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An open-source framework for end-to-end 
analysis of electronic health record data

With progressive digitalization of healthcare systems worldwide, large-scale 
collection of electronic health records (EHRs) has become commonplace. 
However, an extensible framework for comprehensive exploratory analysis 
that accounts for data heterogeneity is missing. Here we introduce ehrapy, a 
modular open-source Python framework designed for exploratory analysis 
of heterogeneous epidemiology and EHR data. ehrapy incorporates a 
series of analytical steps, from data extraction and quality control to the 
generation of low-dimensional representations. Complemented by rich 
statistical modules, ehrapy facilitates associating patients with disease 
states, differential comparison between patient clusters, survival analysis, 
trajectory inference, causal inference and more. Leveraging ontologies, 
ehrapy further enables data sharing and training EHR deep learning 
models, paving the way for foundational models in biomedical research. We 
demonstrate ehrapy’s features in six distinct examples. We applied ehrapy 
to stratify patients affected by unspecified pneumonia into finer-grained 
phenotypes. Furthermore, we reveal biomarkers for significant differences 
in survival among these groups. Additionally, we quantify medication-class 
effects of pneumonia medications on length of stay. We further leveraged 
ehrapy to analyze cardiovascular risks across different data modalities. 
We reconstructed disease state trajectories in patients with severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) based on imaging data. 
Finally, we conducted a case study to demonstrate how ehrapy can detect 
and mitigate biases in EHR data. ehrapy, thus, provides a framework that 
we envision will standardize analysis pipelines on EHR data and serve as a 
cornerstone for the community.

Electronic health records (EHRs) are becoming increasingly common 
due to standardized data collection1 and digitalization in healthcare 
institutions. EHRs collected at medical care sites serve as efficient  
storage and sharing units of health information2, enabling the informed 
treatment of individuals using the patient’s complete history3.  
Routinely collected EHR data are approaching genomic-scale size and 
complexity4, posing challenges in extracting information without 
quantitative analysis methods. The application of such approaches 
to EHR databases1,5–9 has enabled the prediction and classification of 
diseases10,11, study of population health12, determination of optimal 

treatment policies13,14, simulation of clinical trials15 and stratification 
of patients16.

However, current EHR datasets suffer from serious limitations, 
such as data collection issues, inconsistencies and lack of data diver-
sity. EHR data collection and sharing problems often arise due to 
non-standardized formats, with disparate systems using exchange 
protocols, such as Health Level Seven International (HL7) and Fast 
Healthcare Interoperability Resources (FHIR)17. In addition, EHR data 
are stored in various on-disk formats, including, but not limited to, 
relational databases and CSV, XML and JSON formats. These variations 
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subject to indwelling arterial catheter usage. ehrapy is compatible with 
any EHR dataset that can be transformed into vectors and is accessible 
as a user-friendly open-source software package hosted at https://
github.com/theislab/ehrapy and installable from PyPI. It comes with 
comprehensive documentation, tutorials and further examples, all 
available at https://ehrapy.readthedocs.io.

Results
ehrapy: a framework for exploratory EHR data analysis
The foundation of ehrapy is a robust and scalable data storage backend 
that is combined with a series of pre-processing and analysis modules. 
In ehrapy, EHR data are organized as a data matrix where observations 
are individual patient visits (or patients, in the absence of follow-up 
visits), and variables represent all measured quantities (Methods). 
These data matrices are stored together with metadata of observa-
tions and variables. By leveraging the AnnData (annotated data) data 
structure that implements this design, ehrapy builds upon established 
standards and is compatible with analysis and visualization functions 
provided by the omics scverse40 ecosystem. Readers are also available 
in R, Julia and Javascript46. We additionally provide a dataset module 
with more than 20 public loadable EHR datasets in AnnData format to 
kickstart analysis and development with ehrapy.

For standardized analysis of EHR data, it is crucial that these data 
are encoded and stored in consistent, reusable formats. Thus, ehrapy 
requires that input data are organized in structured vectors. Readers for 
common formats, such as CSV, OMOP47 or SQL databases, are available 
in ehrapy. Data loaded into AnnData objects can be mapped against 
several hierarchical ontologies48–51 (Methods). Clinical keywords of 
free text notes can be automatically extracted (Methods).

Powered by scanpy, which scales to millions of observations52 
(Methods and Supplementary Table 1) and the machine learning library 
scikit-learn53, ehrapy provides more than 100 composable analysis 
functions organized in modules from which custom analysis pipelines 
can be built. Each function directly interacts with the AnnData object 
and adds all intermediate results for simple access and reuse of infor-
mation to it. To facilitate setting up these pipelines, ehrapy guides 
analysts through a general analysis pipeline (Fig. 1). At any step of an 
analysis pipeline, community software packages can be integrated 
without any vendor lock-in. Because ehrapy is built on open standards, 
it can be purposefully extended to solve new challenges, such as the 
development of foundational models (Methods).

In the ehrapy analysis pipeline, EHR data are initially inspected for 
quality issues by analyzing feature distributions that may skew results 
and by detecting visits and features with high missing rates that ehrapy 
can then impute (Methods). ehrapy tracks all filtering steps while 
keeping track of population dynamics to highlight potential selection 
and filtering biases (Methods). Subsequently, ehrapy’s normalization 
and encoding functions (Methods) are applied to achieve a uniform 
numerical representation that facilitates data integration and corrects 
for dataset shift effects (Methods). Calculated lower-dimensional rep-
resentations can subsequently be visualized, clustered and annotated 
to obtain a patient landscape (Methods). Such annotated groups of 
patients can be used for statistical comparisons to find differences 
in features among them to ultimately learn markers of patient states.

As analysis goals can differ between users and datasets, the ehrapy 
analysis pipeline is customizable during the final knowledge inference 
step. ehrapy provides statistical methods for group comparison and 
extensive support for survival analysis (Methods), enabling the dis-
covery of biomarkers. Furthermore, ehrapy offers functions for causal 
inference to go from statistically determined associations to causal 
relations (Methods). Moreover, patient visits in aggregated EHR data 
can be regarded as snapshots where individual measurements taken 
at specific timepoints might not adequately reflect the underlying 
progression of disease and result from unrelated variation due to, for 
example, day-to-day differences54–56. Therefore, disease progression 

pose challenges with respect to data retrieval, scalability, interoper-
ability and data sharing.

Beyond format variability, inherent biases of the collected data 
can compromise the validity of findings. Selection bias stemming 
from non-representative sample composition can lead to skewed 
inferences about disease prevalence or treatment efficacy18,19. Filtering 
bias arises through inconsistent criteria for data inclusion, obscuring 
true variable relationships20. Surveillance bias exaggerates associa-
tions between exposure and outcomes due to differential monitoring 
frequencies21. EHR data are further prone to missing data22,23, which 
can be broadly classified into three categories: missing completely at 
random (MCAR), where missingness is unrelated to the data; missing 
at random (MAR), where missingness depends on observed data; and 
missing not at random (MNAR), where missingness depends on unob-
served data22,23. Information and coding biases, related to inaccuracies 
in data recording or coding inconsistencies, respectively, can lead to 
misclassification and unreliable research conclusions24,25. Data may 
even contradict itself, such as when measurements were reported for 
deceased patients26,27. Technical variation and differing data collec-
tion standards lead to distribution differences and inconsistencies in 
representation and semantics across EHR datasets28,29. Attrition and 
confounding biases, resulting from differential patient dropout rates 
or unaccounted external variable effects, can significantly skew study 
outcomes30–32. The diversity of EHR data that comprise demographics, 
laboratory results, vital signs, diagnoses, medications, x-rays, written 
notes and even omics measurements amplifies all the aforementioned 
issues.

Addressing these challenges requires rigorous study design, 
careful data pre-processing and continuous bias evaluation through 
exploratory data analysis. Several EHR data pre-processing and analysis 
workflows were previously developed4,33–37, but none of them enables 
the analysis of heterogeneous data, provides in-depth documenta-
tion, is available as a software package or allows for exploratory visual 
analysis. Current EHR analysis pipelines, therefore, differ considerably 
in their approaches and are often commercial, vendor-specific solu-
tions38. This is in contrast to strategies using community standards 
for the analysis of omics data, such as Bioconductor39 or scverse40. 
As a result, EHR data frequently remain underexplored and are com-
monly investigated only for a particular research question41. Even in 
such cases, EHR data are then frequently input into machine learning 
models with serious data quality issues that greatly impact prediction 
performance and generalizability42.

To address this lack of analysis tooling, we developed the EHR 
Analysis in Python framework, ehrapy, which enables exploratory 
analysis of diverse EHR datasets. The ehrapy package is purpose-built 
to organize, analyze, visualize and statistically compare complex EHR 
data. ehrapy can be applied to datasets of different data types, sizes, 
diseases and origins. To demonstrate this versatility, we applied ehrapy 
to datasets obtained from EHR and population-based studies. Using 
the Pediatric Intensive Care (PIC) EHR database43, we stratified patients 
diagnosed with ‘unspecified pneumonia’ into distinct clinically rel-
evant groups, extracted clinical indicators of pneumonia through 
statistical analysis and quantified medication-class effects on length 
of stay (LOS) with causal inference. Using the UK Biobank44 (UKB), a 
population-scale cohort comprising over 500,000 participants from 
the United Kingdom, we employed ehrapy to explore cardiovascu-
lar risk factors using clinical predictors, metabolomics, genomics 
and retinal imaging-derived features. Additionally, we performed 
image analysis to project disease progression through fate mapping in 
patients affected by coronavirus disease 2019 (COVID-19) using chest 
x-rays. Finally, we demonstrate how exploratory analysis with ehrapy 
unveils and mitigates biases in over 100,000 visits by patients with dia-
betes across 130 US hospitals. We provide online links to additional use 
cases that demonstrate ehrapy’s usage with further datasets, including 
MIMIC-II (ref. 45), and for various medical conditions, such as patients 
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models should rely on analysis of the underlying clinical data, as disease 
progression in an individual patient may not be monotonous in time. 
ehrapy allows for the use of advanced trajectory inference methods to 
overcome sparse measurements57–59. We show that this approach can 
order snapshots to calculate a pseudotime that can adequately reflect 
the progression of the underlying clinical process. Given a sufficient 
number of snapshots, ehrapy increases the potential to understand 
disease progression, which is likely not robustly captured within a 
single EHR but, rather, across several.

ehrapy enables patient stratification in pneumonia cases
To demonstrate ehrapy’s capability to analyze heterogeneous data-
sets from a broad patient set across multiple care units, we applied 
our exploratory strategy to the PIC43 database. The PIC database is 
a single-center database hosting information on children admitted 

to critical care units at the Children’s Hospital of Zhejiang University 
School of Medicine in China. It contains 13,499 distinct hospital admis-
sions of 12,881 individual pediatric patients admitted between 2010 and 
2018 for whom demographics, diagnoses, doctors’ notes, vital signs, 
laboratory and microbiology tests, medications, fluid balances and 
more were collected (Extended Data Figs. 1 and 2a and Methods). After 
missing data imputation and subsequent pre-processing (Extended 
Data Figs. 2b,c and 3 and Methods), we generated a uniform mani-
fold approximation and projection (UMAP) embedding to visualize 
variation across all patients using ehrapy (Fig. 2a). This visualization 
of the low-dimensional patient manifold shows the heterogeneity of 
the collected data in the PIC database, with malformations, perinatal 
and respiratory being the most abundant International Classification 
of Diseases (ICD) chapters (Fig. 2b). The most common respiratory 
disease categories (Fig. 2c) were labeled pneumonia and influenza 
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Fig. 1 | Schematic overview of EHR analysis with ehrapy. a, Heterogeneous 
health data are first loaded into memory as an AnnData object with patient visits 
as observational rows and variables as columns. Next, the data can be mapped 
against ontologies, and key terms are extracted from free text notes. b, The EHR 
data are subject to quality control where low-quality or spurious measurements 
are removed or imputed. Subsequently, numerical data are normalized, and 

categorical data are encoded. Data from different sources with data distribution 
shifts are integrated, embedded, clustered and annotated in a patient landscape. 
c, Further downstream analyses depend on the question of interest and can 
include the inference of causal effects and trajectories, survival analysis or 
patient stratification.
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(n = 984). We focused on pneumonia to apply ehrapy to a challeng-
ing, broad-spectrum disease that affects all age groups. Pneumonia 
is a prevalent respiratory infection that poses a substantial burden 
on public health60 and is characterized by inflammation of the alveoli 
and distal airways60. Individuals with pre-existing chronic conditions 
are particularly vulnerable, as are children under the age of 5 (ref. 61). 
Pneumonia can be caused by a range of microorganisms, encompass-
ing bacteria, respiratory viruses and fungi.

We selected the age group ‘youths’ (13 months to 18 years of age) 
for further analysis, addressing a total of 265 patients who dominated 
the pneumonia cases and were diagnosed with ‘unspecified pneu-
monia’ (Fig. 2d and Extended Data Fig. 4). Neonates (0–28 d old) and 
infants (29 d to 12 months old) were excluded from the analysis as the 
disease context is significantly different in these age groups due to 
distinct anatomical and physical conditions. Patients were 61% male, 
had a total of 277 admissions, had a mean age at admission of 54 months 
(median, 38 months) and had an average LOS of 15 d (median, 7 d). Of 
these, 152 patients were admitted to the pediatric intensive care unit 
(PICU), 118 to the general ICU (GICU), four to the surgical ICU (SICU) 
and three to the cardiac ICU (CICU). Laboratory measurements typi-
cally had 12–14% missing data, except for serum procalcitonin (PCT), 
a marker for bacterial infections, with 24.5% missing, and C-reactive 
protein (CRP), a marker of inflammation, with 16.8% missing. Measure-
ments assigned as ‘vital signs’ contained between 44% and 54% miss-
ing values. Stratifying patients with unspecified pneumonia further 
enables a more nuanced understanding of the disease, potentially 
facilitating tailored approaches to treatment.

To deepen clinical phenotyping for the disease group ‘unspeci-
fied pneumonia’, we calculated a k-nearest neighbor graph to cluster 
patients into groups and visualize these in UMAP space (Methods). 
Leiden clustering62 identified four patient groupings with distinct 
clinical features that we annotated (Fig. 2e). To identify the labora-
tory values, medications and pathogens that were most characteristic 
for these four groups (Fig. 2f), we applied t-tests for numerical data 
and g-tests for categorical data between the identified groups using 
ehrapy (Extended Data Fig. 5 and Methods). Based on this analysis, 
we identified patient groups with ‘sepsis-like, ‘severe pneumonia 
with co-infection’, ‘viral pneumonia’ and ‘mild pneumonia’ pheno-
types. The ‘sepsis-like’ group of patients (n = 28) was characterized 
by rapid disease progression as exemplified by an increased num-
ber of deaths (adjusted P ≤ 5.04 × 10−3, 43% (n = 28), 95% confidence 
interval (CI): 23%, 62%); indication of multiple organ failure, such 
as elevated creatinine (adjusted P ≤ 0.01, 52.74 ± 23.71 μmol L−1) or 
reduced albumin levels (adjusted P ≤ 2.89 × 10−4, 33.40 ± 6.78 g L−1); 
and increased expression levels and peaks of inflammation markers,  
including PCT (adjusted P ≤ 3.01 × 10−2, 1.42 ± 2.03 ng ml−1), whole 
blood cell count, neutrophils, lymphocytes, monocytes and lower 
platelet counts (adjusted P ≤ 6.3 × 10−2, 159.30 ± 142.00 × 109 per 
liter) and changes in electrolyte levels—that is, lower potassium  
levels (adjusted P ≤ 0.09 × 10−2, 3.14 ± 0.54 mmol L−1). Patients whom we 
associated with the term ‘severe pneumonia with co-infection’ (n = 74) 
were characterized by prolonged ICU stays (adjusted P ≤ 3.59 × 10−4, 
15.01 ± 29.24 d); organ affection, such as higher levels of creatinine 
(adjusted P ≤ 1.10 × 10−4, 52.74 ± 23.71 μmol L−1) and lower platelet count 
(adjusted P ≤ 5.40 × 10−23, 159.30 ± 142.00 × 109 per liter); increased 
inflammation markers, such as peaks of PCT (adjusted P ≤ 5.06 × 10−5, 
1.42 ± 2.03 ng ml−1), CRP (adjusted P ≤ 1.40 × 10−6, 50.60 ± 37.58 mg L−1) 
and neutrophils (adjusted P ≤ 8.51 × 10−6, 13.01 ± 6.98 × 109 per liter); 
detection of bacteria in combination with additional pathogen fun-
gals in sputum samples (adjusted P ≤ 1.67 × 10−2, 26% (n = 74), 95% CI: 
16%, 36%); and increased application of medication, including anti-
fungals (adjusted P ≤ 1.30 × 10−4, 15% (n = 74), 95% CI: 7%, 23%) and 
catecholamines (adjusted P ≤ 2.0 × 10−2, 45% (n = 74), 95% CI: 33%, 56%). 
Patients in the ‘mild pneumonia’ group were characterized by posi-
tive sputum cultures in the presence of relatively lower inflammation 

markers, such as PCT (adjusted P ≤ 1.63 × 10−3, 1.42 ± 2.03 ng ml−1) and 
CRP (adjusted P ≤ 0.03 × 10−1, 50.60 ± 37.58 mg L−1), while receiving 
antibiotics more frequently (adjusted P ≤ 1.00 × 10−5, 80% (n = 78), 95% 
CI: 70%, 89%) and additional medications (electrolytes, blood thinners 
and circulation-supporting medications) (adjusted P ≤ 1.00 × 10−5, 82% 
(n = 78), 95% CI: 73%, 91%). Finally, patients in the ‘viral pneumonia’ 
group were characterized by shorter LOSs (adjusted P ≤ 8.00 × 10−6, 
15.01 ± 29.24 d), a lack of non-viral pathogen detection in combination 
with higher lymphocyte counts (adjusted P ≤ 0.01, 4.11 ± 2.49 × 109 per 
liter), lower levels of PCT (adjusted P ≤ 0.03 × 10−2, 1.42 ± 2.03 ng ml−1) 
and reduced application of catecholamines (adjusted P ≤ 5.96 × 10−7, 
15% (n = 97), 95% CI: 8%, 23%), antibiotics (adjusted P ≤ 8.53 × 10−6, 41% 
(n = 97), 95% CI: 31%, 51%) and antifungals (adjusted P ≤ 5.96 × 10−7, 0% 
(n = 97), 95% CI: 0%, 0%).

To demonstrate the ability of ehrapy to examine EHR data from 
different levels of resolution, we additionally reconstructed a case 
from the ‘severe pneumonia with co-infection’ group (Fig. 2g). In this 
case, the analysis revealed that CRP levels remained elevated despite 
broad-spectrum antibiotic treatment until a positive Acinetobacter 
baumannii result led to a change in medication and a subsequent 
decrease in CRP and monocyte levels.

ehrapy facilitates extraction of pneumonia indicators
ehrapy’s survival analysis module allowed us to identify clinical  
indicators of disease stages that could be used as biomarkers 
through Kaplan–Meier analysis. We found strong variance in overall 
aspartate aminotransferase (AST), alanine aminotransferase (ALT), 
gamma-glutamyl transferase (GGT) and bilirubin levels (Fig. 3a), includ-
ing changes over time (Extended Data Fig. 6a,b), in all four ‘unspecified 
pneumonia’ groups. Routinely used to assess liver function, studies 
provide evidence that AST, ALT and GGT levels are elevated during 
respiratory infections63, including severe pneumonia64, and can guide 
diagnosis and management of pneumonia in children63. We confirmed 
reduced survival in more severely affected children (‘sepsis-like  
pneumonia’ and ‘severe pneumonia with co-infection’) using Kaplan–
Meier curves and a multivariate log-rank test (Fig. 3b; P ≤ 1.09 × 10−18) 
through ehrapy. To verify the association of this trajectory with altered 
AST, ALT and GGT expression levels, we further grouped all patients 
based on liver enzyme reference ranges (Methods and Supplementary 
Table 2). By Kaplan–Meier survival analysis, cases with peaks of GGT 
(P ≤ 1.4 × 10−2, 58.01 ± 2.03 U L−1), ALT (P ≤ 2.9 × 10−2, 43.59 ± 38.02 U L−1) 
and AST (P ≤ 4.8 × 10−4, 78.69 ± 60.03 U L−1) in ‘outside the norm’ were 
found to correlate with lower survival in all groups (Fig. 3c and Extended 
Data Fig. 6), in line with previous studies63,65. Bilirubin was not found to 
significantly affect survival (P ≤ 2.1 × 10−1, 12.57 ± 21.22 mg dl−1).

ehrapy quantifies medication class effect on LOS
Pneumonia requires case-specific medications due to its diverse causes. 
To demonstrate the potential of ehrapy’s causal inference module, we 
quantified the effect of medication on ICU LOS to evaluate case-specific 
administration of medication. In contrast to causal discovery that 
attempts to find a causal graph reflecting the causal relationships, 
causal inference is a statistical process used to investigate possible 
effects when altering a provided system, as represented by a causal 
graph and observational data (Fig. 4a)66. This approach allows identify-
ing and quantifying the impact of specific interventions or treatments 
on outcome measures, thereby providing insight for evidence-based 
decision-making in healthcare. Causal inference relies on datasets 
incorporating interventions to accurately quantify effects.

We manually constructed a minimal causal graph with ehrapy 
(Fig. 4b) on records of treatment with corticosteroids, carbapenems, 
penicillins, cephalosporins and antifungal and antiviral medications as 
interventions (Extended Data Fig. 7 and Methods). We assumed that the 
medications affect disease progression proxies, such as inflammation 
markers and markers of organ function. The selection of ‘interventions’ 
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pneumonia illustrating pharmacotherapy over time until positive A. baumannii 
swab.
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is consistent with current treatment standards for bacterial pneumonia  
and respiratory distress67,68. Based on the approach of the tool 
‘dowhy’69 (Fig. 4a), ehrapy’s causal module identified the application of  
corticosteroids, antivirals and carbapenems to be associated  
with shorter LOSs, in line with current evidence61,70–72. In contrast, 
penicillins and cephalosporins were associated with longer LOSs,  
whereas antifungal medication did not strongly influence LOS (Fig. 4c).

ehrapy enables deriving population-scale risk factors
To illustrate the advantages of using a unified data management and 
quality control framework, such as ehrapy, we modeled myocardial 
infarction risk using Cox proportional hazards models on UKB44 data. 
Large population cohort studies, such as the UKB, enable the investiga-
tion of common diseases across a wide range of modalities, including 
genomics, metabolomics, proteomics, imaging data and common 
clinical variables (Fig. 5a,b). From these, we used a publicly available 
polygenic risk score for coronary heart disease73 comprising 6.6 million 
variants, 80 nuclear magnetic resonance (NMR) spectroscopy-based 
metabolomics74 features, 81 features derived from retinal optical coher-
ence tomography75,76 and the Framingham Risk Score77 feature set, 
which includes known clinical predictors, such as age, sex, body mass 

index, blood pressure, smoking behavior and cholesterol levels. We 
excluded features with more than 10% missingness and imputed the 
remaining missing values (Methods). Furthermore, individuals with 
events up to 1 year after the sampling time were excluded from the 
analyses, ultimately selecting 29,216 individuals for whom all men-
tioned data types were available (Extended Data Figs. 8 and 9 and Meth-
ods). Myocardial infarction, as defined by our mapping to the phecode 
nomenclature51, was defined as the endpoint (Fig. 5c). We modeled 
the risk for myocardial infarction 1 year after either the metabolomic 
sample was obtained or imaging was performed.

Predictive performance for each modality was assessed by fitting 
Cox proportional hazards (Fig. 5c) models on each of the feature sets 
using ehrapy (Fig. 5d). The age of the first occurrence served as the 
time to event; alternatively, date of death or date of the last record in 
the EHR served as censoring times. Models were evaluated using the 
concordance index (C-index) (Methods). The combination of multiple 
modalities successfully improved the predictive performance for coro-
nary heart disease by increasing the C-index from 0.63 (genetic) to 0.76 
(genetics, age and sex) and to 0.77 (clinical predictors) with 0.81 (imag-
ing and clinical predictors) for combinations of feature sets (Fig. 5e). 
Our finding is in line with previous observations of complementary 
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curves demonstrate lower survival for ‘sepsis-like’ and ‘severe pneumonia with 
co-infection’ groups. c, Kaplan–Meier survival curves for children with GGT 
measurements outside the norm range display lower survival.
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effects between different modalities, where a broader ‘major adverse 
cardiac event’ phenotype was modeled in the UKB achieving a C-index 
of 0.72 (ref. 78). Adding genetic data improves predictive potential, as 
it is independent of sampling age and has limited prediction of other 
modalities79. The addition of metabolomic data did not improve pre-
dictive power (Fig. 5e).

Imaging-based disease severity projection via fate mapping
To demonstrate ehrapy’s ability to handle diverse image data and 
recover disease stages, we embedded pulmonary imaging data 
obtained from patients with COVID-19 into a lower-dimensional space 
and computationally inferred disease progression trajectories using 
pseudotemporal ordering. This describes a continuous trajectory or 
ordering of individual points based on feature similarity80. Continuous 
trajectories enable mapping the fate of new patients onto precise states 
to potentially predict their future condition.

In COVID-19, a highly contagious respiratory illness caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), symp-
toms range from mild flu-like symptoms to severe respiratory distress. 
Chest x-rays typically show opacities (bilateral patchy, ground glass) 
associated with disease severity81.

We used COVID-19 chest x-ray images from the BrixIA82 data-
set consisting of 192 images (Fig. 6a) with expert annotations of  
disease severity. We used the BrixIA database scores, which are  
based on six regions annotated by radiologists, to classify 

disease severity (Methods). We embedded raw image features using 
a pre-trained DenseNet model (Methods) and further processed this 
embedding into a nearest-neighbors-based UMAP space using ehrapy 
(Fig. 6b and Methods). Fate mapping based on imaging information 
(Methods) determined a severity ordering from mild to critical cases 
(Fig. 6b–d). Images labeled as ‘normal’ are projected to stay within the 
healthy group, illustrating the robustness of our approach. Images of 
diseased patients were ordered by disease severity, highlighting clear 
trajectories from ‘normal’ to ‘critical’ states despite the heterogene-
ity of the x-ray images stemming from, for example, different zoom 
levels (Fig. 6a).

Detecting and mitigating biases in EHR data with ehrapy
To showcase how exploratory analysis using ehrapy can reveal and 
mitigate biases, we analyzed the Fairlearn83 version of the Diabetes 
130-US Hospitals84 dataset. The dataset covers 10 years (1999–2008) of 
clinical records from 130 US hospitals, detailing 47 features of diabetes 
diagnoses, laboratory tests, medications and additional data from up 
to 14 d of inpatient care of 101,766 diagnosed patient visits (Methods). 
It was originally collected to explore the link between the measurement 
of hemoglobin A1c (HbA1c) and early readmission.

The cohort primarily consists of White and African American 
individuals, with only a minority of cases from Asian or Hispanic back-
grounds (Extended Data Fig. 10a). ehrapy’s cohort tracker unveiled 
selection and surveillance biases when filtering for Medicare recipients 
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for further analysis, resulting in a shift of age distribution toward an age 
of over 60 years in addition to an increasing ratio of White participants. 
Using ehrapy’s visualization modules, our analysis showed that HbA1c 
was measured in only 18.4% of inpatients, with a higher frequency in 
emergency admissions compared to referral cases (Extended Data 
Fig. 10b). Normalization biases can skew data relationships when stand-
ardization techniques ignore subgroup variability or assume incorrect 
distributions. The choice of normalization strategy must be carefully 
considered to avoid obscuring important factors. When normalizing 
the number of applied medications individually, differences in dis-
tributions between age groups remained. However, when normal-
izing both distributions jointly with age group as an additional group 
variable, differences between age groups were masked (Extended Data 
Fig. 10c). To investigate missing data and imputation biases, we intro-
duced missingness for the number of applied medications according 
to an MCAR mechanism, which we verified using ehrapy’s Little’s test 
(P ≤ 0.01 × 10−2), and an MAR mechanism (Methods). Whereas imput-
ing the mean in the MCAR case did not affect the overall location of 
the distribution, it led to an underestimation of the variance, with the 
standard deviation dropping from 8.1 in the original data to 6.8 in the 
imputed data (Extended Data Fig. 10d). Mean imputation in the MAR 
case skewed both location and variance of the mean from 16.02 to 14.66, 
with a standard deviation of only 5.72 (Extended Data Fig. 10d). Using 
ehrapy’s multiple imputation based MissForest85 imputation on the 
MAR data resulted in a mean of 16.04 and a standard deviation of 6.45. 

To predict patient readmission in fewer than 30 d, we merged the three 
smallest race groups, ‘Asian’, ‘Hispanic’ and ‘Other’. Furthermore, we 
dropped the gender group ‘Unknown/Invalid’ owing to the small sam-
ple size making meaningful assessment impossible, and we performed 
balanced random undersampling, resulting in 5,677 cases from each 
condition. We observed an overall balanced accuracy of 0.59 using a 
logistic regression model. However, the false-negative rate was highest 
for the races ‘Other’ and ‘Unknown’, whereas their selection rate was 
lowest, and this model was, therefore, biased (Extended Data Fig. 10e). 
Using ehrapy’s compatibility with existing machine learning packages, 
we used Fairlearn’s ThresholdOptimizer (Methods), which improved 
the selection rates for ‘Other’ from 0.32 to 0.38 and for ‘Unknown’ from 
0.23 to 0.42 and the false-negative rates for ‘Other’ from 0.48 to 0.42 
and for ‘Unknown’ from 0.61 to 0.45 (Extended Data Fig. 10e).

Discussion
Clustering offers a hypothesis-free alternative to supervised classifi-
cation when clear hypotheses or labels are missing. It has enabled the 
identification of heart failure subtypes86 and progression pathways87 
and COVID-19 severity states88. This concept, which is central to ehrapy, 
further allowed us to identify fine-grained groups of ‘unspecified 
pneumonia’ cases in the PIC dataset while discovering biomarkers and 
quantifying effects of medications on LOS. Such retroactive characteri-
zation showcases ehrapy’s ability to put complex evidence into context. 
This approach supports feedback loops to improve diagnostic and 
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therapeutic strategies, leading to more efficiently allocated resources 
in healthcare.

ehrapy’s flexible data structures enabled us to integrate the  
heterogeneous UKB data for predictive performance in myocardial 
infarction. The different data types and distributions posed a challenge 
for predictive models that were overcome with ehrapy’s pre-processing 
modules. Our analysis underscores the potential of combining  
phenotypic and health data at population scale through ehrapy to 
enhance risk prediction.

By adapting pseudotime approaches that are commonly used in 
other omics domains, we successfully recovered disease trajectories 
from raw imaging data with ehrapy. The determined pseudotime, 
however, only orders data but does not necessarily provide a future 
projection per patient. Understanding the driver features for fate 
mapping in image-based datasets is challenging. The incorporation 
of image segmentation approaches could mitigate this issue and 
provide a deeper insight into the spatial and temporal dynamics of 
disease-related processes.

Limitations of our analyses include the lack of control for informa-
tive missingness where the absence of information represents informa-
tion in itself89. Translation from Chinese to English in the PIC database 
can cause information loss and inaccuracies because the Chinese 
ICD-10 codes are seven characters long compared to the five-character 
English codes. Incompleteness of databases, such as the lack of radiol-
ogy images in the PIC database, low sample sizes, underrepresenta-
tion of non-White ancestries and participant self-selection, cannot 
be accounted for and limit generalizability. This restricts deeper 
phenotyping of, for example, all ‘unspecified pneumonia’ cases 
with respect to their survival, which could be overcome by the use of 

multiple databases. Our causal inference use case is limited by unre-
corded variables, such as Sequential Organ Failure Assessment (SOFA) 
scores, and pneumonia-related pathogens that are missing in the causal  
graph due to dataset constraints, such as high sparsity and substantial 
missing data, which risk overfitting and can lead to overinterpretation. 
We counterbalanced this by employing several refutation methods that 
statistically reject the causal hypothesis, such as a placebo treatment, 
a random common cause or an unobserved common cause. The longer 
hospital stays associated with penicillins and cephalosporins may be 
dataset specific and stem from higher antibiotic resistance, their use 
as first-line treatments, more severe initial cases, comorbidities and 
hospital-specific protocols.

Most analysis steps can introduce algorithmic biases where 
results are misleading or unfavorably affect specific groups. This is 
particularly relevant in the context of missing data22 where deter-
mining the type of missing data is necessary to handle it correctly. 
ehrapy includes an implementation of Little’s test90, which tests 
whether data are distributed MCAR to discern missing data types. 
For MCAR data single-imputation approaches, such as mean, median 
or mode, imputation can suffice, but these methods are known to 
reduce variability91,92. Multiple imputation strategies, such as Multiple 
Imputation by Chained Equations (MICE)93 and MissForest85, as imple-
mented in ehrapy, are effective for both MCAR and MAR data22,94,95. 
MNAR data require pattern-mixture or shared-parameter models that 
explicitly incorporate the mechanism by which data are missing96. 
Because MNAR involves unobserved data, the assumptions about the 
missingness mechanism cannot be directly verified, making sensitivity  
analysis crucial21. ehrapy’s wide range of normalization functions and 
grouping functionality enables to account for intrinsic variability 
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within subgroups, and its compatibility with Fairlearn83 can poten-
tially mitigate predictor biases. Generally, we recommend to assess 
all pre-processing in an iterative manner with respect to downstream 
applications, such as patient stratification. Moreover, sensitivity analy-
sis can help verify the robustness of all inferred knowledge97.

These diverse use cases illustrate ehrapy’s potential to suffi-
ciently address the need for a computationally efficient, extendable, 
reproducible and easy-to-use framework. ehrapy is compatible with 
major standards, such as Observational Medical Outcomes Partner-
ship (OMOP), Common Data Model (CDM)47, HL7, FHIR or openEHR, 
with flexible support for common tabular data formats. Once loaded  
into an AnnData object, subsequent sharing of analysis results is 
made easy because AnnData objects can be stored and read plat-
form independently. ehrapy’s rich documentation of the application  
programming interface (API) and extensive hands-on tutorials make 
EHR analysis accessible to both novices and experienced analysts.

As ehrapy remains under active development, users can expect 
ehrapy to continuously evolve. We are improving support for the joint 
analysis of EHR, genetics and molecular data where ehrapy serves as 
a bridge between the EHR and the omics communities. We further 
anticipate the generation of EHR-specific reference datasets, so-called 
atlases98, to enable query-to-reference mapping where new datasets 
get contextualized by transferring annotations from the reference 
to the new dataset. To promote the sharing and collective analysis of 
EHR data, we envision adapted versions of interactive single-cell data 
explorers, such as CELLxGENE99 or the UCSC Cell Browser100, for EHR 
data. Such web interfaces would also include disparity dashboards20 
to unveil trends of preferential outcomes for distinct patient groups. 
Additional modules specifically for high-frequency time-series data, 
natural language processing and other data types are currently under 
development. With the widespread availability of code-generating 
large language models, frameworks such as ehrapy are becoming 
accessible to medical professionals without coding expertise who can 
leverage its analytical power directly. Therefore, ehrapy, together with a 
lively ecosystem of packages, has the potential to enhance the scientific 
discovery pipeline to shape the era of EHR analysis.
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Methods
All datasets that were used during the development of ehrapy and the 
use cases were used according to their terms of use as indicated by 
each provider.

Design and implementation of ehrapy
A unified pipeline as provided by our ehrapy framework streamlines the 
analysis of EHR data by providing an efficient, standardized approach, 
which reduces the complexity and variability in data pre-processing 
and analysis. This consistency ensures reproducibility of results and 
facilitates collaboration and sharing within the research community. 
Additionally, the modular structure allows for easy extension and  
customization, enabling researchers to adapt the pipeline to their 
specific needs while building on a solid foundational framework.

ehrapy was designed from the ground up as an open-source effort 
with community support. The package, as well as all associated tutorials 
and dataset preparation scripts, are open source. Development takes 
place publicly on GitHub where the developers discuss feature requests 
and issues directly with users. This tight interaction between both 
groups ensures that we implement the most pressing needs to cater 
the most important use cases and can guide users when difficulties 
arise. The open-source nature, extensive documentation and modular 
structure of ehrapy are designed for other developers to build upon 
and extend ehrapy’s functionality where necessary. This allows us to 
focus ehrapy on the most important features to keep the number of 
dependencies to a minimum.

ehrapy was implemented in the Python programming lan-
guage and builds upon numerous existing numerical and scientific 
open-source libraries, specifically matplotlib101, seaborn102, NumPy103, 
numba104, Scipy105, scikit-learn53 and Pandas106. Although taking con-
siderable advantage of all packages implemented, ehrapy also shares 
the limitations of these libraries, such as a lack of GPU support or 
small performance losses due to the translation layer cost for opera-
tions between the Python interpreter and the lower-level C language 
for matrix operations. However, by building on very widely used 
open-source software, we ensure seamless integration and compat-
ibility with a broad range of tools and platforms to promote community 
contributions. Additionally, by doing so, we enhance security by allow-
ing a larger pool of developers to identify and address vulnerabilities107. 
All functions are grouped into task-specific modules whose implemen-
tation is complemented with additional dependencies.

Data preparation
Dataloaders. ehrapy is compatible with any type of vectorized data, 
where vectorized refers to the data being stored in structured tables 
in either on-disk or database form. The input and output module of 
ehrapy provides readers for common formats, such as OMOP, CSV 
tables or SQL databases through Pandas. When reading in such data-
sets, the data are stored in the appropriate slots in a new AnnData46 
object. ehrapy’s data module provides access to more than 20 public 
EHR datasets that feature diseases, including, but not limited to, Par-
kinson’s disease, breast cancer, chronic kidney disease and more. All 
dataloaders return AnnData objects to allow for immediate analysis.

AnnData for EHR data. Our framework required a versatile data struc-
ture capable of handling various matrix formats, including Numpy103 
for general use cases and interoperability, Scipy105 sparse matrices for 
efficient storage, Dask108 matrices for larger-than-memory analysis and 
Awkward array109 for irregular time-series data. We needed a single data 
structure that not only stores data but also includes comprehensive 
annotations for thorough contextual analysis. It was essential for this 
structure to be widely used and supported, which ensures robustness 
and continual updates. Interoperability with other analytical packages 
was a key criterion to facilitate seamless integration within existing 
tools and workflows. Finally, the data structure had to support both 

in-memory operations and on-disk storage using formats such as HDF5 
(ref. 110) and Zarr111, ensuring efficient handling and accessibility of 
large datasets and the ability to easily share them with collaborators.

All of these requirements are fulfilled by the AnnData format, 
which is a popular data structure in single-cell genomics. At its core, 
an AnnData object encapsulates diverse components, providing a 
holistic representation of data and metadata that are always aligned 
in dimensions and easily accessible. A data matrix (commonly referred 
to as ‘X’) stands as the foundational element, embodying the measured 
data. This matrix can be dense (as Numpy array), sparse (as Scipy sparse 
matrix) or ragged (as Awkward array) where dimensions do not align 
within the data matrix. The AnnData object can feature several such 
data matrices stored in ‘layers’. Examples of such layers can be unnor-
malized or unencoded data. These data matrices are complemented 
by an observations (commonly referred to as ‘obs’) segment where 
annotations on the level of patients or visits are stored. Patients’ age 
or sex, for instance, are often used as such annotations. The variables 
(commonly referred to as ‘var’) section complements the observations, 
offering supplementary details about the features in the dataset, such 
as missing data rates. The observation-specific matrices (commonly 
referred to as ‘obsm’) section extends the capabilities of the AnnData 
structure by allowing the incorporation of observation-specific matri-
ces. These matrices can represent various types of information at the 
individual cell level, such as principal component analysis (PCA) results, 
t-distributed stochastic neighbor embedding (t-SNE) coordinates or 
other dimensionality reduction outputs. Analogously, AnnData fea-
tures a variables-specific variables (commonly referred to as ‘varm’) 
component. The observation-specific pairwise relationships (com-
monly referred to as ‘obsp’) segment complements the ‘obsm’ section 
by accommodating observation-specific pairwise relationships. This 
can include connectivity matrices, indicating relationships between 
patients. The inclusion of an unstructured annotations (commonly 
referred to as ‘uns’) component further enhances flexibility. This seg-
ment accommodates unstructured annotations or arbitrary data that 
might not conform to the structured observations or variables catego-
ries. Any AnnData object can be stored on disk in h5ad or Zarr format 
to facilitate data exchange.

ehrapy natively interfaces with the scientific Python ecosystem via 
Pandas112 and Numpy103. The development of deep learning models for 
EHR data113 is further accelerated through compatibility with pathml114, 
a unified framework for whole-slide image analysis in pathology, and 
scvi-tools115, which provides data loaders for loading tensors from 
AnnData objects into PyTorch116 or Jax arrays117 to facilitate the devel-
opment of generalizing foundational models for medical artificial 
intelligence118.

Feature annotation. After AnnData creation, any metadata can  
be mapped against ontologies using Bionty (https://github.com/ 
laminlabs/bionty-base). Bionty provides access to the Human  
Phenotype, Phecodes, Phenotype and Trait, Drug, Mondo and Human 
Disease ontologies.

Key medical terms stored in an AnnData object in free text can be 
extracted using the Medical Concept Annotation Toolkit (MedCAT)119.

Data processing
Cohort tracking. ehrapy provides a CohortTracker tool that traces 
all filtering steps applied to an associated AnnData object. To  
calculate cohort summary statistics, the implementation makes use 
of tableone120 and can subsequently be plotted as bar charts together 
with flow diagrams121 that visualize the order and reasoning of filtering 
operations.

Basic pre-processing and quality control. ehrapy encompasses 
a suite of functionalities for fundamental data processing that are 
adopted from scanpy52 but adapted to EHR data:
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	 1.	 Regress out: To address unwanted sources of variation, a 
regression procedure is integrated, enhancing the dataset’s 
robustness.

	 2.	 Subsample: Selects a specified fraction of observations.
	 3.	 Balanced sample: Balances groups in the dataset by random 

oversampling or undersampling.
	 4.	 Highly variable features: The identification and annotation  

of highly variable features following the ‘highly variable  
genes’ function of scanpy is seamlessly incorporated, provid-
ing users with insights into pivotal elements influencing  
the dataset.

To identify and minimize quality issues, ehrapy provides several 
quality control functions:

	 1.	 Basic quality control: Determines the relative and absolute 
number of missing values per feature and per patient.

	 2.	 Winsorization: For data refinement, ehrapy implements a 
winsorization process, creating a version of the input array less 
susceptible to extreme values.

	 3.	 Feature clipping: Imposes limits on features to enhance dataset 
reliability.

	 4.	 Detect biases: Computes pairwise correlations between 
features, standardized mean differences for numeric features 
between groups of sensitive features, categorical feature  
value count differences between groups of sensitive features 
and feature importances when predicting a target variable.

	 5.	 Little’s MCAR test: Applies Little’s MCAR test whose null 
hypothesis is that data are MCAR. Rejecting the null hypothesis 
may not always mean that data are not MCAR, nor is accepting 
the null hypothesis a guarantee that data are MCAR. For more 
details, see Schouten et al.122.

	 6.	 Summarize features: Calculates statistical indicators per  
feature, including minimum, maximum and average values. 
This can be especially useful to reduce complex data with 
multiple measurements per feature per patient into sets of 
columns with single values.

Imputation is crucial in data analysis to address missing values,  
ensuring the completeness of datasets that can be required for  
specific algorithms. The ‘ehrapy’ pre-processing module offers a range 
of imputation techniques:

	 1.	 Explicit Impute: Replaces missing values, in either all columns 
or a user-specified subset, with a designated replacement value.

	 2.	 Simple Impute: Imputes missing values in numerical data using 
mean, median or the most frequent value, contributing to a 
more complete dataset.

	 3.	 KNN Impute: Uses k-nearest neighbor imputation to fill in  
missing values in the input AnnData object, preserving local 
data patterns.

	 4.	 MissForest Impute: Implements the MissForest strategy for im-
puting missing data, providing a robust approach for handling 
complex datasets.

	 5.	 MICE Impute: Applies the MICE algorithm for imputing data. 
This implementation is based on the miceforest (https://
github.com/AnotherSamWilson/miceforest) package.

Data encoding can be required if categoricals are a part of the 
dataset to obtain numerical values only. Most algorithms in ehrapy are 
compatible only with numerical values. ehrapy offers two encoding 
algorithms based on scikit-learn53:

	 1.	 One-Hot Encoding: Transforms categorical variables into 
binary vectors, creating a binary feature for each category 
and capturing the presence or absence of each category in a 
concise representation.

	 2.	 Label Encoding: Assigns a unique numerical label to each category, 
facilitating the representation of categorical data as ordinal  
values and supporting algorithms that require numerical input.

To ensure that the distributions of the heterogeneous data are 
aligned, ehrapy offers several normalization procedures:

	 1.	 Log Normalization: Applies the natural logarithm function to 
the data, useful for handling skewed distributions and reduc-
ing the impact of outliers.

	 2.	 Max-Abs Normalization: Scales each feature by its maximum 
absolute value, ensuring that the maximum absolute value for 
each feature is 1.

	 3.	 Min-Max Normalization: Transforms the data to a specific 
range (commonly (0, 1)) by scaling each feature based on its 
minimum and maximum values.

	 4.	 Power Transformation Normalization: Applies a power trans-
formation to make the data more Gaussian like, often useful for 
stabilizing variance and improving the performance of models 
sensitive to distributional assumptions.

	 5.	 Quantile Normalization: Aligns the distributions of multiple 
variables, ensuring that their quantiles match, which can be 
beneficial for comparing datasets or removing batch effects.

	 6.	 Robust Scaling Normalization: Scales data using the interquar-
tile range, making it robust to outliers and suitable for datasets 
with extreme values.

	 7.	 Scaling Normalization: Standardizes data by subtracting  
the mean and dividing by the standard deviation, creating a 
distribution with a mean of 0 and a standard deviation of 1.

	 8.	 Offset to Positive Values: Shifts all values by a constant offset 
to make all values non-negative, with the lowest negative value 
becoming 0.

Dataset shifts can be corrected using the scanpy implementa-
tion of the ComBat123 algorithm, which employs a parametric and 
non-parametric empirical Bayes framework for adjusting data for batch 
effects that is robust to outliers.

Finally, a neighbors graph can be efficiently computed using 
scanpy’s implementation.

Embeddings. To obtain meaningful lower-dimensional embeddings 
that can subsequently be visualized and reused for downstream algo-
rithms, ehrapy provides the following algorithms based on scanpy’s 
implementation:

	 1.	 t-SNE: Uses a probabilistic approach to embed 
high-dimensional data into a lower-dimensional space, em-
phasizing the preservation of local similarities and revealing 
clusters in the data.

	 2.	 UMAP: Embeds data points by modeling their local neighbor
hood relationships, offering an efficient and scalable tech-
nique that captures both global and local structures in 
high-dimensional data.

	 3.	 Force-Directed Graph Drawing: Uses a physical simulation to 
position nodes in a graph, with edges representing pairwise 
relationships, creating a visually meaningful representation 
that emphasizes connectedness and clustering in the data.

	 4.	 Diffusion Maps: Applies spectral methods to capture the  
intrinsic geometry of high-dimensional data by modeling 
diffusion processes, providing a way to uncover underlying 
structures and patterns.

	 5.	 Density Calculation in Embedding: Quantifies the density of 
observations within an embedding, considering conditions or 
groups, offering insights into the concentration of data points 
in different regions and aiding in the identification of densely 
populated areas.
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Clustering. ehrapy further provides algorithms for clustering and 
trajectory inference based on scanpy:

	 1.	 Leiden Clustering: Uses the Leiden algorithm to cluster  
observations into groups, revealing distinct communities 
within the dataset with an emphasis on intra-cluster cohesion.

	 2.	 Hierarchical Clustering Dendrogram: Constructs a dendro-
gram through hierarchical clustering based on specified group 
by categories, illustrating the hierarchical relationships among 
observations and facilitating the exploration of structured 
patterns.

Feature ranking. ehrapy provides two ways of ranking feature contri-
butions to clusters and target variables:

	 1.	 Statistical tests: To compare any obtained clusters to obtain 
marker features that are significantly different between the 
groups, ehrapy extends scanpy’s ‘rank genes groups’. The  
original implementation, which features a t-test for numerical 
data, is complemented by a g-test for categorical data.

	 2.	 Feature importance: Calculates feature rankings for a target 
variable using linear regression, support vector machine or 
random forest models from scikit-learn. ehrapy evaluates the 
relative importance of each predictor by fitting the model 
and extracting model-specific metrics, such as coefficients or 
feature importances.

Dataset integration. Based on scanpy’s ‘ingest’ function, ehrapy facili-
tates the integration of labels and embeddings from a well-annotated 
reference dataset into a new dataset, enabling the mapping of  
cluster annotations and spatial relationships for consistent compara-
tive analysis. This process ensures harmonized clinical interpretations 
across datasets, especially useful when dealing with multiple experi-
mental diseases or batches.

Knowledge inference
Survival analysis. ehrapy’s implementation of survival analysis algo-
rithms is based on lifelines124:

	 1.	 Ordinary Least Squares (OLS) Model: Creates a linear regression  
model using OLS from a specified formula and an AnnData 
object, allowing for the analysis of relationships between  
variables and observations.

	 2.	 Generalized Linear Model (GLM): Constructs a GLM from a 
given formula, distribution and AnnData, providing a versatile 
framework for modeling relationships with nonlinear data 
structures.

	 3.	 Kaplan–Meier: Fits the Kaplan–Meier curve to generate survival 
curves, offering a visual representation of the probability of 
survival over time in a dataset.

	 4.	 Cox Hazard Model: Constructs a Cox proportional hazards 
model using a specified formula and an AnnData object,  
enabling the analysis of survival data by modeling the hazard 
rates and their relationship to predictor variables.

	 5.	 Log-Rank Test: Calculates the P value for the log-rank test, 
comparing the survival functions of two groups, providing 
statistical significance for differences in survival distributions.

	 6.	 GLM Comparison: Given two fit GLMs, where the larger encom-
passes the parameter space of the smaller, this function returns 
the P value, indicating the significance of the larger model and 
adding explanatory power beyond the smaller model.

Trajectory inference. Trajectory inference is a computational 
approach that reconstructs and models the developmental paths and 
transitions within heterogeneous clinical data, providing insights into 

the temporal progression underlying complex systems. ehrapy offers 
several inbuilt algorithms for trajectory inference based on scanpy:

	 1.	 Diffusion Pseudotime: Infers the progression of observations 
by measuring geodesic distance along the graph, providing  
a pseudotime metric that represents the developmental  
trajectory within the dataset.

	 2.	 Partition-based Graph Abstraction (PAGA): Maps out the 
coarse-grained connectivity structures of complex manifolds 
using a partition-based approach, offering a comprehensive 
visualization of relationships in high-dimensional data  
and aiding in the identification of macroscopic connectivity 
patterns.

Because ehrapy is compatible with scverse, further trajectory 
inference-based algorithms, such as CellRank, can be seamlessly 
applied.

Causal inference. ehrapy’s causal inference module is based on 
‘dowhy’69. It is based on four key steps that are all implemented  
in ehrapy:

	 1.	 Graphical Model Specification: Define a causal graphical model 
representing relationships between variables and potential 
causal effects.

	 2.	 Causal Effect Identification: Automatically identify whether a 
causal effect can be inferred from the given data, addressing 
confounding and selection bias.

	 3.	 Causal Effect Estimation: Employ automated tools to estimate 
causal effects, using methods such as matching, instrumental 
variables or regression.

	 4.	 Sensitivity Analysis and Testing: Perform sensitivity analysis  
to assess the robustness of causal inferences and conduct  
statistical testing to determine the significance of the  
estimated causal effects.

Patient stratification. ehrapy’s complete pipeline from pre-processing 
to the generation of lower-dimensional embeddings, clustering, sta-
tistical comparison between determined groups and more facilitates 
the stratification of patients.

Visualization
ehrapy features an extensive visualization pipeline that is customizable 
and yet offers reasonable defaults. Almost every analysis function is 
matched with at least one visualization function that often shares the 
name but is available through the plotting module. For example, after 
importing ehrapy as ‘ep’, ‘ep.tl.umap(adata)’ runs the UMAP algorithm 
on an AnnData object, and ‘ep.pl.umap(adata)’ would then plot a scatter 
plot of the UMAP embedding.

ehrapy further offers a suite of more generally usable and modifi-
able plots:

	 1.	 Scatter Plot: Visualizes data points along observation or  
variable axes, offering insights into the distribution and  
relationships between individual data points.

	 2.	 Heatmap: Represents feature values in a grid, providing a  
comprehensive overview of the data’s structure and patterns.

	 3.	 Dot Plot: Displays count values of specified variables as dots, 
offering a clear depiction of the distribution of counts for each 
variable.

	 4.	 Filled Line Plot: Illustrates trends in data with filled lines,  
emphasizing variations in values over a specified axis.

	 5.	 Violin Plot: Presents the distribution of data through mirrored 
density plots, offering a concise view of the data’s spread.

	 6.	 Stacked Violin Plot: Combines multiple violin plots, stacked to 
allow for visual comparison of distributions across categories.
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	 7.	 Group Mean Heatmap: Creates a heatmap displaying the mean 
count per group for each specified variable, providing insights 
into group-wise trends.

	 8.	 Hierarchically Clustered Heatmap: Uses hierarchical clustering 
to arrange data in a heatmap, revealing relationships and  
patterns among variables and observations.

	 9.	 Rankings Plot: Visualizes rankings within the data, offering a 
clear representation of the order and magnitude of values.

	 10.	Dendrogram Plot: Plots a dendrogram of categories defined 
in a group by operation, illustrating hierarchical relationships 
within the dataset.

Benchmarking ehrapy
We generated a subset of the UKB data selecting 261 features and 
488,170 patient visits. We removed all features with missingness rates 
greater than 70%. To demonstrate speed and memory consumption 
for various scenarios, we subsampled the data to 20%, 30% and 50%. 
We ran a minimal ehrapy analysis pipeline on each of those subsets 
and the full data, including the calculation of quality control metrics, 
filtering of variables by a missingness threshold, nearest neighbor 
imputation, normalization, dimensionality reduction and clustering 
(Supplementary Table 1). We conducted our benchmark on a single 
CPU with eight threads and 60 GB of maximum memory.

ehrapy further provides out-of-core implementations using 
Dask108 for many algorithms in ehrapy, such as our normalization func-
tions or our PCA implementation. Out-of-core computation refers 
to techniques that process data that do not fit entirely in memory, 
using disk storage to manage data overflow. This approach is cru-
cial for handling large datasets without being constrained by system 
memory limits. Because the principal components get reused for other 
computationally expensive algorithms, such as the neighbors graph 
calculation, it effectively enables the analysis of very large datasets. 
We are currently working on supporting out-of-core computation for 
all computationally expensive algorithms in ehrapy.

We demonstrate the memory benefits in a hosted tutorial where 
the in-memory pipeline for 50,000 patients with 1,000 features 
required about 2 GB of memory, and the corresponding out-of-core 
implementation required less than 200 MB of memory.

The code for benchmarking is available at https://github.com/
theislab/ehrapy-reproducibility. The implementation of ehrapy is 
accessible at https://github.com/theislab/ehrapy together with exten-
sive API documentation and tutorials at https://ehrapy.readthedocs.io.

PIC database analysis
Study design. We collected clinical data from the PIC43 version 1.1.0 
database. PIC is a single-center, bilingual (English and Chinese) data-
base hosting information of children admitted to critical care units 
at the Children’s Hospital of Zhejiang University School of Medicine 
in China. The requirement for individual patient consent was waived 
because the study did not impact clinical care, and all protected health 
information was de-identified. The database contains 13,499 distinct 
hospital admissions of 12,881 distinct pediatric patients. These patients 
were admitted to five ICU units with 119 total critical care beds—GICU, 
PICU, SICU, CICU and NICU—between 2010 and 2018. The mean age of 
the patients was 2.5 years, of whom 42.5% were female. The in-hospital 
mortality was 7.1%; the mean hospital stay was 17.6 d; the mean ICU 
stay was 9.3 d; and 468 (3.6%) patients were admitted multiple times. 
Demographics, diagnoses, doctors’ notes, laboratory and microbiol-
ogy tests, prescriptions, fluid balances, vital signs and radiographics 
reports were collected from all patients. For more details, see the 
original publication of Zeng et al.43.

Study participants. Individuals older than 18 years were excluded from 
the study. We grouped the data into three distinct groups: ‘neonates’ 
(0–28 d of age; 2,968 patients), ‘infants’ (1–12 months of age; 4,876 

patients) and ‘youths’ (13 months to 18 years of age; 6,097 patients). 
We primarily analyzed the ‘youths’ group with the discharge diagnosis 
‘unspecified pneumonia’ (277 patients).

Data collection. The collected clinical data included demographics, 
laboratory and vital sign measurements, diagnoses, microbiology and 
medication information and mortality outcomes. The five-character 
English ICD-10 codes were used, whose values are based on the 
seven-character Chinese ICD-10 codes.

Dataset extraction and analysis. We downloaded the PIC database of 
version 1.1.0 from Physionet1 to obtain 17 CSV tables. Using Pandas, we 
selected all information with more than 50% coverage rate, including 
demographics and laboratory and vital sign measurements (Fig. 2). To 
reduce the amount of noise, we calculated and added only the mini-
mum, maximum and average of all measurements that had multiple 
values per patient. Examination reports were removed because they 
describe only diagnostics and not detailed findings. All further diag-
noses and microbiology and medication information were included 
into the observations slot to ensure that the data were not used for 
the calculation of embeddings but were still available for the analysis. 
This ensured that any calculated embedding would not be divided into 
treated and untreated groups but, rather, solely based on phenotypic 
features. We imputed all missing data through k-nearest neighbors 
imputation (k = 20) using the knn_impute function of ehrapy. Next, 
we log normalized the data with ehrapy using the log_norm function. 
Afterwards, we winsorized the data using ehrapy’s winsorize function 
to obtain 277 ICU visits (n = 265 patients) with 572 features. Of those 
572 features, 254 were stored in the matrix X and the remaining 318 in 
the ‘obs’ slot in the AnnData object. For clustering and visualization 
purposes, we calculated 50 principal components using ehrapy’s pca 
function. The obtained principal component representation was then 
used to calculate a nearest neighbors graph using the neighbors func-
tion of ehrapy. The nearest neighbors graph then served as the basis 
for a UMAP embedding calculation using ehrapy’s umap function.

Patient stratification. We applied the community detection algo-
rithm Leiden with resolution 0.6 on the nearest neighbor graph using 
ehrapy’s leiden function. The four obtained clusters served as input 
for two-sided t-tests for all numerical values and two-sided g-tests 
for all categorical values for all four clusters against the union of all 
three other clusters, respectively. This was conducted using ehrapy’s 
rank_feature_groups function, which also corrects P values for multiple 
testing with the Benjamini–Hochberg method125. We presented the four 
groups and the statistically significantly different features between 
the groups to two pediatricians who annotated the groups with labels.

Our determined groups can be confidently labeled owing to their 
distinct clinical profiles. Nevertheless, we could only take into account 
clinical features that were measured. Insightful features, such as lung 
function tests, are missing. Moreover, the feature representation 
of the time-series data is simplified, which can hide some nuances 
between the groups. Generally, deciding on a clustering resolution 
is difficult. However, more fine-grained clusters obtained via higher 
clustering resolutions may become too specific and not generalize 
well enough.

Kaplan–Meier survival analysis. We selected patients with up to 
360 h of total stay for Kaplan–Meier survival analysis to ensure a suf-
ficiently high number of participants. We proceeded with the AnnData 
object prepared as described in the ‘Patient stratification’ subsection to  
conduct Kaplan–Meier analysis among all four determined pneu-
monia groups using ehrapy’s kmf function. Significance was tested  
through ehrapy’s test_kmf_logrank function, which tests whether 
two Kaplan–Meier series are statistically significant, employing  
a chi-squared test statistic under the null hypothesis. Let hi(t) be the 
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hazard ratio of group i at time t and c a constant that represents a 
proportional change in the hazard ratio between the two groups, then:

Ho ∶ h1(t) = h2(t)

Ha ∶ h1(t) = c ∗ h2(t), c ≠ 1

This implicitly uses the log-rank weights. An additional Kaplan–
Meier analysis was conducted for all children jointly concerning the 
liver markers AST, ALT and GGT. To determine whether measurements 
were inside or outside the norm range, we used reference ranges (Sup-
plementary Table 2). P values less than 0.05 were labeled significant.

Our Kaplan–Meier curve analysis depends on the groups being 
well defined and shares the same limitations as the patient stratifica-
tion. Additionally, the analysis is sensitive to the reference table where 
we selected limits that generalize well for the age ranges, but, due to 
children of different ages being examined, they may not necessarily 
be perfectly accurate for all children.

Causal effect of mechanism of action on LOS. Although the dataset 
was not initially intended for investigating causal effects of interven-
tions, we adapted it for this purpose by focusing on the LOS in the ICU, 
measured in months, as the outcome variable. This choice aligns with 
the clinical aim of stabilizing patients sufficiently for ICU discharge. We 
constructed a causal graph to explore how different drug administra-
tions could potentially reduce the LOS. Based on consultations with 
clinicians, we included several biomarkers of liver damage (AST, ALT 
and GGT) and inflammation (CRP and PCT) in our model. Patient age 
was also considered a relevant variable.

Because several different medications act by the same mecha-
nisms, we grouped specific medications by their drug classes This 
grouping was achieved by cross-referencing the drugs listed in the 
dataset with DrugBank release 5.1 (ref. 126), using Levenshtein distances 
for partial string matching. After manual verification, we extracted the 
corresponding DrugBank categories, counted the number of features 
per category and compiled a list of commonly prescribed medications, 
as advised by clinicians. This approach facilitated the modeling of the 
causal graph depicted in Fig. 4, where an intervention is defined as the 
administration of at least one drug from a specified category.

Causal inference was then conducted with ehrapy’s ‘dowhy’69-based 
causal inference module using the expert-curated causal graph.  
Medication groups were designated as causal interventions, and the 
LOS was the outcome of interest. Linear regression served as the esti-
mation method for analyzing these causal effects. We excluded four 
patients from the analysis owing to their notably long hospital stays 
exceeding 90 d, which were deemed outliers. To validate the robustness 
of our causal estimates, we incorporated several refutation methods:

•	 Placebo Treatment Refuter: This method involved replacing the 
treatment assignment with a placebo to test the effect of the 
treatment variable being null.

•	 Random Common Cause: A randomly generated variable was 
added to the data to assess the sensitivity of the causal estimate 
to the inclusion of potential unmeasured confounders.

•	 Data Subset Refuter: The stability of the causal estimate was 
tested across various random subsets of the data to ensure that 
the observed effects were not dependent on a specific subset.

•	 Add Unobserved Common Cause: This approach tested the 
effect of an omitted variable by adding a theoretically relevant 
unobserved confounder to the model, evaluating how much an 
unmeasured variable could influence the causal relationship.

•	 Dummy Outcome: Replaces the true outcome variable with a 
random variable. If the causal effect nullifies, it supports the 
validity of the original causal relationship, indicating that the 
outcome is not driven by random factors.

•	 Bootstrap Validation: Employs bootstrapping to generate  
multiple samples from the dataset, testing the consistency of 
the causal effect across these samples.

The selection of these refuters addresses a broad spectrum of 
potential biases and model sensitivities, including unobserved con-
founders and data dependencies. This comprehensive approach 
ensures robust verification of the causal analysis. Each refuter provides 
an orthogonal perspective, targeting specific vulnerabilities in causal 
analysis, which strengthens the overall credibility of the findings.

UKB analysis
Study population. We used information from the UKB cohort, which 
includes 502,164 study participants from the general UK population 
without enrichment for specific diseases. The study involved the 
enrollment of individuals between 2006 and 2010 across 22 different 
assessment centers throughout the United Kingdom. The tracking of 
participants is still ongoing. Within the UKB dataset, metabolomics, 
proteomics and retinal optical coherence tomography data are avail-
able for a subset of individuals without any enrichment for specific dis-
eases. Additionally, EHRs, questionnaire responses and other physical 
measures are available for almost everyone in the study. Furthermore, a 
variety of genotype information is available for nearly the entire cohort, 
including whole-genome sequencing, whole-exome sequencing, geno-
typing array data as well as imputed genotypes from the genotyping 
array44. Because only the latter two are available for download, and are 
sufficient for polygenic risk score calculation as performed here, we 
used the imputed genotypes in the present study. Participants visited 
the assessment center up to four times for additional and repeat meas-
urements and completed additional online follow-up questionnaires.

In the present study, we restricted the analyses to data obtained 
from the initial assessment, including the blood draw, for obtaining 
the metabolomics data and the retinal imaging as well as physical 
measures. This restricts the study population to 33,521 individuals for 
whom all of these modalities are available. We have a clear study start 
point for each individual with the date of their initial assessment center 
visit. The study population has a mean age of 57 years, is 54% female and 
is censored at age 69 years on average; 4.7% experienced an incident 
myocardial infarction; and 8.1% have prevalent type 2 diabetes. The 
study population comes from six of the 22 assessment centers due to 
the retinal imaging being performed only at those.

Data collection. For the myocardial infarction endpoint definition, we 
relied on the first occurrence data available in the UKB, which compiles 
the first date that each diagnosis was recorded for a participant in a 
hospital in ICD-10 nomenclature. Subsequently, we mapped these data 
to phecodes and focused on phecode 404.1 for myocardial infarction.

The Framingham Risk Score was developed on data from 8,491 
participants in the Framingham Heart Study to assess general cardio-
vascular risk77. It includes easily obtainable predictors and is, therefore, 
easily applicable in clinical practice, although newer and more specific 
risk scores exist and might be used more frequently. It includes age, sex, 
smoking behavior, blood pressure, total and low-density lipoprotein 
cholesterol as well as information on insulin, antihypertensive and 
cholesterol-lowering medications, all of which are routinely collected 
in the UKB and used in this study as the Framingham feature set.

The metabolomics data used in this study were obtained using 
proton NMR spectroscopy, a low-cost method with relatively low 
batch effects. It covers established clinical predictors, such as albu-
min and cholesterol, as well as a range of lipids, amino acids and 
carbohydrate-related metabolites.

The retinal optical coherence tomography–derived features were 
returned by researchers to the UKB75,76. They used the available scans 
and determined the macular volume, macular thickness, retinal pig-
ment epithelium thickness, disc diameter, cup-to-disk ratio across 
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different regions as well as the thickness between the inner nuclear 
layer and external limiting membrane, inner and outer photoreceptor 
segments and the retinal pigment epithelium across different regions. 
Furthermore, they determined a wide range of quality metrics for  
each scan, including the image quality score, minimum motion  
correlation and inner limiting membrane (ILM) indicator.

Data analysis. After exporting the data from the UKB, all timepoints 
were transformed into participant age entries. Only participants with-
out prevalent myocardial infarction (relative to the first assessment 
center visit at which all data were collected) were included.

The data were pre-processed for retinal imaging and metabo-
lomics subsets separately, to enable a clear analysis of missing data 
and allow for the k-nearest neighbors–based imputation (k = 20)  
of missing values when less than 10% were missing for a given  
participant. Otherwise, participants were dropped from the analyses. 
The imputed genotypes and Framingham analyses were available  
for almost every participant and, therefore, not imputed. Individuals  
without them were, instead, dropped from the analyses. Because 
genetic risk modeling poses entirely different methodological  
and computational challenges, we applied a published polygenic  
risk score for coronary heart disease using 6.6 million variants73.  
This was computed using the plink2 score option on the imputed 
genotypes available in the UKB.

UMAP embeddings were computed using default parameters 
on the full feature sets with ehrapy’s umap function. For all analyses, 
the same time-to-event and event-indicator columns were used. The 
event indicator is a Boolean variable indicating whether a myocardial 
infarction was observed for a study participant. The time to event is 
defined as the timespan between the start of the study, in this case 
the date of the first assessment center visit. Otherwise, it is the times-
pan from the start of the study to the start of censoring; in this case, 
this is set to the last date for which EHRs were available, unless a par-
ticipant died, in which case the date of death is the start of censoring. 
Kaplan–Meier curves and Cox proportional hazards models were fit 
using ehrapy’s survival analysis module and the lifelines124 package’s 
Cox-PHFitter function with default parameters. For Cox proportional 
hazards models with multiple feature sets, individually imputed and 
quality-controlled feature sets were concatenated, and the model was 
fit on the resulting matrix. Models were evaluated using the C-index127 
as a metric. It can be seen as an extension of the common area under 
the receiver operator characteristic score to time-to-event datasets, 
in which events are not observed for every sample and which ranges 
from 0.0 (entirely false) over 0.5 (random) to 1.0 (entirely correct).  
CIs for the C-index were computed based on bootstrapping by sam-
pling 1,000 times with replacement from all computed partial hazards 
and computing the C-index over each of these samples. The percentiles 
at 2.5% and 97.5% then give the upper and lower confidence bound for 
the 95% CIs.

In all UKB analyses, the unit of study for a statistical test or predic-
tive model is always an individual study participant.

The generalizability of the analysis is limited as the UK Biobank 
cohort may not represent the general population, with potential selec-
tion biases and underrepresentation of the different demographic 
groups. Additionally, by restricting analysis to initial assessment  
data and censoring based on the last available EHR or date of death,  
our analysis does not account for longitudinal changes and can intro-
duce follow-up bias, especially if participants lost to follow-up have 
different risk profiles.

In-depth quality control of retina-derived features. A UMAP plot  
of the retina-derived features indicating the assessment centers  
shows a cluster of samples that lie somewhat outside the general  
population and mostly attended the Birmingham assessment  
center (Fig. 5b). To further investigate this, we performed Leiden 

clustering of resolution 0.3 (Extended Data Fig. 9a) and isolated this 
group in cluster 5. When comparing cluster 5 to the rest of the popula-
tion in the retina-derived feature space, we noticed that many indi-
viduals in cluster 5 showed overall retinal pigment epithelium (RPE) 
thickness measures substantially elevated over the rest of the popula-
tion in both eyes (Extended Data Fig. 9b), which is mostly a feature of 
this cluster (Extended Data Fig. 9c). To investigate potential confound-
ing, we computed ratios between cluster 5 and the rest of the popula-
tion over the ‘obs’ DataFrame containing the Framingham features, 
diabetes-related phecodes and genetic principal components. Out 
of the top and bottom five highest ratios observed, six are in genetic 
principal components, which are commonly used to represent genetic 
ancestry in a continuous space (Extended Data Fig. 9d). Additionally, 
diagnoses for type 1 and type 2 diabetes and antihypertensive use are 
enriched in cluster 5. Further investigating the ancestry, we computed 
log ratios for self-reported ancestries and absolute counts, which 
showed no robust enrichment and depletion effects.

A closer look at three quality control measures of the imaging pipe-
line revealed that cluster 5 was an outlier in terms of either image quality 
(Extended Data Fig. 9e) or minimum motion correlation (Extended 
Data Fig. 9f) and the ILM indicator (Extended Data Fig. 9g), all of which 
can be indicative of artifacts in image acquisition and downstream 
processing128. Subsequently, we excluded 301 individuals from cluster 
5 from all analyses.

COVID-19 chest-x-ray fate determination
Dataset overview. We used the public BrixIA COVID-19 dataset, which 
contains 192 chest x-ray images annotated with BrixIA scores82. Hereby, 
six regions were annotated by a senior radiologist with more than 
20 years of experience and a junior radiologist with a disease severity 
score ranging from 0 to 3. A global score was determined as the sum 
of all of these regions and, therefore, ranges from 0 to 18 (S-Global). 
S-Global scores of 0 were classified as normal. Images that only had 
severity values up to 1 in all six regions were classified as mild. Images 
with severity values greater than or equal to 2, but a S-Global score of 
less than 7, were classified as moderate. All images that contained at 
least one 3 in any of the six regions with a S-Global score between 7 and 
10 were classified as severe, and all remaining images with S-Global 
scores greater than 10 with at least one 3 were labeled critical. The  
dataset and instructions to download the images can be found at 
https://github.com/ieee8023/covid-chestxray-dataset.

Dataset extraction and analysis. We first resized all images to 
224 × 224. Afterwards, the images underwent a random affine trans-
formation that involved rotation, translation and scaling. The rota-
tion angle was randomly selected from a range of −45° to 45°. The 
images were also subject to horizontal and vertical translation, with the 
maximum translation being 15% of the image size in either direction. 
Additionally, the images were scaled by a factor ranging from 0.85 to 
1.15. The purpose of applying these transformations was to enhance the 
dataset and introduce variations, ultimately improving the robustness 
and generalization of the model.

To generate embeddings, we used a pre-trained DenseNet 
model with weights densenet121-res224-all of TorchXRayVision129. 
A DenseNet is a convolutional neural network that makes use of 
dense connections between layers (Dense Blocks) where all layers 
(with matching feature map sizes) directly connect with each other.  
To maintain a feed-forward nature, every layer in the DenseNet  
architecture receives supplementary inputs from all preceding  
layers and transmits its own feature maps to all subsequent layers. 
The model was trained on the nih-pc-chex-mimic_ch-google-openi- 
rsna dataset130.

Next, we calculated 50 principal components on the feature  
representation of the DenseNet model of all images using ehrapy’s  
pca function. The principal component representation served as 
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input for a nearest neighbors graph calculation using ehrapy’s neigh-
bors function. This graph served as the basis for the calculation of a 
UMAP embedding with three components that was finally visualized  
using ehrapy.

We randomly picked a root in the group of images that was labeled 
‘Normal’. First, we calculated so-called pseudotime by fitting a tra-
jectory through the calculated UMAP space using diffusion maps as 
implemented in ehrapy’s dpt function57. Each image’s pseudotime 
value represents its estimated position along this trajectory, serving 
as a proxy for its severity stage relative to others in the dataset. To 
determine fates, we employed CellRank58,59 with the PseudotimeKernel. 
This kernel computes transition probabilities for patient visits based on 
the connectivity of the k-nearest neighbors graph and the pseudotime 
values of patient visits, which resembles their progression through a 
process. Directionality is infused in the nearest neighbors graph in this 
process where the kernel either removes or downweights edges in the 
graph that contradict the directional flow of increasing pseudotime, 
thereby refining the graph to better reflect the developmental trajec-
tory. We computed the transition matrix with a soft threshold scheme 
(Parameter of the PseudotimeKernel), which downweights edges that 
point against the direction of increasing pseudotime. Finally, we cal-
culated a projection on top of the UMAP embedding with CellRank 
using the plot_projection function of the PseudotimeKernel that we 
subsequently plotted.

This analysis is limited by the small dataset of 192 chest x-ray 
images, which may affect the model’s generalizability and robustness. 
Annotation subjectivity from radiologists can further introduce vari-
ability in severity scores. Additionally, the random selection of a root 
from ‘Normal’ images can introduce bias in pseudotime calculations 
and subsequent analyses.

Diabetes 130-US hospitals analysis
Study population. We used data from the Diabetes 130-US hospitals 
dataset that were collected between 1999 and 2008. It contains clinical 
care information at 130 hospitals and integrated delivery networks. 
The extracted database information pertains to hospital admissions 
specifically for patients diagnosed with diabetes. These encounters 
required a hospital stay ranging from 1 d to 14 d, during which both 
laboratory tests and medications were administered. The selection 
criteria focused exclusively on inpatient encounters with these defined 
characteristics. More specifically, we used a version that was curated by 
the Fairlearn team where the target variable ‘readmitted’ was binarized 
and a few features renamed or binned (https://fairlearn.org/main/
user_guide/datasets/diabetes_hospital_data.html). The dataset con-
tains 101,877 patient visits and 25 features. The dataset predominantly 
consists of White patients (74.8%), followed by African Americans 
(18.9%), with other racial groups, such as Hispanic, Asian and Unknown 
categories, comprising smaller percentages. Females make up a slight 
majority in the data at 53.8%, with males accounting for 46.2% and a 
negligible number of entries listed as unknown or invalid. A substantial 
majority of the patients are over 60 years of age (67.4%), whereas those 
aged 30–60 years represent 30.2%, and those 30 years or younger 
constitute just 2.5%.

Data analysis. All of the following descriptions start by loading the  
Fairlearn version of the Diabetes 130-US hospitals dataset using 
ehrapy’s dataloader as an AnnData object.

Selection and filtering bias. An overview of sensitive variables was gener-
ated using tableone. Subsequently, ehrapy’s CohortTracker was used 
to track the age, gender and race variables. The cohort was filtered for 
all Medicare recipients and subsequently plotted.

Surveillance bias. We plotted the HbA1c measurement ratios using 
ehrapy’s catplot.

Missing data and imputation bias. MCAR-type missing data for the 
number of medications variable (‘num_medications‘) were introduced 
by randomly setting 30% of the variables to be missing using Numpy’s 
choice function. We tested that the data are MCAR by applying ehrapy’s 
implementation of Little’s MCAR test, which returned a non-significant  
P value of 0.71. MAR data for the number of medications variable  
(‘num_medications‘) were introduced by scaling the ‘time_in_hospital’ 
variable to have a mean of 0 and a standard deviation of 1, adjusting 
these values by multiplying by 1.2 and subtracting 0.6 to influence 
overall missingness rate, and then using these values to generate MAR 
data in the ‘num_medications’ variable via a logistic transformation 
and binomial sampling. We verified that the newly introduced missing 
values are not MCAR with respect to the ‘time_in_hospital’ variable by 
applying ehrapy’s implementation of Little’s test, which was significant 
(0.01 × 10−2). The missing data were imputed using ehrapy’s mean 
imputation and MissForest implementation.

Algorithmic bias. Variables ‘race’, ‘gender’, ‘age’, ‘readmitted’, ‘readmit_
binary’ and ‘discharge_disposition_id’ were moved to the ‘obs’ slot of the 
AnnData object to ensure that they were not used for model training. 
We built a binary label ‘readmit_30_days’ indicating whether a patient 
had been readmitted in fewer than 30 d. Next, we combined the ‘Asian’ 
and ‘Hispanic’ categories into a single ‘Other’ category within the ‘race’ 
column of our AnnData object and then filtered out and discarded any 
samples labeled as ‘Unknown/Invalid’ under the ‘gender‘ column and 
subsequently moved the ‘gender’ data to the variable matrix X of the 
AnnData object. All categorical variables got encoded. The data were 
split into train and test groups with a test size of 50%. The data were 
scaled, and a logistic regression model was trained using scikit-learn, 
which was also used to determine the balanced accuracy score. Fair-
learn’s MetricFrame function was used to inspect the target model 
performance against the sensitive variable ‘race’. We subsequently fit 
Fairlearn’s ThresholdOptimizer using the logistic regression estimator 
with balanced_accuracy_score as the target object. The algorithmic 
demonstration of Fairlearn’s abilities on this dataset is shown here: 
https://github.com/fairlearn/talks/tree/main/2021_scipy_tutorial.

Normalization bias. We one-hot encoded all categorical variables with 
ehrapy using the encode function. We applied ehrapy’s implementation 
of scaling normalization with and without the ‘Age group’ variable 
as group key to scale the data jointly and separately using ehrapy’s 
scale_norm function.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Physionet provides access to the PIC database43 at https://physionet.
org/content/picdb/1.1.0 for credentialed users. The BrixIA images82 are 
available at https://github.com/BrixIA/Brixia-score-COVID-19. The data 
used in this study were obtained from the UK Biobank44 (https://www.
ukbiobank.ac.uk/). Access to the UK Biobank resource was granted 
under application number 49966. The data are available to research-
ers upon application to the UK Biobank in accordance with their data 
access policies and procedures. The Diabetes 130-US Hospitals dataset 
is available at https://archive.ics.uci.edu/dataset/296/diabetes+130-u
s+hospitals+for+years+1999-2008.

Code availability
The ehrapy source code is available at https://github.com/theislab/
ehrapy under an Apache 2.0 license. Further documentation, tutorials  
and examples are available at https://ehrapy.readthedocs.io. We are 
actively developing the software and invite contributions from the 
community.
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Jupyter notebooks to reproduce our analysis and figures, including  
Conda environments that specify all versions, are available at  
https://github.com/theislab/ehrapy-reproducibility.
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Extended Data Fig. 1 | Overview of the paediatric intensive care database 
(PIC). The database consists of several tables corresponding to several data 
modalities and measurement types. All tables colored in green were selected for 

analysis and all tables in blue were discarded based on coverage rate. Despite the 
high coverage rate, we discarded the ‘OR_EXAM_REPORTS’ table because of the 
lack of detail in the exam reports.
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Extended Data Fig. 2 | Preprocessing of the Paediatric Intensive Care (PIC) 
dataset with ehrapy. (a) Heterogeneous data of the PIC database was stored 
in ‘data’ (matrix that is used for computations) and ‘observations’ (metadata 
per patient visit). During quality control, further annotations are added to the 

‘variables’ (metadata per feature) slot. (b) Preprocessing steps of the PIC dataset. 
(c) Example of the function calls in the data analysis pipeline that resembles the 
preprocessing steps in (B) using ehrapy.
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Extended Data Fig. 3 | Missing data distribution for the ‘youths’ group of the PIC dataset. The x-axis represents the percentage of missing values in each feature. 
The y-axis reflects the number of features in each bin with text labels representing the names of the individual features.
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Extended Data Fig. 4 | Patient selection during analysis of the PIC dataset. Filtering for the pneumonia cohort of the youths filters out care units except for the 
general intensive care unit and the pediatric intensive care unit.
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Extended Data Fig. 5 | Feature rankings of stratified patient groups. Scores reflect the z-score underlying the p-value per measurement for each group. Higher 
scores (above 0) reflect overrepresentation of the measurement compared to all other groups and vice versa. (a) By clinical chemistry. (b) By liver markers. (c) By 
medication type. (d) By infection markers.
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Extended Data Fig. 6 | Liver marker value progression for the ‘youths’ group 
and Kaplan-Meier curves. (a) Viral and severe pneumonia with co-infection 
groups display enriched gamma-glutamyl transferase levels in blood serum. (b) 
Aspartate transferase (AST) and Alanine transaminase (ALT) levels are enriched 

for severe pneumonia with co-infection during early ICU stay. (c) and (d) Kaplan-
Meier curves for ALT and AST demonstrate lower survivability for children with 
measurements outside the norm.
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Extended Data Fig. 7 | Overview of medication categories used for causal inference. (a) Feature engineering process to group administered medications into 
medication categories using drugbank. (b) Number of medications per medication category. (c) Number of patients that received (dark blue) and did not receive 
specific medication categories (light blue).
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Extended Data Fig. 8 | UK-Biobank data overview and quality control across 
modalities. (a) UMAP plot of the metabolomics data demonstrating a clear 
gradient with respect to age at sampling, and (b) type 2 diabetes prevalence.  
(c) Analogously, the features derived from retinal imaging show a less 
pronounced age gradient, and (d) type 2 diabetes prevalence gradient.  
(e) Stratifying myocardial infarction risk by the type 2 diabetes comorbidity 
confirms vastly increased risk with a prior type 2 (T2D) diabetes diagnosis. 

Kaplan-Meier estimators with 95 % confidence intervals are shown. (f) Similarly, 
the polygenic risk score for coronary heart disease used in this work substantially 
enriches myocardial infarction risk in its top 5% percentile. Kaplan-Meier 
estimators with 95 % confidence intervals are shown. (g) UMAP visualization 
of the metabolomics features colored by the assessment center shows no 
discernable biases. (A-G) n = 29,216.
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Extended Data Fig. 9 | UK-Biobank retina derived feature quality control. 
(a) Leiden Clustering of retina derived feature space. (b) Comparison of ‘overall 
retinal pigment epithelium (RPE) thickness’ values between cluster 5 (n = 301) 
and the rest of the population (n = 28,915). (c) RPE thickness in the right eye 
outliers on the UMAP largely corresponds to cluster 5. (d) Log ratio of top and 

bottom 5 fields in obs dataframe between cluster 5 and the rest of the population. 
(e) Image Quality of the optical coherence tomography scan as reported in the 
UKB. (f) Minimum motion correlation quality control indicator. (g) Inner limiting 
membrane (ILM) quality control indicator. (D-G) Data are shown for the right eye 
only, comparable results for the left eye are omitted. (A-G) n = 29,216.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Bias detection and mitigation study on the Diabetes 
130-US hospitals dataset (n = 101,766 hospital visits, one patient can have 
multiple visits). (a) Filtering to the visits of Medicare recipients results in an 
increase of Caucasians. (b) Proportion of visits where Hb1Ac measurements are 
recorded, stratified by admission type. Adjusted P values were calculated with 
Chi squared tests and Bonferroni correction (Adjusted P values: Emergency 
vs Referral 3.3E-131, Emergency vs Other 1.4E-101, Referral vs Other 1.6E-4.) (c) 
Normalizing feature distributions jointly vs. separately can mask distribution 
differences. (d) Imputing the number of medications for visits. Onto the 
complete data (blue), MCAR (30% missing data) and MAR (38% missing data) 
were introduced (orange), with the MAR mechanism depending on the time in 
hospital. Mean imputation (green) can reduce the variance of the distribution 

under MCAR and MAR mechanisms, and bias the center of the distribution 
under an MAR mechanism. Multiple imputation, such as MissForest imputation 
can impute meaningfully even in MAR cases, when having access to variables 
involved in the MAR mechanism. Each boxplot represents the IQR of the data, 
with the horizontal line inside the box indicating the median value. The left and 
right bounds of the box represent the first and third quartiles, respectively. The 
‘whiskers’ extend to the minimum and maximum values within 1.5 times the 
IQR from the lower and upper quartiles, respectively. (e) Predicting the early 
readmission within 30 days after release on a per-stay level. Balanced accuracy 
can mask differences in selection and false negative rate between sensitive 
groups.

http://www.nature.com/naturemedicine





















	An open-source framework for end-to-end analysis of electronic health record data

	Results

	ehrapy: a framework for exploratory EHR data analysis

	ehrapy enables patient stratification in pneumonia cases

	ehrapy facilitates extraction of pneumonia indicators

	ehrapy quantifies medication class effect on LOS

	ehrapy enables deriving population-scale risk factors

	Imaging-based disease severity projection via fate mapping

	Detecting and mitigating biases in EHR data with ehrapy


	Discussion

	Online content

	Fig. 1 Schematic overview of EHR analysis with ehrapy.
	Fig. 2 PIC dataset overview and annotation of patients diagnosed with unspecified pneumonia.
	Fig. 3 Survival analysis of patients diagnosed with unspecified pneumonia.
	Fig. 4 Causal inference of LOS affected by different medication types.
	Fig. 5 Analysis of myocardial infarction risk in the UKB.
	Fig. 6 Recovery of disease severity trajectory in COVID-19 chest x-ray images.
	Extended Data Fig. 1 Overview of the paediatric intensive care database (PIC).
	Extended Data Fig. 2 Preprocessing of the Paediatric Intensive Care (PIC) dataset with ehrapy.
	Extended Data Fig. 3 Missing data distribution for the ‘youths’ group of the PIC dataset.
	Extended Data Fig. 4 Patient selection during analysis of the PIC dataset.
	Extended Data Fig. 5 Feature rankings of stratified patient groups.
	Extended Data Fig. 6 Liver marker value progression for the ‘youths’ group and Kaplan-Meier curves.
	Extended Data Fig. 7 Overview of medication categories used for causal inference.
	Extended Data Fig. 8 UK-Biobank data overview and quality control across modalities.
	Extended Data Fig. 9 UK-Biobank retina derived feature quality control.
	Extended Data Fig. 10 Bias detection and mitigation study on the Diabetes 130-US hospitals dataset (n = 101,766 hospital visits, one patient can have multiple visits).




