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Abstract

Background As previously published, the MMPOWER-3 clinical trial did not demonstrate a significant benefit

of elamipretide treatment in a genotypically diverse population of adults with primary mitochondrial myopathy
(PMM). However, the prespecified subgroup of subjects with disease-causing nuclear DNA (nDNA) pathogenic
variants receiving elamipretide experienced an improvement in the six-minute walk test (6MWT), while the cohort
of subjects with mitochondrial DNA (mtDNA) pathogenic variants showed no difference versus placebo. These pub-
lished findings prompted additional genotype-specific post hoc analyses of the MMPOWER-3 trial. Here, we present
these analyses to further investigate the findings and to seek trends and commonalities among those subjects who
responded to treatment, to build a more precise Phase 3 trial design for further investigation in likely responders.

Results Subjects with mtDNA pathogenic variants or single large-scale mtDNA deletions represented 74%

of the MMPOWER-3 population, with 70% in the mtDNA cohort having either single large-scale mtDNA dele-

tions or MT-TLT pathogenic variants. Most subjects in the nDNA cohort had pathogenic variants in genes required
for mtDNA maintenance (mtDNA replisome), the majority of which were in POLG and TWNK. The mtDNA repli-
some post-hoc cohort displayed an improvement on the 6MWT, trending towards significant, in the elamipretide
group when compared with placebo (25.2+8.7 m versus 2.0+ 8.6 m for placebo group; p=0.06). The 6MWT results
at week 24 in subjects with replisome variants showed a significant change in the elamipretide group subjects who
had chronic progressive external ophthalmoplegia (CPEO) (37.3+9.5 m versus —8.0+ 10.7 m for the placebo group;
p=0.0024). Pharmacokinetic (exposure—response) analyses in the nDNA cohort showed a weak positive correlation
between plasma elamipretide concentration and 6MWT improvement.

*Correspondence:

Amel Karaa

AKARAA@mgh.harvard.edu

Full list of author information is available at the end of the article

©The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http//creativeco
mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.



Karaa et al. Orphanet Journal of Rare Diseases (2024) 19:431

Page 2 of 12

Conclusions Post hoc analyses indicated that elamipretide had a beneficial effect in PMM patients with mtDNA repli-
some disorders, underscoring the importance of considering specific genetic subtypes in PMM clinical trials. These
data serve as the foundation for a follow-up Phase 3 clinical trial (NuUPOWER) which has been designed as described

in this paper to determine the efficacy of elamipretide in patients with mtDNA maintenance-related disorders.

Classification of evidence Class |
ClinicalTrials.gov identifier NCT03323749

Keywords Elamipretide, PMM, Replisome, Mitochondria, MtDNA maintenance, MtDNA multiple deletions

Background

As a diverse group of genetically confirmed disor-
ders, primary mitochondrial myopathies (PMMs) pre-
dominantly, but not exclusively, affect skeletal muscle,
adversely impacting physical function and quality of life
[1]. Although individual mitochondrial diseases are rare,
PMMs are a common manifestation of primary mito-
chondrial diseases, with an estimated prevalence of 1-2
in 10,000 [2, 3]. PMM patients often display muscular
weakness, muscle atrophy, limited exercise capacity, and
fatigue [1, 4, 5], with no currently approved therapies.

The largest Phase 3 clinical trial to date in patients
with PMM, the MMPOWER3 trial, was recently com-
pleted [6]. This trial evaluated the efficacy and safety of
daily elamipretide, a mitochondria-targeting peptide, as a
treatment for patients with genetically confirmed PMM
[6]. The trial enrolled a highly heterogeneous popula-
tion of myopathic patients with a variety of pathogenic
variants in either nuclear (nDNA) or mitochondrial
(mtDNA) genes [6]. Mitochondria require the coordi-
nated translation of genes encoded by both nDNA and
mtDNA, and PMMs can be caused by alterations in
either genome. mtDNA encodes a handful of lipophilic
electron transport chain subunits, and ribosomal/trans-
fer RNAs used in mtDNA translation. Almost all (~99%)
of the mitochondrial proteome is encoded by nDNA,
including all proteins responsible for replicating mtDNA
(the mtDNA replisome). Alterations in these proteins,
caused by nuclear gene defects, are collectively referred
to as mtDNA maintenance disorders, or mtDNA deple-
tion and deletions syndrome (MDDS), with myopathy
being a common clinical occurrence [7].

Although MMPOWER-3 did not meet its primary end-
points assessing changes in the Six-Minute Walk Test
(6MWT) and fatigue in the total population, a post hoc
subgroup analysis revealed that subjects with nDNA
pathogenic variants experienced an improvement in
6MW'T compared with placebo [6]. Based on these find-
ings, further in-depth analysis was warranted to better
understand the genotype-specific responses in the trial,
and to enhance the likelihood of success for future clini-
cal trials in individuals with nuclear primary mitochon-
drial disease (nPMD).

Methods

Trial design

Full details of MMPOWER-3 have been previously
described [6]. In brief, MMPOWER-3 was a 24-week,
randomized (1:1), double-blind, parallel-group, placebo-
controlled clinical trial for adult patients with PMM, in
which subjects received elamipretide 40 mg subcutane-
ously once daily or placebo [6]. In the original analysis
of MMPOWER-3, subjects were stratified by the type of
pathogenic DNA variant (nDNA vs mtDNA) determined
to be the primary cause of PMM as approved by the adju-
dication committee [6]. Pathogenic DNA variants caus-
ing PMM were subclassified as causing mtDNA or nDNA
disorders [6]. The prespecified exploratory analysis was
conducted to further examine the effects of elamipretide
on the change from baseline to week 24 in the 6MWT
by genetic subgroups. Subject demographics at baseline
have been previously published in detail [6].

Standard protocol approvals, registrations, and patient
consents

MMPOWER-3 was conducted in accordance with inter-
national ethics guidelines, including the Declaration
of Helsinki, Council for International Organizations of
Medical Sciences International Ethical Guidelines, ICH
GCP guidelines, and all applicable laws and regulations
[6]. The trial was approved by institutional review boards,
and all subjects provided written informed consent [6].

Statistical analysis

In the original analysis of MMPOWER-3, the efficacy of
elamipretide was analyzed by genetic pathogenic vari-
ant subclass (mtDNA vs. nDNA) utilizing a mixed model
repeated measures (MMRM) [6]. In the new exploratory
analysis, the effect of elamipretide on the least squares
(LS) mean change from baseline in distance walked on
the 6MWT at 4 weeks, 12 weeks, and end of treatment
(week 24) was examined as a function of gene variants
using subjects from the MMPOWER-3 per-protocol
population who successfully completed the trial. The
analysis evaluated 6MW'T results by specific mtDNA
and nDNA genotypes. Efficacy in the mtDNA replisome
subgroup was further assessed by the presence of the
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chronic progressive external ophthalmoplegia (CPEO) as
a phenotype.

A pharmacokinetic/pharmacodynamic analy-
sis was also performed in the nDNA population to
assess the absolute change in the 6MWT as a func-
tion of steady-state elamipretide area under the plasma
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Fig. 1 Genotype breakdown of the mtDNA Replisome cohort
from MMPOWER-3 (percentage of the cohort [N=51])
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concentration—time curve (AUC). Regression analysis,
with corresponding r (correlation coefficient) and p val-
ues, and Loess smoothing were performed [8].

Results

Genetic subtype data

The mtDNA and nDNA variants within the entire trial
population, as well as the finding that subjects with
nDNA pathogenic variants who received elamipretide
performed significantly better on the 6MW'T compared
with placebo, have previously been published [6]. Among
the nDNA cohort, almost all subjects had pathogenic
variants associated with mtDNA maintenance, depicted
in Fig. 1. Most of these subjects had POLG pathogenic
variants, followed by pathogenic variants in TWNK
that encodes the mtDNA helicase Twinkle, and a hand-
ful of other genes encoding replisome-related enzymes,
including DGUOK, TYMP, TK2, RRM2B, RNASEH1 (see
Fig. 1).

As was previously published [6], in a post-hoc analysis,
the nDNA cohort (n=59) displayed a significantly greater
improvement in the 6MWT between elamipretide and
placebo (25.2 m versus 0.3 m, respectively, p=0.03). The
most robust of improvements, however, was observed in
the post-hoc cohort of subjects who had an mtDNA repli-
some genotype and a CPEO phenotype (Fig. 2). Subjects
with CPEO experienced ptosis, ophthalmoplegia, fatigue
and some also exhibited proximal muscle weakness.
Baseline functional characteristics of these patients is
described elsewhere [6]. At week 24, subjects in the repli-
some CPEO subgroup who received elamipretide (n=18)
experienced a mean increase from a baseline (mean of

Mitochondrial Replisome with CPEO Subgroup (n=32)
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Fig. 2 6MWT change from baseline (subgroup replisome pathogenic variants and chronic progressive external ophthalmoplegia [CPEQ])
phenotype. 6MWT, 6-min Walk Test; CPEO, chronic progressive external ophthalmoplegia; mtDNA, mitochondrial DNA; nDNA, nuclear DNA
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316.5+£17.5) of 37.3+9.5 m in the 6MW'T, compared
with a mean decrease from baseline (324.0+23.4) of
—8.0+10.7 m for the placebo group (n=14) (p=0.0024).

The analysis conducted in this trial also increased
understanding of genotype differences relating to elami-
pretide response within the mtDNA population, as pre-
sented in Fig. 3. Here, in this post-hoc analysis, the Least
Square Means (LS Means) standard error (SE) change
from baseline in distance walked on the 6MWT at week
24 was 14.9+6.4 m in subjects with mtDNA patho-
genic variants who received elamipretide (n=73) and
24.1+6.3 m for patients receiving placebo (n=73), rep-
resenting a 9.2 m between-group difference in favor of
placebo. The difference in favor of placebo was heavily
influenced by individuals with MT-TL1 pathogenic vari-
ants (week 24, n=49). In this cohort, placebo-treated
subjects (n=28) experienced a mean improvement of
424 m in the 6MWT compared to baseline (subjects
receiving elamipretide [n=21] walked 25.3 m greater at
24 weeks compared to baseline) (see Fig. 3). Individu-
als with low heteroplasmy in MT-TLI pathogenic vari-
ants trended towards having walked significantly farther
at week 24 (Fig. 4). Given the high number of individu-
als in the trial with MT-TLI pathogenic variants, this
placebo effect heavily influenced the overall results of
the MMPOWER-3 Phase 3 trial. Individuals with single
mtDNA deletions (week 24, n=49) also represented a
large portion of the mtDNA cohort (week 24, n=146),
with no observable differences at week 24 between elami-
pretide and placebo-treated subjects.
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Fig. 4 Effect of low heteroplasmy in MT-TL1 placebo subjects
on 6MWT

Considering the encouraging signal seen in the nDNA
cohort, we conducted exposure—response regression
analyses to better understand the pharmacokinetic-phar-
macodynamic relationship from the Phase 3 trial. These
data are presented in Fig. 5. There was a weak correla-
tion between plasma elamipretide exposure (expressed
as AUC) and 6MW'T improvement in this cohort when
evaluated as the change from baseline to Week 24
(r=0.308; p=0.0262).
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Fig. 3 6MWT Change from baseline in the overall mtDNA population and among the mtDNA subgroups. Other tRNA pathogenic variants,
as depicted in the graph on the far right, included those found in the transfer tRNAs that encode for the following amino acids: tyrosine (Y), valine
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Fig. 5 Exposure-response analysis (NDNA cohort at week

24). Change in 6BMWT nDNA pathogenic variants as a function

of elamipretide steady-state AUC. Placebo subjects are shown

with AUC=0. Symbols indicate sex; colors indicate age bracket.

A regression line (and the corresponding P and r values)

and a smoother (Loess) are displayed for the elamipretide group. The
green smoother excludes values below the limit of quantification

Discussion

Elamipretide is the first experimental therapeutic
compound progressing to a Phase 3 clinical trial in
patients with PMM (MMPOWER-3) [6]. This trial fol-
lowed the Phase 1/2 (MMPOWER-1) [9] and Phase 2
(MMPOWER-2) [10] clinical trials, in which treatment
with elamipretide was analyzed in patients with PMM.
Genetic variants within the MMPOWER-3 trial popu-
lation (i.e., both mtDNA and nDNA) have previously
been published, along with the finding that subjects with
nDNA pathogenic variants who received elamipretide
performed significantly better on the 6MWT in the trial
compared with placebo [6]. Although MMPOWER-3
trial did not meet its primary endpoints, post hoc anal-
ysis of results by genetic subtype have emphasized the
importance of considering specific disease genotypes
and phenotypical presentation in the design of interven-
tional clinical trials. As previously published, the post-hoc
genetic subgroup analysis on the co-primary endpoint in
MMPOWER3, Total Fatigue Score on the Primary Mito-
chondrial Myopathy Symptom Assessment (PMMSA
TES), did not demonstrate a differential effect when the
nDNA and mtDNA cohorts were compared [6]. The rea-
son a significant differential effect with daily elamipretide
was seen between the nDNA and mtDNA cohorts in
6MWT and not with the PMMSA TFS outcome measure
is not known. Fatigue is known to be a significant bur-
den for many patients with PMM; however, the different
types or components of fatigue contributing to overall
fatigue in patients is not well understood and was not dif-
ferentiated in the trial.
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This manuscript presents new analyses and highlights
novel findings of interest to the field. First, there was
significant improvement and a differential response in
6MWT in subjects with mtDNA replisome pathogenic
variants, an exciting finding that may help enrich future
interventional studies in PMM. Second, the significant
placebo effect in individuals with MT-TLI pathogenic
variants profoundly influenced the overall results of the
MMPOWER-3 trial given the relatively high propor-
tion of subjects with this mtDNA genotype in the trial.
Although the factors that led to this placebo effect are
not fully understood, variability among this mtDNA
cohort appears to have contributed. A number of individ-
uals with low heteroplasmy in M7-TLI and randomized
to placebo walked farther at this timepoint, which greatly
contributed to the observed placebo effect. Third, an
exposure—response relationship in the nDNA cohort
suggested a weak (albeit significant) positive correlation
between plasma elamipretide levels and pharmacody-
namic response in the 6MWT. These data were used as
a partial justification for increasing to a 60 mg dose in
NuPOWER. Finally, based on these data, a follow-up trial
has been designed and initiated with a more specific trial
population, an enrichment strategy that may increase the
likelihood for success in treating PMM [11].

The mtDNA replisome pathogenic variant subgroup
contained genes responsible for mtDNA replication and
maintaining the mitochondrial nucleotide pool. Our
analyses revealed no placebo effect in this cohort, which
was reassuring and consistent with placebo arms from
earlier trials using elamipretide [9, 10].

The majority of subjects in the mtDNA replisome
cohort had pathogenic variants in POLG, the most
commonly affected nuclear gene in the North Ameri-
can Mitochondrial Disease Consortium Registry [12].
Although still rare, POLG is a nuclear gene that encodes
the sole mitochondrial DNA polymerase enzyme. POLG
pathogenic variants are among the more common causes
of inherited mitochondrial diseases [13]. The POLG
enzyme contains proof-reading, polymerase, and linker
domains, making this enzyme important for both repli-
cation and fidelity of mtDNA copies [14]. Our analyses
revealed that individuals with POLG pathogenic variants
responded similarly to the mtDNA replisome cohort as
a whole, and elamipretide did not appear to discriminate
between the locus of POLG pathogenic variants and the
improvement in 6MWT in the trial (data not shown).
POLG pathogenic variants were seen across the endo-
nuclease, linker, and polymerase regions of the enzyme,
and represented similarly between the elamipretide and
placebo-treated groups.

The prevalence of POLG pathogenic variants in the
overall Phase 3 MMPOWER-3 trial was roughly 13%
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of the population (majority being monoallelic, causing
dominant disease), within the previously-reported range
of 4% to 26% across various studies [13, 15, 16]. POLG
pathogenic variants lead to a continuum broad spectrum
of clinical features that can present at any age; however,
age at disease onset can provide information regard-
ing diagnosis and outcome. For example, the onset of
CPEO dominates the POLG clinical spectrum in older
patients (>40 years); occipital epilepsy tends to occur in
younger patients (< 12 years); and peripheral neuropathy
and ataxia most often occurs between 12 and 40 years of
age [17]. Notably, our results suggest that CPEO involve-
ment was associated with greater clinical benefit of
elamipretide, suggesting certain nDNA phenotypes (i.e.,
adult-onset myopathies in patients>40 years of age) may
be more likely to respond to treatment with elamipretide.
Similar improvements were observed in individuals with
TWNK pathogenic variants, all of whom had CPEO.
Interestingly, the clinical trial results may also advance
our mechanistic insight of targeting cardiolipin with
elamipretide in PMM. mtDNA replication is essential
for maintaining energy homeostasis, and there is a direct
correlation between mtDNA copy number and the bio-
synthesis of the mitochondrial respiratory chain enzyme
complexes [18]. As previously described, all of the
enzymes responsible for mtDNA maintenance encoded
by nDNA are synthesized in the cytoplasm [6], and there-
fore must be transported across the inner mitochondrial
membrane, which is enriched with cardiolipin [6, 19-21].
Metabolite and nucleotide transporters depend on cardi-
olipin, the signature phospholipid of the mitochondrial
inner membrane, for their assembly and activity [6, 22].
Cardiolipin is also known to stabilize mtDNA packag-
ing into nucleoids, providing maintenance of mtDNA

Screening Period

Double-Blind Treatment Period
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integrity and respiratory function [23]. Elamipretide is
hypothesized to affect the mtDNA replisome, at least
partly, via a reduction in the leak of reactive oxygen
species (ROS) by helping to colocalize electron trans-
port complexes. Since mtDNA replisome components
are packaged into mitochondrial nucleoids that are in
close proximity to the electron transport chain [24], the
mtDNA replisome is likely susceptible to ROS produced
in close proximity to the electron transport chain [25].
In addition, since elamipretide stabilizes cardiolipin [26],
elamipretide may enhance cardiolipin-dependent func-
tions including inner mitochondrial membrane protein
import/assembly, metabolite/nucleotide transport, and
mtDNA stability. These presumptions are supported by
preclinical work in which elamipretide improved various
aspects of mitochondrial function and morphology [23,
27-30].

Pharmacokinetic analyses in the nDNA cohort also
showed a trend among subjects with higher elamipretide
exposure (measured in plasma) and improved 6MWT.
These data are encouraging and implicate a possible
pharmacokinetic-pharmacodynamic relationship in this
cohort.

Taken together, these data have provided the founda-
tion for a subsequent Phase 3 clinical trial enriched with
this population and using a 60 mg dose of elamipretide
(depicted in supplemental Fig. 6), which has been initi-
ated and fully enrolled at this time (NuPOWER Clinical
Trial, SPIMD-301, NCT05162768) [11]. NuPOWER was
designed to evaluate the efficacy and tolerability of elami-
pretide in nPMD subjects, with the primary efficacy end-
point being distance walked (meters) on the 6MWT [11].
Elamipretide was also studied in subjects with Barth Syn-
drome (TAZPOWER, SPIBA-201, NCT03098797), which

Safety Follow-up Period

-~

~

Elamipretide 60 mg
SC daily x 48 weeks
Eligible (N=65)*
subjects with 11 < Follow-up
nPMD up to 4 4 weeks
weeks Randomization Placebo
SC daily x 48 weeks
(N=65)*

-

J

*Consists of 90 subjects who have nPMD with replisome -related pathogenic variants and up
to 40 additional subjects with non-replisome nDNA pathogenic variants + CPEO

Fig. 6 Phase 3 trial design of NUPOWER enrolling subjects with replisome-related nDNA pathogenic variants and CPEQ'?
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is an X-linked mitochondrial disease caused by defects in
TAZ, a gene responsible for cardiolipin remodeling [31].
After approximately 36-weeks in the 168-week open-
label phase, elamipretide was associated with significant
and consistent improvements in 6MWT (n=38, 95.9 m,
p=0.02) and BTHS-SA TFS [31]. There were also sig-
nificant improvements in secondary endpoints including
knee extensor strength (skeletal muscle), patient global
impression of symptoms, and some cardiac parameters
(specifically stroke volume and cardiac output) [31].

Another consequence of the analyses presented here is
a better understanding of the genotype-specific responses
in the mtDNA alteration cohort. The prominent placebo
effect in the MMPOWER-3 trial [6] was unexpected and
not predicted by the Phase 2 trial (MMPOWER-2) [9].
The mtDNA cohort accounted for about three-quarters
of the subjects within the overall Phase 3 trial [6]. The
majority of these subjects (approximately 70%) had either
single large-scale mtDNA deletions or pathogenic vari-
ants in MT-TL1.

There are several limitations that must be acknowl-
edged. Primary mitochondrial disease is both genetically
and phenotypically heterogenous. We have previously
acknowledged that “basket” trial designs may induce
insurmountable heterogeneity in rare disease clinical
trials [6], leading to cautious optimism from our post
hoc genotype analysis in this small cohort of individu-
als. Furthermore, the 6MWT was the primary endpoint
examined in the subgroup analysis and the only meas-
ure to demonstrate a strong differential effect relative to
the nDNA and mtDNA cohorts. The lack of differences
in other endpoints and the existence of helpful (but not
definitive) and universally accepted biomarkers in adults
with PMM also leave room for caution. The ongoing
work to further understand the genotype/phenotype
relationship within the heterogeneous family of mito-
chondrial disease, the emergence of additional objec-
tive endpoints (eg, Mitochondrial Myopathy-Composite
Assessment Tool [32]), reliable biomarkers, and predic-
tive pre-clinical models will all strengthen the design of
interventional clinical trials and bolster PMM treatments
in the years ahead.

Conclusions

This analysis suggests that elamipretide has a beneficial
effect on ambulatory exercise capacity in patients with
PMM with nuclear gene-encoded mtDNA replisome dis-
orders. The data highlight the importance of considering
genetic subtypes in PMM. The benefit was particularly
relevant in those with replisome pathogenic variants and
CPEO. These findings emphasize the challenge of devel-
oping therapies for the broadly heterogeneous class of
mitochondrial diseases and reinforce the importance of
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focusing on genetic subgroups when developing treat-
ments for individuals with PMM, as well as provid-
ing insights into various genetic abnormalities and the
likelihood of responding to elamipretide for patients
with PMM. Based on the observations from this post
hoc analysis, a trial to evaluate the efficacy and safety of
elamipretide in subjects with primary mitochondrial dis-
ease resulting from nDNA mutations (NuPOWER) was
designed and is now fully enrolled [11].

Appendix 1
See Table 1.

Abbreviations

6MWT Six-minute walk test

ATP Adenosine triphosphate

AUC Area under the plasma concentration-time curve

CPEO Chronic progressive external ophthalmoplegia

LS Least Squares

MDDS MtDNA depletion and deletions syndrome

MMRM Mixed model repeated measures

mtDNA Mitochondrial DNA

nDNA Nuclear DNA

nPMD Nuclear primary mitochondrial disease

PMM Primary mitochondrial myopathy

PMMSATFS  Total fatigue score on the primary mitochondrial myopathy
symptom assessment

POLG Polymerase gamma

r Correlation coefficient

ROS Reactive oxygen species

TWNK Twinkle
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