjusted P values: Emergency

vs Referral 3.3E-131, Emergency vs Other 1.4E-101, Referral vs Other 1.6E-4.) (c)
Normalizing feature distributions jointly vs. separately can mask distribution
differences. (d) Imputing the number of medications for visits. Onto the
complete data (blue), MCAR (30% missing data) and MAR (38% missing data)
were introduced (orange), with the MAR mechanism depending on the time in
hospital. Mean imputation (green) can reduce the variance of the distribution

under MCAR and MAR mechanisms, and bias the center of the distribution
under an MAR mechanism. Multiple imputation, such as MissForest imputation
canimpute meaningfully evenin MAR cases, when having access to variables
involved in the MAR mechanism. Each boxplot represents the IQR of the data,
with the horizontal line inside the box indicating the median value. The left and
right bounds of the box represent the first and third quartiles, respectively. The
‘whiskers’ extend to the minimum and maximum values within 1.5 times the
IQR from the lower and upper quartiles, respectively. (e) Predicting the early
readmission within 30 days after release on a per-stay level. Balanced accuracy
can mask differences in selection and false negative rate between sensitive
groups.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

Data analysis

No software was used to collect data. Physionet provides access to the PIC database at https://physionet.org/content/picdb/1.1.0 for
credentialed users. The BrixIA images are available at https://github.com/BrixIA/Brixia-score-COVID-19. The diabetic retinopathy dataset is
available at https://www.kaggle.com/c/diabetic-retinopathy-detection/data. The UK Biobank data were obtained from the
www.ukbiobank.ac.uk. Access to the UK Biobank resource was granted under application number 49966. The data are available to researchers
upon application to the UK Biobank in accordance with their data access policies and procedures. The Diabetes 130-US Hospitals dataset is
available at https://archive.ics.uci.edu/dataset/296/diabetes+130-us+hospitals+for+years+1999-2008.

No software was used to collect data. Physionet provides access to the PIC database at https://physionet.org/content/picdb/1.1.0 for
credentialed users. The BrixIA images are available at https://github.com/BrixIA/Brixia-score-COVID-19. The diabetic retinopathy dataset is
available at https://www.kaggle.com/c/diabetic-retinopathy-detection/data. The UK Biobank data were obtained from the
www.ukbiobank.ac.uk. Access to the UK Biobank resource was granted under application number 49966. The data are available to researchers
upon application to the UK Biobank in accordance with their data access policies and procedures. The Diabetes 130-US Hospitals dataset is
available at https://archive.ics.uci.edu/dataset/296/diabetes+130-us+hospitals+for+years+1999-2008.

No software was used to collect data. Physionet provides access to the PIC database at https://physionet.org/content/picdb/1.1.0 for
credentialed users. The BrixIA images are available at https://github.com/BrixIA/Brixia-score-COVID-19. The diabetic retinopathy dataset is
available at https://www.kaggle.com/c/diabetic-retinopathy-detection/data. The UK Biobank data were obtained from the
www.ukbiobank.ac.uk. Access to the UK Biobank resource was granted under application number 49966. The data are available to researchers
upon application to the UK Biobank in accordance with their data access policies and procedures. The Diabetes 130-US Hospitals dataset is
available at https://archive.ics.uci.edu/dataset/296/diabetes+130-us+hospitals+for+years+1999-2008.
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Physionet provides access to the PIC database43 at https://physionet.org/content/picdb/1.1.0 for credentialed users. The BrixIA images82 are available at https://
github.com/BrixIA/Brixia-score-COVID-19. The data used in this study were obtained from the UK Biobank44 (www.ukbiobank.ac.uk). Access to the UK Biobank
resource was granted under application number 49966. The data are available to researchers upon application to the UK Biobank in accordance with their data
access policies and procedures. The Diabetes 130-US Hospitals dataset is available at https://archive.ics.uci.edu/dataset/296/diabetes+130-us+hospitals+for+years
+1999-2008.

Physionet provides access to the PIC database43 at https://physionet.org/content/picdb/1.1.0 for credentialed users. The BrixIA images82 are available at https://
github.com/BrixIA/Brixia-score-COVID-19. The data used in this study were obtained from the UK Biobank44 (www.ukbiobank.ac.uk). Access to the UK Biobank
resource was granted under application number 49966. The data are available to researchers upon application to the UK Biobank in accordance with their data
access policies and procedures. The Diabetes 130-US Hospitals dataset is available at https://archive.ics.uci.edu/dataset/296/diabetes+130-us+hospitals+for+years
+1999-2008.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender When using the term sex or gender, we refer to biological sex in our study. Sex distributions of the respective cohorts that we
analyzed can be found in the corresponding Methods sections.

Reporting on race, ethnicity, or = The respective ethnicity distributions of the respective cohorts that we analyzed can be found in the corresponding Methods
other socially relevant sections.
groupings

Population characteristics We analyzed the Pediatric Intensive Care (PIC) database which records 13,499 hospital admissions involving 12,881 unique
pediatric patients aged 0-18 years, between 2010 and 2018. A subset of these patients, 468 (3.6%), experienced multiple
admissions. The average age at admission was 2.5 years, with the first to third quartile range from 0.1 to 3.3 years. Most of
the patients (57.5%) were male. The mortality rate within the hospital was 7.1%. The average length of a hospital stay was
17.6 days, with the first to third quartile range from 7.0 to 21.0 days, and the average length of stay in the ICU was 9.3 days,
with a range from 0.9 to 9.2 days. The neonatal ICU recorded the longest average stays at 21.6 days (Q1-Q3: 2.5-32.8), while
the surgical ICU had the shortest at 2.3 days (Q1-Q3: 0.8—1.6). The most common categories of diagnoses at discharge were
congenital malformations, deformations, and chromosomal abnormalities (25.4%, codes Q00—Q99), conditions originating in
the perinatal period (14.1%, codes POO-P96), and respiratory system diseases (10.3%, codes JO0—-J99). More details on the
cohort can be found in the original publication of the dataset in Zeng et al. Nature Scientific Data (2020).We further analyzed
data from the UK Biobank cohort. It has data of enrolled individuals at 22 assessment centers throughout the United
Kingdom from 2006 to 2010. For this analysis, the focus is on data collected during the initial assessment, which includes a
blood draw for metabolomics data via NMR techniques, retinal imaging, and physical measurements. This selection criteria
limits the dataset to 32,436 participants who had all these assessments. The study participants primarily come from six out of
the 22 centers, reflecting the availability of retinal imaging at these locations. The cohort has an average age of 57 years,
consists of 54% females, and has an average censoring age of 69. Regarding health outcomes, 4.7% of the participants have
had a myocardial infarction, and 8.1% have been diagnosed with type 2 diabetes.We analyzed the public BrixIA COVID-19
Dataset which contains 192 chest X-ray images annotated with Brixia-scores. Hereby, 6 regions were annotated by
radiologists with scores ranging from 0-3 (disease severity). 39 of the images were control and the remaining 153 images
were annotated with COVID-19. Covariates such as age or sex are not reported in the original study by Signoroni et al.
Medical Image Analysis (2021).The Diabetes 130-US hospitals dataset, collected between 1999 and 2008, consists of clinical
care information from 130 hospitals and integrated delivery networks in the U.S., focusing on inpatient admissions of diabetic
patients. These patients had hospital stays ranging from 1 to 14 days, where they underwent various laboratory tests and
received medications. The dataset includes 101,877 patient visits and 25 features, following selection criteria that narrowed
it down to inpatient encounters only. The fairlearn team curated a version of this dataset, binarizing the target variable
"readmitted" and modifying some feature names and categories. The majority of patients are Caucasian (74.8%), followed by
African Americans (18.9%), with other races making up smaller percentages. There is a slight female majority (53.8%), and
most patients are over 60 years old (67.4%).
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Recruitment

Ethics oversight

We did not recruit any patients. This is a retrospective study.

All used datasets have been published previously with consent of the respective participants and their ethics boards. We
refer to the respective ethics statements of the corresponding publications.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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|:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf
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ces study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

Behaviou

The data analyzed comprised 12,811 distinct pediatric patients of the Paediatric Intensive Care database, 32,426 individuals of the UK
Biobank, 71518 patients of the Diabetes 130-US Hospitals dataset, and 192 chest X-ray images of the BrixIA dataset. We select these six
datasets because they cover very different cohorts with different ethnic backgrounds, disease profiles, and number of study participants. We
therefore deem the number of analyzed datasets sufficient to demonstrate the robust applicability of our framework ehrapy.

Excluded individuals based on quality control criteria described in the manuscript.

e reproducible, we deposited the complete end-to-end analysis code on the associated reproducibility Github repository (https://github.com/
theislab/ehrapy-reproducibility) together with the used software package versions. Whenever performing Leiden clustering, we ensured that
the obtained clusters and annotations were robust to several clustering resolutions. Our causal inference use-case was tested for replicability
using refuters that challenge the causal model's assumptions. We applied the “placebo_treatment_refuter” to test if the treatment genuinely
causes the observed effect by substituting it with a placebo. Meanwhile, “random_common_cause” and “add_unobserved_common_cause”
introduce hypothetical confounders to assess sensitivity to unknown variables. The “data_subset_refuter” verifies consistency by recalculating
effects across various data subsets.

To calculate confidence intervals for the C-index, we performed bootstrapping by randomly sampling 1000 times with replacement from all
computed partial hazards and computing the C-index over each of these samples. To illustrate the potential for machine learning models to
exhibit ethnic bias, we implemented balanced random undersampling to equalize the number of control and disease cases across different
ethnic groups.

This is a retrospective study, which utilizes pre-existing data where interventions and outcomes have already been recorded, hence blinding is
unnecessary as it does not affect the results.

ral & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.
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Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.
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Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.
Timing and spatial scale |/ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your studly.

Did the study involve field work? |:| Yes |:| No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.




Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |:| |:| ChIP-seq
Eukaryotic cell lines |:| |:| Flow cytometry
Palaeontology and archaeology |:| |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
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Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field, report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall




numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] Public health

|:| National security

|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area
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Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Plants

Seed stocks

Novel plant genotypes

Authentication

ChlP-seq

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied-
Describe-any-atuthentication-procedures foreach-seed stock tised-ornovel-genotype-generated—Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,

May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session
(e.g. UCSC)

Methodology

Replicates

Sequencing depth
Antibodies
Peak calling parameters

Data quality

Software

Flow Cytometry

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
enable peer review. Write "no longer applicable" for "Final submission" documents.

Describe the experimental replicates, specifying number, type and replicate agreement.

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Describe the antibodies used for the ChiIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.

Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community
repository, provide accession details.

Plots
Confirm that:

|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation
Instrument

Software

Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Identify the instrument used for data collection, specifying make and model number.

Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.
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Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design speciﬂcations Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ JUsed L] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects,; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based [ | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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