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Abstract

INTRODUCTION:MicroRNAs are short non-coding RNAs that control proteostasis at

the systems level and are emerging as potential prognostic and diagnostic biomarkers

for Alzheimer’s disease (AD).

METHODS: We performed small RNA sequencing on plasma samples from 847

Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants.

RESULTS: We identified microRNA signatures that correlate with AD diagnoses and

help predict the conversion frommild cognitive impairment (MCI) to AD.
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DISCUSSION: Our data demonstrate that plasma microRNA signatures can be used

to not only diagnose MCI, but also, critically, predict the conversion from MCI to AD.

Moreover, combined with neuropsychological testing, plasma microRNAome evalua-

tion helps predict MCI to AD conversion. These findings are of considerable public

interest because they provide a path toward reducing indiscriminate utilization of

costly and invasive testing by defining the at-risk segment of the aging population.

KEYWORDS

Alzheimer’s disease, blood biomarker, cognitive decline, microRNA, mild cognitive impairment,
plasma, small non-coding RNA

Highlights

∙ Weprovide the first analysis of the plasmamicroRNAome for the ADNI study.

∙ The levels of several microRNAs can be used as biomarkers for the prediction of

conversion fromMCI to AD.

∙ Adding the evaluation of plasmamicroRNA levels to neuropsychological testing in a

clinical setting increases the accuracy ofMCI to AD conversion prediction.

1 BACKGROUND

The need to improve diagnostic tools for the early detection of

Alzheimer’s disease (AD)-related neuropathologic processes is

paramount for developing prevention and treatment strategies.

Because the deterioration of cognitive functions in ADdevelops slowly

over time, patients are currently diagnosed at an advanced stage of

neuropathologic changes.1 Indeed, the failure to diagnose AD at an

early stage of molecular pathology is considered themajor reason why

multiple treatments have failed in clinical trials.2 Cerebrospinal fluid

(CSF) Abeta42, total-TAU (tTAU), and pTAU181 (tau phosphorylated

at threonine 181)3 are considered core biomarkers to support AD

diagnosis; however, the invasive nature of obtaining CSF samples

limits broad use.4,5 To address this, several advancements in utilizing

blood amyloid-beta and tau as disease biomarkers have beenmade.6–9

Nevertheless, the urgent need for novel biomarkers of early AD

pathogenesis persists.

MicroRNAs (miRNAs, miRs) are 19–22 nucleotide long RNA

molecules that govern protein homeostasis via binding to a target

mRNA thereby causing its degradation or inhibition of translation.10

Circulating miRNAs have been suggested as potential AD biomark-

ers for several reasons. First, because one miRNA can affect many

mRNA targets that are often functionally linked, changes in the

levels of a few miRNAs can reflect alterations of multiple key path-

ways involved in cellular homeostasis.11,12 Interestingly, microRNAs

can also act in a paracrine manner and participate in inter-organ

communication,13–16 indicating that the analysis of circulatingmicroR-

NAs can informabout pathological alterations in thebrain.17,18 Second,

miRNAs are extremely stable in cell-free environments and resistant

to thaw-freeze cycles, making them logistically desirable in a clinical

setting.19,20 Third, bloodmiRNAome analysis is minimally invasive and

inexpensive, making such analysis a potentially ideal first step toward

identifying individuals in need of further diagnostic procedures.

Because of their documented role in synaptic plasticity and mem-

ory function, miRNAs have been intensively studied in the context

of AD.21,22 However, the interpretation of the reports on changes

in miRNA expression in the biospecimens of AD patients are often

hampered by small sample size and/or incomplete information on

relevant phenotypes which together have prevented the considera-

tion of microRNAs as a biomarker detecting individuals at risk for

developing AD.23 To that end, the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) represents an unparalleled resource for providing

the optimal panel of clinical assessments, magnetic resonance imag-

ing (MRI) and positron emission tomography (PET) imaging measures,

and biomarkers in blood and CSF. Cognitive phenotypes obtained in

ADNI have been successfully used to enhance clinical trial design,

taking advantage of available CSF and plasma samples to study can-

didate biomarkers.24–26 The first phase (ADNI1) launched a cohort

study composed AD patients, individuals with mild cognitive impair-

ment (MCI), and cognitively normal older adults (controls, CN). Three

more phases followed, ADNI-GO, which introduced the concept of

early MCI (EMCI), ADNI2, and now the ongoing ADNI3 studies. Here

we present the results of the analysis of the first ADNI plasmamicroR-

NAome performed on cross-sectional samples from 847 participants

in ADNI1/GO/2. Our data demonstrate that plasma microRNA signa-

tures can not only diagnose AD but also help predict the conversion

from MCI to AD. Moreover, our data suggest that a blood draw for

microRNAome evaluation, combined with neuropsychological testing,
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RESEARCH INCONTEXT

1. Systematic review: We conducted a PubMed search

on circulating microRNAs associated with mild cogni-

tive impairment (MCI), dementia, andAlzheimer’s disease

(AD). Several plasma, serum, or exosomal microRNAs

have been described previously in association with these

conditions, and proposed as their biomarkers. However,

there is insufficient information on the predictive value

of the circulating microRNA levels and the progression of

cognitive decline.

2. Interpretation: Our findings, obtained by analyzing the

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

cohort, provide evidence that the levels of specific

plasma microRNAs are associated with specific disease

states, including early and late stages of MCI and AD. In

addition, the levels of several microRNAs can be used as

biomarkers for the prediction of conversion from normal

cognition toMCI to AD.

3. Future directions: The circulatory microRNA biomarkers

identified here will need further validation and refine-

ment in association with clinical, neuropathological, and

other molecular markers ofMCI and AD.

could become a suitable tool to predict MCI to AD conversion, thus

reducing the need for more invasive CSF studies of Aβ42, total-tau,
and P-tau181 levels during initial diagnostic work-up. These findings

are of considerable public interest because they provide a path toward

reducing the indiscriminate use of costly and invasive testing.

2 METHODS

2.1 Participants

We originally selected cross-sectional plasma samples from 847 ADNI

participants; however, the samples from44 subjects did notmeet small

RNAseq quality standards as described in Section 3.1. The 803 samples

analyzed in this study were obtained from ADNI1/GO/2 participants

categorized as CN = 165, EMCI = 272, late MCI (LMCI) = 217, and

AD= 149 (Tables S1 and S2).

2.2 Small RNA isolation

A total of 862 plasma samples underwent small RNA isolation fol-

lowed by small RNA sequencing. Among these, 847 samples were from

probands diagnosed with AD or MCI (early/late), or from controls

(CN). The remaining 15 samples were randomly selected duplicates.

Samples arrived in four shipments and were stored at −80◦C. Upon

arrival, samples were checked to confirm tube labeling and cryobox

location. To mitigate batch effects, the 862 samples were distributed

across 21 batches based on shipment, gender, and diagnosis. This allo-

cation was done blindly to the phenotype with assistance from ADNI

Biomarker core co-Director, Dr. Lesley Shaw, and his team. Small RNA

isolation was carried out in 21 batches using the Norgen Biotek Corp.

Plasma/SerumRNAPurificationKit (Cat.No. 55000) following theuser

manual. Initially, two aliquots of 200 µL plasma/individualwere thawed

at room temperature for 15min. Some plasma samples showed awhite

precipitate, which was documented. The tubes were then centrifuged

(3000 × g at 4◦C), and the supernatant was transferred into a 2 mL

Eppendorf tube to which 600 µL of lysis buffer A was added. After

vortexing for 10 s, 800 µL of 99.6% ethanol (Roth) was added and vor-

texed for another 10 s. The mixture was then pipetted onto the micro

spin column and centrifuged for 2 min at 3300 × g. Since the column

could only accept 650 µL, this step was repeated until all supernatant

were added. The flow-through was discarded, and the columns were

washed three times by adding 400 µL wash solution A followed by 30 s

of centrifugation at 3330 × g. Again, the flow-through was discarded,

and the columns were centrifuged for 2 min at 13000 × g. All steps

were performed at 4◦C. The spin column was added to a new elution

collection tube, and 22 µL Elution buffer was added and incubated at

room temperature for 2 min. Samples were then centrifuged for 1 min

at 400 × g followed by 2 min at 5800 × g. The flow-through was again

added to the spin column and subjected to the above-described pro-

cedure. Finally, the yields from two aliquots of plasma originating from

the same proband were pooled to obtain approximately 35 µL of iso-

lated small RNA. 1 µL of small RNA elution was subjected to quality

control (QC) using Qubit (Thermo Fisher) to document the concen-

tration. Another 1 µL was used to test RNA quality via a Bioanalyzer

(Agilent) using the RNA Pico Assay.

2.3 Small RNA sequencing

Small RNA sequencing was performed for the 21 batches using the

QIAseq miRNA NGS 96 Index IL (Qiagen, cat# 331565) for indexes

along with the QIAseq miRNA Library Kit (Qiagen, cat# 331505). In

eachbatch,weprepared41ADNI samples and7 samples fromapool of

control plasma prepared according to ADNI standard operating proce-

dure (SOP). These 7 samples (batch control samples) served as internal

controls andwere processed alongwith each of the 21 batches. Library

preparation followed the user manual. Briefly, 5 µL of RNA were used

as input for 3′ ligation. During this step, 1 µL of Spike-in (QIAseq

miRNA Library QC Spike-in 96, Qiagen, cat#331535; 1:100 dilution)

was added. This was followed by the 5′ ligation procedure according

to the user manual. For reverse transcription, 2 µL of RT initiator was

added, and then the procedure was followed as described in the man-

ual. Next, QIAseq miRNA QMN beads were prepared following the

user manual and subsequently used for cDNA clean-up. Samples were

then frozen at−20◦Covernight. The next day, library amplificationwas

performed using the HT plate indices (Qiagen, cat# 331656) with 22

amplification cycles on a Thermocycler (Nippon Genetics, FastGene
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Ultracycler 96, cat# FG-TC01). Afterward, samples were subjected to

clean-up using the QMN beads as described above. The supernatant

was transferred to a new 96 well polymerase chain reaction (PCR)

plate (Nippon Genetics, Semi-Skirted Plates, cat#FG-190250). Subse-

quently, we followed the clean-up procedure as described in the user

manual. 15 µL supernatantwas transferred to a new96well PCR plate.

1µLof the sampleswasused tomeasure the concentrationusingQubit.

Another 1 µL was used to run a Bioanalyzer profile (same as above).

Based on the Qubit measurement, each sample was adjusted to a con-

centration of 2 nM cDNA using EB buffer (Qiagen, cat# 19086). Next,

the 48 samples were pooled using 2 µL of each sample. After adding

20µLgel loadingdye (NewEnglandBiolabs, cat#E6138AA), thepooled

samples were run on a 6% TBE PAGE gel (Invitrogen by Thermo Fisher

Scientific, cat# EC6265B0X). The gels were run at 145 V, 16 mA for

58 min. For size selection, the region between 165 and 190 bp was cut

from the gel. The cut-out was collected in a gel breaker tube placed in

a 2 mL tube (IST Engineering Inc., cat# 3388-100) DNA was isolated

from the gel according to the “recover purified construct” protocol

(5 µLFilter Tubes, ISTEngineering Inc., cat#5388-50) also neededafter

gel elution described in the QIAseq miRNA Library Kit user manual to

obtain 12 µL dsDNA library. The concentration was analyzed via Qubit

and bioanalyzer as described above. Small RNA sequencing was per-

formed on an Illumina NextSeq 2000 instrument. For this, the small

RNA library pool concentration was adjusted to 2 nM. Loading con-

centration for the Flow cell was 600 pM. For this dilution is needed in

total 25.0 µL: 7.2 µL of the library pool, 16.8 µL RSB with Tween (Illu-

mina) and 1.0 µL PhiX Control (1 nM; NextSeq PhiX Control Kit, cat#

FC-110-3002). 20 µL of the diluted sequencing pool was added to the

P3 reagent cartridge (NextSeq2000P3 reagent, 50 cycles, Illumina, cat

#20046810) which was introduced to the sequencer before starting

the sequencing cycle according to the user manual.

2.4 Mapping and QC

Illumina’s conversion softwarebcl2fastq (v2.20.2)wasused for adapter

trimming and converting the base calls in the per-cycle BCL files to

the per-read FASTQ format from raw images. QC of raw sequencing

datawasperformedbyusingFastQC (v0.11.5). Trimmingof 3′ adapters
was done using cutadapt (v1.11.0). The quality of miRNAs reads was

evaluated bymirtrace (v1.0.1). Reads were aligned using themapper.pl

script from mirdeep2 (v2.0.1.2) which uses bowtie (v1.1.2) and read

counts were generated with the quantifier.pl script from mirdeep2.

miRNA annotation was done using miRBase. On average, 8.2mio small

RNA reads per sample could be obtained. The average mapping rate

was 37%, corresponding to around 3miomiRNA reads per sample. Out

of 2876 miRNAs annotated in miRBase, 2154 miRNAs were detected

across all samples. As described in Section 2.3, seven “batch control

samples”were sequenced in eachbatch to control for possible intra and

inter batch variances. Cross-correlations of replicate samples across all

batches showacorrelationof r>0.99 for all samples. In summary, these

data indicate almost no variance within and between the 21 batches.

Thus, it can be inferred that the miRNA distribution remained stable

during library prep and is independent of sequencing depth. SpikeIn

cross-correlations were calculated to identify samples with unknown

variance from library preparation. From 862 samples, 91% showed

SpikeIn correlations of r>0.9. From the remaining samples, 5% showed

correlations of r > 0.8, 3.3% correlations of r > 0.6, and 0.7% correla-

tions of r < 0.6. Samples with high unexplained variance (r < 0.6) could

be detected in 2 out of 21 batches.

2.5 Statistical analysis

2.5.1 Evaluation of confounding covariates

We used the variancePartition R package27 to identify covariates that

drive the variation in the dataset. The method uses a linear mixed

model to partition the variance across multiple known covariates in

the data. As expected, the technical covariate batch was identified as

the main driver of variation explaining up to 25% of variation in the

data. In addition,we included sex and age in the list of unwanted covari-

ates even if their effect on the data seemed to be minor. Our objective

was to identify miRNAs for early Alzheimer’s risk detection indepen-

dent of CSF biomarkers or genetic tests, including apolipoprotein E

(APOE) status.28 Therefore, we did not adjust for these covariates to

ensure the applicability of our findings in broader screening scenarios.

Instead, we used an ordinal regressionmodel to capture the difference

in miRNA effect sizes according to APOE status. This model showed

that miRNA expression was independent of APOE status. Addition-

ally, a regressionmodel revealed no interaction between the diagnostic

group (DXGRP) andAPOE status for themajority of the 300miRNAs in

the dataset. In only 24 cases (8%)was the interaction effect significant.

Importantly, we confirmed retrospectively that the 15 miRNAs identi-

fied as part of signatures for aiding in the identification of EMCI and

LMCI patients, as well as their conversion to AD, were not affected by

APOE status. Therefore, we conclude that in the context of ourmiRNA

expression data, APOE status is independent of DXGRP in our dataset.

Consistent with this, adding APOE status into our different machine

learning (ML) -derivedmiRNA signaturesmade no difference in predic-

tive power. In none of the different setups did APOE status represent

a gain in terms of area under the curve (AUC). Therefore, we conclude

that APOE status is largely independent of the miRNA signatures we

identified as potential biomarkers in the analyzed dataset.

2.5.2 Data pre-processing

As described in Section 2.3, a total of 2154 miRNAs could be detected

across all samples.

ThreehundredmiRNAswere considered in the subsequent analyses

because we removed lowly expressed as well as duplicated miRNAs.

More specifically, we included miRNAs in the analysis if they were

expressed in at least 95% of the samples with more than 10 reads per

sample. Moreover, using small RNA data from plasma, it is not possible

to identify the origins of these miRNAs since their mature sequences
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are identical. Thus, the reads obtained cannot be attributed to distinct

loci; instead, the same number of reads is assigned to each variant

from different genomic locations. As a result, read counts represent

the overall amount of miRNAs in the plasma samples. To avoid dupli-

cates, we only considered one of the loci variants. Next, data were

normalized with DESeq2 (v1.3.40) using the median of ratios method

to remove bias of sequencing depth.29 Size factors were estimated

using the poscounts option to consider the zero inflation (∼30%) of

the data. Unwanted variation from the covariates batch, sex, and age

was removed using the RemoveBatchEffect function as implemented

in limma (v3.50.3).30 For ML, the data were standardized using the

MaxAbsScaler as implemented in the scikit-learn (v.1.1.2) package.

2.5.3 Linear regression

Regression models were implemented in Python (v3.8.1) using the

statsmodels (v.1.1.2) package. Regressions against discrete variables

were run using an ordered logistic regression model, whereas for

regression against continuous variables a generalized linearmodel was

used. Effects of batch, sex, and age were considered using them as

covariates in the regressionmodels.

2.5.4 ML

ML routines were implemented in Python (v3.8.1) using the scikit-

learn (v.1.1.2) package. The input dataset was split into training and

test set (fraction = 0.3) with random shuffling and in a stratified fash-

ion using the target classes as class labels to ensure that relative class

frequencies are preserved in each train and validation run. For cross-

validation training theRepeatedStratifiedKFold strategywasusedwith

five splits and three repeats. All random seeds were fixed to ensure

reproducibility. Six algorithms from different categories were run for

classification.

2.5.5 Detection of miRNA networks

We used inhouse Python scripts to screen interactome databases

for annotated interactions using the best miRNA signatures from ML

(from miRNAs alone) as input. Results thus obtained contain interac-

tions between input and all (non-)coding genes as annotated in the

databases. Interaction information was collected from six different

databases: NPInter,31 RegNetwork,32 Rise,33 STRING,34 TarBase,35

and TransmiR.36 ClueGO (2.5.10)37 was used to conduct pathway

analyses and to build networks accordingly.

2.5.6 Selection of miRNA candidates for ML

Potential candidates for ML screening were identified by a two-step

approach. First, we included all miRNAs which showed a significant

effect size in the regression analyses against diagnosis and conversion.

Second, we ran ML for each miRNA in the dataset to identify the best

single miRNA classifiers for the diagnosis. For each condition, the top

five miRNAs showing the best AUCs were added resulting in a final list

of 73 candidates. miRNA candidates for ML were broken down to a

limited list due to runtime considerations. In an ideal case, one would

be able to screen all possible combinations for all 300 miRNAs in the

dataset. However, such an approach is computationally infeasible given

that the total number of combinations to explore is in the order of 2300,

where 300 is the amount of detected miRNAs. Therefore, we initially

applied a so-called greedy strategy38 to reduce the space of possible

combinations that need to be tested.More specifically, we used an iter-

ative procedure where, in each round, the best performing signatures

of length N were selected as seeds based on an AUC threshold to try

out new signatures of length N+1 in a subsequent round of the pro-

cedure (with N being the no. of miRNAs). Signatures were extended

in each round whereby the no. of miRNAs was successively removed

until all remainingmiRNAswere tested. However, we noticed that such

a strategy did not produce the best results on our data because sin-

gle miRNAs which showed intermediate performance alone (and were

initially dropped out) could become very good predictors when being

combined. Therefore,wedecided to calculate all possible combinations

of one to three miRNAs for our list of 73 candidates and only skip

signatures without predictive power (AUC≤ 0.5).

3 RESULTS

3.1 Experimental design

The aim of this study was to (1) provide the first blood small RNA

sequencing dataset of the ADNI study available for subsequent anal-

ysis by the research community, and (2) specifically address whether

ML approaches can detect miRNA signatures that aid in the early

detection of at-risk patients. We aimed to test the hypothesis that

combining plasma miRNA signatures with established approaches for

cognitive screening would help identify EMCI and LMCI patients, and

predict their conversion to AD. The rationale behind this approach

is that neuropsychological testing is generally available. For example,

the Mini-Mental State Examination (MMSE) is one of the most widely

employed and validated cognitive screening measures for dementia

and is often preferred in primary care settings due to its brevity, ease

of use, andminimal personnel training requirements, allowing for quick

screening of cognitive function.We reasoned that once amiRNA signa-

ture is identified through sequencing, subsequent analysis of specific

plasma miRNAs can be transferred to simpler assay formats that take

only a few hours. This would allow cognitive screening and plasma

miRNAanalysis tobeperformed inaprimary care setting as a screening

approach (Figure 1).

3.2 Detecting plasma miRs in the ADNI study

We carefully selected 847 age- and gender-matched individuals from

the ADNI study who, at the time of blood collection, were classified
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7484 KRÜGER ET AL.

F IGURE 1 Experimental approach. Schematic overview of the experimental approach to analyze the plasmamicroRNAome of the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study and the overall aim. For further details see text.

as controls, or diagnosed with either EMCI, LMCI, or AD. We ensured

that amyloid beta and phosphoTau measures from CSF and neuropsy-

chological testing were available for all individuals. ForQC, 15 samples

were randomly selected as replicates, leaving us with 862 samples

for small RNA sequencing. Small RNA was isolated from plasma sam-

ples and library preparation was performed in 21 batches. Spike-in

probes were added to each sample before library preparation. Addi-

tionally, we added seven control plasma samples prepared according

to ADNI SOP to each RNA isolation and sequencing batch for addi-

tional QC. These seven samples, referred to as batch control samples,

served as internal controls and were processed along with each of the

21 batches, allowing us to control for possible intra- and inter-batch

variances. Cross-correlations of these batch control samples showed

a correlation coefficient (r) of >0.99 for all samples across all batches

(Figure 2A). Similar data were obtained when we compared the 15

replicate samples that had been distributed randomly across the 21

batches (Figure 2B). These data indicate almost no variance within

and between the 21 batches. Thus, it can be inferred that the miRNA

distribution remained stable during library preparation and is indepen-

dent of sequencing depth. Spike-in cross-correlations were calculated

to identify samples with unknown variance from library preparation.

Out of 862 samples, 91% showed Spike-in correlations of r > 0.9

(Figure 2C).

We removed 44 samples of “poor” quality (r < 0.8) from batch 1

and 7, resulting in 803 samples (control n = 165; EMCI n = 272; LMCI

n = 217; AD n = 149) for further analysis (Table S1). Our small RNA

sequencing identified 300 miRNAs in total and we decided to employ

ML classifiers aiming to identify miRNA signatures that could aid in

detecting EMCI, LMCI, and AD patients as well as help predicting the

conversion of EMCI and LMCI patients to AD. To reduce computing

time, thereby allowing us to test for multiple combinations of miR-

NAs, we first aimed to define a reduced list of miRNAs suitable for

ML. For this, after correction for technical confounders and biological

covariates, namely batch, age, and sex, we conducted linear regression

analyses to test if any of the 300miRs detected in plasmawould corre-

latewith the diagnoses (EMCI, LMCI, orAD). The expression of 23miRs

was positively correlated to the diagnosis (Figure 3A; false discovery

rate [FDR]< 0.05).

To also capture the miRNAs associated with the conversion of MCI

patients to AD, we performed linear regression analyses to test miR-

NAs versus patients converting from EMCI to AD (EMCI-AD) and from

LMCI to AD (LMCI-AD). For the EMCI-AD group, we identified 12 and

for the LMCI-ADgroup16 significantly correlatedmiRNAs (Figure 3B).

Next, we performed a ML analysis to predict the diagnosis of EMCI,

LMCI, MCI, and AD, as well as EMCI-AD and LMCI-AD converters,

using all 300miRNAs detected in our study. It is important to note that

in this approach, we did not test for multiple combinations of miRNAs

but only analyzed the performance of single miRNAs. From this list, we

selected the top five miRNAs and compared this list to the data from

the linear regression analysis (Figure 3C). This approach yielded a final

list of 73miRNAs that were subsequently used for all ML analyses.

3.3 ML to predict EMCI, LMCI, and AD

First, ML was applied to find miRNA signatures that could predict the

diagnosis of EMCI, LMCI, or AD. In all cases, the best performance was

obtained when we combined the expression levels of 3 miRNAs. For

AD, a signature of miR.142.3p, miR.98.5p, and miR.9985 yielded an

AUC of 0.72 (Figure 4A). Applying the same approach to predict the

diagnosis of EMCI, we foundmiR.590.3p, miR.369.3p, andmiR.9985 to

predict EMCI patients with an AUC of 0.71 (Figure 4B) and for LMCI a

signature consisting of miR.4429, miR.22.5p, and miR.1306 displayed

an AUC of 0.71 (Figure 4C). The fact that the expression of different

miRNAs indicates MCI (early or late) versus AD is consistent with the

notion that the AD pathogenesis is characterized by distinct molecu-

lar and cellular phases.39 These phases are likely governed by specific

biological pathways controlled by specificmiRNAs. For comparison,we

also analyzed the performance of the invasive CSF biomarkers, namely

the levels of Abeta42, total Tau (tTAU), phospho-TAU181 (pTAU181),

as well as the ratio of Abeta42/tTAU and Abeta42/pTAU181. We

first analyzed AD patients. While tTAU (AUC = 0.74) and pTAU181

(AUC = 0.78) performed only slightly better than the miRs, CSF lev-

els of Abeta42 and the Abeta42/tTAU or Abeta41/pTAU181 ratio as

well as the MMSE, outperformed the miRNA signature in predicting

AD (Figure 4D). This is not unexpected, and it has been suggested that
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KRÜGER ET AL. 7485

(B)(A)

(C)

F IGURE 2 miRNA distribution is largely unaffected by library preparation and independent of sequencing depth. (A) Left panel: experimental
design. Right panel: Heatmap showing the cross correlation of the 7 batch control samples across the 21 sequencing batches. (B) Left panel:
experimental design. Right panel: Heatmap showing the cross-correlation of the 15 replicated samples that were randomly distributed across the
21 sequencing batches. (C) Heatmaps showing the spike-in cross correlationwithin each of the 21 sequencing batches. 91% of the samples showed
a spike-in cross-correlations of r> 0.9. Samples with high unknown variance (r< 0.6) were detected in batch 1 and 7 andwere removed from
further analysis resulting in 803 samples in total for the final analysis. miRNA, microRNA.

themost significant impact of analyzing the bloodmicroRNAome is the

early detection of patients at risk.21,40 Indeed, by definition, theMMSE

was able to detect AD patients (i.e., late disease) with an AUC of 0.99.

Next, we compared the performance of themiR signature to predict

EMCI to those of the CSF biomarkers. In this case, the plasmamiRs sig-

naturewasbetter thananyof theCSFbiomarkers (AUC0.52–0.59) and

theMMSE (AUC= 0.64) (Figure 4E). In case of LMCI, themiR signature

performed similarly as the levels of CSF biomarkers (AUC= 0.71–0.74)

and theMMSE (AUC= 0.73) (Figure 4F).

Combining the threemiRNA signatures identified for EMCIwith the

MMSE data did not further improve the classification of EMCI patients

but moderately improved the accuracy to identify LMCI patients from

0.71 to 0.75 (Figure 4G). We also performed a new round of ML analy-

sis using the 73miRswe had initially selected together with theMMSE

data, reasoning that other miRs, beyond those identified when ana-

lyzing only miRs, might perform better when combined with MMSE.

However, we did not find any combination of three miRs that would

further improve theaccuracy. In summary, thesedata suggest that com-

bining the analysis of miRs in plasma could help to detect EMCI and

LMCI patients. In conclusion, our findings indicate that the analysis of

miRs in blood plasma could aid the identification of EMCI and LMCI

patients and thereby facilitate screening approaches aiming to identify

individuals at risk.

3.4 ML to predict the conversion of EMCI and
LMCI patients to AD

In addition to finding miRNA-based biomarkers suitable for aiding

early diagnostics, there is an urgent need to improve the identifi-

cation of those MCI patients that will likely develop AD. Follow-up

phenotypic data were available for all study participants from the time

point of blood collection for up to 144 months. Sixty-nine individu-

als were excluded from the analysis since they exhibited fluctuating

phenotypes, leaving us with 420 MCI patients of which 166 con-

verted to AD. These were 119 LMCI and 47 were EMCI patients

(Table S2). Since most of theMCI patients converted within 24months

after baseline assessment (107 out of 166), we simply divided the

groups into EMCI and LMCI patients that converted to AD (EMCI-

AD; LMCI-AD) and those that did not convert to AD (EMCI-stable;
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7486 KRÜGER ET AL.

(A) (B) (C)

F IGURE 3 SelectingmiRNAs forML analysis. (A) Heat map showingmiRs significantly correlated with the diagnostic groups (p< 0.05, linear
regression analysis). (B) Heat map showingmiRs significantly correlated with EMCI (EMCI-AD) and LMCI (LMCI-AD) patients converting to AD
(p< 0.05, linear regression analysis). (C) Venn diagram comparing themiRNAs significantly correlated to diagnosis, EMCI-AD, LMCI-AD and the
top5miRNAs identified by one round ofML for control vs. EMCI, LMCI, MCI, EMCI-AD, and LMCI-AD revealing 73 uniquemiRNAs that were
subsequently used for all ML approaches. AD, Alzheimer’s disease; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment;
MCI, mild cognitive impairment; miRNA, microRNA;ML, machine learning.

LMCI-stable). First, we employedML analysis on the EMCI groups and

detected a miRNA signature consisting of miR.125b.5p, miR.18a.5p,

and miR.26b.5p correctly identifying EMCI-AD conversion with an

AUC of 0.70 (Figure 5A), which was better than the performance of

the CSF biomarkers (AUC = 0.60–0.62) (Figure 5B). For the LMCI-AD

converters a signature combining the expression levels of miR.338.3p,

miR.584.5p, and miR.142.3p, was able to detect LMCI-AD patients

with an AUC of 0.75 (Figure 5C). Again, the plasma miRNA signature

performed better than the CSF biomarkers (Figure 5D).

Of note, the MMSE had no predictive power and failed to iden-

tify EMCI-AD or LMCI-AD converters (AUC = 0.5). Therefore, we did

not test if combining the MMSE data with miRNA signatures would

improve the accuracy. Rather, we decided to employ in this case the

ADAScog13 test, which is more comprehensive and detailed than

the MMSE. We reasoned that this might still be a suitable screening

approach, given that these patients have already received a diagnosis.

Thus, this scenario is more likely to occur in a memory clinic than in a

primary care setting. UsingML analysis, we observed that ADAScog13

alonewas able to predict the conversion fromEMCI toADwith anAUC

value of 0.57 and those of LMCI patientswith 0.65 (Figure 6A,B), which

is below the accuracy observed for the miRNA signatures. Combining

the identified miRNA signatures with the data of the ADAScog13 was

not able to further improve the predictive power over the best scores

obtained with the miRNAs alone. To test if other miRNA signatures

may exhibit better performance in combination with the ADAScog13

data, we performed another unbiased ML analysis starting with all

73 miRs initially identified. This approach identified a signature con-

sisting of miR.532.3p and miR.1306.3p that was able to predict the

conversion of EMCI patients with and AUC value of 0.71 and for LMCI

patients with an AUC value of 0.79 which was slightly better than the

signature composed of miR.338.3p, miR.584.5p, and miR.142.3p (see

Figure 5A,B).

3.5 miRNAs linked to diagnosis and MCI to AD
conversion represent specific molecular pathways
relevant to AD pathogenesis

As discussed in the Introduction, miRNAs contribute to inter-organ

signaling and brain-derived miRNAs can be detected in circula-

tion. It has therefore been suggested that circulating miRNAs may

inform about pathological processes in the affected organ includ-

ing the brain. Therefore, we decided to investigate the molecular

pathways controlled by miRs identified in our analysis. For this,

we selected the miRNA signatures that showed the best perfor-

mance in detecting EMCI (miR.590.3p, miR.369.3p, miR9985), LMCI

(miR.4429, miR.22.5p, miR.1306), and AD (miR.142.3p, miR.998.5p,

miR.9985) as well as those that exhibited the best accuracy to predict
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(A) (B) (C)

(D) (E) (F)

(G)

F IGURE 4 ML identifies miRNA signatures for EMCI, LMCI, and AD. The panels show the results fromML displayed as ROC curve analysis.
Numbers in parenthesis indicate the respective AUCs for miRNA predicting AD (A), EMCI (B), or LMCI (C) and for the CSF biomarkers together
withMMSE for AD (D), EMCI (E), and LMCI (F). (G) ROC plot showing the results when combining the data for miR-4429, miR-22-5p, and
miR-1306withMMSE. AD, Alzheimer’s disease; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; MCI, mild cognitive
impairment; miRNA, microRNA;ML, machine learning;MMSE,Mini-Mental State Examination; ROC, receiver operating characteristics.

EMCI (miR.125b.5p, miR.18a.5p, miR.26b.5p) or LMCI (miR.338.3p,

miR.548.5p, miR.142.3p) converting to AD. For each of these miRNA

signatures we identified confirmed target mRNAs. We further fil-

tered this list for miRNAs expressed in the human brain before

proceeding to Gene Ontology (GO) term analysis using ClueGO and

Cytoscape to visualize the data. When comparing the results for

EMCI, LMCI, and AD, multiple pathways were found across all con-

ditions (FDR < 0.05). Among the top 20 pathways observed in all

conditions were “Alzheimer’s disease” and “Pathways of Neurode-

generation” (Figure 7, Table S3). Interestingly, several pathways were

specific to EMCI and LMCI. For example, “Ferroptosis”, “Necroptosis”,

“Retrograde endocannabinoid signaling”, “Oxidative phosphorylation”,

“JAK-STAT signaling pathway”, “p53 signaling”, and “MicroRNAs in

cancer” were exclusively observed in EMCI patient (Figure 7, Table

S3). For LMCI we detected 28 unique pathways that included those

linked to inflammatory processes such as “IL-17 signaling pathway”

and “Natural killer cell mediated cytotoxicity”, “B cell receptor signal-

ing pathway”, and “C-type lectin receptor signaling pathway”, pathways

linked to cognitive processes such as “Cholinergic synapse” and “cAMP

signaling pathway” or “Amphetamine addiction” or “Estrogen signal-

ing pathway”, pathways linked to mitochondria dysfunction, namely

“Mitophagy” and pathways that may hint to a de-regulation of vas-

cular processes such as “Platelet activation”, “Aldosterone-regulated

sodium reabsorption”, “Endocrine and other factor-regulated calcium

reabsorption”, “Vasopressin-regulated water reabsorption” “Gap junc-

tion”, and “Carbohydrate digestion and absorption” (Figure 7, Table

S3). We did not observe any pathways exclusive to AD. In addition

to the already mentioned pathways “Alzheimer’s disease” and “Path-

ways of Neurodegeneration” within the top 20 pathways linked to AD

we identified, for example, the ErbB signaling pathway that was also a

main target of miRNAs that correlate with A/T/N positivity (Liu et al.,

under review in Alzheimer’s & Dementia). Additional pathways iden-

tified included “AMPK signaling pathway”, “HIF-1 signaling pathway”,

“Autophagy”, “mRNA surveillance pathway”, “RNA degradation”, “Long-

term depression”, and “Chemokine signaling pathway” (Figure 7, Table

S3).

Using similar approach, we sought to identify molecular pathways

controlled bymiRNAs found to associatewith EMCI-AD (miR.125b.5p,

miR.18a.5p, miR.26b.5p) and LMCI-AD (miR.338.3p, miR.584.5p,

miR.142.3p) progression.We identified 59 pathways (FDR< 0.05) that

were common to EMCI-AD and LMCI-AD converters. These included

pathways linked to neuronal plasticity such as “Axon guidance” and

pathways related to neurodegenerative process such as “Alzheimer

disease”, “HIF-1 signaling pathway”, “Ubiquitin mediated proteoly-

sis”, “Autophagy”, and “Apoptosis”, pathways linked to viral infection

and inflammatory processes such as “Fc gamma R-mediated phago-

cytosis”, “Human cytomegalovirus infection”, “Pathogenic Escherichia

coli infection”, “Viral life cycle”, metabolic processes including “N-

Glycan biosynthesis”, and “Sphingolipid signaling pathway” as well

as pathways suggesting vascular pathology, for example, “Lipid and

atherosclerosis” and “Fluid shear stress and atherosclerosis” (Figure 8,

Table S4).
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7488 KRÜGER ET AL.

(A) (C)

(B) (D)

F IGURE 5 ML identifies miRNA signatures to predict EMCI-AD and LMCI-AD converters. (A) ROC curve displaying the results fromML using
miR.125b.5p, miR.18a.3p andmiR.25b.5p predicting EMCI-AD converters with an AUC of 0.70. (B) ROC curve showing the performance ofMMSE
and CSF biomarkers to identify EMCI-AD converters. (C) ROC curve showing that a signature of miR.338.3p, miR.584.5p andmiR.142.3p can
predict LMCI-AD converters with an AUC of 0.75. (D) ROC curve showing the performance ofMMSE and CSF biomarkers to identify LMCI-AD
converters. Numbers in parenthesis indicate the respective AUC values. AD, Alzheimer’s disease; AUC, area under the curve; CSF, cerebrospinal
fluid; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; MCI, mild cognitive impairment; miRNA, microRNA;ML,
machine learning;MMSE,Mini-Mental State Examination; ROC, receiver operating characteristics.

Seven pathways were specific to LMCI-AD these were linked

to neurodegeneration and inflammation, namely “Pathways of neu-

rodegeneration” and “TGF-beta signaling pathway”, while the other

pathways exclusively detected in LMCI-converters were “Estrogen

signaling pathway” and pathways representing metabolic processes

including “Glycerolipidmetabolism”, “Arginine andprolinemetabolism”,

“Steroid biosynthesis”, and “Fatty acid biosynthesis” (Figure 8).

Sixty-four pathways were specific to EMCI-AD converters. These

included pathways linked to synaptic plasticity such as “Synap-

tic vesicle cycle”, “Neurotrophin signaling pathway”, and “Long-term
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(A) (B)

F IGURE 6 ML-identifiedmiRNA signatures to predict EMCI-AD and LMCI-AD converters in combination with the ADAScog13 test. (A) ROC
curve displaying the results fromML usingmiR.151a.5p andmiR.652.3p in combination with the ADAScog13 test predicting EMCI-AD converters.
(B) ROC curve showing the performance of miR.1306.3p andmiR.532.3p in combination with the ADAscog13 test to predict LMCI-AD converters
Numbers in parenthesis indicate the respective AUC values. AD, Alzheimer’s disease; EMCI, early mild cognitive impairment; LMCI, late mild
cognitive impairment; MCI, mild cognitive impairment; miRNA, microRNA;ML, machine learning;MMSE,Mini-Mental State Examination; ROC,
receiver operating characteristics.

potentiation”. We also detected pathways linked to vascular function

such as “Vasopressin-regulated water reabsorption”, “Apelin signal-

ing pathway”, and “Aldosterone-regulated sodium reabsorption”. In

addition to pathways that represent response to viral and bacte-

rial infection and inflammation, for example, “Herpes simplex virus 1

infection”, “Chemokine signaling pathway”, we detected “Mitophagy”

and “Oxidative phosphorylation” whichmay suggest deregulatedmito-

chondria function in EMCI-AD converters. It is interesting to note that

“Mitophagy” was also detected as a pathway specific to patients with

the LMCI diagnosis that was not observed in EMCI patients, which

might help to explain why some EMCI patients convert to AD, while

others remain stable.

4 DISCUSSION

We present the first small RNA sequencing data from plasma samples

of ADNI study participants, providing a valuable resource for the field

and exploringwhetherML can identifymiRNA signatures to be utilized

in early detection of individuals at-risk for developing AD-associated

cognitive decline. Specifically, we hypothesized that analyzing plasma

miRNA in combination with cognitive screening could help early diag-

nosis ofMCI and, importantly, predictwhichMCI patientswill progress

toward AD.

Out of the 300 miRNAs reliably detected in plasma samples across

individuals, we identified 15 miRNAs that were associated with AD,

or helped detect EMCI and LMCI patients, or predicted their conver-

sion to AD. Notably, 13 of these miRNAs had previously been found

deregulated in AD when analyzed in various blood components such

as whole blood, serum, plasma, or blood-derived extracellular vesicles

(EVs). Although these previous datasets analyzed fewer samples and

mainly focused onAD rather thanMCI patients orMCI-to-AD convert-

ers, the fact that our findings support previous reports attest to the

quality of our dataset.

We detected a signature consisting of miR.142.3p, miR.98.5p,

and miR.9985 to identify AD patients with an AUC value of 0.72.

Although our primary goal was not to identify AD patients—since

neuropsychological testing and CSF biomarkers offer much greater

accuracy—it is interesting to note that miR.142.3p was deregulated

in whole blood or serum-derived EVs from AD patients analyzed via

RNA sequencing.41,42 Notably, in our dataset, miR.142.3p was also

part of the miRNA signature to identify LMCI-AD converters. More-

over, miR.142.3p was found to be upregulated in the hippocampus of

AD patients,43 and SNPs in the miR.142 promoter have been asso-

ciated with reduced AD risk.44 Functional studies have shown that

miR.142.3p is involved in the downregulation of BDNF in activated

microglia, suggesting it may play a role in microglia-neuron cross talk

in AD.45 Similarly, miR.98.5p has been implicated in the pathophysiol-

ogy of AD46 and was found to be deregulated in whole blood41 and

serum samples of AD patients.47 Finally, miR.9985 was reported as

upregulated in serum EVs of AD patients.42

Perhaps more interesting than miRNAs associated with AD are

the miRNAs that aid in EMCI diagnosis and the detection of indi-

viduals at risk. Notably, miR.9985 was part of a signature, together
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7490 KRÜGER ET AL.

F IGURE 7 Pathways controlled bymiRNAs associatedwith EMCI, LMCI, and AD. Dot plot showing the top 15 pathways affected in AD, as well
as the pathways specific to the LMCI, AD across diagnoses. AD, Alzheimer’s disease; EMCI, early mild cognitive impairment; LMCI, late mild
cognitive impairment; miRNA, microRNA.

with miR.590.3p and miR.369.3p, which identified EMCI patients with

greater accuracy thanCSFbiomarkers orMMSEscores. LikemiR.9985,

miR.590.3pwas reported tobederegulated in serumandplasmaEVs,42

andmiR.369.3p has been associated with AD pathology.48

LMCI patients were identified with an AUC of 0.71 when com-

bining miR.4429, miR.22.5p, and miR.1306. While miR.4429 has not

been associated with AD, it was found to be a blood biomarker in

schizophrenia.49 miR.22.5pwas deregulated in blood samples fromAD

patients50 and has been described as part of an Immunity-Associated

Regulatory Network in AD.51 miR.1306 expression differences were

observedwhenwhole blood samples of AD patients were compared to

controls.52,53

Equally important as the early identification of at-risk individuals

is predicting who will convert from MCI to AD. A signature consist-

ing of miR.125b.5p, miR.18a.5p, and miR.26a.5p was able to predict

EMCI-AD converters with an AUC of 0.7, which was superior to

the performance of the invasive CSF biomarkers and the MMSE.

All three miRNAs were reported to differ in AD patients in whole

blood, plasma, serum, and plasma EVs.54–58 Functionally, miR.125b.5p

is known to regulate synaptic plasticity and its overexpression is

associated with memory deficits and tau hyperphosphorylation.59

Similarly, miR.26b.5p targets Retinoblastoma protein, which leads to

aberrant cell cycle entry, cyclin-dependent kinase 5 upregulation, and

subsequent tau phosphorylation and cell death in AD.60

For predicting LMCI-AD, we identified a signature consisting of

miR.338.3p, miR.584.5p, andmiR.142.3p, which demonstrated greater

accuracy than the CSF biomarker and MMSE. Both miR.338.3p and

miR.584.5p have been identified as blood biomarkers for AD when

analyzing whole blood, plasma, or plasma EVs.41,55,61 Additionally, the

miRNA signaturemiR.151.5p,miR.652.3p and themicroRNAsignature

miR.1306.3p, miR.532.3p improved the prediction of conversions from

EMCI to AD and from LMCI to AD, respectively. While there are no

data reporting deregulation of miR.151.5p in AD, it has been identi-

fied in whole blood samples from soccer players with mild traumatic

brain injury.62 Similarly, while little is known about miR.652.3p, recent

studies reported altered levels of miR.652.3p in blood associated with

Internet gaming disorder63 and attention deficit hyperactivity disorder

(ADHD).64 miR.1306.5p was also part of the signature to detect LMCI,

and miR.532.3p was found to be deregulated in serum samples from

AD patients.56

In summary, these data strongly support the significance of the iden-

tified miRNAs in developing novel biomarkers for detecting at-risk

patients in the context of AD. It is noteworthy that while some stud-

ies found these miRNAs to be up regulated in AD, others reported
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KRÜGER ET AL. 7491

F IGURE 8 Pathways controlled bymiRNAs associated with EMCI-AD and LMCI-AD converters. Dot plot showing the top common pathways
affected in EMCI-AD and LMCI-AD, as well as the pathways specific to each condition. AD, Alzheimer’s disease; EMCI, early mild cognitive
impairment; LMCI, late mild cognitive impairment; miRNA, microRNA.

the opposite. This might underscore the importance of analyzing dif-

ferent phases of AD progression, such as EMCI, LMCI, and AD, and

relying on ML approaches to analyze miRNA signatures rather than

measuring the up- or down-regulation of single miRNAs. Our hypoth-

esis that circulating miRNA signatures could capture different phases

in the development of AD is supported by the corresponding con-

firmed mRNA target genes. While interpreting such data requires

caution since we extrapolate circulating miRNA signatures to molecu-

lar changes in thebrain, our findings suggest that themiRNAsignatures

detecting EMCI, LMCI, or AD represent distinct molecular processes.

For instance, pathways exclusively associated with either EMCI or

LMCI were identified. Specifically, the miRNA signature linked to

EMCI was associated with processes such as ferroptosis and oxida-

tive phosphorylation, consistentwith data suggesting that deregulated

iron and energy metabolism are early events in AD pathogenesis.65,66

In contrast, only in the LMCI signature did we observed processes

hinting at vascular damage and interleukin-17 signaling, which have

been associated with AD progression.39,67 It is plausible to spec-

ulate that developing plasma miRNA signatures could enable the

specific detection of distinct phases of AD, thus improving diagnostic

ability.

Our study has a few limitations that should be considered. First,

this is an observational study, with predominantly non-HispanicWhite

participants. Therefore, it will be important to investigate populations

with greater diversity to determine if our results translate to other eth-

nic groups or if other groups are characterized by additional miRNA

dementia-related biomarkers. Second, the diagnostic groups analyzed

here were based on clinical criteria and no neuropathologic confirma-

tion was possible in this ante mortem study, though we used several

AD-related endophenotypes such as CSF biomarkers to address this

limitation. Third, our study is cross-sectional. It would be valuable to

perform similar studies in a longitudinal fashion to determine the tra-

jectories of microRNAs as biomarkers over time. Fourth, the observed

associations between plasma microRNAs and our dementia-related

measures could have been influenced by environmental or genetic

factors not considered in the current analysis. Fifth, as in any observa-

tional study, we cannot establish if the associations detected are causal

in nature.
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Overall, this study represents a significant step forward in under-

standing the potential of plasma microRNA signatures as prognostic

AD biomarkers. By providing the first blood small RNA sequenc-

ing dataset of the ADNI study, we have laid the groundwork for

further investigations into the role of microRNAs in AD pathogene-

sis. Future research should refine and confirm the reported miRNA

signatures. We envision that, once specific miRNA signatures are

established and confirmed, the analysis of blood miRNAs will be trans-

ferred from labor and cost intensive sequencing approaches used in

our study to simpler assay formats. This will open avenues toward

adopting blood miRNAome analysis in clinical practice. Integrating

plasma microRNA signatures with established cognitive screening

measures in primary care settings will likely enhance the accu-

racy and efficiency of recognizing early AD-associated cognitive

decline.
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