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Abstract

INTRODUCTION: MicroRNAs (miRNAs) play important roles in gene expression

regulation and Alzheimer’s disease (AD) pathogenesis.

METHODS: We investigated the association between baseline plasma miRNAs and

central AD biomarkers from the Alzheimer’s Disease Neuroimaging Initiative (ADNI;

N = 803): amyloid, tau, and neurodegeneration (A/T/N). Differentially expressed miR-

NAs and their targets were identified, followed by pathway enrichment analysis.

Machine learning approaches were applied to investigate the role of miRNAs as blood

biomarkers.

RESULTS: We identified nine, two, and eight miRNAs significantly associated with

A/T/N positivity, respectively. We identified 271 genes targeted by amyloid-related

miRNAs with estrogen signaling receptor–mediated signaling among the enriched

pathways. Additionally, 220 genes targeted by neurodegeneration-related miRNAs
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showed enrichment in pathways including the insulin growth factor 1 pathway.

The classification performance of demographic information for A/T/N positivity was

increased up to 9%with the inclusion of miRNAs.

DISCUSSION: Plasma miRNAs were associated with central A/T/N biomarkers, high-

lighting their potential as blood biomarkers.

KEYWORDS

Alzheimer’s disease, amyloid, biomarkers, classification, microRNAs, neurodegeneration, plasma,
tau

Highlights

∙ We performed association analysis of microRNAs (miRNAs) with amyloid/tau/

neurodegeneration (A/T/N) biomarker positivity.

∙ We identified dysregulatedmiRNAs for A/T/N biomarker positivity.

∙ We identified Alzheimer’s disease biomarker-specific/common pathways related to

miRNAs.

∙ miRNAs improved the classification for A/T/N positivity by up to 9%.

∙ Our study highlights the potential of miRNAs as blood biomarkers.

1 BACKGROUND

Alzheimer’s disease (AD) is a degenerative neurological disorder

that frequently presents as dementia in elderly individuals, result-

ing in a gradual deterioration of cognitive abilities.1,2 First, AD has

three major neuropathological characteristics. Neuritic plaques occur

when extracellular amyloid beta (Aβ) from amyloid precursor proteins

accumulates.3,4 Second, intracellular nerve fiber entanglement arises

when hyperphosphorylated tau aggregates in the brain.3,4 Third, neu-

rodegeneration, demonstrated by the degradation of white and gray

matter after neuronal death, can be detected by techniques such as

magnetic resonance imaging (MRI).3,4 Previous research has intro-

duced “A/T/N” central biomarkers. “A” indicates the Aβ biomarker

(amyloid positron emission tomography [PET] or cerebrospinal fluid

[CSF] Aβ42), “T” represents the tau biomarker (CSF phosphorylated

tau or tau PET), and “N” encompasses biomarkers of neurodegenera-

tion or neuronal injury ([18F]-fluorodeoxyglucose PET, structural MRI,

or CSF total tau).5 Blood-based biomarkers such as plasmamicroRNAs

(miRNAs) represent a potential substitute for the current ADbiomark-

ers. They offer advantages of cost savings, accessibility, and decreased

invasiveness, potentially yielding additional insights into disease onset

and progression.6

MiRNAs, short non-coding RNAs with 22 or less nucleotides, are

expected to influence approximately half of all protein-coding genes

through post-transcriptional processes in gene expression.7,8 MiRNAs

play crucial roles in various biological or pathological processes, such

as metabolism, proliferation, differentiation, apoptotic cell death, and

molecular mechanisms of diseases.9 Dysregulation of miRNAs can be

an indication of altered cellular states in different tissues and is impli-

cated as a contributing factor in various disorders.10,11 This highlights

the important potential of miRNAs in understanding pathogenesis

mechanisms, facilitating diagnosis, and guiding therapeutic strategies

for human diseases.

Previous studies have revealed the involvement of miRNAs in AD

pathology and the progression of AD, often by targeting AD-related

genes or signaling pathways.12 MiRNAs have emerged as significant

contributors to AD progression by controlling key proteins such as

amyloid precursor protein and beta-secretase, which are involved in

Aβ production.13–15 Additionally, many miRNAs have been implicated

in the progression of AD by directly or indirectly modulating the

phosphorylation status of tau proteins.16–19 Moreover, dysregula-

tion of miRNAs has been implicated in microglial hyperactivation,

neuroinflammation, and macrophage polarization in the brain, which

play central roles in the pathological cascade of AD.20,21 Despite

decades of research, the etiology of AD is not fully understood, posing

challenges for early diagnosis and effective treatment. Understanding

the role of miRNAs in the molecular mechanisms underlying AD

could offer insights into potential diagnostic markers and therapeutic

targets.

The expression patterns of miRNAs have been indicated to vary

depending on the time and tissue context.22,23 MiRNA profiling con-

ducted on brain tissue from individuals from the AD cohort revealed

altered expression of specific miRNAs in various brain regions affected

by AD.24 MiRNAs exhibit stability in various biological fluids, such as

blood, serum, plasma, and CSF, and previous studies have identified

dysregulated miRNAs in AD within these fluid types, though with lim-

ited sample size.25–31 The presence of circulatingmiRNAs underscores

the potential as promising biomarker candidates for AD, as they can
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be detected using less invasive techniques, providing valuable insights

into AD pathology.

Here, we analyzed the dysregulation of plasma miRNA associ-

ated with A/T/N central biomarkers in AD. Baseline plasma samples

were analyzed for miRNAs from 803 Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) participants. We identified dysregulated miRNAs

related to A/T/N central biomarkers and validated the alteration of

selected miRNAs using real-time quantitative polymerase chain reac-

tion (RT-qPCR) data from the ADNI cohort. We also identified the

target genes from dysregulated miRNAs and generated functional

pathway networks to understand the relationship between target

gene enriched pathways and biomarkers. Subsequently, we conducted

machine learning classification and evaluated the prediction perfor-

mance usingmiRNAs.

2 METHODS

2.1 Study participants

Plasma samples and data used in the study were obtained from the

ADNI.32 The initial phase (ADNI-1) was launched in 2003 to test

whether serial MRI, PET, other biological markers, and clinical and

neuropsychological assessment could be combined to measure the

progression of mild cognitive impairment (MCI) and early AD. ADNI-1

has been extended in subsequent phases (ADNI-GO, ADNI-2, ADNI-

3, and ADNI-4) for follow-up of existing participants and additional

new enrollments. Demographic information, pre-processed Aβ PET

scans, MRI scans, CSF biomarkers, neuropsychological test scores,

and clinical information are publicly available and were downloaded

from the Laboratory of Neuro Imaging (LONI) ADNI data repository.

ADNI CSF biomarkers (Aβ1-42, total tau [t-tau)], and phosphorylated

tau [p-tau181]) were generated using the validated and highly auto-

mated Roche Elecsys electrochemiluminescence immunoassays.33

T1-weighted brain MRI scans were acquired using a sagittal 3D

magnetization-prepared rapid gradient echo sequence following the

ADNI MRI protocol. As detailed in previous studies,33 FreeSurfer

v6, a widely used automated MRI analysis approach, was used to

process MRI scans and extract endophenotypes determined by auto-

mated segmentation and parcellation. Pre-processed Aβ PET scans

(co-registered, averaged, standardized image and voxel size, uniform

resolution) were downloaded and intensity-normalized using a whole

cerebellum reference region to create standardized uptake value ratio

(SUVR) images.33 We used CSF Aβ1-42 and Aβ PET accumulation as

biomarkers of Aβ plaque (“A”), CSF p-tau as a biomarker of fibrillary

tau (“T”), and MRI atrophy and CSF t-tau as biomarkers of neurode-

generation (“N”).5 Amyloid positive was defined as individuals with

CSF Aβ1-42 levels < 1098 pg/mL34 or a whole cerebellum-normalized

SUVR > 1.08 for [18F] florbetaben PET35 and 1.11 for [18F] florbetapir

PET,35 tau positive as individuals with CSF p-tau levels> 19.2 pg/mL,34

and neurodegeneration positive as individuals with CSF t-tau lev-

els>242pg/mL34 or z score–transformedhippocampal volume<−1.5,
where z scores were calculated from cognitively normal amyloid-

RESEARCH INCONTEXT

Systematic review: The authors reviewed the literature

using traditional (e.g., PubMed and Google Scholar) sources,

as well as meeting abstracts and presentations. Publications

about microRNAs (miRNAs) related to Alzheimer’s disease

(AD) are cited appropriately throughout the article.

Interpretation: We identified differentially expressed

plasma miRNAs related to central amyloid/tau/

neurodegeneration (A/T/N) biomarkers for AD. We also

reported their target genes and relevant pathways. Addi-

tionally, we demonstrated that machine learning classifiers

exhibited enhanced performance in distinguishing A/T/N

positivity after including differentially expressed miRNAs.

These results suggest the potential utility of miRNAs as

novel andminimally invasive blood biomarkers for AD.

Future directions: We anticipate that our findings will signif-

icantly advance the research on miRNAs in AD and expedite

the identification of enhanced AD blood biomarkers. Repli-

cation studies and longitudinal analyses for the relationship

between plasma miRNAs and central AD biomarkers using

independent large-scale cohorts are warranted.

negative individuals and adjusted for age, sex, and intracranial volume

(ICV).36 Eight hundred three ADNI participants with miRNA sequenc-

ing (miRNA-seq) and AD biomarker data based on neuroimaging and

CSF endophenotypeswere used for analysis. Demographic data for the

ADNI participants can be found in Table 1. The apolipoprotein E (APOE)

ε4carrier status is determinedbywhether aparticipanthas the ε4allele
at theAPOE gene locus. An participant is consideredAPOE ε4 positive if
they have at least one ε4 allele, whether it is one or two copies.Written

informed consent was obtained from each participant, and all proto-

cols were approved by each participating study and site’s institutional

review board.

2.2 miRNA sequencing

In the previous study,37 data processing and quality control were per-

formed, and we obtained the processed dataset from the previous

study for our analysis. This dataset, derived from Illumina small RNA

sequencing, underwent thorough processing steps including adapter

trimming, read quality assessment, alignment, count generation, and

batch effect evaluation. Notably, the findings from the previous study

demonstrated minimal variance within and between the 21 batches,

indicating a stable miRNA distribution during library preparation irre-

spective of sequencing depth. As a result, we used this processed

dataset comprising 336 miRNAs and 803 samples that passed quality

control measures for our analysis.
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2.3 Differential expression analysis of miRNAs
with central A/T/N biomarker positivity

Differential miRNA expression analysis was performed using the

DESeq2Rpackage (version1.42.1).38 Participantswere groupedbased

on A/T/N positivity. The analysis used the “poscounts” estimator for

size factor estimation, handling miRNAs with zeros by calculating a

modified geometric mean from non-zero counts. By using the like-

lihood ratio test (LRT) to detect differentially expressed miRNAs

(DE-miRNAs), the analysis evaluated the significance of change in

deviance between a full model with each A/T/N biomarker and a

reduced model without it.38 Batch, sex, age, and APOE ε4 carrier sta-

tus were used as covariates. The p values were corrected for multiple

testing using the default Benjamini–Hochberg (BH) method. MiRNAs

with an adjusted p value of < 0.05, baseMean ≥ 10, and the absolute

value of log2 fold change ≥ 0.26, were detected as DE-miRNAs. If the

adjusted p value for a DE-miRNA is smaller than the smallest floating-

point value in R (2.225074e-308), it is displayed as 0 for the adjusted

p value. Additionally, DESeq2 conducts outlier detection on each sam-

ple in eachgene, thus thepvalue andadjustedpvalue for thesemiRNAs

aremarkedasNA.38 Wevisualized theexpression levels ofDE-miRNAs

as boxenplots (the combination of a boxplot and a violin plot) in Figure

S1 in supporting information and summarized literature reviews on the

detected DE-miRNAs in Table S1 in supporting information.

2.4 Linear regression analysis using RT-qPCR
miRNA data for validation

Weused qPCRdata collected fromplasma of 155 participants enrolled

in ADNI to validate the dysregulation of DE-miRNAs detected in the

previous step. Each miRNA was measured with three replicates, and

demographic details are available in Table S2 in supporting infor-

mation. Two DE-miRNAs related to the A biomarker detected by

DESeq2 in the previous step are present in the qPCRdataset, including

hsa-miR-145-5p and hsa-miR-190a-5p.

Linear regression was performed for the two miRNAs using their

mean expression levels from three replicates by the stats package in

R (version 4.3.3). MiRNA expression levels were treated as dependent

variables, while the biomarker status (A) served as the independent

variable. Covariates, including age, sex, and APOE ε4 status, were

included in the analysis. p values for the independent variable were

extracted and corrected for multiple testing across the two miRNAs

using the BH method. MiRNAs with adjusted p values < 0.05 were

considered significant in the qPCR dataset.

2.5 Target gene prediction of miRNAs

Human target genes of DE-miRNAs were extracted from two popu-

lar validated target databases, mirTarBase Release 9.039 and Tarbase

v9.0.40 MirTarbase is a valuable repository comprising experimen-

tally validated miRNA-target interactions established through various

methodologies including next generation sequencing, microarray, and

cross-linking and immunoprecipitation, as well as experiments with

strong evidence such as qPCR, reporter assay, and western blot.39

TarBase also provides a comprehensive collection of experimentally

verified miRNA targets, with most interactions validated through

experiments like high-throughput sequencing of RNA isolated by

crosslinking immunoprecipitation, photoactivatable ribonucleoside-

enhanced crosslinking and immunoprecipitation, and cross-linking

ligation and sequencing of hybrids.40 To increase the robustness and

the reliability of the results, we chose genes that overlapped between

the two validated databases as our final target genes (Figure S2, Table

S3-S5 in supporting information).

2.6 MiRNA-target gene network analysis

The miRNA-target gene network was generated based on the inter-

actions between DE-miRNAs and putative target genes which were

identified by mirTarBase and TarBase. To identify the potential inter-

actions among target genes, protein–protein interaction (PPI) was

retrieved from the STRING database.41 PPIs were selected by using

only experiments as a source and setting the minimum required inter-

action score to the highest confidence of 0.9. We also examined the

overlap between the target genes depicted in the network and the

nominated target genes. More than 900 nominated target genes, as

provided by Agora,42 represent novel therapeutic candidates for AD.

These candidates were identified through computational analyses of

high-dimensional multi-omics data from human samples. The network

was visualized by Cytoscape software (version 3.10.1).43

2.7 Pathway enrichment analysis of miRNA
target genes

To perform pathway enrichment analysis, the putative target genes

were used toMetascape v3.5.20240101.44 Metascape integrates over

40 knowledgebases, incorporating 11 databases specifically dedicated

to enrichment analysis. After functional enrichment analysis, similar

terms were clustered based on the calculation of kappa similarity

between all enriched term pairs. Using a similarity score cutoff crite-

rion of > 0.3, the network visualized the top 20 clusters of enriched

terms for each A- or N-positive group. All enriched pathways are listed

in Tables S6 and S7 in supporting information. The network resulting

from the pathway analysis was visualized using Cytoscape software

(version 3.10.1).43

2.8 Machine learning classification for A/T/N
biomarker positivity

First, we extracted normalized read counts from DESeq2, then added

1 for subsequent log2 transformation. The function of removebatch-

effect from limma R package (version 3.58.1)45 was used to remove
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LIU ET AL. 7703

the effect from batch and APOE ε4 status. Following the prepro-

cessing steps, we used STREAMLINE (release beta 0.3.4),46 an auto-

mated machine learning pipeline, to apply classifiers to categorize

participants into A/T/N-positive and -negative groups. STREAMLINE

can apply diverse modeling algorithms and autotuning parameters

to achieve the best performance. Ten algorithms were used in this

study, including naive Bayes, logistic regression, elastic net, decision

tree, random forest, gradient boosting, support vector machine, arti-

ficial neural networks, k-nearest neighbor, and genetic programming.

Overall, the analysis pipeline comprised the following steps: (1) pre-

processing and feature scaling, (2) evaluation and selection of feature

importance, (3) modeling and performance evaluation, (4) post anal-

ysis including statistic comparison and visualization. These steps are

shown in Figure S3 in supporting information. Specifically, 5-fold

cross-validation, stratified partitioning, feature filtering, and feature

mean/standard deviation scaling on training data and testing data

were used during the analysis. During the evaluation and selection of

feature importance step, feature importance scores were calculated

via mutual information and MultiSURF.46 After modeling, top feature

importance boxplots for each algorithm (across coefficient of variation

partitions) were generated. Finally, receiver operating characteristic

area under the curve (ROC-AUC) was used as the metric to evaluate

the performance of each algorithm.

3 RESULTS

3.1 Participant characteristics

ThemiRNA dataset analyzed in this study, comprising plasmamiRNAs,

including a total of 803 ADNI participants, with 557 individuals clas-

sified as A+ and 246 as A–, 536 as T+ and 266 as T–, and 524 as

N+ and 279 as N– (Table 1). Notably, we observed expected differ-

ences in APOE ε4 carrier percentage between the biomarker-positive

and -negative groups (Table 1). This miRNA dataset was comprehen-

sively analyzed to identify dysregulatedmiRNAsassociatedwithA/T/N

central biomarkers, integrating steps including differential expression

analysis, qPCR validation, prediction of target genes, generation of

miRNA-target networks, pathway enrichment analysis of target genes,

andmachine learning classification, as shown in Figure 1.

3.2 Dysregulated miRNAs associated with central
A/T/N biomarker positivity

We investigated miRNA alterations associated with AD pathology by

analyzing plasma sequencing data comprising 336 miRNAs from 803

participants. Using the DESeq2 LRT and applying filtering conditions

of adjusted p value < 0.05, baseMean ≥ 10, and the absolute value of

log2 fold change ≥ 0.26, we identified significant alterations. Specif-

ically, we detected nine miRNAs associated with the A biomarker,

eight with the N biomarker, and two with the T biomarker. Of these,

threemiRNAswere upregulated for A (hsa-miR-483-3p, hsa-miR-145-

5p, and hsa-miR-374a-3p) and N (hsa-miR-1180-3p, hsa-miR-337-5p,

and hsa-miR-1224-5p), respectively, while six were downregulated

forA (hsa-miR-652-3p, hsa-miR-95-3p, hsa-miR-339-5p, hsa-miR-628-

5p, hsa-miR-190a-5p, and hsa-miR-3679-5p), and five were down-

regulated for N (hsa-miR-1255b-5p, hsa-miR-941, hsa-miR-369-5p,

hsa-miR-193b-5p, and hsa-miR-215-5p). The results are detailed in

Figure 2 and Table S1. Boxenplots in Figure S1A-T illustrate the

expression levels of significant miRNAs between A/T/N-positive and

-negative groups. Particularly, hsa-miR-483-3p exhibited the smallest

adjusted p value (4.75E-24) and the largest log2 fold change (0.69), indi-

cating upregulation in theA biomarker-positive group compared to the

A biomarker-negative group (Figure 2A). Notably, two miRNAs, hsa-

miR-337-5p and hsa-miR-1224-5p, overlapped between the T and N

biomarkers (Figure2B-2D). Additionally,we validated theupregulation

of hsa-miR-145-5p in the A-positive group compared to the nega-

tive group using RT-qPCR data from ADNI. Linear regression analysis

revealed a significant association (adjusted p value = 0.014) between

hsa-miR-145-5p and the A biomarker, with a coefficient of 0.027 (see

the boxenplot in Figure S1U).

We compared the log2 fold change and adjusted p values of sig-

nificant miRNAs across A/T/N biomarkers. As previously mentioned,

both hsa-miR-337-5p and hsa-miR-1224-5p display significant upreg-

ulation in the T and N biomarkers, as shown in Figure 3. Furthermore,

while hsa-miR-145-5p is detected as a significant miRNA in the A

biomarker, hsa-miR-1180-3p is detected as a significant miRNA in the

N biomarker. Although hsa-miR-145-5p demonstrates an adjusted p

value < 0.05 in the N biomarker, its log2 fold change does not surpass

the significance threshold of 0.26 (Figure 3). Similarly, hsa-miR-1180-

3p shows an adjusted p value < 0.001 in the T biomarker, but its

log2 fold change does not surpass the significance threshold of 0.26

(Figure 3). Nevertheless, both miRNAs demonstrate an upregulation

trend across all three phenotypes (Figure 3). Both hsa-miR-190a-

5p and hsa-miR-95-3p exhibit significant downregulation in the A

biomarker–positive group. Additionally, they both demonstrate an

adjusted p value < 0.05 in the T biomarker. However, their expression

levels indicate an upregulation trend in T (Figure 3). Both hsa-miR-

369-5p and hsa-miR-1255b-5p show significant downregulation in the

N biomarker–positive group. Moreover, they both display an adjusted

p value < 0.05 in the T biomarker. Consistent with the dysregulation

observed in the N biomarker–positive group, their expression levels

also suggest a downregulation trend in the T biomarker (Figure 3).

Overall, there are more significantly downregulated DE-miRNAs (11)

related to A/T/N biomarkers than upregulated DE-miRNAs (6), as

shown in Figure 3.

3.3 Target gene network analysis of significantly
dysregulated miRNAs

To elucidate the effect of DE-miRNAs, target genes were identified

by intersecting those found in two experimentally validated databases

mentioned in the Methods section. Using differential expression

results for target prediction, 17 dysregulated miRNAs associated
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7704 LIU ET AL.

F IGURE 1 Workflow of miRNA-seq analysis with detailed tools and databases. A, amyloid; miRNA-seq, microRNA sequencing; N,
neurodegeneration; qPCR, quantitative polymerase chain reaction; T, tau.

with A/T/N positivity were found, resulting in 480 target genes. Two

microRNAs (hsa-miR-337-5p and hsa-miR-1224-5p) showed signifi-

cant expression alteration in both T and N positivity. One target gene

was predicted for hsa-miR-337-5p, while nine target geneswere found

for hsa-miR-1224-5p (Figure S2). All target genes of DE-miRNAs are

listed in Tables S3-S5, and the miRNA-target gene network based on

their interactions is illustrated in Figure 4.

ThemiRNA target gene interaction network in the A-positive group

showed three upregulated miRNAs and six downregulated miRNAs

directly interactingwith 271 putative target genes (Figure 4A).AP1G1,

TMOD3, IRS1, RAPGEF1, SMC1A, and TRA2B were found to be regu-

lated by twomiRNAs. Additionally, RPS6 exhibited the highest number

of interactions with six, followed by RPL4, RPL27, RPS16, and SERBP1,

all of which interacted with RPS6 and displayed five interactions,

like POLR2A. We also compared the target genes having at least

two interactions in the network with the nominated target genes in

Agora; an overlap was identified, including QKI, IRS1, TGFBR2, SMAD4,

and IGF1R.

In the N-positive group (Figure 4B), three upregulated and five

downregulated miRNAs directly interacted with 220 target genes.

CRKL, TAOK1, and KMT2A are regulated by two miRNAs. RPL35 exhib-

ited the highest number of interactions, totaling six. Among the genes

interacting with RPL35, RPL19, RPL4, and EIF5A displayed five inter-

actions each, while MRPL9 and MRPL12 exhibited two interactions.

Through a comparison of target genes with at least two interactions in

the network with nominated target genes in Agora, we found that the

mitochondrial ribosome protein L12 (MRPL12) overlaps.

3.4 Pathway enrichment analysis of target genes
of significantly dysregulated miRNAs

The putative target geneswere subjected to pathway enrichment anal-

ysis to investigate the molecular mechanisms behind miRNA expres-

sion alterations in A/T/N positivity. Enrichment analysis of the target

genes revealed a variety of pathways (Tables S6 and S7, Figure 5). In
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LIU ET AL. 7705

F IGURE 2 Volcano and Venn plots of miRNAs related to the A/T/N biomarkers. A, Volcano plot for miRNAs identified related to the A
biomarker. B, Volcano plot for miRNAs identified related to the T biomarker. C, Volcano plot for miRNAs identified related to the N biomarker
(hsa-miR-1180-3p has an adjusted p value smaller than smallest floating-point value in R, so its adjusted p value is displayed as its closest adjusted
p value listed [3.44E-14]). Note: miRNAswith a baseMean< 10 are not shown in the volcano plot; red colored dots represent miRNAswith an
absolute value of log2FC≥ 0.26 and adjusted p value< 0.05; blue colored dots represent miRNAswith an adjusted p value< 0.05; green colored
dots represent miRNAswith an absolute value of log2FC≥ 0.26; gray colored dots indicatemiRNAs that failed to pass these conditions. D, Venn
plots of significant miRNAs detected in the three A/T/N biomarker groups. A, amyloid; log2FC, log2 fold change; miRNA-seq, microRNA
sequencing; N, neurodegeneration; T, tau.

Figure 5A, the 151 pathways enriched with target genes regulated by

miRNAs significantly related toA positivity included vascular endothe-

lial growth factor 2 (VEGFR2) signaling, signal transduction by growth

factor receptors, proteoglycans in cancer, cell-substrate adhesion, and

actin filament-based process. In Figure 5B, the network showed addi-

tional 169 pathways enriched with target genes regulated by miRNAs

significantly related to N positivity including the insulin growth fac-

tor 1 (IGF1) pathway, the ErbB signaling pathway, positive regulation

of cell migration, and nervous system development. Despite the pres-

ence of only 11 target genes common to both the A and N positive

group, 28 pathway terms were shared in the network under both con-

ditions (Figure S2 and Figure 5B). The common pathways were divided

into several clusters (Table S8 in supporting information). One cluster

focused on cell motility-related pathways, including positive regula-

tion of cell migration or locomotion, while another cluster was related

to cell projection organization including regulation of neuron projec-

tion development. These clusters (GroupID 5 and GroupID 9) were

identified in N positivity but merged into one cluster (GroupID 3) in A

positivity. Additionally, the related target genes differed between the

two clusters, suggesting distinct regulatorymechanisms.
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7706 LIU ET AL.

F IGURE 3 Comparison of log2 fold change and p values of significant miRNAs across the A/T/N biomarkers. Note: * indicates 0.01≤ adjusted p
value< 0.05; ** indicates 0.001≤ adjusted p value< 0.01; *** indicates adjusted p value< 0.001. Red stars indicate the absolute value of log2FC≥

0.26 and adjusted p value< 0.05. A, amyloid; log2FC, log2 fold change; miRNA-seq, microRNA sequencing; N, neurodegeneration; T, tau.

3.5 MiRNA-driven classification of A/T/N
biomarker positivity groups

To evaluate the prediction performance using miRNAs, we used

STREAMLINE, an automatic machine learning pipeline, to classify par-

ticipants into A/T/N positive and negative groups (see the Methods

section). We extracted normalized read counts from DESeq2 and

adjusted for Batch andAPOE ε4 status effects for the classification (see
the Methods section). We compared the performance of each A/T/N

biomarker-positive and -negative classification among 10 machine

learning algorithms (Figure S4 in supporting information). Random for-

est achieved the highest ROC-AUC (mean ROC-AUC, A: 0.68; T: 0.62;

N: 0.64) for classifying participants to biomarker positive and nega-

tive groups with a combination of features including age, sex, and all

miRNAs (Figure 6A-D).

Initially, we used age and sex features as the base model and then

compared the mean ROC-AUC after incorporating miRNAs into the

base model, computed across three independent runs of 5-fold cross-

validations. For the A biomarker, we observed a 9% improvement for

themeanROC-AUCwhen including all miRNAs (from0.59 to 0.68) and

an 8% improvement when including DE-miRNAs (from 0.59 to 0.67;

Figure 6D). Similarly, for the T biomarker, we observed a 4% improve-

ment for the mean ROC-AUCwhen including all miRNAs (from 0.58 to

0.62) and a 3% improvement when including DE-miRNAs (from 0.58 to

0.61; Figure 6D). Last, for theN biomarker, we observed a 7% improve-

ment for the mean ROC-AUCwhen including all miRNAs (from 0.57 to

0.64) and a 4% improvement when including DE-miRNAs (from 0.57 to

0.61; Figure 6D).

To understand the contribution of different miRNAs to the classifi-

cation of A/T/N positive and negative groups, we computed the feature
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LIU ET AL. 7707

F IGURE 4 MiRNA target gene network. The interaction networks were constructed using target genes of miRNAs significantly associated
with either A positivity (A) or N positivity (B). MiRNAs highlighted in red indicate upregulation, while those in blue represent downregulation. The
orange or purple solid line denotes miRNA-target interactions predicted by bothmiRTarBase and TarBase, whereas the green dashed line
represents protein–protein interactions sourced from STRING. The border color of target genes corresponds to the number of interactions: yellow
for three interactions, orange for four interactions, green for five interactions, and red for six interactions. The network was constructed by the
Cytoscape software. miRNA, micro RNA.

importance (FI) scores in STREAMLINEunder the random forestmodel

(see the Methods section). The results, as shown in Figure S5, when

including all miRNAs as input features and Figure S6, when consid-

ering only DE-miRNAs, suggest the importance of individual miRNAs

in the classification using Random Forest. In Figure S5, we presented

the top 40 miRNAs with the highest FI score when including sex, age,

and all miRNAs as input features. Age is the feature with the high-

est importance for both A and N biomarkers (Figure S5 in supporting

information). Consistent with results mentioned earlier, hsa-miR-95-

3p and hsa-miR-483-3pwere detected both as differentially expressed

miRNAs related to the A biomarker and ranked as the top 10 features

for classifying the A biomarker groups, see Figure 2A and Figure S5A.

Similarly, hsa-miR-1255b-5p, hsa-miR-369-5p, and hsa-miR-193b-5p

were detected both as differentially expressed miRNAs related to the

N biomarker and ranked as the top 40 features for classifying the N

biomarker groups, see Figure 2C and Figure S5C. Additionally, Figure

S6 in supporting informationdisplays allDE-miRNAs rankedbyFI score

when including sex, age, and DE-miRNAs as input features.

4 DISCUSSION

This study presents a comprehensive miRNA sequencing data analysis

for detecting miRNA alterations related to A/T/N central biomarkers.

We identified 9, 2, and 8 miRNAs (total 17 unique miRNAs) showing

significant differential expression related to A, T, and N positivity,

respectively, in plasma-derived samples fromADNI (Figure 2). TwoDE-

miRNAs overlapped for T and N positivity. The overlap of two miRNAs

(hsa-miR-337-5p and hsa-miR-1224-5p) could be due to the defini-

tions of them. The T biomarker is based on CSF p-tau, reflecting tau
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7708 LIU ET AL.

F IGURE 5 Pathway enrichment network. Top 20 clusters of enriched terms inMetascapewere generated using target genes predicted by
miRNAs significantly associated in A positivity (A) andN positivity (B). The color indicates their cluster ID, while the thickness of the edge reflects
the similarity score. The 28 nodes with red borders represent terms that are enriched in both A andN positivity. A, amyloid; N, neurodegeneration.

phosphorylation and tangle formation, while the N biomarker is

based on MRI atrophy and CSF t-tau, indicating neuronal damage and

degeneration.5 CSF p-tau and CSF t-tau are often correlatedwith each

other,47 so the overlap of DE-miRNAs is expected. Moreover, given

that tau pathologic burden is known to be linked to the severity of

neurodegeneration and clinical symptoms,48 the overlap of the two

miRNAs and their target genes provides further molecular evidence

supporting this idea. This finding helps us better understand the

molecular mechanisms underlying AD progression and underscores

the importance of miRNAs in this process. Overall, there are more
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LIU ET AL. 7709

F IGURE 6 Classification performance of the A/T/N biomarker positivity using the random forest machine learning algorithm. A, The
ROC-AUC curves of classification for amyloid positivity; (B) the ROC-AUC curves of classification for tau positivity; (C) the ROC-AUC curves of
classification for neurodegeneration positivity. Note: The dark blue curve indicates themean AUC curve from 5-fold cross-validation tests and the
background curves indicate the ROC curve for each cross-validation fold, while the gray shade indicates the standard deviation of themean ROC
curve; and (D) mean and standard deviation for the performancemetrics based on different combinations of features, computed across three
independent runs of 5-fold cross-validation. “miRNAs in theModel Features” indicates including all miRNAs in the analysis; “DEmiRNAs in the
Model Features” indicates including differentially expressedmiRNAs for each biomarker in the analysis, respectively. A, amyloid; AUC, area under
the curve; miRNA, micro RNA; N, neurodegeneration; ROC, receiver operating characteristic; T, tau.
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7710 LIU ET AL.

downregulated DE-miRNAs (11 miRNAs) than upregulated DE-

miRNAs (6 miRNAs; Figure 3). Nine novel plasma DE-miRNAs were

found to be related to A/T/N in this study after conducting a literature

search of known ADDE-miRNAs.

Through a literature search, we found 8 (hsa-miR-1180-3p, hsa-

miR-145-5p, hsa-miR-190a-5p, hsa-miR-193b-5p, hsa-miR-339-5p,

hsa-miR-369-5p, hsa-miR-483-3p, and hsa-miR-95-3p) of the 17 DE-

miRNAs were previously indicated as dysregulated miRNAs in either

blood, CSF, or brain tissues in AD.26–31,49–52 Among the 8 miRNAs,

4 miRNAs (hsa-miR-1180-3p, hsa-miR-145-5p, hsa-miR-339-5p, and

hsa-miR-95-3p) show consistent up or down alteration direction as the

previous studies, see Table S1. Four miRNAs (hsa-miR-190a-5p, hsa-

miR-193b-5p, hsa-miR-369-5p, and hsa-miR-483-3p) show alteration

directions conflictingwith previous research in blood orCSF (Table S1).

This variance may be due to the differences in sample sizes; notably,

our study has a much larger sample size, thereby enhancing our confi-

dence in the credibility (see Table S1). Additionally, hsa-miR-193b-5p is

known for displaying conflicting alteration directions across blood and

CSF samples in AD in previous research.13,29,30,49 In addition, among

the 9 novel DE-miRNAs, 5 (hsa-miR-1225-5p, hsa-miR-1224-5p, hsa-

miR-215-5p, hsa-miR-374a-3p, and hsa-miR-628-5p) were known to

associate with Parkinson’s disease in previous studies,53–56 suggesting

a potential shared molecular signature between AD and Parkinson’s

disease. Also, hsa-miR-941 is related to brain development in previ-

ous studies.57 For the three remaining novelmiRNAs, hsa-miR-652-3p,

hsa-miR-337-5p, and hsa-miR-3679-5p are known to be associated

with human diseases like cancers.58–60 Importantly, two plasma DE-

miRNAs detected in this study, hsa-miR-145-5p and hsa-miR-339-5p,

are previously indicated to be dysregulated in the AD brain (Table S1),

underlining their significance in AD and potential as AD biomarkers.

Four hundred eighty target genes were identified for the 17 DE-

miRNAs (Figure 4). In the A-positive group, 271 target genes were

predicted by three upregulated and six downregulated DE-miRNAs.

As shown in Figure 4, RPS6 showed the most PPIs at five, while RPL4,

RPL27, RPS16, SERBP1, and POLR2A followed with four PPIs each. All

these target genes were predicted to be directly regulated by hsa-

miR-652-3p. In the N-positive group, 220 putative target genes were

predicted by three upregulated and five downregulated DE-miRNAs.

RPL35 has the highest interactions with five PPIs, followed by RPL19,

RPL4, and EIF5A have three PPIs, while MRPL9 and MRPL12 have

two PPIs. Among these genes, PRL35, RPL4, and RPL19 were identi-

fied as target genes of hsa-miR-1180-3p, while MRPL12 and MRPL9

were predicted as target genes of hsa-miR-1255b-5p. Interestingly,

our results revealed interactions in miRNA target networks involv-

ing genes related to ribosomal proteins, including RPL4, RPL35, RPL19,

RPL27, RPS16, MRPL9, and MRPL12. Previous research has demon-

strated that disruptions in ribosomal function led to impaired protein

synthesis, a reduction in ribosomal RNAand total RNA, and an increase

in RNA oxidation in AD.61,62 Our research highlights that miRNA-

target interaction networks, derived from experimentally validated

databases, not only corroborate earlier findings63 but also emphasize

the significant role of miRNAs as key regulators of post-transcriptional

gene expression.

Pathway analysis with the target genes showed that VEGFR2

signaling, estrogen signaling receptor (ESR)-mediated signaling, and

cell-substrate adhesion pathways are enriched for A positivity, and

the IGF1 pathway and ErbB signaling pathways are enriched for the

N-positive group (Figure 5). Interestingly, VEGFR2 signaling was the

most significant pathway in the A-positive group. Additionally, ESR-

mediated signaling was exclusively observed in A, while the IGF1

pathway was the most significant in the N-positive group. These

differences highlight the unique molecular mechanisms and disease

processes associated with each A/T/N central biomarker, providing

insights into their distinct roles in disease progression and potential

targets for treatment. VEGF is essential for synaptic plasticity, learning,

and memory consolidation.64–67 Previous studies indicate the alter-

ation of VEGF levels is related to AD.64 The dysfunction of ESR1 has

been linked to triggering neuroinflammation.68 In a recent study inves-

tigating the association between IGF1 and cognitive function aswell as

neuroimaging parameters, the therapeutic potential of IGF1 was high-

lighted, showing an associationwith lowerwhitematter hyperintensity

volume but not with total brain volume.69 In our research (Figure 4),

ErbB4was predicted as the target gene of hsa-miR-145-5p, with signif-

icant upregulation in the A-positive group. ErbB4 is known to mediate

Aβ-induced neurotoxicity70 and is involved in various neuronal pro-

cesses such as neuritic plaques, synapse formation, neuronalmigration,

and synaptic plasticity through interactions with its ligand NRG1,71,72

as well as AD pathology.73

Eleven target genes were found to be common between A and N,

as shown in Figure S2, with some involved in cell motility pathways. A

Venn diagram in Figure S2 illustrates the number of overlapped tar-

get genes between A and N, revealing the 11 shared genes. Notably,

MDM2, RPS6KB1, RAPGEF1, and ACTG1 are among these genes, sug-

gesting potential shared regulatory mechanisms between A and T.

Pathway network analysis further confirmed shared pathways related

to cell motility and cell projection organization between the A and T

(Table S8 in supporting information). The importance of cell motility

in promoting Aβ42 aggregation has been previously demonstrated.74

However, there are differences between A and N. For instance,

although cell motility is a shared pathway between A and N, with 32

target genes in A and 19 in N, only three genes are common to both.

This difference in gene count suggests that although the same function

is present, it may operate through distinct molecular mechanisms in A

andN.

For the machine learning classification, including age and sex as

the base model, we observed modest ROC-AUC values of 0.68 for

A, 0.62 for T, and 0.64 for N. First, we adjusted the APOE ε4 effect

in the miRNA data prior to the classification. This adjustment was

necessary due to the significantly higher frequency of APOE ε4 carriers
in the A-positive group compared to the A-negative group, as shown

in Table 1. APOE ε4 carrier status is known to have a strong effect

on A positivity.75 To address this issue, we adjusted the data by both

batch and APOE ε4 status prior to the classification. With the modest

ROC-AUC values, further research is warranted to identify and vali-

date specific miRNA biomarkers for AD. This could involve exploring

combinations of miRNA data with other AD biomarkers to enhance
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the accuracy and reliability for predicting A/T/N positive and negative

groups.

Several limitations should be considered in our study. First, we

observed the zero-inflated count in this miRNA dataset. As shown in

Figure S1, many of the detected DE-miRNAs show a high percentage

of zero counts, which posed a challenge for the detection of DE-

miRNAs. To address this problem, we used the “poscounts” method

withinDESeq2 for size factor estimation. Thismethodadjusts for genes

with zero counts by calculating a modified geometric mean from non-

zero counts, thereby mitigating the impact of zero inflation on our

analysis. Additionally, we used the LRT to identify DE-miRNAs, evalu-

ating the significance of deviance between a full model incorporating

the A/T/N biomarker and a reduced model without it. Through these

strategies, we conducted the DE analysis to explore the association

between miRNA expression patterns and A/T/N biomarkers. Second,

our study solely relied on baseline data, emphasizing the importance

of conducting longitudinal analysis in future research. Last, our study

used miRNA-Seq data from the ADNI cohort without any replica-

tion data. Further studies are warranted to replicate our findings in

independent larger cohorts.

The results of this study advance the understanding of miRNA

expression and its role in AD.When integratedwith other ADbiomark-

ers, these findings may contribute to the development of optimized

AD biomarkers, complementing existing blood-based measures. More

specifically, these molecular profiles may assist in facilitating early

diagnosis and identification of the molecular pathological alterations

associated with AD. Continued research on the association between

plasmamiRNAs and the progression of AD is warranted.
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