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An open-source framework for end-to-end 
analysis of electronic health record data

With progressive digitalization of healthcare systems worldwide, large-scale 

collection of electronic health records (EHRs) has become commonplace. 

However, an extensible framework for comprehensive exploratory analysis 

that accounts for data heterogeneity is missing. Here we introduce ehrapy, a 

modular open-source Python framework designed for exploratory analysis 

of heterogeneous epidemiology and EHR data. ehrapy incorporates a 

series of analytical steps, from data extraction and quality control to the 

generation of low-dimensional representations. Complemented by rich 

statistical modules, ehrapy facilitates associating patients with disease 

states, differential comparison between patient clusters, survival analysis, 

trajectory inference, causal inference and more. Leveraging ontologies, 

ehrapy further enables data sharing and training EHR deep learning 

models, paving the way for foundational models in biomedical research. We 

demonstrate ehrapy’s features in six distinct examples. We applied ehrapy 

to stratify patients affected by unspecified pneumonia into finer-grained 

phenotypes. Furthermore, we reveal biomarkers for significant differences 

in survival among these groups. Additionally, we quantify medication-class 

effects of pneumonia medications on length of stay. We further leveraged 

ehrapy to analyze cardiovascular risks across different data modalities. 

We reconstructed disease state trajectories in patients with severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) based on imaging data. 

Finally, we conducted a case study to demonstrate how ehrapy can detect 

and mitigate biases in EHR data. ehrapy, thus, provides a framework that 

we envision will standardize analysis pipelines on EHR data and serve as a 

cornerstone for the community.

Electronic health records (EHRs) are becoming increasingly common 

due to standardized data collection1 and digitalization in healthcare 

institutions. EHRs collected at medical care sites serve as efficient  

storage and sharing units of health information2, enabling the informed 

treatment of individuals using the patient’s complete history3.  

Routinely collected EHR data are approaching genomic-scale size and 

complexity4, posing challenges in extracting information without 

quantitative analysis methods. The application of such approaches 

to EHR databases1,5–9 has enabled the prediction and classification of 

diseases10,11, study of population health12, determination of optimal 

treatment policies13,14, simulation of clinical trials15 and stratification 

of patients16.

However, current EHR datasets suffer from serious limitations, 

such as data collection issues, inconsistencies and lack of data diver-

sity. EHR data collection and sharing problems often arise due to 

non-standardized formats, with disparate systems using exchange 

protocols, such as Health Level Seven International (HL7) and Fast 

Healthcare Interoperability Resources (FHIR)17. In addition, EHR data 

are stored in various on-disk formats, including, but not limited to, 

relational databases and CSV, XML and JSON formats. These variations 
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subject to indwelling arterial catheter usage. ehrapy is compatible with 

any EHR dataset that can be transformed into vectors and is accessible 

as a user-friendly open-source software package hosted at https://

github.com/theislab/ehrapy and installable from PyPI. It comes with 

comprehensive documentation, tutorials and further examples, all 

available at https://ehrapy.readthedocs.io.

Results
ehrapy: a framework for exploratory EHR data analysis
The foundation of ehrapy is a robust and scalable data storage backend 

that is combined with a series of pre-processing and analysis modules. 

In ehrapy, EHR data are organized as a data matrix where observations 

are individual patient visits (or patients, in the absence of follow-up 

visits), and variables represent all measured quantities (Methods). 

These data matrices are stored together with metadata of observa-

tions and variables. By leveraging the AnnData (annotated data) data 

structure that implements this design, ehrapy builds upon established 

standards and is compatible with analysis and visualization functions 

provided by the omics scverse40 ecosystem. Readers are also available 

in R, Julia and Javascript46. We additionally provide a dataset module 

with more than 20 public loadable EHR datasets in AnnData format to 

kickstart analysis and development with ehrapy.

For standardized analysis of EHR data, it is crucial that these data 

are encoded and stored in consistent, reusable formats. Thus, ehrapy 

requires that input data are organized in structured vectors. Readers for 

common formats, such as CSV, OMOP47 or SQL databases, are available 

in ehrapy. Data loaded into AnnData objects can be mapped against 

several hierarchical ontologies48–51 (Methods). Clinical keywords of 

free text notes can be automatically extracted (Methods).

Powered by scanpy, which scales to millions of observations52 

(Methods and Supplementary Table 1) and the machine learning library 

scikit-learn53, ehrapy provides more than 100 composable analysis 

functions organized in modules from which custom analysis pipelines 

can be built. Each function directly interacts with the AnnData object 

and adds all intermediate results for simple access and reuse of infor-

mation to it. To facilitate setting up these pipelines, ehrapy guides 

analysts through a general analysis pipeline (Fig. 1). At any step of an 

analysis pipeline, community software packages can be integrated 

without any vendor lock-in. Because ehrapy is built on open standards, 

it can be purposefully extended to solve new challenges, such as the 

development of foundational models (Methods).

In the ehrapy analysis pipeline, EHR data are initially inspected for 

quality issues by analyzing feature distributions that may skew results 

and by detecting visits and features with high missing rates that ehrapy 

can then impute (Methods). ehrapy tracks all filtering steps while 

keeping track of population dynamics to highlight potential selection 

and filtering biases (Methods). Subsequently, ehrapy’s normalization 

and encoding functions (Methods) are applied to achieve a uniform 

numerical representation that facilitates data integration and corrects 

for dataset shift effects (Methods). Calculated lower-dimensional rep-

resentations can subsequently be visualized, clustered and annotated 

to obtain a patient landscape (Methods). Such annotated groups of 

patients can be used for statistical comparisons to find differences 

in features among them to ultimately learn markers of patient states.

As analysis goals can differ between users and datasets, the ehrapy 

analysis pipeline is customizable during the final knowledge inference 

step. ehrapy provides statistical methods for group comparison and 

extensive support for survival analysis (Methods), enabling the dis-

covery of biomarkers. Furthermore, ehrapy offers functions for causal 

inference to go from statistically determined associations to causal 

relations (Methods). Moreover, patient visits in aggregated EHR data 

can be regarded as snapshots where individual measurements taken 

at specific timepoints might not adequately reflect the underlying 

progression of disease and result from unrelated variation due to, for 

example, day-to-day differences54–56. Therefore, disease progression 

pose challenges with respect to data retrieval, scalability, interoper-

ability and data sharing.

Beyond format variability, inherent biases of the collected data 

can compromise the validity of findings. Selection bias stemming 

from non-representative sample composition can lead to skewed 

inferences about disease prevalence or treatment efficacy18,19. Filtering 

bias arises through inconsistent criteria for data inclusion, obscuring 

true variable relationships20. Surveillance bias exaggerates associa-

tions between exposure and outcomes due to differential monitoring 

frequencies21. EHR data are further prone to missing data22,23, which 

can be broadly classified into three categories: missing completely at 

random (MCAR), where missingness is unrelated to the data; missing 

at random (MAR), where missingness depends on observed data; and 

missing not at random (MNAR), where missingness depends on unob-

served data22,23. Information and coding biases, related to inaccuracies 

in data recording or coding inconsistencies, respectively, can lead to 

misclassification and unreliable research conclusions24,25. Data may 

even contradict itself, such as when measurements were reported for 

deceased patients26,27. Technical variation and differing data collec-

tion standards lead to distribution differences and inconsistencies in 

representation and semantics across EHR datasets28,29. Attrition and 

confounding biases, resulting from differential patient dropout rates 

or unaccounted external variable effects, can significantly skew study 

outcomes30–32. The diversity of EHR data that comprise demographics, 

laboratory results, vital signs, diagnoses, medications, x-rays, written 

notes and even omics measurements amplifies all the aforementioned 

issues.

Addressing these challenges requires rigorous study design, 

careful data pre-processing and continuous bias evaluation through 

exploratory data analysis. Several EHR data pre-processing and analysis 

workflows were previously developed4,33–37, but none of them enables 

the analysis of heterogeneous data, provides in-depth documenta-

tion, is available as a software package or allows for exploratory visual 

analysis. Current EHR analysis pipelines, therefore, differ considerably 

in their approaches and are often commercial, vendor-specific solu-

tions38. This is in contrast to strategies using community standards 

for the analysis of omics data, such as Bioconductor39 or scverse40. 

As a result, EHR data frequently remain underexplored and are com-

monly investigated only for a particular research question41. Even in 

such cases, EHR data are then frequently input into machine learning 

models with serious data quality issues that greatly impact prediction 

performance and generalizability42.

To address this lack of analysis tooling, we developed the EHR 

Analysis in Python framework, ehrapy, which enables exploratory 

analysis of diverse EHR datasets. The ehrapy package is purpose-built 

to organize, analyze, visualize and statistically compare complex EHR 

data. ehrapy can be applied to datasets of different data types, sizes, 

diseases and origins. To demonstrate this versatility, we applied ehrapy 

to datasets obtained from EHR and population-based studies. Using 

the Pediatric Intensive Care (PIC) EHR database43, we stratified patients 

diagnosed with ‘unspecified pneumonia’ into distinct clinically rel-

evant groups, extracted clinical indicators of pneumonia through 

statistical analysis and quantified medication-class effects on length 

of stay (LOS) with causal inference. Using the UK Biobank44 (UKB), a 

population-scale cohort comprising over 500,000 participants from 

the United Kingdom, we employed ehrapy to explore cardiovascu-

lar risk factors using clinical predictors, metabolomics, genomics 

and retinal imaging-derived features. Additionally, we performed 

image analysis to project disease progression through fate mapping in 

patients affected by coronavirus disease 2019 (COVID-19) using chest 

x-rays. Finally, we demonstrate how exploratory analysis with ehrapy 

unveils and mitigates biases in over 100,000 visits by patients with dia-

betes across 130 US hospitals. We provide online links to additional use 

cases that demonstrate ehrapy’s usage with further datasets, including 

MIMIC-II (ref. 45), and for various medical conditions, such as patients 
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(n = 984). We focused on pneumonia to apply ehrapy to a challeng-

ing, broad-spectrum disease that affects all age groups. Pneumonia 

is a prevalent respiratory infection that poses a substantial burden 

on public health60 and is characterized by inflammation of the alveoli 

and distal airways60. Individuals with pre-existing chronic conditions 

are particularly vulnerable, as are children under the age of 5 (ref. 61). 

Pneumonia can be caused by a range of microorganisms, encompass-

ing bacteria, respiratory viruses and fungi.

We selected the age group ‘youths’ (13 months to 18 years of age) 

for further analysis, addressing a total of 265 patients who dominated 

the pneumonia cases and were diagnosed with ‘unspecified pneu-

monia’ (Fig. 2d and Extended Data Fig. 4). Neonates (0–28 d old) and 

infants (29 d to 12 months old) were excluded from the analysis as the 

disease context is significantly different in these age groups due to 

distinct anatomical and physical conditions. Patients were 61% male, 

had a total of 277 admissions, had a mean age at admission of 54 months 

(median, 38 months) and had an average LOS of 15 d (median, 7 d). Of 

these, 152 patients were admitted to the pediatric intensive care unit 

(PICU), 118 to the general ICU (GICU), four to the surgical ICU (SICU) 

and three to the cardiac ICU (CICU). Laboratory measurements typi-

cally had 12–14% missing data, except for serum procalcitonin (PCT), 

a marker for bacterial infections, with 24.5% missing, and C-reactive 

protein (CRP), a marker of inflammation, with 16.8% missing. Measure-

ments assigned as ‘vital signs’ contained between 44% and 54% miss-

ing values. Stratifying patients with unspecified pneumonia further 

enables a more nuanced understanding of the disease, potentially 

facilitating tailored approaches to treatment.

To deepen clinical phenotyping for the disease group ‘unspeci-

fied pneumonia’, we calculated a k-nearest neighbor graph to cluster 

patients into groups and visualize these in UMAP space (Methods). 

Leiden clustering62 identified four patient groupings with distinct 

clinical features that we annotated (Fig. 2e). To identify the labora-

tory values, medications and pathogens that were most characteristic 

for these four groups (Fig. 2f), we applied t-tests for numerical data 

and g-tests for categorical data between the identified groups using 

ehrapy (Extended Data Fig. 5 and Methods). Based on this analysis, 

we identified patient groups with ‘sepsis-like, ‘severe pneumonia 

with co-infection’, ‘viral pneumonia’ and ‘mild pneumonia’ pheno-

types. The ‘sepsis-like’ group of patients (n = 28) was characterized 

by rapid disease progression as exemplified by an increased num-

ber of deaths (adjusted P ≤ 5.04 × 10−3, 43% (n = 28), 95% confidence 

interval (CI): 23%, 62%); indication of multiple organ failure, such 

as elevated creatinine (adjusted P ≤ 0.01, 52.74 ± 23.71 µmol L−1) or 

reduced albumin levels (adjusted P ≤ 2.89 × 10−4, 33.40 ± 6.78 g L−1); 

and increased expression levels and peaks of inflammation markers,  

including PCT (adjusted P ≤ 3.01 × 10−2, 1.42 ± 2.03 ng ml−1), whole 

blood cell count, neutrophils, lymphocytes, monocytes and lower 

platelet counts (adjusted P ≤ 6.3 × 10−2, 159.30 ± 142.00 × 109 per 

liter) and changes in electrolyte levels—that is, lower potassium  

levels (adjusted P ≤ 0.09 × 10−2, 3.14 ± 0.54 mmol L−1). Patients whom we 

associated with the term ‘severe pneumonia with co-infection’ (n = 74) 

were characterized by prolonged ICU stays (adjusted P ≤ 3.59 × 10−4, 

15.01 ± 29.24 d); organ affection, such as higher levels of creatinine 

(adjusted P ≤ 1.10 × 10−4, 52.74 ± 23.71 µmol L−1) and lower platelet count 

(adjusted P ≤ 5.40 × 10−23, 159.30 ± 142.00 × 109 per liter); increased 

inflammation markers, such as peaks of PCT (adjusted P ≤ 5.06 × 10−5, 

1.42 ± 2.03 ng ml−1), CRP (adjusted P ≤ 1.40 × 10−6, 50.60 ± 37.58 mg L−1) 

and neutrophils (adjusted P ≤ 8.51 × 10−6, 13.01 ± 6.98 × 109 per liter); 

detection of bacteria in combination with additional pathogen fun-

gals in sputum samples (adjusted P ≤ 1.67 × 10−2, 26% (n = 74), 95% CI: 

16%, 36%); and increased application of medication, including anti-

fungals (adjusted P ≤ 1.30 × 10−4, 15% (n = 74), 95% CI: 7%, 23%) and 

catecholamines (adjusted P ≤ 2.0 × 10−2, 45% (n = 74), 95% CI: 33%, 56%). 

Patients in the ‘mild pneumonia’ group were characterized by posi-

tive sputum cultures in the presence of relatively lower inflammation 

markers, such as PCT (adjusted P ≤ 1.63 × 10−3, 1.42 ± 2.03 ng ml−1) and 

CRP (adjusted P ≤ 0.03 × 10−1, 50.60 ± 37.58 mg L−1), while receiving 

antibiotics more frequently (adjusted P ≤ 1.00 × 10−5, 80% (n = 78), 95% 

CI: 70%, 89%) and additional medications (electrolytes, blood thinners 

and circulation-supporting medications) (adjusted P ≤ 1.00 × 10−5, 82% 

(n = 78), 95% CI: 73%, 91%). Finally, patients in the ‘viral pneumonia’ 

group were characterized by shorter LOSs (adjusted P ≤ 8.00 × 10−6, 

15.01 ± 29.24 d), a lack of non-viral pathogen detection in combination 

with higher lymphocyte counts (adjusted P ≤ 0.01, 4.11 ± 2.49 × 109 per 

liter), lower levels of PCT (adjusted P ≤ 0.03 × 10−2, 1.42 ± 2.03 ng ml−1) 

and reduced application of catecholamines (adjusted P ≤ 5.96 × 10−7, 

15% (n = 97), 95% CI: 8%, 23%), antibiotics (adjusted P ≤ 8.53 × 10−6, 41% 

(n = 97), 95% CI: 31%, 51%) and antifungals (adjusted P ≤ 5.96 × 10−7, 0% 

(n = 97), 95% CI: 0%, 0%).

To demonstrate the ability of ehrapy to examine EHR data from 

different levels of resolution, we additionally reconstructed a case 

from the ‘severe pneumonia with co-infection’ group (Fig. 2g). In this 

case, the analysis revealed that CRP levels remained elevated despite 

broad-spectrum antibiotic treatment until a positive Acinetobacter 

baumannii result led to a change in medication and a subsequent 

decrease in CRP and monocyte levels.

ehrapy facilitates extraction of pneumonia indicators
ehrapy’s survival analysis module allowed us to identify clinical  

indicators of disease stages that could be used as biomarkers 

through Kaplan–Meier analysis. We found strong variance in overall 

aspartate aminotransferase (AST), alanine aminotransferase (ALT), 

gamma-glutamyl transferase (GGT) and bilirubin levels (Fig. 3a), includ-

ing changes over time (Extended Data Fig. 6a,b), in all four ‘unspecified 

pneumonia’ groups. Routinely used to assess liver function, studies 

provide evidence that AST, ALT and GGT levels are elevated during 

respiratory infections63, including severe pneumonia64, and can guide 

diagnosis and management of pneumonia in children63. We confirmed 

reduced survival in more severely affected children (‘sepsis-like  

pneumonia’ and ‘severe pneumonia with co-infection’) using Kaplan–

Meier curves and a multivariate log-rank test (Fig. 3b; P ≤ 1.09 × 10−18) 

through ehrapy. To verify the association of this trajectory with altered 

AST, ALT and GGT expression levels, we further grouped all patients 

based on liver enzyme reference ranges (Methods and Supplementary 

Table 2). By Kaplan–Meier survival analysis, cases with peaks of GGT 

(P ≤ 1.4 × 10−2, 58.01 ± 2.03 U L−1), ALT (P ≤ 2.9 × 10−2, 43.59 ± 38.02 U L−1) 

and AST (P ≤ 4.8 × 10−4, 78.69 ± 60.03 U L−1) in ‘outside the norm’ were 

found to correlate with lower survival in all groups (Fig. 3c and Extended 

Data Fig. 6), in line with previous studies63,65. Bilirubin was not found to 

significantly affect survival (P ≤ 2.1 × 10−1, 12.57 ± 21.22 mg dl−1).

ehrapy quantifies medication class effect on LOS
Pneumonia requires case-specific medications due to its diverse causes. 

To demonstrate the potential of ehrapy’s causal inference module, we 

quantified the effect of medication on ICU LOS to evaluate case-specific 

administration of medication. In contrast to causal discovery that 

attempts to find a causal graph reflecting the causal relationships, 

causal inference is a statistical process used to investigate possible 

effects when altering a provided system, as represented by a causal 

graph and observational data (Fig. 4a)66. This approach allows identify-

ing and quantifying the impact of specific interventions or treatments 

on outcome measures, thereby providing insight for evidence-based 

decision-making in healthcare. Causal inference relies on datasets 

incorporating interventions to accurately quantify effects.

We manually constructed a minimal causal graph with ehrapy 

(Fig. 4b) on records of treatment with corticosteroids, carbapenems, 

penicillins, cephalosporins and antifungal and antiviral medications as 

interventions (Extended Data Fig. 7 and Methods). We assumed that the 

medications affect disease progression proxies, such as inflammation 

markers and markers of organ function. The selection of ‘interventions’ 
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within subgroups, and its compatibility with Fairlearn83 can poten-

tially mitigate predictor biases. Generally, we recommend to assess 

all pre-processing in an iterative manner with respect to downstream 

applications, such as patient stratification. Moreover, sensitivity analy-

sis can help verify the robustness of all inferred knowledge97.

These diverse use cases illustrate ehrapy’s potential to suffi-

ciently address the need for a computationally efficient, extendable, 

reproducible and easy-to-use framework. ehrapy is compatible with 

major standards, such as Observational Medical Outcomes Partner-

ship (OMOP), Common Data Model (CDM)47, HL7, FHIR or openEHR, 

with flexible support for common tabular data formats. Once loaded  

into an AnnData object, subsequent sharing of analysis results is 

made easy because AnnData objects can be stored and read plat-

form independently. ehrapy’s rich documentation of the application  

programming interface (API) and extensive hands-on tutorials make 

EHR analysis accessible to both novices and experienced analysts.

As ehrapy remains under active development, users can expect 

ehrapy to continuously evolve. We are improving support for the joint 

analysis of EHR, genetics and molecular data where ehrapy serves as 

a bridge between the EHR and the omics communities. We further 

anticipate the generation of EHR-specific reference datasets, so-called 

atlases98, to enable query-to-reference mapping where new datasets 

get contextualized by transferring annotations from the reference 

to the new dataset. To promote the sharing and collective analysis of 

EHR data, we envision adapted versions of interactive single-cell data 

explorers, such as CELLxGENE99 or the UCSC Cell Browser100, for EHR 

data. Such web interfaces would also include disparity dashboards20 

to unveil trends of preferential outcomes for distinct patient groups. 

Additional modules specifically for high-frequency time-series data, 

natural language processing and other data types are currently under 

development. With the widespread availability of code-generating 

large language models, frameworks such as ehrapy are becoming 

accessible to medical professionals without coding expertise who can 

leverage its analytical power directly. Therefore, ehrapy, together with a 

lively ecosystem of packages, has the potential to enhance the scientific 

discovery pipeline to shape the era of EHR analysis.

Online content
Any methods, additional references, Nature Portfolio reporting sum-

maries, source data, extended data, supplementary information, 

acknowledgements, peer review information; details of author contri-

butions and competing interests; and statements of data and code avail-
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Methods
All datasets that were used during the development of ehrapy and the 

use cases were used according to their terms of use as indicated by 

each provider.

Design and implementation of ehrapy
A unified pipeline as provided by our ehrapy framework streamlines the 

analysis of EHR data by providing an efficient, standardized approach, 

which reduces the complexity and variability in data pre-processing 

and analysis. This consistency ensures reproducibility of results and 

facilitates collaboration and sharing within the research community. 

Additionally, the modular structure allows for easy extension and  

customization, enabling researchers to adapt the pipeline to their 

specific needs while building on a solid foundational framework.

ehrapy was designed from the ground up as an open-source effort 

with community support. The package, as well as all associated tutorials 

and dataset preparation scripts, are open source. Development takes 

place publicly on GitHub where the developers discuss feature requests 

and issues directly with users. This tight interaction between both 

groups ensures that we implement the most pressing needs to cater 

the most important use cases and can guide users when difficulties 

arise. The open-source nature, extensive documentation and modular 

structure of ehrapy are designed for other developers to build upon 

and extend ehrapy’s functionality where necessary. This allows us to 

focus ehrapy on the most important features to keep the number of 

dependencies to a minimum.

ehrapy was implemented in the Python programming lan-

guage and builds upon numerous existing numerical and scientific 

open-source libraries, specifically matplotlib101, seaborn102, NumPy103, 

numba104, Scipy105, scikit-learn53 and Pandas106. Although taking con-

siderable advantage of all packages implemented, ehrapy also shares 

the limitations of these libraries, such as a lack of GPU support or 

small performance losses due to the translation layer cost for opera-

tions between the Python interpreter and the lower-level C language 

for matrix operations. However, by building on very widely used 

open-source software, we ensure seamless integration and compat-

ibility with a broad range of tools and platforms to promote community 

contributions. Additionally, by doing so, we enhance security by allow-

ing a larger pool of developers to identify and address vulnerabilities107. 

All functions are grouped into task-specific modules whose implemen-

tation is complemented with additional dependencies.

Data preparation
Dataloaders. ehrapy is compatible with any type of vectorized data, 

where vectorized refers to the data being stored in structured tables 

in either on-disk or database form. The input and output module of 

ehrapy provides readers for common formats, such as OMOP, CSV 

tables or SQL databases through Pandas. When reading in such data-

sets, the data are stored in the appropriate slots in a new AnnData46 

object. ehrapy’s data module provides access to more than 20 public 

EHR datasets that feature diseases, including, but not limited to, Par-

kinson’s disease, breast cancer, chronic kidney disease and more. All 

dataloaders return AnnData objects to allow for immediate analysis.

AnnData for EHR data. Our framework required a versatile data struc-

ture capable of handling various matrix formats, including Numpy103 

for general use cases and interoperability, Scipy105 sparse matrices for 

efficient storage, Dask108 matrices for larger-than-memory analysis and 

Awkward array109 for irregular time-series data. We needed a single data 

structure that not only stores data but also includes comprehensive 

annotations for thorough contextual analysis. It was essential for this 

structure to be widely used and supported, which ensures robustness 

and continual updates. Interoperability with other analytical packages 

was a key criterion to facilitate seamless integration within existing 

tools and workflows. Finally, the data structure had to support both 

in-memory operations and on-disk storage using formats such as HDF5 

(ref. 110) and Zarr111, ensuring efficient handling and accessibility of 

large datasets and the ability to easily share them with collaborators.

All of these requirements are fulfilled by the AnnData format, 

which is a popular data structure in single-cell genomics. At its core, 

an AnnData object encapsulates diverse components, providing a 

holistic representation of data and metadata that are always aligned 

in dimensions and easily accessible. A data matrix (commonly referred 

to as ‘X’) stands as the foundational element, embodying the measured 

data. This matrix can be dense (as Numpy array), sparse (as Scipy sparse 

matrix) or ragged (as Awkward array) where dimensions do not align 

within the data matrix. The AnnData object can feature several such 

data matrices stored in ‘layers’. Examples of such layers can be unnor-

malized or unencoded data. These data matrices are complemented 

by an observations (commonly referred to as ‘obs’) segment where 

annotations on the level of patients or visits are stored. Patients’ age 

or sex, for instance, are often used as such annotations. The variables 

(commonly referred to as ‘var’) section complements the observations, 

offering supplementary details about the features in the dataset, such 

as missing data rates. The observation-specific matrices (commonly 

referred to as ‘obsm’) section extends the capabilities of the AnnData 

structure by allowing the incorporation of observation-specific matri-

ces. These matrices can represent various types of information at the 

individual cell level, such as principal component analysis (PCA) results, 

t-distributed stochastic neighbor embedding (t-SNE) coordinates or 

other dimensionality reduction outputs. Analogously, AnnData fea-

tures a variables-specific variables (commonly referred to as ‘varm’) 

component. The observation-specific pairwise relationships (com-

monly referred to as ‘obsp’) segment complements the ‘obsm’ section 

by accommodating observation-specific pairwise relationships. This 

can include connectivity matrices, indicating relationships between 

patients. The inclusion of an unstructured annotations (commonly 

referred to as ‘uns’) component further enhances flexibility. This seg-

ment accommodates unstructured annotations or arbitrary data that 

might not conform to the structured observations or variables catego-

ries. Any AnnData object can be stored on disk in h5ad or Zarr format 

to facilitate data exchange.

ehrapy natively interfaces with the scientific Python ecosystem via 

Pandas112 and Numpy103. The development of deep learning models for 

EHR data113 is further accelerated through compatibility with pathml114, 

a unified framework for whole-slide image analysis in pathology, and 

scvi-tools115, which provides data loaders for loading tensors from 

AnnData objects into PyTorch116 or Jax arrays117 to facilitate the devel-

opment of generalizing foundational models for medical artificial 

intelligence118.

Feature annotation. After AnnData creation, any metadata can  

be mapped against ontologies using Bionty (https://github.com/ 

laminlabs/bionty-base). Bionty provides access to the Human  

Phenotype, Phecodes, Phenotype and Trait, Drug, Mondo and Human 

Disease ontologies.

Key medical terms stored in an AnnData object in free text can be 

extracted using the Medical Concept Annotation Toolkit (MedCAT)119.

Data processing
Cohort tracking. ehrapy provides a CohortTracker tool that traces 

all filtering steps applied to an associated AnnData object. To  

calculate cohort summary statistics, the implementation makes use 

of tableone120 and can subsequently be plotted as bar charts together 

with flow diagrams121 that visualize the order and reasoning of filtering 

operations.

Basic pre-processing and quality control. ehrapy encompasses 

a suite of functionalities for fundamental data processing that are 

adopted from scanpy52 but adapted to EHR data:
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 1. Regress out: To address unwanted sources of variation, a 

regression procedure is integrated, enhancing the dataset’s 

robustness.

 2. Subsample: Selects a specified fraction of observations.

 3. Balanced sample: Balances groups in the dataset by random 

oversampling or undersampling.

 4. Highly variable features: The identification and annotation  

of highly variable features following the ‘highly variable  

genes’ function of scanpy is seamlessly incorporated, provid-

ing users with insights into pivotal elements influencing  

the dataset.

To identify and minimize quality issues, ehrapy provides several 

quality control functions:

 1. Basic quality control: Determines the relative and absolute 

number of missing values per feature and per patient.

 2. Winsorization: For data refinement, ehrapy implements a 

winsorization process, creating a version of the input array less 

susceptible to extreme values.

 3. Feature clipping: Imposes limits on features to enhance dataset 

reliability.

 4. Detect biases: Computes pairwise correlations between 

features, standardized mean differences for numeric features 

between groups of sensitive features, categorical feature  

value count differences between groups of sensitive features 

and feature importances when predicting a target variable.

 5. Little’s MCAR test: Applies Little’s MCAR test whose null 

hypothesis is that data are MCAR. Rejecting the null hypothesis 

may not always mean that data are not MCAR, nor is accepting 

the null hypothesis a guarantee that data are MCAR. For more 

details, see Schouten et al.122.

 6. Summarize features: Calculates statistical indicators per  

feature, including minimum, maximum and average values. 

This can be especially useful to reduce complex data with 

multiple measurements per feature per patient into sets of 

columns with single values.

Imputation is crucial in data analysis to address missing values,  

ensuring the completeness of datasets that can be required for  

specific algorithms. The ‘ehrapy’ pre-processing module offers a range 

of imputation techniques:

 1. Explicit Impute: Replaces missing values, in either all columns 

or a user-specified subset, with a designated replacement value.

 2. Simple Impute: Imputes missing values in numerical data using 

mean, median or the most frequent value, contributing to a 

more complete dataset.

 3. KNN Impute: Uses k-nearest neighbor imputation to fill in  

missing values in the input AnnData object, preserving local 

data patterns.

 4. MissForest Impute: Implements the MissForest strategy for im-

puting missing data, providing a robust approach for handling 

complex datasets.

 5. MICE Impute: Applies the MICE algorithm for imputing data. 

This implementation is based on the miceforest (https://

github.com/AnotherSamWilson/miceforest) package.

Data encoding can be required if categoricals are a part of the 

dataset to obtain numerical values only. Most algorithms in ehrapy are 

compatible only with numerical values. ehrapy offers two encoding 

algorithms based on scikit-learn53:

 1. One-Hot Encoding: Transforms categorical variables into 

binary vectors, creating a binary feature for each category 

and capturing the presence or absence of each category in a 

concise representation.

 2. Label Encoding: Assigns a unique numerical label to each category, 

facilitating the representation of categorical data as ordinal  

values and supporting algorithms that require numerical input.

To ensure that the distributions of the heterogeneous data are 

aligned, ehrapy offers several normalization procedures:

 1. Log Normalization: Applies the natural logarithm function to 

the data, useful for handling skewed distributions and reduc-

ing the impact of outliers.

 2. Max-Abs Normalization: Scales each feature by its maximum 

absolute value, ensuring that the maximum absolute value for 

each feature is 1.

 3. Min-Max Normalization: Transforms the data to a specific 

range (commonly (0, 1)) by scaling each feature based on its 

minimum and maximum values.

 4. Power Transformation Normalization: Applies a power trans-

formation to make the data more Gaussian like, often useful for 

stabilizing variance and improving the performance of models 

sensitive to distributional assumptions.

 5. Quantile Normalization: Aligns the distributions of multiple 

variables, ensuring that their quantiles match, which can be 

beneficial for comparing datasets or removing batch effects.

 6. Robust Scaling Normalization: Scales data using the interquar-

tile range, making it robust to outliers and suitable for datasets 

with extreme values.

 7. Scaling Normalization: Standardizes data by subtracting  

the mean and dividing by the standard deviation, creating a 

distribution with a mean of 0 and a standard deviation of 1.

 8. Offset to Positive Values: Shifts all values by a constant offset 

to make all values non-negative, with the lowest negative value 

becoming 0.

Dataset shifts can be corrected using the scanpy implementa-

tion of the ComBat123 algorithm, which employs a parametric and 

non-parametric empirical Bayes framework for adjusting data for batch 

effects that is robust to outliers.

Finally, a neighbors graph can be efficiently computed using 

scanpy’s implementation.

Embeddings. To obtain meaningful lower-dimensional embeddings 

that can subsequently be visualized and reused for downstream algo-

rithms, ehrapy provides the following algorithms based on scanpy’s 

implementation:

 1. t-SNE: Uses a probabilistic approach to embed 

high-dimensional data into a lower-dimensional space, em-

phasizing the preservation of local similarities and revealing 

clusters in the data.

 2. UMAP: Embeds data points by modeling their local neighbor-

hood relationships, offering an efficient and scalable tech-

nique that captures both global and local structures in 

high-dimensional data.

 3. Force-Directed Graph Drawing: Uses a physical simulation to 

position nodes in a graph, with edges representing pairwise 

relationships, creating a visually meaningful representation 

that emphasizes connectedness and clustering in the data.

 4. Diffusion Maps: Applies spectral methods to capture the  

intrinsic geometry of high-dimensional data by modeling 

diffusion processes, providing a way to uncover underlying 

structures and patterns.

 5. Density Calculation in Embedding: Quantifies the density of 

observations within an embedding, considering conditions or 

groups, offering insights into the concentration of data points 

in different regions and aiding in the identification of densely 

populated areas.
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Clustering. ehrapy further provides algorithms for clustering and 

trajectory inference based on scanpy:

 1. Leiden Clustering: Uses the Leiden algorithm to cluster  

observations into groups, revealing distinct communities 

within the dataset with an emphasis on intra-cluster cohesion.

 2. Hierarchical Clustering Dendrogram: Constructs a dendro-

gram through hierarchical clustering based on specified group 

by categories, illustrating the hierarchical relationships among 

observations and facilitating the exploration of structured 

patterns.

Feature ranking. ehrapy provides two ways of ranking feature contri-

butions to clusters and target variables:

 1. Statistical tests: To compare any obtained clusters to obtain 

marker features that are significantly different between the 

groups, ehrapy extends scanpy’s ‘rank genes groups’. The  

original implementation, which features a t-test for numerical 

data, is complemented by a g-test for categorical data.

 2. Feature importance: Calculates feature rankings for a target 

variable using linear regression, support vector machine or 

random forest models from scikit-learn. ehrapy evaluates the 

relative importance of each predictor by fitting the model 

and extracting model-specific metrics, such as coefficients or 

feature importances.

Dataset integration. Based on scanpy’s ‘ingest’ function, ehrapy facili-

tates the integration of labels and embeddings from a well-annotated 

reference dataset into a new dataset, enabling the mapping of  

cluster annotations and spatial relationships for consistent compara-

tive analysis. This process ensures harmonized clinical interpretations 

across datasets, especially useful when dealing with multiple experi-

mental diseases or batches.

Knowledge inference
Survival analysis. ehrapy’s implementation of survival analysis algo-

rithms is based on lifelines124:

 1. Ordinary Least Squares (OLS) Model: Creates a linear regression  

model using OLS from a specified formula and an AnnData 

object, allowing for the analysis of relationships between  

variables and observations.

 2. Generalized Linear Model (GLM): Constructs a GLM from a 

given formula, distribution and AnnData, providing a versatile 

framework for modeling relationships with nonlinear data 

structures.

 3. Kaplan–Meier: Fits the Kaplan–Meier curve to generate survival 

curves, offering a visual representation of the probability of 

survival over time in a dataset.

 4. Cox Hazard Model: Constructs a Cox proportional hazards 

model using a specified formula and an AnnData object,  

enabling the analysis of survival data by modeling the hazard 

rates and their relationship to predictor variables.

 5. Log-Rank Test: Calculates the P value for the log-rank test, 

comparing the survival functions of two groups, providing 

statistical significance for differences in survival distributions.

 6. GLM Comparison: Given two fit GLMs, where the larger encom-

passes the parameter space of the smaller, this function returns 

the P value, indicating the significance of the larger model and 

adding explanatory power beyond the smaller model.

Trajectory inference. Trajectory inference is a computational 

approach that reconstructs and models the developmental paths and 

transitions within heterogeneous clinical data, providing insights into 

the temporal progression underlying complex systems. ehrapy offers 

several inbuilt algorithms for trajectory inference based on scanpy:

 1. Diffusion Pseudotime: Infers the progression of observations 

by measuring geodesic distance along the graph, providing  

a pseudotime metric that represents the developmental  

trajectory within the dataset.

 2. Partition-based Graph Abstraction (PAGA): Maps out the 

coarse-grained connectivity structures of complex manifolds 

using a partition-based approach, offering a comprehensive 

visualization of relationships in high-dimensional data  

and aiding in the identification of macroscopic connectivity 

patterns.

Because ehrapy is compatible with scverse, further trajectory 

inference-based algorithms, such as CellRank, can be seamlessly 

applied.

Causal inference. ehrapy’s causal inference module is based on 

‘dowhy’69. It is based on four key steps that are all implemented  

in ehrapy:

 1. Graphical Model Specification: Define a causal graphical model 

representing relationships between variables and potential 

causal effects.

 2. Causal Effect Identification: Automatically identify whether a 

causal effect can be inferred from the given data, addressing 

confounding and selection bias.

 3. Causal Effect Estimation: Employ automated tools to estimate 

causal effects, using methods such as matching, instrumental 

variables or regression.

 4. Sensitivity Analysis and Testing: Perform sensitivity analysis  

to assess the robustness of causal inferences and conduct  

statistical testing to determine the significance of the  

estimated causal effects.

Patient stratification. ehrapy’s complete pipeline from pre-processing 

to the generation of lower-dimensional embeddings, clustering, sta-

tistical comparison between determined groups and more facilitates 

the stratification of patients.

Visualization
ehrapy features an extensive visualization pipeline that is customizable 

and yet offers reasonable defaults. Almost every analysis function is 

matched with at least one visualization function that often shares the 

name but is available through the plotting module. For example, after 

importing ehrapy as ‘ep’, ‘ep.tl.umap(adata)’ runs the UMAP algorithm 

on an AnnData object, and ‘ep.pl.umap(adata)’ would then plot a scatter 

plot of the UMAP embedding.

ehrapy further offers a suite of more generally usable and modifi-

able plots:

 1. Scatter Plot: Visualizes data points along observation or  

variable axes, offering insights into the distribution and  

relationships between individual data points.

 2. Heatmap: Represents feature values in a grid, providing a  

comprehensive overview of the data’s structure and patterns.

 3. Dot Plot: Displays count values of specified variables as dots, 

offering a clear depiction of the distribution of counts for each 

variable.

 4. Filled Line Plot: Illustrates trends in data with filled lines,  

emphasizing variations in values over a specified axis.

 5. Violin Plot: Presents the distribution of data through mirrored 

density plots, offering a concise view of the data’s spread.

 6. Stacked Violin Plot: Combines multiple violin plots, stacked to 

allow for visual comparison of distributions across categories.



Nature Medicine

Resource https://doi.org/10.1038/s41591-024-03214-0

 7. Group Mean Heatmap: Creates a heatmap displaying the mean 

count per group for each specified variable, providing insights 

into group-wise trends.

 8. Hierarchically Clustered Heatmap: Uses hierarchical clustering 

to arrange data in a heatmap, revealing relationships and  

patterns among variables and observations.

 9. Rankings Plot: Visualizes rankings within the data, offering a 

clear representation of the order and magnitude of values.

 10. Dendrogram Plot: Plots a dendrogram of categories defined 

in a group by operation, illustrating hierarchical relationships 

within the dataset.

Benchmarking ehrapy
We generated a subset of the UKB data selecting 261 features and 

488,170 patient visits. We removed all features with missingness rates 

greater than 70%. To demonstrate speed and memory consumption 

for various scenarios, we subsampled the data to 20%, 30% and 50%. 

We ran a minimal ehrapy analysis pipeline on each of those subsets 

and the full data, including the calculation of quality control metrics, 

filtering of variables by a missingness threshold, nearest neighbor 

imputation, normalization, dimensionality reduction and clustering 

(Supplementary Table 1). We conducted our benchmark on a single 

CPU with eight threads and 60 GB of maximum memory.

ehrapy further provides out-of-core implementations using 

Dask108 for many algorithms in ehrapy, such as our normalization func-

tions or our PCA implementation. Out-of-core computation refers 

to techniques that process data that do not fit entirely in memory, 

using disk storage to manage data overflow. This approach is cru-

cial for handling large datasets without being constrained by system 

memory limits. Because the principal components get reused for other 

computationally expensive algorithms, such as the neighbors graph 

calculation, it effectively enables the analysis of very large datasets. 

We are currently working on supporting out-of-core computation for 

all computationally expensive algorithms in ehrapy.

We demonstrate the memory benefits in a hosted tutorial where 

the in-memory pipeline for 50,000 patients with 1,000 features 

required about 2 GB of memory, and the corresponding out-of-core 

implementation required less than 200 MB of memory.

The code for benchmarking is available at https://github.com/

theislab/ehrapy-reproducibility. The implementation of ehrapy is 

accessible at https://github.com/theislab/ehrapy together with exten-

sive API documentation and tutorials at https://ehrapy.readthedocs.io.

PIC database analysis
Study design. We collected clinical data from the PIC43 version 1.1.0 

database. PIC is a single-center, bilingual (English and Chinese) data-

base hosting information of children admitted to critical care units 

at the Children’s Hospital of Zhejiang University School of Medicine 

in China. The requirement for individual patient consent was waived 

because the study did not impact clinical care, and all protected health 

information was de-identified. The database contains 13,499 distinct 

hospital admissions of 12,881 distinct pediatric patients. These patients 

were admitted to five ICU units with 119 total critical care beds—GICU, 

PICU, SICU, CICU and NICU—between 2010 and 2018. The mean age of 

the patients was 2.5 years, of whom 42.5% were female. The in-hospital 

mortality was 7.1%; the mean hospital stay was 17.6 d; the mean ICU 

stay was 9.3 d; and 468 (3.6%) patients were admitted multiple times. 

Demographics, diagnoses, doctors’ notes, laboratory and microbiol-

ogy tests, prescriptions, fluid balances, vital signs and radiographics 

reports were collected from all patients. For more details, see the 

original publication of Zeng et al.43.

Study participants. Individuals older than 18 years were excluded from 

the study. We grouped the data into three distinct groups: ‘neonates’ 

(0–28 d of age; 2,968 patients), ‘infants’ (1–12 months of age; 4,876 

patients) and ‘youths’ (13 months to 18 years of age; 6,097 patients). 

We primarily analyzed the ‘youths’ group with the discharge diagnosis 

‘unspecified pneumonia’ (277 patients).

Data collection. The collected clinical data included demographics, 

laboratory and vital sign measurements, diagnoses, microbiology and 

medication information and mortality outcomes. The five-character 

English ICD-10 codes were used, whose values are based on the 

seven-character Chinese ICD-10 codes.

Dataset extraction and analysis. We downloaded the PIC database of 

version 1.1.0 from Physionet1 to obtain 17 CSV tables. Using Pandas, we 

selected all information with more than 50% coverage rate, including 

demographics and laboratory and vital sign measurements (Fig. 2). To 

reduce the amount of noise, we calculated and added only the mini-

mum, maximum and average of all measurements that had multiple 

values per patient. Examination reports were removed because they 

describe only diagnostics and not detailed findings. All further diag-

noses and microbiology and medication information were included 

into the observations slot to ensure that the data were not used for 

the calculation of embeddings but were still available for the analysis. 

This ensured that any calculated embedding would not be divided into 

treated and untreated groups but, rather, solely based on phenotypic 

features. We imputed all missing data through k-nearest neighbors 

imputation (k = 20) using the knn_impute function of ehrapy. Next, 

we log normalized the data with ehrapy using the log_norm function. 

Afterwards, we winsorized the data using ehrapy’s winsorize function 

to obtain 277 ICU visits (n = 265 patients) with 572 features. Of those 

572 features, 254 were stored in the matrix X and the remaining 318 in 

the ‘obs’ slot in the AnnData object. For clustering and visualization 

purposes, we calculated 50 principal components using ehrapy’s pca 

function. The obtained principal component representation was then 

used to calculate a nearest neighbors graph using the neighbors func-

tion of ehrapy. The nearest neighbors graph then served as the basis 

for a UMAP embedding calculation using ehrapy’s umap function.

Patient stratification. We applied the community detection algo-

rithm Leiden with resolution 0.6 on the nearest neighbor graph using 

ehrapy’s leiden function. The four obtained clusters served as input 

for two-sided t-tests for all numerical values and two-sided g-tests 

for all categorical values for all four clusters against the union of all 

three other clusters, respectively. This was conducted using ehrapy’s 

rank_feature_groups function, which also corrects P values for multiple 

testing with the Benjamini–Hochberg method125. We presented the four 

groups and the statistically significantly different features between 

the groups to two pediatricians who annotated the groups with labels.

Our determined groups can be confidently labeled owing to their 

distinct clinical profiles. Nevertheless, we could only take into account 

clinical features that were measured. Insightful features, such as lung 

function tests, are missing. Moreover, the feature representation 

of the time-series data is simplified, which can hide some nuances 

between the groups. Generally, deciding on a clustering resolution 

is difficult. However, more fine-grained clusters obtained via higher 

clustering resolutions may become too specific and not generalize 

well enough.

Kaplan–Meier survival analysis. We selected patients with up to 

360 h of total stay for Kaplan–Meier survival analysis to ensure a suf-

ficiently high number of participants. We proceeded with the AnnData 

object prepared as described in the ‘Patient stratification’ subsection to  

conduct Kaplan–Meier analysis among all four determined pneu-

monia groups using ehrapy’s kmf function. Significance was tested  

through ehrapy’s test_kmf_logrank function, which tests whether 

two Kaplan–Meier series are statistically significant, employing  

a chi-squared test statistic under the null hypothesis. Let hi(t) be the 
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hazard ratio of group i at time t and c a constant that represents a 

proportional change in the hazard ratio between the two groups, then:

This implicitly uses the log-rank weights. An additional Kaplan–

Meier analysis was conducted for all children jointly concerning the 

liver markers AST, ALT and GGT. To determine whether measurements 

were inside or outside the norm range, we used reference ranges (Sup-

plementary Table 2). P values less than 0.05 were labeled significant.

Our Kaplan–Meier curve analysis depends on the groups being 

well defined and shares the same limitations as the patient stratifica-

tion. Additionally, the analysis is sensitive to the reference table where 

we selected limits that generalize well for the age ranges, but, due to 

children of different ages being examined, they may not necessarily 

be perfectly accurate for all children.

Causal effect of mechanism of action on LOS. Although the dataset 

was not initially intended for investigating causal effects of interven-

tions, we adapted it for this purpose by focusing on the LOS in the ICU, 

measured in months, as the outcome variable. This choice aligns with 

the clinical aim of stabilizing patients sufficiently for ICU discharge. We 

constructed a causal graph to explore how different drug administra-

tions could potentially reduce the LOS. Based on consultations with 

clinicians, we included several biomarkers of liver damage (AST, ALT 

and GGT) and inflammation (CRP and PCT) in our model. Patient age 

was also considered a relevant variable.

Because several different medications act by the same mecha-

nisms, we grouped specific medications by their drug classes This 

grouping was achieved by cross-referencing the drugs listed in the 

dataset with DrugBank release 5.1 (ref. 126), using Levenshtein distances 

for partial string matching. After manual verification, we extracted the 

corresponding DrugBank categories, counted the number of features 

per category and compiled a list of commonly prescribed medications, 

as advised by clinicians. This approach facilitated the modeling of the 

causal graph depicted in Fig. 4, where an intervention is defined as the 

administration of at least one drug from a specified category.

Causal inference was then conducted with ehrapy’s ‘dowhy’69-based 

causal inference module using the expert-curated causal graph.  

Medication groups were designated as causal interventions, and the 

LOS was the outcome of interest. Linear regression served as the esti-

mation method for analyzing these causal effects. We excluded four 

patients from the analysis owing to their notably long hospital stays 

exceeding 90 d, which were deemed outliers. To validate the robustness 

of our causal estimates, we incorporated several refutation methods:

Placebo Treatment Refuter: This method involved replacing the 

treatment assignment with a placebo to test the effect of the 

treatment variable being null.

Random Common Cause: A randomly generated variable was 

added to the data to assess the sensitivity of the causal estimate 

to the inclusion of potential unmeasured confounders.

Data Subset Refuter: The stability of the causal estimate was 

tested across various random subsets of the data to ensure that 

the observed effects were not dependent on a specific subset.

Add Unobserved Common Cause: This approach tested the 

effect of an omitted variable by adding a theoretically relevant 

unobserved confounder to the model, evaluating how much an 

unmeasured variable could influence the causal relationship.

Dummy Outcome: Replaces the true outcome variable with a 

random variable. If the causal effect nullifies, it supports the 

validity of the original causal relationship, indicating that the 

outcome is not driven by random factors.

Bootstrap Validation: Employs bootstrapping to generate  

multiple samples from the dataset, testing the consistency of 

the causal effect across these samples.

The selection of these refuters addresses a broad spectrum of 

potential biases and model sensitivities, including unobserved con-

founders and data dependencies. This comprehensive approach 

ensures robust verification of the causal analysis. Each refuter provides 

an orthogonal perspective, targeting specific vulnerabilities in causal 

analysis, which strengthens the overall credibility of the findings.

UKB analysis
Study population. We used information from the UKB cohort, which 

includes 502,164 study participants from the general UK population 

without enrichment for specific diseases. The study involved the 

enrollment of individuals between 2006 and 2010 across 22 different 

assessment centers throughout the United Kingdom. The tracking of 

participants is still ongoing. Within the UKB dataset, metabolomics, 

proteomics and retinal optical coherence tomography data are avail-

able for a subset of individuals without any enrichment for specific dis-

eases. Additionally, EHRs, questionnaire responses and other physical 

measures are available for almost everyone in the study. Furthermore, a 

variety of genotype information is available for nearly the entire cohort, 

including whole-genome sequencing, whole-exome sequencing, geno-

typing array data as well as imputed genotypes from the genotyping 

array44. Because only the latter two are available for download, and are 

sufficient for polygenic risk score calculation as performed here, we 

used the imputed genotypes in the present study. Participants visited 

the assessment center up to four times for additional and repeat meas-

urements and completed additional online follow-up questionnaires.

In the present study, we restricted the analyses to data obtained 

from the initial assessment, including the blood draw, for obtaining 

the metabolomics data and the retinal imaging as well as physical 

measures. This restricts the study population to 33,521 individuals for 

whom all of these modalities are available. We have a clear study start 

point for each individual with the date of their initial assessment center 

visit. The study population has a mean age of 57 years, is 54% female and 

is censored at age 69 years on average; 4.7% experienced an incident 

myocardial infarction; and 8.1% have prevalent type 2 diabetes. The 

study population comes from six of the 22 assessment centers due to 

the retinal imaging being performed only at those.

Data collection. For the myocardial infarction endpoint definition, we 

relied on the first occurrence data available in the UKB, which compiles 

the first date that each diagnosis was recorded for a participant in a 

hospital in ICD-10 nomenclature. Subsequently, we mapped these data 

to phecodes and focused on phecode 404.1 for myocardial infarction.

The Framingham Risk Score was developed on data from 8,491 

participants in the Framingham Heart Study to assess general cardio-

vascular risk77. It includes easily obtainable predictors and is, therefore, 

easily applicable in clinical practice, although newer and more specific 

risk scores exist and might be used more frequently. It includes age, sex, 

smoking behavior, blood pressure, total and low-density lipoprotein 

cholesterol as well as information on insulin, antihypertensive and 

cholesterol-lowering medications, all of which are routinely collected 

in the UKB and used in this study as the Framingham feature set.

The metabolomics data used in this study were obtained using 

proton NMR spectroscopy, a low-cost method with relatively low 

batch effects. It covers established clinical predictors, such as albu-

min and cholesterol, as well as a range of lipids, amino acids and 

carbohydrate-related metabolites.

The retinal optical coherence tomography–derived features were 

returned by researchers to the UKB75,76. They used the available scans 

and determined the macular volume, macular thickness, retinal pig-

ment epithelium thickness, disc diameter, cup-to-disk ratio across 
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different regions as well as the thickness between the inner nuclear 

layer and external limiting membrane, inner and outer photoreceptor 

segments and the retinal pigment epithelium across different regions. 

Furthermore, they determined a wide range of quality metrics for  

each scan, including the image quality score, minimum motion  

correlation and inner limiting membrane (ILM) indicator.

Data analysis. After exporting the data from the UKB, all timepoints 

were transformed into participant age entries. Only participants with-

out prevalent myocardial infarction (relative to the first assessment 

center visit at which all data were collected) were included.

The data were pre-processed for retinal imaging and metabo-

lomics subsets separately, to enable a clear analysis of missing data 

and allow for the k-nearest neighbors–based imputation (k = 20)  

of missing values when less than 10% were missing for a given  

participant. Otherwise, participants were dropped from the analyses. 

The imputed genotypes and Framingham analyses were available  

for almost every participant and, therefore, not imputed. Individuals  

without them were, instead, dropped from the analyses. Because 

genetic risk model ing poses entirely different methodological  

and computational challenges, we applied a published polygenic  

risk score for coronary heart disease using 6.6 million variants73.  

This was computed using the plink2 score option on the imputed 

genotypes available in the UKB.

UMAP embeddings were computed using default parameters 

on the full feature sets with ehrapy’s umap function. For all analyses, 

the same time-to-event and event-indicator columns were used. The 

event indicator is a Boolean variable indicating whether a myocardial 

infarction was observed for a study participant. The time to event is 

defined as the timespan between the start of the study, in this case 

the date of the first assessment center visit. Otherwise, it is the times-

pan from the start of the study to the start of censoring; in this case, 

this is set to the last date for which EHRs were available, unless a par-

ticipant died, in which case the date of death is the start of censoring. 

Kaplan–Meier curves and Cox proportional hazards models were fit 

using ehrapy’s survival analysis module and the lifelines124 package’s 

Cox-PHFitter function with default parameters. For Cox proportional 

hazards models with multiple feature sets, individually imputed and 

quality-controlled feature sets were concatenated, and the model was 

fit on the resulting matrix. Models were evaluated using the C-index127 

as a metric. It can be seen as an extension of the common area under 

the receiver operator characteristic score to time-to-event datasets, 

in which events are not observed for every sample and which ranges 

from 0.0 (entirely false) over 0.5 (random) to 1.0 (entirely correct).  

CIs for the C-index were computed based on bootstrapping by sam-

pling 1,000 times with replacement from all computed partial hazards 

and computing the C-index over each of these samples. The percentiles 

at 2.5% and 97.5% then give the upper and lower confidence bound for 

the 95% CIs.

In all UKB analyses, the unit of study for a statistical test or predic-

tive model is always an individual study participant.

The generalizability of the analysis is limited as the UK Biobank 

cohort may not represent the general population, with potential selec-

tion biases and underrepresentation of the different demographic 

groups. Additionally, by restricting analysis to initial assessment  

data and censoring based on the last available EHR or date of death,  

our analysis does not account for longitudinal changes and can intro-

duce follow-up bias, especially if participants lost to follow-up have 

different risk profiles.

In-depth quality control of retina-derived features. A UMAP plot  

of the retina-derived features indicating the assessment centers  

shows a cluster of samples that lie somewhat outside the general  

population and mostly attended the Birmingham assessment  

center (Fig. 5b). To further investigate this, we performed Leiden 

clustering of resolution 0.3 (Extended Data Fig. 9a) and isolated this 

group in cluster 5. When comparing cluster 5 to the rest of the popula-

tion in the retina-derived feature space, we noticed that many indi-

viduals in cluster 5 showed overall retinal pigment epithelium (RPE) 

thickness measures substantially elevated over the rest of the popula-

tion in both eyes (Extended Data Fig. 9b), which is mostly a feature of 

this cluster (Extended Data Fig. 9c). To investigate potential confound-

ing, we computed ratios between cluster 5 and the rest of the popula-

tion over the ‘obs’ DataFrame containing the Framingham features, 

diabetes-related phecodes and genetic principal components. Out 

of the top and bottom five highest ratios observed, six are in genetic 

principal components, which are commonly used to represent genetic 

ancestry in a continuous space (Extended Data Fig. 9d). Additionally, 

diagnoses for type 1 and type 2 diabetes and antihypertensive use are 

enriched in cluster 5. Further investigating the ancestry, we computed 

log ratios for self-reported ancestries and absolute counts, which 

showed no robust enrichment and depletion effects.

A closer look at three quality control measures of the imaging pipe-

line revealed that cluster 5 was an outlier in terms of either image quality 

(Extended Data Fig. 9e) or minimum motion correlation (Extended 

Data Fig. 9f) and the ILM indicator (Extended Data Fig. 9g), all of which 

can be indicative of artifacts in image acquisition and downstream 

processing128. Subsequently, we excluded 301 individuals from cluster 

5 from all analyses.

COVID-19 chest-x-ray fate determination
Dataset overview. We used the public BrixIA COVID-19 dataset, which 

contains 192 chest x-ray images annotated with BrixIA scores82. Hereby, 

six regions were annotated by a senior radiologist with more than 

20 years of experience and a junior radiologist with a disease severity 

score ranging from 0 to 3. A global score was determined as the sum 

of all of these regions and, therefore, ranges from 0 to 18 (S-Global). 

S-Global scores of 0 were classified as normal. Images that only had 

severity values up to 1 in all six regions were classified as mild. Images 

with severity values greater than or equal to 2, but a S-Global score of 

less than 7, were classified as moderate. All images that contained at 

least one 3 in any of the six regions with a S-Global score between 7 and 

10 were classified as severe, and all remaining images with S-Global 

scores greater than 10 with at least one 3 were labeled critical. The  

dataset and instructions to download the images can be found at 

https://github.com/ieee8023/covid-chestxray-dataset.

Dataset extraction and analysis. We first resized all images to 

224 × 224. Afterwards, the images underwent a random affine trans-

formation that involved rotation, translation and scaling. The rota-

tion angle was randomly selected from a range of −45° to 45°. The 

images were also subject to horizontal and vertical translation, with the 

maximum translation being 15% of the image size in either direction. 

Additionally, the images were scaled by a factor ranging from 0.85 to 

1.15. The purpose of applying these transformations was to enhance the 

dataset and introduce variations, ultimately improving the robustness 

and generalization of the model.

To generate embeddings, we used a pre-trained DenseNet 

model with weights densenet121-res224-all of TorchXRayVision129. 

A DenseNet is a convolutional neural network that makes use of 

dense connections between layers (Dense Blocks) where all layers 

(with matching feature map sizes) directly connect with each other.  

To maintain a feed-forward nature, every layer in the DenseNet  

architecture receives supplementary inputs from all preceding  

layers and transmits its own feature maps to all subsequent layers. 

The model was trained on the nih-pc-chex-mimic_ch-google-openi- 

rsna dataset130.

Next, we calculated 50 principal components on the feature  

representation of the DenseNet model of all images using ehrapy’s  

pca function. The principal component representation served as 
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input for a nearest neighbors graph calculation using ehrapy’s neigh-

bors function. This graph served as the basis for the calculation of a 

UMAP embedding with three components that was finally visualized  

using ehrapy.

We randomly picked a root in the group of images that was labeled 

‘Normal’. First, we calculated so-called pseudotime by fitting a tra-

jectory through the calculated UMAP space using diffusion maps as 

implemented in ehrapy’s dpt function57. Each image’s pseudotime 

value represents its estimated position along this trajectory, serving 

as a proxy for its severity stage relative to others in the dataset. To 

determine fates, we employed CellRank58,59 with the PseudotimeKernel. 

This kernel computes transition probabilities for patient visits based on 

the connectivity of the k-nearest neighbors graph and the pseudotime 

values of patient visits, which resembles their progression through a 

process. Directionality is infused in the nearest neighbors graph in this 

process where the kernel either removes or downweights edges in the 

graph that contradict the directional flow of increasing pseudotime, 

thereby refining the graph to better reflect the developmental trajec-

tory. We computed the transition matrix with a soft threshold scheme 

(Parameter of the PseudotimeKernel), which downweights edges that 

point against the direction of increasing pseudotime. Finally, we cal-

culated a projection on top of the UMAP embedding with CellRank 

using the plot_projection function of the PseudotimeKernel that we 

subsequently plotted.

This analysis is limited by the small dataset of 192 chest x-ray 

images, which may affect the model’s generalizability and robustness. 

Annotation subjectivity from radiologists can further introduce vari-

ability in severity scores. Additionally, the random selection of a root 

from ‘Normal’ images can introduce bias in pseudotime calculations 

and subsequent analyses.

Diabetes 130-US hospitals analysis
Study population. We used data from the Diabetes 130-US hospitals 

dataset that were collected between 1999 and 2008. It contains clinical 

care information at 130 hospitals and integrated delivery networks. 

The extracted database information pertains to hospital admissions 

specifically for patients diagnosed with diabetes. These encounters 

required a hospital stay ranging from 1 d to 14 d, during which both 

laboratory tests and medications were administered. The selection 

criteria focused exclusively on inpatient encounters with these defined 

characteristics. More specifically, we used a version that was curated by 

the Fairlearn team where the target variable ‘readmitted’ was binarized 

and a few features renamed or binned (https://fairlearn.org/main/

user_guide/datasets/diabetes_hospital_data.html). The dataset con-

tains 101,877 patient visits and 25 features. The dataset predominantly 

consists of White patients (74.8%), followed by African Americans 

(18.9%), with other racial groups, such as Hispanic, Asian and Unknown 

categories, comprising smaller percentages. Females make up a slight 

majority in the data at 53.8%, with males accounting for 46.2% and a 

negligible number of entries listed as unknown or invalid. A substantial 

majority of the patients are over 60 years of age (67.4%), whereas those 

aged 30–60 years represent 30.2%, and those 30 years or younger 

constitute just 2.5%.

Data analysis. All of the following descriptions start by loading the  

Fairlearn version of the Diabetes 130-US hospitals dataset using 

ehrapy’s dataloader as an AnnData object.

Selection and filtering bias. An overview of sensitive variables was gener-

ated using tableone. Subsequently, ehrapy’s CohortTracker was used 

to track the age, gender and race variables. The cohort was filtered for 

all Medicare recipients and subsequently plotted.

Surveillance bias. We plotted the HbA1c measurement ratios using 

ehrapy’s catplot.

Missing data and imputation bias. MCAR-type missing data for the 

number of medications variable (‘num_medications‘) were introduced 

by randomly setting 30% of the variables to be missing using Numpy’s 

choice function. We tested that the data are MCAR by applying ehrapy’s 

implementation of Little’s MCAR test, which returned a non-significant  

P value of 0.71. MAR data for the number of medications variable  

(‘num_medications‘) were introduced by scaling the ‘time_in_hospital’ 

variable to have a mean of 0 and a standard deviation of 1, adjusting 

these values by multiplying by 1.2 and subtracting 0.6 to influence 

overall missingness rate, and then using these values to generate MAR 

data in the ‘num_medications’ variable via a logistic transformation 

and binomial sampling. We verified that the newly introduced missing 

values are not MCAR with respect to the ‘time_in_hospital’ variable by 

applying ehrapy’s implementation of Little’s test, which was significant 

(0.01 × 10−2). The missing data were imputed using ehrapy’s mean 

imputation and MissForest implementation.

Algorithmic bias. Variables ‘race’, ‘gender’, ‘age’, ‘readmitted’, ‘readmit_

binary’ and ‘discharge_disposition_id’ were moved to the ‘obs’ slot of the 

AnnData object to ensure that they were not used for model training. 

We built a binary label ‘readmit_30_days’ indicating whether a patient 

had been readmitted in fewer than 30 d. Next, we combined the ‘Asian’ 

and ‘Hispanic’ categories into a single ‘Other’ category within the ‘race’ 

column of our AnnData object and then filtered out and discarded any 

samples labeled as ‘Unknown/Invalid’ under the ‘gender‘ column and 

subsequently moved the ‘gender’ data to the variable matrix X of the 

AnnData object. All categorical variables got encoded. The data were 

split into train and test groups with a test size of 50%. The data were 

scaled, and a logistic regression model was trained using scikit-learn, 

which was also used to determine the balanced accuracy score. Fair-

learn’s MetricFrame function was used to inspect the target model 

performance against the sensitive variable ‘race’. We subsequently fit 

Fairlearn’s ThresholdOptimizer using the logistic regression estimator 

with balanced_accuracy_score as the target object. The algorithmic 

demonstration of Fairlearn’s abilities on this dataset is shown here: 

https://github.com/fairlearn/talks/tree/main/2021_scipy_tutorial.

Normalization bias. We one-hot encoded all categorical variables with 

ehrapy using the encode function. We applied ehrapy’s implementation 

of scaling normalization with and without the ‘Age group’ variable 

as group key to scale the data jointly and separately using ehrapy’s 

scale_norm function.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
Physionet provides access to the PIC database43 at https://physionet.

org/content/picdb/1.1.0 for credentialed users. The BrixIA images82 are 

available at https://github.com/BrixIA/Brixia-score-COVID-19. The data 

used in this study were obtained from the UK Biobank44 (https://www.

ukbiobank.ac.uk/). Access to the UK Biobank resource was granted 

under application number 49966. The data are available to research-

ers upon application to the UK Biobank in accordance with their data 

access policies and procedures. The Diabetes 130-US Hospitals dataset 

is available at https://archive.ics.uci.edu/dataset/296/diabetes+130-u

s+hospitals+for+years+1999-2008.

Code availability
The ehrapy source code is available at https://github.com/theislab/

ehrapy under an Apache 2.0 license. Further documentation, tutorials  

and examples are available at https://ehrapy.readthedocs.io. We are 

actively developing the software and invite contributions from the 

community.
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Jupyter notebooks to reproduce our analysis and figures, including  

Conda environments that specify all versions, are available at  

https://github.com/theislab/ehrapy-reproducibility.
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Extended Data Fig. 1 | Overview of the paediatric intensive care database 

(PIC). The database consists of several tables corresponding to several data 

modalities and measurement types. All tables colored in green were selected for 

analysis and all tables in blue were discarded based on coverage rate. Despite the 

high coverage rate, we discarded the ‘OR_EXAM_REPORTS’ table because of the 

lack of detail in the exam reports.
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Extended Data Fig. 3 | Missing data distribution for the ‘youths’ group of the PIC dataset. The x-axis represents the percentage of missing values in each feature. 

The y-axis reflects the number of features in each bin with text labels representing the names of the individual features.
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Extended Data Fig. 4 | Patient selection during analysis of the PIC dataset. Filtering for the pneumonia cohort of the youths filters out care units except for the 

general intensive care unit and the pediatric intensive care unit.
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Extended Data Fig. 5 | Feature rankings of stratified patient groups. Scores reflect the z-score underlying the p-value per measurement for each group. Higher 

scores (above 0) reflect overrepresentation of the measurement compared to all other groups and vice versa. (a) By clinical chemistry. (b) By liver markers. (c) By 

medication type. (d) By infection markers.
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Extended Data Fig. 6 | Liver marker value progression for the ‘youths’ group 

and Kaplan-Meier curves. (a) Viral and severe pneumonia with co-infection 

groups display enriched gamma-glutamyl transferase levels in blood serum. (b) 

Aspartate transferase (AST) and Alanine transaminase (ALT) levels are enriched 

for severe pneumonia with co-infection during early ICU stay. (c) and (d) Kaplan-

Meier curves for ALT and AST demonstrate lower survivability for children with 

measurements outside the norm.
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Extended Data Fig. 7 | Overview of medication categories used for causal inference. (a) Feature engineering process to group administered medications into 

medication categories using drugbank. (b) Number of medications per medication category. (c) Number of patients that received (dark blue) and did not receive 

specific medication categories (light blue).
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Extended Data Fig. 10 | Bias detection and mitigation study on the Diabetes 

130-US hospitals dataset (n = 101,766 hospital visits, one patient can have 

multiple visits). (a) Filtering to the visits of Medicare recipients results in an 

increase of Caucasians. (b) Proportion of visits where Hb1Ac measurements are 

recorded, stratified by admission type. Adjusted P values were calculated with 

Chi squared tests and Bonferroni correction (Adjusted P values: Emergency 

vs Referral 3.3E-131, Emergency vs Other 1.4E-101, Referral vs Other 1.6E-4.) (c) 

Normalizing feature distributions jointly vs. separately can mask distribution 

differences. (d) Imputing the number of medications for visits. Onto the 

complete data (blue), MCAR (30% missing data) and MAR (38% missing data) 

were introduced (orange), with the MAR mechanism depending on the time in 

hospital. Mean imputation (green) can reduce the variance of the distribution 

under MCAR and MAR mechanisms, and bias the center of the distribution 

under an MAR mechanism. Multiple imputation, such as MissForest imputation 

can impute meaningfully even in MAR cases, when having access to variables 

involved in the MAR mechanism. Each boxplot represents the IQR of the data, 

with the horizontal line inside the box indicating the median value. The left and 

right bounds of the box represent the first and third quartiles, respectively. The 

‘whiskers’ extend to the minimum and maximum values within 1.5 times the 

IQR from the lower and upper quartiles, respectively. (e) Predicting the early 

readmission within 30 days after release on a per-stay level. Balanced accuracy 

can mask differences in selection and false negative rate between sensitive 

groups.






















