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A B S T R A C T

Background: Deep brain stimulation has become a well-established clinical tool to treat movement disorders.
Nevertheless, the knowledge of processes initiated by the stimulation remains limited. To address this
knowledge gap, computational models are developed to gain deeper insight. However, their predictive power
remains constrained by model uncertainties and a lack of validation and calibration.
New method: Exemplified with rodent microelectrodes, we present a workflow for validating electrode model
geometry using microscopy and impedance spectroscopy in vitro before implantation. We address uncertainties
in the tissue distribution and dielectric properties and outline a concept for calibrating the computational model
based on in vivo impedance spectroscopy measurements.
Results: The standard deviation of the volume of tissue activated across the 18 characterized electrodes
was approximately 32.93%, underscoring the importance of electrode characterization. Thus, the workflow
significantly enhances the model predictions’ credibility of neural activation exemplified in a rodent model.
Comparison with existing methods: Computational models are frequently employed without validation or
calibration, relying instead on manufacturers’ specifications. Our approach provides an accessible method
to obtain a validated and calibrated electrode geometry, which significantly enhances the reliability of the
computational model that relies on this electrode.
Conclusion: By reducing the uncertainties of the model, the accuracy in predicting neural activation is
increased. The entire workflow is realized in open-source software, making it adaptable for other use cases,
such as deep brain stimulation in humans. Additionally, the framework allows for the integration of further
experiments, enabling live updates and refinements to computational models.
1. Introduction

Deep brain stimulation (DBS) has emerged as a widely used treat-
ment for various neurological disorders, in particular for movement
disorders such as Parkinson’s disease (PD) (Deuschl et al., 2006).
While improvements of PD motor symptoms are often observed within
minutes to a few days (Castaño-Candamil et al., 2019), DBS effects
in dystonia are far more delayed (Kupsch et al., 2006). Likewise, its
efficacy for diseases primarily characterized by non-motor symptoms,
such as depression, anxiety, and Alzheimer’s disease, is the subject of
ongoing research (Kisely et al., 2018; Laxton et al., 2010). Currently,
the major roadblock preventing optimized patient-specific stimulation
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protocols is the limited understanding of the mechanisms of action. This
applies in particular when immediate responses are not observable.
In this context, it is crucial to consider all potential uncertainties in
DBS applications. An accurately manufactured electrode plays a key
role, particularly in experiments using custom-made electrodes, where
manufacturing uncertainties are often not considered.

To better understand these mechanisms and to refine DBS applica-
tions, rodent models are widely employed to study its use in treating
various diseases and developing new therapeutic approaches. For ex-
ample, the use of DBS for PD has been investigated in rats (Campos
et al., 2020; Ruiz et al., 2022; Fauser et al., 2024), DBS for dystonia
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in hamsters (Lüttig et al., 2024), the regulation of inflammation in
mice (Falvey et al., 2024). Further examples can be found in Zhang
t al. (2024). Due to the size of the rodent’s brain, customized elec-

trodes are usually used, introducing an additional source of uncertainty.
owever, a consistent evaluation of the impact of uncertainties of

he electrode geometry is usually not conducted. While the electrode
eometry can be straightforwardly integrated into numerical models
nd its impact on the field distribution in the brain can be eluci-
ated (Gimsa et al., 2006), it has not yet become common practice
o use experimentally validated geometries in the models neither in
umans nor in rodents.

Computational models play a pivotal role in refining the under-
standing of the mechanism of interaction in DBS. By predicting stim-
ulation outcomes, the models shall unravel the underlying mechanics
of DBS. Advanced biophysical models and neuroimaging methods have
unlocked patient-specific computational models (Butenko et al., 2020;
Neudorfer et al., 2023). Yet, the models rely on many assumptions
nd are usually not validated against experimental data. Hence, their

reliability and predictive power are limited. The main challenge to-
wards validation is the limited accessibility of the stimulation system
before and after implantation. Thus, relatively simple methods have to
be used. For example, the impedance at 1 k Hz is often considered a
quality control measure for stimulation electrodes, despite neglecting
the strong frequency dependence of the impedance, which can lead to
changes in orders of magnitude (Evers et al., 2022).

In this work, we suggest a combination of microscopy and impedance
spectroscopy to implement a validated geometry model of the stimu-
lation electrodes. We investigated microelectrodes for DBS in rodents
in an in vitro setting. Consequently, we established a volume conductor
model (VCM) in a rat model to simulate the electric field and volume of
tissue activated (VTA) during DBS. Our results suggest that using single
frequency measurements as a quality control is not sufficient because
t cannot capture deviations of the geometry from the manufacturer’s
pecifications. Indeed, the geometrical uncertainty significantly impacts

the predicted electric field and VTA and needs to be considered.
A second aspect is model calibration, as the electrochemical prop-

rties of the stimulation electrodes and the tissue around the electrode
an change during the stimulation (Gimsa et al., 2005; Lempka et al.,

2009). In rats, for example, an encapsulation layer forms shortly af-
er implantation and significantly affects the impedance (Badstübner

et al., 2017). We present a concept to extract the properties of the
ncapsulation layer during stimulation by combining impedance mea-
urements and the numerical model. Eventually, the goal is to real-
ze a computational model that is informed continuously during the
timulation.

In sum, we present how to enhance the fidelity of the model by
alidating the stimulation electrode geometry in a controlled in vitro

setting. Then, we outline how this concept can be translated to the in
vivo condition. The approach is general and can be straightforwardly
adapted to human DBS. As we base all our analysis exclusively on
open-source software, it can be readily employed by other researchers.

2. Methods

2.1. Electrode characterization by microscopy

We used 40 custom-designed monopolar platinum DBS electrodes
(Microprobes for Life Science, Gaithersburg, USA) (see Fig. 1). Accord-
ng to the manufacturer’s specifications, the electrodes have a lead
adius of 112.50 μm, which is equivalent to the radius of the exposed
ounded tip serving as the stimulation contact, and a 1.5 μm-thick
olyamide coating. A Keyence VHX-5000 digital microscope with a VH-
100UR/W/T lens (Keyence Corporation, Osaka, Japan) was used to
ake images of the electrodes. The geometric parameters were extracted
rom the microscope images to estimate their variability. We employed
penTurns (Baudin et al., 2015) to fit parametric distribution functions

or each measured value of the geometrical parameters.
 e

2 
2.2. In vitro characterization

We conducted impedance spectroscopy to electrochemically char-
acterize the electrodes. The electrodes were immersed in a tank filled
with electrolyte solution. A gold wire was placed in the tank and served
s the ground because the used electrodes were monopolar. The wire

was placed 1 cm away from the electrode (see Fig. 1E). We used a
KCl electrolyte solution (1413 μS cm−1 at 25 ◦C, HANNA instruments,
Woonsocket, USA) and a physiological NaCl solution (15 550 μS cm−1

at 25 ◦C, B. Braun SE, Melsungen, Germany). During measurements,
the temperature of the solution was 20 °C, and the corresponding
conductivities were computed based on the manufacturer specification
to be 1278 μS cm−1 for KCl and 13 995 μS cm−1 for NaCl. Impedance
spectroscopy was performed on 20 out of the 40 electrodes, utilizing KCl
and NaCl solutions. The impedance spectroscopy was performed with
a Sciospec ISX-3 impedance analyzer (Sciospec Scientific Instruments,
Bennewitz, Germany). We swept the frequency logarithmically from
100 Hz to 10 MHz and measured the impedance at 100 points per decade
(600 points in total) at a peak amplitude of 50 mV. We chose the internal
measurement range 100OHM, and each frequency point was averaged
10 times by the impedance analyzer to reduce noise.

2.3. Impedance fitting

Following the in vitro measurements, the acquired data was fitted
o an equivalent circuit model using the ImpedanceFitter software li-
rary (Zimmermann and Thiele, 2021). The equivalent circuit utilized
or fitting (Fig. 1F) includes a lead resistance 𝑅OSI and a lead induc-

tance 𝐿OSI, which represents the OSI SCL-0.7-130 cables connecting
the electrode to the power source. OSI cables are wound-up stainless
steel wires (provided by Open Source Instruments Inc., Waltham, USA).
Additionally, the circuit incorporates a constant phase element 𝑍CPE in
parallel with a resistor 𝑅ct . The solution is modeled as a pure resistance
𝑅sol, while a stray capacitance 𝐶st r ay is introduced to account for the
capacitive effects in the experimental setup.

The impedance characteristics of the OSI cables were measured
separately. A 15 cm piece was measured with a Novocontrol NEISYS
impedance analyzer (Novocontrol Technologies, Montabaur, Germany)
using an input voltage of 14 mVRMS and frequencies from 1 Hz to
100 MHz at 20 points per decade. The line resistance 𝑅OSI was 5.89 Ω cm−

nd the line inductance 𝐿OSI was 51.25 nH cm−1. The electrode and gold
wire were connected to the measurement device by two cables with
 total length of 30 cm. Hence, a fixed value of 176.7 Ω was used for

the lead resistance, and a fixed value of 1.54 μH was used for the lead
inductance.

2.4. Computational modeling

A geometric and numerical model was constructed to represent the
electrode’s characterization in the known homogeneous medium. A 3D

odel of the experimental geometry was created and meshed using
he open-source software NGSolve (Schöberl, 2014) with the integrated

meshing module from Netgen (Schöberl, 1997). The finite element
ethod, as implemented in NGSolve, was employed to solve for the

lectric potential 𝜑 from the electro-quasistatic (EQS) formulation of
axwell’s equations

∇ ⋅ ((𝜎 + 𝑗 𝜔𝜀) ∇𝜑) = 0 . (1)

Here, 𝑗 denotes the imaginary unit, 𝜔 is the angular frequency, 𝜎 rep-
resents the conductivity, and 𝜀 denotes the permittivity of the medium.
The electric field 𝐄 is the negative gradient of the electric potential in
this formulation. The impedance of the simulated system was computed
as described in Zimmermann et al. (2021). Unless otherwise stated, we
used second-order curved finite elements.

To model the in vitro setup, it is sufficient to consider only Laplace’s
quation as the modeling domain comprises only one material (a more
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Fig. 1. Microscope images and schematic perspectives of the investigated monopolar microelectrode (A–D) and the related experimental setup (E) with circuit model
(F). (A, B) Electrode with a half-sphere as the rounded tip, as specified by the manufacturer. The electrode features a platinum wire entirely enclosed in the polyamide tubing. (C,
D) Electrode with an extended exposed part of the platinum wire, increasing the contact surface area. (E) Schematic design of the in vitro experiment with the electrode and an
unshielded gold wire used as counterelectrode. (F) Equivalent circuit model for the in vitro characterization of the electrode, encompassing circuit elements representing the used
OSI cables, the electrolyte solution, and the electrode with its interface to the solution.
detailed discussion is provided in Zimmermann et al. (2021)). In this
case, only the resistance instead of the impedance was computed.

We created a full rat head model to study the effect of DBS on
rodents. The model was based on the usual electrode placement in
rodent DBS of the subthalamic nucleus with monopolar electrodes. In
this case, a gold wire is placed close to the electrode lead and acts as the
counter electrode (Plocksties et al., 2021). Thus, we modeled a patch
on the top of the brain as a ground contact instead of grounding the
entire brain surface. In preliminary simulations, we found differences
in the impedance between the two configurations and chose the more
realistic geometry. An encapsulation layer forming around the elec-
trode was modeled with a 100 μm thickness as in previous works on
rodents (Butenko et al., 2019).

Eq. (1) was solved, and the impedance was computed across a broad
frequency range from 100 Hz to 10 MHz, which comprises all relevant
frequencies of the spectrum of standard DBS pulses (Butenko et al.,
3 
2019). All computations were performed with a stimulation amplitude
of 1 V. However, due to the linearity of the electro-quasistatic field
equation, the results can be scaled according to the amplitude. The
in vivo simulations were carried out using our open-source framework
OSS-DBSv22, which is based on NGSolve.

When simulating in vivo studies in rats, we considered the tissue’s
inhomogeneous and dispersive nature (Butenko et al., 2020). To rep-
resent the inhomogeneous distribution of white matter (WM), gray
matter (GM), and cerebrospinal fluid (CSF) in the brain, a segmented
image from a multi-contrast MR atlas of the Wistar rat brain was
utilized (Johnson et al., 2021). The choice of the dielectric properties
is not straightforward because of the large variation of the brain
properties (McCann et al., 2019). The four dispersions Cole–Cole model

2 https://github.com/SFB-ELAINE/OSS-DBSv2

https://github.com/SFB-ELAINE/OSS-DBSv2
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Table 1
Dielectric parameters of the Cole–Cole model. Minimum and maximum values for
gray matter, white matter, and blood of each parameter are given. The high-frequency
imit of the relative permittivity 𝜀∞ = 4 remained constant.
Dielectric parameters of the Cole–Cole model

Parameters Minimum values Maximum values

𝛼1 , … , 𝛼4 (0.1, 0.0, 0.0, 0.0) (0.1, 0.15, 0.3, 0.02)
𝛥𝜀1 , … , 𝛥𝜀4 (32.0, 40.0, 0.0, 0.0) (65.0, 5200.0, 2.0 × 105, 4.5 × 107)
𝜎 0.02 0.7
𝜏1 , … , 𝜏4 (7.96 × 10−12, 1.592 × 10−9,

0.0, 0.0)
(8.38 × 10−12, 132.63 × 10−9,
106.103 × 10−6, 7.958 × 10−3)

(CC4) introduced by Gabriel et al. is often used (Gabriel et al., 1996).
We recently found that the CC4 model may contain electrode-specific
contributions and suggested using only the three dispersions Cole–

ole model (CC3) (Zimmermann and van Rienen, 2021). A comparison
between the CC3 and CC4 models for the relevant tissue types is shown
in the supplementary information (SI) Sec. S3-E. To account for the
electrode–tissue interface, the fitted parameters of the CPE were used
o approximate the interface in the in vivo setup by an equivalent-circuit

approach (Zimmermann et al., 2023).
To test the convergence of the computational model, we computed

the impedance spectrum using different mesh qualities (see Figure S5).
We compared the results to the case where the maximum element
size was set equal to the voxel size because this setting marks the
optimal case for the given image resolution. The model was assumed
o converge when the difference in the estimated impedance was below
.5 % at all frequencies.

2.5. Uncertainty quantification

To assess the impact of varying geometrical properties of the elec-
trode on stimulation outcomes, we conducted uncertainty quantifica-
tion (UQ) (Tennøe et al., 2018). In UQ, sets of parameter combinations
re drawn from probability distributions describing the individual pa-
ameters and their uncertainty. An efficient opportunity to reduce the
umber of parameter combinations is to use polynomial chaos, which
valuates the model at selected parameter combinations and creates
 surrogate model containing information about the parameters’ un-
ertainty. The polynomial chaos expansion yields statistical quantities
uch as the mean and standard deviation (SD). In addition, the Sobol’
ndices of first and total order are obtained, which reveal the impact
f individual parameters on the model result. Other quantities, such as
he 5th and 95th percentile, are obtained from sampling the surrogate
odel. We defined the prediction interval as the range between the

th and 95th percentile (i.e., it is the 90 % prediction interval). We
sed the Python library Uncertainpy (Tennøe et al., 2018) with the

default settings (polynomial chaos expansion method with 4th-order
olynomials and 104 samples drawn from the surrogate model).

Further, we conducted a UQ for the dielectric properties of an
ncapsulation layer forming around the electrode within the in vivo

setup (Schmidt et al., 2016). Each parameter of the CC4 model was
ssumed to vary uniformly within the minimal and maximal values
ange across GM, WM, and blood (see Table 1).

2.6. Volume of tissue activated estimate

To assess the effect of the DBS in the rat model, we considered
the volume of tissue activated (VTA) (Butenko and van Rienen, 2022).
In this study, we employed a thresholding technique to compute the
VTA based on values reported by Åström et al. Åström et al. (2014).
As the fiber diameter in rats is comparably small, we use the value
for activating fibers with a diameter of 2.0 μm. Consequently, we apply
a threshold of 0.371 V mm−1 for 1 V amplitude and 60 μs pulse width
stimulation (refer to Table 3 in Åström et al. (2014)) to our calculated
electric field. For the thresholding approach, we only considered the
solution at a frequency of 10 k Hz.
 i

4 
3. Results

In the following, we present the key results of our workflow. First,
he properties of the real electrode geometry are investigated using
icroscopy and impedance spectroscopy, followed by the construction

of a virtual electrode geometry for use in computational simulations.
Then, we proceed to in vivo models and highlight the impact of the
lectrode geometry as well as the influence of encapsulation tissue on

the VTA size. Finally, we discuss how the model could be calibrated
uring in vivo stimulation.

3.1. Electrode characterization by microscopy

We observed significant deviations between the electrode geome-
tries measured in the microscope images and the manufacturer’s spec-
ifications. The mean radius of the rounded tip was 37.82 % larger than
expected. Likewise, the mean radius of the electrode lead was about
47.81 % larger than stated. Some electrodes featured an exposed wire
below the rounded tip, which in turn increased the total active contact
surface. We found a high variation, especially in the length of the
exposed part (see Fig. 1). The distribution of the measured values is
ummarized in Table 2 (see also Figure S4).

We used the Lilliefors goodness-of-fit test to find distributions that
fit the sample best (Lilliefors, 1967). Among the tested distributions,
he beta distribution yielded the best results. We report it in the form of

B(𝛼 , 𝛽 , [𝑎, 𝑏]), where 𝛼 and 𝛽 represent the distribution parameters, and
𝑎, 𝑏] denotes the interval of the distribution (see Table 2 and Fig. 3).

3.2. Comparing experimental and computational results

The impedance spectra show characteristic behavior: interface
mpedance is dominant at low frequencies, and inductive effects due
o the cables play a role only at high frequencies (see SI S2-A). We
an extract the characteristic resistance (Rsol in Fig. 1F) by fitting and

comparing it to the simulated impedance (see Figure S1). We observed
a noticeable offset in the impedance when comparing the experimental
data with the simulated resistance (see Figure S1). The mean resistance
was 5816.38 Ω based on the fits from all experimentally characterized
electrodes. The simulated impedance, based on manufacturer data,
was 7874.94 Ω, and therefore 35.39% larger than expected. To test if
the offset resulted from the assumed electrode geometry based on
manufacturer data, we used the actual geometry of each electrode
as observed under the microscope. This refinement resulted in a sig-
nificant improvement in the agreement between the simulation and
experimental results in both considered electrolyte solutions (results in
KCl are shown in Fig. 2, results in NaCl in Figure S3). In the following,

e considered only the KCl solution as its conductivity is closer to the
rain tissue conductivity. Two out of 20 electrodes had a relative error

above 10 %. Because the geometrical properties could not explain such
a high deviation, those electrodes were assumed to be damaged and
were not used for further stimulation experiments.

3.3. Uncertainty quantification

We used the probability distributions obtained from microscopy
to estimate the uncertainty of the computational model. The mean
impedance as obtained by the UQ was 5486.55 Ω with a standard de-
viation of 515.93 Ω. The 90 % prediction interval ranged from 4715.39 Ω
to 6412.26 Ω.

The first-order Sobol’ indices, as a measure of sensitivity, suggest
that the tip radius significantly impacts the total impedance, while the
length of the exposed wire demonstrates a minor effect (see Fig. 3).
urther, the radius of the electrode lead exhibits minimal impact on
he estimated results. These findings emphasize the crucial role of
n accurately manufactured tip while the tubing does not need to
deally insulate the remaining part of the electrode. We also considered
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Table 2
Geometrical parameters of the measured electrodes and parameters for fitted beta distribution. The ideal values are
shown with the characterized mean values and standard deviations (n = 40).
Electrode parameters Fitted beta distribution

Electrode parameters (μm) Ideal electrode Measured (mean ± SD) 𝛼 𝛽 [𝑎, 𝑏]
Tip radius 112.50 155.04 ± 9.94 1.78 1.98 [134.2, 178.2]
Lead radius 114.00 168.50 ± 4.25 2.12 0.98 [155.67, 174.42]
Exposed wire 0.00 38.17 ± 37.90 1.51 2.79 [−26.80, 158.21]
Fig. 2. Simulation results for in vitro characterization in KCl. (A) The magnitude of the electric field in the in vitro experiment is shown for a monopolar electrode placed
1 cm from an uninsulated, grounded gold wire. (B) The comparison of experimentally determined impedance with computationally estimated resistance Rsol in KCl is shown. The
error bars represent the difference between both results for each electrode. Likewise, the relative difference is shown.
Fig. 3. Sensitivity analysis on geometrical parameters of the DBS electrode in the in vitro setup. In the upper panel (A–C), a histogram of the geometrical parameters is
shown together with the fitted beta distribution described in Table 2. Since the number of electrodes (𝑛 = 40) allows considering alternative distributions, further simulations are
shown in SI S3.1, leading to comparable results. (D) The mean value and the standard deviation (SD) for the impedance, as well as the 5th and the 95th percentile, are shown.
Additionally, the first-order Sobol’ indices, which indicate the parameter sensitivity for the uncertain parameters such as the contact radius 𝑟cont act , the length of the exposed part
𝑙exposed, and the lead radius 𝑟lead, are presented.
distributions other than the beta distribution including the normal
distribution and two uniform distributions with different support (see
5 
SI S3.1). The difference in the estimated mean value was less than 8.2%,
and the difference in the 5th and the 95th percentile was less than 5.7%.
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Fig. 4. Computational model of the rat head. (A) Sagittal section of the full 3D rat head model used in the simulations. (B–D) Close-up view of the inhomogeneous material
distribution in the model, including gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and the electrode with its surrounding encapsulation layer (B). Potential
distribution (C) and magnitude of the electric field (D) during unit 1 V stimulation at a frequency of 10 k Hz. (E–G) Simulation results of the volume of tissue activated (VTA)
without encapsulation layer ((E) - 0.133 mm3 versus 0.613 mm3), with 100 μm layer of gray matter ((F) - 0.137 mm3 versus 0.593 mm3) and with 100 μm layer of blood ((G) - 0.201 mm3

versus 0.815 mm3). Results are presented for the electrode generating the smallest VTAs (orange) and the electrode generating the largest VTAs (yellow).
This result underscores the robustness of the UQ result. The first-order
Sobol’ indices show that the impact of the lead radius 𝑟lead is negligible
for all modeled distributions.

3.4. Translation to in vivo studies

The geometry models of the 18 validated electrodes were used
to model DBS in a full rat head model incorporating gray matter,
white matter, and cerebrospinal fluid (Andree et al., 2022). Thus, we
accounted for the deviations in the electrode geometry to obtain a reli-
able numerical model. Furthermore, the thickness of the encapsulation
layer was set to 100 μm, and it was modeled as gray matter. The CC3
model, which assumes the brain to be predominantly characterized
by resistance (Logothetis et al., 2007; Zimmermann and van Rienen,
2021), was used to model the dielectric properties.

An exemplary electric field distribution in the brain for a single
electrode is shown in Fig. 4. Because the potential around the electrode
decays quickly and the electric field vanishes (see Fig. 4), we cropped
the computational domain. The validity of the model reduction has
been tested by comparing the impedance of the reduced model to the
6 
impedance of the full model. Further visual comparisons can be found
in Figure S6.

The electrode-specific VTAs obtained by thresholding the electric
field magnitude at 0.371 V mm−1 revealed considerable variations in
size. The mean VTA size was 0.353 mm3 with a standard deviation
of 0.116 mm3, corresponding to a variation of 32.93 %. Notably, the
largest estimated VTA reached 0.593 mm3, while the smallest volume
was estimated at 0.137 mm3.

3.4.1. Impact of encapsulation tissue
After validating the geometrical model of the electrode, the tissue

surrounding the electrode is the main source of uncertainty. Here, we
assumed that the MRI image provides sufficient information about the
brain and only studied the impact of the encapsulation layer on the
impedance and the size of the VTA. For that, we initially focused on
the impact of the dielectric properties of the encapsulation layer.

In the first scenario, we assumed that the encapsulation layer has
the same properties as gray matter, which represents the most common
tissue type in the brain. In the second scenario, the encapsulation layer
was assumed to be filled with blood, which has a significantly higher
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Fig. 5. Visualization of the VTA using two different models of the dielectric properties. (A) The VTA is shown for a simulation using the three-dispersion Cole–Cole model
(orange) compared to the four-dispersion Cole–Cole model (yellow) for the electrode with the median VTA size. (B) The material distribution affects the shape of the VTA, especially
in the four-dispersion Cole–Cole model, which has lower conductivity, resulting in a larger VTA.
conductivity than gray and white matter. This scenario represents the
acute case shortly after the electrode implantation (Polikov et al.,
2005; Grill and Thomas Mortimer, 1994). The impact of the dielectric
properties on the VTA is significant: in the case of the high conductivity
(blood), the VTA is, on average, 30.17% larger, with a maximum
difference of 53.18 % (see Fig. 4). The corresponding impedance spectra
(see Figure S7) show a significant change as well, as the impedance at
10 k Hz is almost halved.

Using the CC4 model with the electrode-specific approximation of
the interface effects instead would lead to a 10 % larger mean VTA size
(see Fig. 5). Significant spectra changes can also be observed (see SI S9).
Eventually, we wanted to probe if the total impedance is sufficient
to simultaneously identify both dielectric properties and geometrical
parameters. This means testing if the impedance spectrum can be de-
scribed by only one encapsulation layer thickness, one permittivity, and
one conductivity. If this is not the case, either the dielectric properties
(permittivity and conductivity) or the thickness of the encapsulation
layer have to be known to extract these parameters reliably from an
impedance spectrum.

First, we determined which parameters contribute mainly to the
uncertainty of the impedance of the entire brain tissue (see Fig. 6).
As the conductivity of the encapsulation tissue has the largest im-
pact on the impedance, we focused solely on this parameter. We
estimated the encapsulation thickness so that the impedance for dif-
ferent choices of 𝜎 matches 5701.187 Ω, which is the impedance for a
100.00 μm thick encapsulation layer with gray matter properties and a
conductivity of 0.15 S m−1 at 10 k Hz. We found that conductivities of
0.1 S m−1, 0.15 S m−1, and 0.2 S m−1 yielded the desired impedance with
corresponding encapsulation thicknesses of 284.64 μm, 100.00 μm, and
69.39 μm. This demonstrates that either the dielectric properties or the
thickness of the encapsulation layer have to be known to extract the
other quantity from the impedance spectrum. If both are unknown, no
unique solution exists to the inverse problem.

4. Discussion

In DBS research, realistic simulation models are crucial to under-
stand the underlying mechanism and developing optimized stimulation
schemes. To date, numerical models of DBS electric field distributions
rely on multiple assumptions on the geometry and material properties,
which carry significant uncertainties (Neudorfer et al., 2023). Here, we
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focused on the uncertainty of the electrode geometry. While electrodes
for human DBS (e.g., commercially available electrodes for clinical use
or custom-made electrodes used in preclinical studies) carry manufac-
turing uncertainties, the geometric uncertainties of electrodes for use in
rodent models can be expected to be particularly significant. The higher
uncertainties are caused by the need for miniaturization compared to
human DBS electrodes because of the smaller brain size. However, the
geometry of custom-made electrodes is usually not analyzed in detail
and is also not considered in computational models.

The electrode geometry is a key ingredient when building a patient-
specific computational DBS model. Usually, the electrode geometry is
chosen based on manufacturer specifications or reconstruction algo-
rithms (Neudorfer et al., 2023). Both approaches introduce geometrical
uncertainties. This is particularly relevant when only manufacturer
specifications are available because the manufacturing accuracy needs
to be accounted for. Because the electrode geometry is not accessible
after implantation, we developed an in vitro characterization work-
flow. We employed a comprehensive approach combining microscopy,
impedance spectroscopy, and computational simulations to account for
uncertainties in geometrical parameters and validate electrode char-
acteristics. Recently, guidelines for standardized performance tests for
electrodes intended for neural interfaces have been introduced, which
focus only on electrochemical characterization (Boehler et al., 2020).
Our approach goes beyond these guidelines as the numerical simula-
tions enable us to formulate an initial expectation and permit us to
update the model of the electrode geometry. Thus, we can distinguish
usable but slightly deformed electrodes from damaged electrodes. In
addition, we have shown that the geometrical uncertainties of the
stimulation electrodes significantly impact the VTA, i.e., the stimulation
targeting. This adds to UQ studies that have mainly considered electro-
chemical electrode properties or tissue properties (Butson et al., 2006;
Schmidt and van Rienen, 2013). A key advantage of our simulation
pipeline is the straightforward update of electrode geometries, which
enables fast and automated UQ studies.

As our suggested experimental characterization does not require
elevated resources, it can, in principle, be conducted before every stim-
ulation experiment. As a result, realistic model geometries are used in
the numerical model, which enhances its reliability compared to models
relying solely on manufacturer specifications. The simplicity of the in
vitro approach facilitates a transfer to other electrodes and stimulation
settings. In this study, for example, we adjusted in vivo models based on
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Fig. 6. Frequency-dependent first-order Sobol’ indices for selected parameters of the four-dispersion Cole–Cole model along with the mean values and 90 % prediction
intervals for (A) the real and (B) the imaginary parts of the impedance over a wide frequency range. We use the ideal electrode geometry, and the dielectric properties of
the encapsulation layer were estimated based on the four-dispersion Cole–Cole model. We varied a selection of parameters from the model to observe their impact, including the
conductivity 𝜎, the magnitude of the 2nd and 4th dispersion 𝛥𝜀2 , 𝛥𝜀4, and the mean relaxation time of the 4th dispersion 𝜏4. As indicated by the frequency-dependent first-order
Sobol’ indices, the conductivity has the largest impact on the estimated impedance, except for the real part of the impedance in the megahertz range, which is most sensitive to
the magnitude of the second dispersion.
the in vitro characterization to mitigate uncertainties in the electrode
geometry. While recent studies have explored brain stimulation in
rodents (Lüttig et al., 2024; Falvey et al., 2024), simulations have yet
to be conducted. With our approach, reliable field strength estimates
will become accessible.

Yet, in vitro characterization cannot account for processes during the
stimulation. It has been shown that the impedance changes during stim-
ulation because of changes in the encapsulation tissue (Lempka et al.,
2009), but also due to stimulation-induced changes in the electrode–
tissue interface (Evers et al., 2022). These stimulation-induced changes
have been observed to result from protein absorption and desorption at
the electrode. They are mostly reversible, and cessation or resumption
of stimulation increases or decreases impedance, respectively (Evers
et al., 2022). Here, we used parameters for the electrochemical inter-
face as determined in the in vitro characterization. This approximation
most likely does not fully reflect the in vivo situation and cannot
account for dynamic processes at the electrode–tissue interface.

Besides the geometrical and electrochemical properties of the elec-
trode, the tissue properties around the electrode significantly impact
the stimulation outcomes (Butson et al., 2006; Butson and McIntyre,
2005). As we have shown, the accumulation of blood (or other highly
conductive liquids) within the encapsulation tissue can be expected to
lead to a much larger VTA. Thus, the stimulation in the chronic state
differs from the initial state, in which scar tissue forms around the
electrode. These changes in the encapsulation tissue have been charac-
terized using impedance spectroscopy (Lempka et al., 2009). We also
observed significant changes in the impedance estimated through the
stimulation electrode when altering the encapsulation tissue properties.
Thus, we wanted to investigate if impedance spectroscopy could help
to simultaneously detect changes in the dielectric properties or the
thickness of the encapsulation layer. However, we have shown that
this is not possible. The inverse problem, determining the dielectric
properties and thickness of the encapsulation layer, is ambiguous, and
one parameter can only be extracted from the impedance if the other
one is known.

Another source of uncertainty is the choice of the dielectric prop-
erties. Usually, an empirical model based on data from the literature
is used, the CC4 model (Gabriel et al., 1996). The CC4 model incor-
porates resistive and capacitive effects, potentially including electrode-
specific interface interactions, which eventually lead to low conduc-
tivity values that are not in agreement with other conductivity mea-
surements (Zimmermann and van Rienen, 2021). As the CC4 model
may contain complex electrode–tissue interactions specific to the orig-
inally used electrode, it may not be consistent with the experimental
data of our electrodes. In contrast, the CC3 model incorporates the
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tissue’s resistive properties and excludes these inherent interface effects
through an algorithmic correction of the CC4 model. Thus, it enables
us to add an electrode-specific model of electrode–tissue interactions
based on our in vitro impedance spectroscopy data. By integrating
our experimental data rather than relying on predefined assumptions,
the CC3 model allows for a more accurate representation of electro-
chemical interface effects. Still, our approach relies on the assumption
that the electrochemical interface properties obtained in vitro can be
assumed during in vivo stimulation. However, this assumption needs to
be scrutinized through in vivo investigations (Lempka et al., 2009).

A comprehensive understanding of the electrode–tissue interface
is essential to reduce uncertainties in modeling. Characterizing the
interface during the stimulation is challenging (Evers et al., 2022).
While impedance measurements can indirectly reflect changes at the
electrode–tissue interface, accurately interpreting these measurements
requires a thorough understanding and characterization of all factors
affecting the impedance. Our theoretical results indicate that ideally,
the size of the encapsulation layer is known from external measure-
ments to gain access to electrochemical and dielectric properties. Ide-
ally, validation measurements can be conducted during the stimulation
to better link the electrical stimulation to the clinical effect. Simultane-
ous recordings of voltage and current transients could help to estimate
the impedance during the stimulation (Zimmermann et al., 2021) and
update the numerical model.

Additionally, a feedback loop with reliable VTA or pathway activa-
tion models could be developed (Parastarfeizabadi and Kouzani, 2017).
In this work, we employed a simple estimate of the VTA to predict
stimulation outcomes instead of more sophisticated methods such as
pathway activation modeling (Butenko and van Rienen, 2022). While
using the volume of the VTA as a measure of changes in the stimulation
outcome, the percent activation of specific pathways would be assessed
based on pathway activation modeling (PAM). However, performing
precise pathway activation modeling in rodents is challenging because
no detailed normative connectomes are available.

Uncertainties in the electrode geometry can also occur in electrodes
for human DBS. Yet, detailed information on manufacturing tolerances
is scarce, and the high cost of human DBS electrodes limits the ability
to conduct a thorough investigation, as introduced in this work for
rodent electrodes. However, all simulations were carried out using a
modular and easily adaptable platform to facilitate similar future model
extensions. This modularity ensures that our modeling approach can be
re-used to simulate DBS in humans. Furthermore, translation to more
complex measures such as PAM, is straightforward, as they are mostly
based on the estimated potential distribution.
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5. Conclusion

Our study highlights the importance of accurately characterizing
lectrode properties and understanding the uncertainties associated
ith DBS modeling. Through a comprehensive approach combining

xperimental characterization and computational modeling, we demon-
trated the significant impact of geometrical variations on stimulation
utcomes. Furthermore, our use of open-source modeling frameworks
mphasizes the accessibility and applicability of our approach for future
esearch in DBS, both in humans and in different rodent disease models.
hile we focused on immediate changes due to geometrical variations,

uture studies should consider longitudinal effects at the electrode–
issue interface to refine our understanding further. Overall, our work
dvances the precision and reliability of DBS modeling for more accu-
ate predictions of stimulation outcomes and improved pre-clinical and
linical applications.
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