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ARTICLE INFO ABSTRACT
Keywords: Background: Quantitative magnetic resonance imaging (MRI) analysis has shown promise in differentiating
Progressive supranuclear palsy neurodegenerative Parkinsonian syndromes and has significantly advanced our understanding of diseases like

Machine learning
Deep learning
Diffusion tensor imaging (DTI)

progressive supranuclear palsy (PSP) in recent years.

Objective: The aim of this study was to develop, implement and compare MRI analysis algorithms based on
Magnetic resonance imaging (MRI) artificial intelligence (AI) that can differentiate PSP not only from healthy controls but also from Parkinson
Neuropathology disease (PD), by analyzing changes in brain structure and microstructure. Specifically, this study focused on
tau protein identifying regions of interest (ROIs) and tracts of interest (TOIs) that are crucial for the algorithms to provide
clinically relevant performance indices for the distinction between disease variants.

Methods: MR data comprised diffusion tensor imaging (DTI - tractwise fractional anisotropy statistics (TFAS))
and T1-weighted (T1-w) data (texture analysis of the corpus callosum (CC)). One subject sample with 74 PSP
patients and 63 controls was recorded at 3.0T at multiple sites. The other sample came from a single site,
consisting of 66 PSP patients, 66 PD patients, and 44 controls, recorded at 1.5T. Four different machine learning
algorithms (ML) and a deep learning (DL) neural network approach using Tensor Flow were implemented for the
study. The training of the algorithms was performed on 80 % of the data, which included the entire single-site
data and parts of the multiple-site data. The validation process was conducted on the remaining data, thereby
consistently separating training and validation data.

Results: A random forest algorithm and a DL neural network classified PSP and healthy controls with accuracies
of 92 % and 95 %, respectively. Particularly, DTI derived measures for the pons, midbrain tegmentum, superior
cerebral peduncle, putamen, and CC contributed to high accuracies. Furthermore, DL neural network classifi-
cation of PSP and PD with 86 % accuracy showed the importance of 19 structures. The four most important
features were DTI derived measures for prefrontal white matter, the fasciculus frontooccipitalis, the midbrain
tegmentum, and the CC area II. This DL network achieved a sensitivity of 88 % and specificity of 85 %, resulting
in a Youden-index of 0.72.

Conclusion: The primary goal of the present study was to compare multiple ML-methods and a DL approach to
identify the least necessary set of brain structures to classify PSP vs. controls and PSP vs. PD by ranking them in a
hierarchical order of importance. That way, this study demonstrated the potential of Al approaches to MRI as
possible diagnostic and scientific tools to differentiate variants of neurodegenerative Parkinsonism.
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1. Introduction

Progressive supranuclear palsy (PSP) is a 4R-tauopathy with pa-
thology in neurons, astrocytes, and oligodendroglia [1] associated with
different clinical phenotypes such as PSP-Richardson’s syndrome
(PSP-RS) and PSP-parkinsonism (PSP-P) [2,3]. To capture the multi-
faceted phenotypical presentations of PSP, four functional domains
(ocular motor dysfunction, postural instability, akinesia, and cognitive
dysfunction) have been identified as clinical predictors of PSP in the
current MDS diagnostic criteria according to [2,4]). Still, PSP patients
might not be diagnosed or might be misdiagnosed with Parkinson’s
disease (PD) especially in the early stages after the first symptoms have
been recognized [5]. Therefore, there is the need to use technical ap-
proaches beyond clinical symptoms to identify early PSP. In recent
years, neuroimaging has significantly improved our understanding and
diagnosis of PSP [6].

Quantitative MRI analysis has been shown to be useful in differen-
tiating atypical Parkinsonian syndromes from PD [7]. Several diagnostic
methods and potential biomarkers using MRI have been described in the
literature, including frontal brain atrophy, alterations of the frontal part
of the corpus callosum (CC), and changes in the midbrain—pons area (e.
g., superior cerebellar peduncle) as possible biomarkers for PSP-RS
[8-12]. Methods such as MRPI (Magnetic resonance parkinsonism
index), MRPI 2.0 [13], and the mesencephalon/pons ratio [14] have
achieved promising results. Possible correlations have already been re-
ported between the level of glial cell line-derived neurotrophic factor
(GDNF) and neuroimaging parameters. GDNF in the CSF was negatively
correlated with the midbrain-to-pons (M/P) ratio, and positively
correlated with MRPI and MRPI 2.0 in PSP-RS [15]. Brain charts for the
human lifespan have been recently proposed to build dynamic models of
brain anatomy in normal aging and various neurological conditions.
Planche and colleagues observed six major consecutive stages of atrophy
progression in PSP-RS matching the neuropathological staging of tau-
opathy progression [16].

From a computational perspective, artificial intelligence (Al)-based
approaches [17] have been reported to enable earlier detection of PSP
patients. Especially a current Deep Learning (DL) approach [18]
combining an automated measurement and segmentation of specific
brain regions has been suggested as a tool for the early diagnosis of PSP.

In addition to those previous works, the primary goal of the present
study was to compare multiple machine learning (ML) algorithms and a
DL neural network approach to identify the least necessary set of brain
structures to classify PSP vs. controls, and PSP vs. PD. Thereby patho-
anatomically informing brain structures were ranked in a hierarchical
order of importance needed to provide clinically relevant performance
indices (accuracy, sensitivity, specificity, and Youden index). Impor-
tance of a parameter was defined relatively. This means that an
"important" parameter can classify many data sets correctly and a
parameter that is less important can only classify a few data sets
correctly. Different parameters from T1-weighted (T1-w) and DTI data
were derived from predefined brain structures.

2. Methods
2.1. Subjects and patient characteristics

This study consisted of two cohorts of PSP patients at different
clinical stages who met the MDS diagnostic criteria for PSP [2] and the
Multiple Allocations Extinction (MAX) rules [2,19] which were applied
to all PSP subjects in both cohorts. The MDS-PSP criteria have been
established in 2017 by the Movement Disorder Society-endorsed PSP
Study Group as the international standard for the operationalization of
clinical features for the diagnosis of PSP, stratified by predominance
type and diagnostic certainty [2]. Since 2019, the application of the
MAX rules - also established by the Movement Disorder
Society-endorsed PSP Study Group - has been used as an amendment to
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the MDS diagnostic criteria to reduce the number of patients with
multiple diagnostic allocations, i.e., to simplify and standardize the use
of the MDS-PSP criteria for both research and clinical care [19].

Cohort A included initially 78 PSP patients (mean age 70.0 + 7.4
years, male/female = 38/40); of those, 21 PSP patients underwent a
follow—up scan after 17.5 months on average (range 11.3-34.8 months),
and 63 controls (mean age 68.6 + 7.7 years, male/female = 30/33, with
17 controls undergoing a follow—up scan after 17.0 months on average
(range 10.0-37.4 months). Data were multi-centrically recorded with
3.0T MR, as part of the DESCRIBE and DANCER studies initiated by the
DZNE (German Center for Neurodegenerative Diseases) across 9 sites.
Cohort B comprised a single-site sample of 66 PSP patients (mean age
70.5 + 9.1 years, male/female = 38/28) 66 PD (mean age 71 + 10
years, male/female = 41/25) and 44 controls (mean age 68.5 + 5.3
years, male/female = 25/19), recorded at 1.5T at the Department of
Neurology, University of Ulm, Germany [8]. These patients were char-
acterized with respect to disease severity (PSP Rating Scale (PSPRS),
[20]), clinical stage (according to the staging system by [21], and
phenotype according to the MDS Diagnostic Criteria of PSP and the MAX
rules [2,19]. In cohort A, 78 patients with a diagnosis of PSP (PSP-RS:
55; PSP-P: 23) were initially included. Cohort B included 66 PSP pa-
tients, with 46 of the phenotype PSP-RS and 20 of the phenotype PSP-P.
In both cohorts, patients had the diagnosis of probable PSP. Only PSP
patients who underwent MRI scans including MPRAGE and DTI without
relevant artefacts and imaging abnormalities compromising the accu-
rate assessment of the scans (e.g., extended vascular lesions) were
considered for the study. All controls were well-matched volunteers
without a history of neurological or psychiatric disease or other relevant
medical conditions. Table 1 summarizes the demographic and clinical
data of the participants.

This experimental study was conducted in compliance with the
declaration of Helsinki. All subjects provided written informed consent
according to institutional guidelines approved by the DZNE (for Cohort
A: “Klinische Register-Studie neurodegenerativer Erkrankungen
(DESCRIBE)” and “Vertiefte Phanotypisierung der Progressiven Supra-
nuklearen Parese (DESCRIBE-PSP)”, No. 311/14), and the Ethics Com-
mittee of Ulm University, Germany (for Cohort B and PD, No. 279/19,
No. 284/22).

2.2. Scan protocols

MRI scanning was performed using two different protocols in the two
cohorts. The MRI protocol for Cohort A, as part of the multicentric DZNE
studies DESCRIBE and DANCER, used the following sequences: high
resolution T1-w scans consisting of 192 sagittal slices with a resolution
of 256 x 256 pixels and a slice thickness of 1.0 mm and an in-plane pixel
size of 1.0 mm x 1.0 mm. Echo time (TE) was 4.3 ms and repetition time
(TR) was 2500 ms. DTI included 70 gradient directions (GD) with a b-
value of 1000 s/mm?, and including 10 acquisitions with a b-value of b
= 0 s/mm> Each DTI volume consisted of 72 slices, a resolution of
2.0x2.0x2.0 mm?® (matrix 120x120x72), TE was 88 ms, and TR was
12100 ms. All participants of cohort A had the identical acquisition
protocol; for details of the center distribution please refer to Supple-
mentary Information I. The protocol for Cohort B at 1.5 T (Magnetom
Symphony; Siemens Medical, Erlangen, Germany) used the following
sequences: high resolution T1-w scans consisted of 144 sagittal slices
with a resolution of 256 x 256 pixels and a slice thickness of 1.2 mm and
an in-plane pixel size of 1.0 mm x 1.0 mm; TE was 4.2 ms and TR was
1640 ms. DTI used 52 GD with a b-value of 1000 s/mm?, and including 4
acquisitions with a b-value of 0 s/mm?). 64 slices were acquired with
resolution of 2.0x2.0x2.8 mm? (matrix 120x120x64), TE was 85 ms, and
TR was 7600 ms.

2.3. Data analysis

Pre— and post-processing (Fig. 1) of the data was performed using
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Table 1
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Subjects’ characteristics. PSP — progressive supranuclear palsy, PSP-P — progressive supranuclear palsy with predominant parkinsonism, PSP-RS — progressive
supranuclear palsy with Richardson’s syndrome, PSPRS - Progressive supranuclear palsy rating scale, PD — Parkinson disease. (*a) [20]; (*b) [21]; (*c) [2]. Values of

continuous variables are given in mean =+ standard deviation and range.

N (m/f) N (m/f) Time to follow-up/  Age/years Age/years Disease duration/ Disease duration/
(baseline) (follow- months (baseline) (follow-up) years (baseline) years (follow-up)
up)
Cohort A PSP-RS patients 55 (24/ 13 (5/8) 17.6 £ 8.1 71.0 £ 7.4 723+7.7 4.3 + 2.8 (0.6-14.4) 5.2 +2.2(2.4-9.8)
(3.07) 31) (10.4-34.3) (50.6-86.2) (59.4-81.4)
PSP-P patients 23 (14/9) 8(5/3) 16.0 + 5.8 68.2 +7.6 70.0 £ 5.9 3.8 + 1.8 (0.5-6.9) 5.0 + 1.6 (2.6-7.2)
(11.2-25.4) (52.0-83.9) (62.8-77.8)
p (t-test, PSP-RS - - - n.s. n.s. n.s. n.s.
vs. PSP-P)
all PSP patients 78 (38/ 21 (10/ 17.8 £7.2 70.0 £ 7.4 70.8 £ 6.5 4.2 + 2.7 (0.5-14.4) 5.2 +£ 2.7 (2.4-9.8)
40) 11) (11.3-34.8) (50.6-86.2) (59.4-81.4)
Controls 63 (30/ 17 (6/ 17.0+ 75 68.6 + 7.7 71.1 £8.7 - -
33) 11) (10.0-37.4) (51.2-89.4) (53.1-82.2)
p (t-test, controls n.s. ns.
vs PSP)
Cohort B PSP-RS patients 46 (24/ - - 70.0 £ 9.2 - 2.9 + 1.6 (0.5-6.9) -
(1.5T) 22) (49.0-84.3)
PSP-P patients 20 (14/6) - - 70.9 £+ 8.9 - 3.4 +1.6(1.1-8.7) -
(50.2-91.3)
p (t-test, PSP-RS - n.s. n.s.
vs. PSP-P)
all PSP patients 66 (38/ - - 70.5 £9.1 - 3.1 £1.6(0.5-8.7) -
28) (49.0-91.3)
Controls 44 (25/ - - 68.5 + 5.3 - - -
19) (57.2-81.9)
PD patients 66 (41/ - - 70.4 +10.4 - 3.6 £ 2.6 (0.8-9.7) -
25) (52.0-93.5)
p (controls vs PSP — n.s. (Oone-way n.s. (t-test)
vs PD) ANOVA)
PSPRS (*a) PSPRS (*a) Golbe (*b) stage Golbe (*b) stage PSP-RS/PSP-P (*c) PSP-RS/PSP-P (*c)
(baseline) (follow-up) (baseline) (follow-up) (baseline) (follow-up)
Cohort A (3.0T) PSP patients 36 + 8 (21-52) 43 £+ 17 (14-70) 2+2(1-4) 2+1(1-3) 55/23 13/8
Cohort B (1.5T) PSP patients 35+ 11 (15-61) - 2+1(01-4 - 46/20 -
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Fig. 1. Workflow of the categorization cascade. Initially, DTI and T1-weighted data underwent preprocessing, harmonization (or exclusion of data), and analysis
as detailed in section 2.3. After that, parameters ROIs and TOIs were defined as described in section 2.3.3. Diverse training and validation datasets were then curated
(3.1.1), initially engaging a random forest approach which subsequently led to the prioritization of specific parameters features for in-depth examination, as outlined
in sections 3.1. These selected parameters were dynamically adjusted throughout training and validation, employing different Al algorithms.

the Tensor Imaging and Fiber Tracking software (TIFT; [22]).

2.3.1. DTI data — fractional anisotropy

All DTI data were assessed for completeness and, following an
established quality control protocol [23], DTI data with corrupted GD or
relevant motion artefacts were excluded before correcting for eddy
current induced geometric distortions. DTI data could not be corrected
for susceptibility artefacts because acquisition was performed only in
A-P direction. However, the susceptibility-induced field will (to first

approximation) be constant for all the acquired images, which means
that the set of images will be internally consistent [24]. DTI data were
then transferred to a 1 mm iso-grid for subsequent analyses [25] — all
referenced voxel sizes refer to 1 mm?® voxels. Non-linear spatial
normalization to the Montreal Neurological Institute (MNI) stereotaxic
standard space [26] was performed using study-specific templates (b0
template as well as FA template) to ensure the preservation of direc-
tional information [22,25]. This process applied to both baseline and
follow—up data, incorporating a prior intra—subject alignment [27].



H. Volkmann et al.

Fractional anisotropy (FA) maps were generated from the
MNI-normalized DTI data, and a Gaussian smoothing filter of 8 mm full
width at half maximum [28] was applied to these individual FA maps to
optimize the balance between sensitivity and specificity. The final FA
maps were corrected for age [29] but not for sex, since an effect of sex on
FA has not yet been reported for PD and PSP patients — a detailed
analysis showing the absence of a sex effect in the present data is pro-
vided in Supplementary Information V. Data from protocol A were
tested for harmony and small center contributions (independent of the
controls/patient ratio) were eliminated from the study. For details of the
handling of center-effects please refer to Supplementary Information
IL. It is generally well known that especially DTI metrics could be
influenced by the scanner protocol and by the field strength (although
they are physical metrics with the intrinsic property of being indepen-
dent of the measurement device — despite device specific aspects). The
residual contribution to variation, in e.g. FA, is the acquisition voxel
size. In this study, we assumed the voxel size differences (2.0x2.0x2.0
mm? in protocol A, 2.0x2.0x2.8 mm?® in protocol B) to be negligible
compared to disease-specific effects. Nevertheless, a protocol harmoni-
zation of FA maps according to the acquisition protocols of cohorts A
and B was performed according to a previously published algorithm
[30]. Note: PSP-RS and PSP-P generally showed similar sequential
disease progression (see disease duration in Table 1) so that, for statis-
tical sample size considerations, PSP-RS and PSP-P were analyzed
together.

2.3.2. Texture analysis

Details of the T1-w texture analysis cascade have been described
previously [8,31]. In short, T1-w data were assessed for completeness
and motion artefacts and, after isometric and affine alignment to the
anterior commissure/posterior commissure line and adjustment of the
intensity threshold to automatically segment the CC, a subdivision of the
CC into areas -V according to the Hofer and Frahm scheme [32] was
performed. Finally, calculation of area sizes and texture parameters [33]
was applied. In the current study, the parameters entropy and homo-
geneity were analyzed.

2.3.3. Region of Interest (ROI) and Tract of Interest (TOI) analysis

Region of interest (ROI) analysis was performed by arithmetically
averaging FA values within a given ROI for each subject, considering
only voxels with an FA value greater than 0.2 [34]. An averaged DTI
data was computed from the control group’s data by arithmetically
averaging the MNI-transformed data. This averaged control DTI data
was used to identify specific tracts and pathways through FT using a
seed-to-target approach. The tracts of interest (TOIs) were defined as all
potential tracts originating in the start region and terminating in the
target region. A modified deterministic streamline tracking technique
for FT was employed, which accounts for the directional information of
adjacent tracts [35].

Multiple brain structures known to be affected in PSP were analyzed,
as evidenced by imaging and neuropathological studies. Clinical MRI
classically reveals midbrain atrophy [11,36], a finding supported by
neuropathological studies [1,37]. In addition, reduced volumetric
measurements of the putamen and globus pallidus have been reported
[11,38], with the globus pallidus being one of the earliest structures
affected [37]. Regarding the putamen and globus pallidus, we decided to
analyze them as a single entity due to their close proximity on DTI im-
aging so that we found it very difficult to separate these two structures
accurately in order to analyze each of them entirely and exclusively. We
realize that these two structures have different PSP pathology qualita-
tively and quantitatively, however, we found that by analyzing them in
the same ROI, the possible erroneous results would be mitigated. The
pons, although less severely impacted, also shows involvement [11].
The cerebral peduncle, nigrostriatal tract, and subthalamopallidal tract
which interconnect these early affected structures have been studied in
recent PSP imaging research [39-41]. Additionally, the medial
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lemniscus was included to the study due to its course through the
brainstem and observed involvement in PSP, despite its unclear role in
clinical presentation [42].

Owing to anatomical connections and the results of previous DTI
study findings in PSP [43], the thalamic anterior and posterior radia-
tions were also included. Additionally, the caudate nucleus was selected
which shows microscopic changes and imaging correlates of degenera-
tion [1,11,37,44,45]. There is ample evidence for the involvement of
frontal white matter (WM) in several imaging and histological studies
[1,11,37,46-49], leading to our subdivision of the frontal WM into four
ROIs (fronto-orbital, prefrontal, premotor, and precentral WM).
Furthermore, several frontal lobe WM tracts which showed changes in
DTI studies were included [45,501, such as the fronto-occipital fascicle,
uncinate fascicle, and superior longitudinal fascicle. The CC, particu-
larly its anterior part, has shown involvement in PSP in numerous
studies [8,51-54], leading to the inclusion of its anterior three segments
(areas [, II, and III according to the definition by Hofer and Frahm [32]).
In addition, the anterior limb of the internal capsule [55,56] and the
corticostriatal tract were included due to their connections with the
thalamus, striatum, and frontal lobe. The cerebellar WM and the dentate
nucleus, both noted for PSP involvement in imaging and histological
studies [1,11,44,48,57], were also included. The superior and middle
cerebellar peduncles were considered, with the former being a WM
bundle important for PSP diagnosis [11,44,48,49,58]. Additionally, the
CC in its different segments was examined focusing on homogeneity and
entropy in T1-w data (Supplementary Information III).

2.3.4. Evaluation of center-effects

Before starting the classification analyses, the extent to which the
PSP data of cohort A were homogeneously distributed across those five
centers contributing at least four PSP cases was examined. To check for
center effects, non-parametric Kruskal-Wallis analyses of variance were
calculated, with center as a five-fold independent factor. The dependent
variables were the FA values averaged for the predefined ROIs. Signif-
icant effects of the factor center were found for two of the 49 ROIs:
midbrain tegmentum (test statistic (h) = 19.0119; p-value = 0.0008)
and substantia nigra (h = 18.6678; p-value = 0.0009). Pairwise com-
parisons between centers using Dunn’s tests confirmed that one center in
particular, which contributed four PSP cases to the study, was respon-
sible for the abnormalities (Supplementary Information, Tables II-1).
These four MRI data were therefore excluded from the study since the
small sample was not suitable for numerical harmonization. The final
sample size of PSP patients of cohort A was therefore 74.

3. Theory and calculation
3.1. Application of ML algorithms

The application of ML algorithms consisted of two steps. The initial
first step involved the training of well-established and rather robust Al
methods, such as support vector machines (SVM) [59], multilayer per-
ceptrons (MLP) [60], decision trees [61], and random forests [62]
(Fig. 1). The aim was twofold: first, to identify the most effective
ML-method, and to determine the optimal set of parameters for the
second step of the ML application using Gini importance information
[62]. This process was integral in synthesizing the accumulated insights
from the initial first step, specifically the selected classification meth-
odology and the refined parameter list. With this prioritized parameter
list, sensitivity and specificity of the ML-classification algorithms were
optimized. Only after achieving results with highest accuracy by one of
these ML algorithms, a DL approach was implemented which specifically
aimed at further improving accuracy and validating pre-selected pa-
rameters. Not only the parameter list but also the information about the
structures of the associated classification method was used to build up
different DL approaches aiming at the highest accuracy and
Youden-index (sensitivity + specificity —1).
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3.1.1. Data partitioning into training and validation

For the application of the AT algorithms, all data were randomly split
into 80 % for training and 20 % for validation (Fig. 2). Two different
distributions were set up. In distribution 1 (D1), the training dataset
comprised 197 participants’ data sets consisting of all PSP patients’ and
controls’ data from cohort B (N = 110), and additionally 45 randomly
selected PSP patients and 42 randomly selected controls from cohort A
(N = 87). Validation was performed on a set of 50 participants’ data
consisting of further randomly selected 21 controls and 29 PSP patients
from cohort A. Distribution 2 (D2) consisted again of all data from
cohort B and in addition another randomly selected 23 PSP patients and
41 controls from cohort A. Thus, in D2, 174 participants’ data were used
for training, and 44 participants’ data from cohort A (22 PSP and 22
controls) were used for validation. There was no further preselection of
participants’ data for training or validation. Follow-up scans were
pseudo-randomly allocated to either validation or training groups (see
Section 3.2). For the classification of PSP vs PD, only 1.5 T MRI data
from cohort B, consisting of 66 PSP and 66 PD patients, respectively,
could be used (no PD data in cohort A).

3.1.2. SVM

An SVM [59] was included in the study because of a good perfor-
mance with larger data samples and the ability to handle non-linear data
through kernel transformation [63]. The SVM was trained and validated
on all dataset distributions, using scikit-learn library [64] with the
following configuration: kernel = ’rbf’, C = 1.0, degree = 3, gamma =
’scale’, coeff0 = 0.0, shrinking = true, probability = false, tol = 0.001,
cache_size = 200 MB, class_weight = none, verbose = false, max_iter =
—1, decision_function_shape = "ovr’.

3.1.3. Decision Trees

This method was chosen because of its simple visualization, under-
standability, and the well-controllable adjustments of parameters [61].
The scikit-learn library was used [64], and the decision tree was trained
and validated on all dataset distributions with the following configura-
tion: criterion set to ’gini’, splitter strategy as ’best’, no limit on
maximum depth, a minimum of two samples required to split a node, at
least one sample required at each leaf node. The tree had no maximum
leaf node restriction, no minimum impurity decrease was required for
splits, and no class weights or complexity pruning was applied.

3.1.4. Random forest models

The random forest model was included in the study because of its
straightforward implementation, its versatility in being applied to
various data structures, its ability to output results in probabilities, and
its capability to perform variable feature importance measurement [62].

The random forest model was configured with the following pa-
rameters using the scikit-learn library [64]: The number of trees was set
to 100. No limit for the maximum depth of each tree was set, minimal
samples split = 2, or until all leaves were pure. Minimal samples leaf =
1. Max features was set to ‘auto’, which means that the square root of the

Distribution 1
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total number of features was used. Bootstrap sampling was used to build
the trees.

The Gini importance coefficient was chosen as the criterion for
measuring the quality of a split, favoring the selection of the most
discriminating features at each node. These parameters features were
carefully selected to optimize the performance of the random forest
model in our analysis.

3.1.5. Multilayer perceptron (MLP)

MLPs are neural networks for a large range of applications, using the
backpropagation algorithm for training [60]. This method was included
in the study because of its strengths in several key areas: it can be
applied to complex non-linear problems, works well on large datasets,
and provides fast predictions after training [65].

In this study, MLP experiments were carried out on Distributions D1
and D2 using the scikit-learn library [64]. The standard configuration
for the MLPClassifier included a single hidden layer with 100 neurons,
activation function = ’relu’. The ’adam’ solver was used for weight
optimization, batch sizes = less than 200 samples or the total number of
samples. Learning rate = 0.001, iteration number = 200. Regularization
term (alpha) = 0.0001. The optimization would stop if the improvement
were less than a tolerance of 0.0001. No specific random state was set.

3.1.6. DL neural networks

This classification method is built up from ‘neurons’ which in that
case are mathematical functions often similar to XOR or OR functions
and have a weight that can be interpreted as a threshold potential to be
crossed by the input values [66]. The DL neural network enables com-
plex, multidimensional classification. However, it was applied only in
the second step of the study, to first identify important features using
conventional ML techniques. Specifically, various configurations of DL
neural networks were applied using TensorFlow [67], optimized on
accuracy (Youden-index) (Table 2, Fig. 3).

The method of permutation importance [68] was used to evaluate
the neural network designed to differentiate between PD and controls
and for the neural network implemented to differentiate between PSP
and PD. This technique involves systematically changing the order of the
features (in the dataset) and observing the resulting effect on the accu-
racy of the network. In detail, each feature is randomly shuffled while
the other features are kept constant, and the change in the models ac-
curacy is recorded. A significant drop in accuracy when a particular
feature is shuffled indicates the high importance of that feature for the
models accuracy. This approach is particularly effective in assessing the
relative contribution of each feature in complex neural network archi-
tectures, providing valuable insight into the model’s decision-making
process and guiding further refinements in feature selection and model
optimization.

3.2. Incorporation of longitudinal data

As we decided to also include longitudinal data (available in cohort

Distribution 2

u Training controls cohort B

B Training PSP cohort B
Training PSP cohort A

B Training controls cohort A
Validation controls cohort A
Validation PSP cohort A

Fig. 2. Different distributions of the training and validation set. The illustrations depict the data distributions employed for the classification techniques.
Distribution 1 consisted of 247 data, i.e., 197 data for training (blueish background) and 50 data for validation (brownish background). Distribution 2 included a
dataset of 218 data, i.e., 174 data for training (blueish background) and 44 data for validation (brownish background).
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Fig. 3. Layer structure of the neural networks. This figure shows the two different layer structures of the used deep learning (DL) neural networks. Left: Network
used for the classification of progressive supranuclear palsy (PSP) vs (healthy) controls. For the input layer, a parametric rectified linear unit (PReLU) function was
used, while the output layer was implemented with a sigmoid function Right: the layer architecture of the network used to discriminate Parkinson disease (PD) vs
PSP. The input layer was implemented with a PReLU function and the output layer calculated with a sigmoid function.

Table 2

Architecture of the implemented models. This table shows the specific build-
up for each neural network used in the study. The model for the PSP vs. controls
discrimination stopped at 3000 epochs. For the more complex classification to
discriminate between PD vs. PSP, the number of epochs was increased by factor
10, i.e. a maximum of 30,000 epochs was permitted.

Model for PSP vs. controls

Model for PD vs. PSP

Network Sequential Sequential
Architecture
Layers - Dense: Output Shape (None, - Dense: Output Shape

32), Parameters: 320

- Dense: Output Shape (None,
200), Parameters: 6600

- Dense: Output Shape (None,
2), Parameters: 402

(None, 3), Parameters: 63
- Dense: Output Shape

(None, 6), Parameters: 24
- Dense: Output Shape

(None, 2), Parameters: 14

Total Parameters 7322 101

Trainable 7322 101

Parameters

Non-trainable 0 0

Parameters

Activation - Dense Layer: PReLU - - Dense Layer: PReLU -
Functions Dense_1 Layer: tanh Dense_1 Layer: swish

Loss Function

- Dense_2 Layer: sigmoid
Binary Crossentropy

- Dense_2 Layer: sigmoid
Binary Crossentropy

Optimizer Adam Adam
Batch Size 2 4
Number of 3000 30,000
Epochs

A) into the two different distributions D1 und D2, special care was taken
to ascertain different longitudinal data to be included in either distri-
bution. The pseudorandomized allocation procedure resulted in the
following selections: Twenty-seven longitudinal follow-up scans were
included in D1, with 22 for training (5 healthy controls and 17 PSP), and
5 for validation (4 healthy controls and 1 PSP). D2 comprised 26 follow-
up scans, 17 (8 healthy controls and 9 PSP) for training, and 9 (1 healthy
control and 8 PSP) for validation.

3.3. Association of MRI-based results to clinical stages

To align the DL neural network’s (PSP vs. controls) categorizations
with the clinical assessments, the DL network’s confidence in its clas-
sifications was stratified into five distinct levels, with each level repre-
senting a 20 % probability interval, providing a gradation of the

network’s certainty in its diagnostic categorization. The primary
objective was to compare these probabilistically determined intervals
with the (clinically determined) Golbe stages [20,21] (for details refer to
Supplementary Information IV).

3.4. T-SNE representation (t-distributed stochastic neighbor embedding)

The t-SNE algorithm reduces the dimensionality by capturing the
underlying structure and relationships between data points. The X-axis
(T-SNE (X)) and Y-axis (T-SNE (Y)) depict the transformed coordinates
in a two-dimensional space, where similar data points are positioned
closer together, and dissimilar points are further apart [69], so that it is
possible to depict multi-dimensional data on a two-dimensional coor-
dinate system.

4. Results

4.1. Selection of features for PSP vs controls and performance of ML-
algorithms

For the selection of parameters to classify PSP vs controls, a random
forest method was implemented including all ROIs and TOIs of the study
and was then trained and validated with distribution D1 (Fig. 4). This
approach already resulted in an accuracy of 0.84 with sensitivity of 0.83,
specificity of 0.86, and a Youden index of 0.69. The most important
parameters according to the Gini importance were chosen for further
implementations. Every change in the parameters used for the random
forest led to different hierarchical outcomes considering the ROIs and
TOIs. After excluding the least important parameters in every iteration,
the random forest achieved its best accuracy with the following specific
ROIs and TOIs: CC (Tl-w -homogeneity index), pons, midbrain
tegmentum, cerebral peduncles, and putamen; for the latter regions,
read-out was FA.

During the parameter feature selection process the validation accu-
racy was similar between random forest applications using either T1-w
based data of the CC, or DTI based data of the CC. However, during
training the random forest algorithms including parameters based on
T1l-w were slightly more prone to overfitting relative to DTI data.
Therefore, only DTI data were selected for use in the following
computations.

A random forest trial implemented on D1 yielded the most promising
outcome, finally achieving a Youden index of 0.87, accuracy of 0.94, and
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Fig. 4. Random forest approach PSP vs controls. (A): This illustration depicts the Gini importance of the random forest approach using all ROIs and TOIs of this
study, with highest Gini importance value on the left and with the lowest Gini importance values on the right. (B) Gini importance of the parameters of the best

performing random forest approach. (C) Exemplary T -SNE representation of the validation datasets (D1).

sensitivity and specificity of 0.97 and 0.90, respectively (Table 3A). This
parameter feature selection was also used to implement a multilayer
perceptron, a support vector machine and a decision tree. These results
are summarized in Table 3A.

4.2. Selection of features for PSP vs PD and performance of ML-
algorithms

For the selection of the features to differentiate PSP vs PD, an initial
implementation of a random forest model on cohort B using all ROIs and
TOIs yielded a Youden-index of 0.10. Repetitively pruning away less
important features (Gini importance), this implementation yielded an
hierarchically organized list of features which included: prefrontal WM,
fasciculus frontooccipitalis, CC area II, midbrain tegmentum, sub-
thalamopallidal tract, nigrostriatal pathway, caudate nucleus, medial
lemniscus, precentral WM, dentatorubrothalamic tract, putamen, nu-
cleus dentatus, anterior thalamus, cerebellar WM, premotor WM, fron-
toorbital WM, anterior thalamic radiation, substantia nigra, and anterior
limb of internal capsule. With this set of features in use, performance of
the different ML algorithms are summarized in Table 3B.

4.3. DL neural networks in PSP vs controls and PSP vs PD

For the classification of PSP vs controls, a neural network was used to
further improve the accuracy of the random forest algorithm, and finally
leading to an accuracy of 95 %, sensitivity of 95 %, specificity of 97 %,
and a Youden-index of 92 % (Table 3A). In order to arrive at that

effective classification performance, features had again to be selected
iteratively using the permutation method. The final set of features
included four of the five 5 selected features from the random forest
approach above, and three additional features: substantia nigra,
nigrostriatal pathway, medial leminiscus, midbrain tegmentum, pons,
cerebral peduncles, putamen, subthalamopallidal tract. The hierarchical
ordering of those features’ importance is summarized in Fig. 5A.

For the differentiation of PSP vs PD, the final DL neural network
model was using the selected parameters of the previous random forest
model above (Table 3B). Here, the performance indices showed that PSP
could be differentiated from PD with accuracy of 86 %, sensitivity of 88
%, specificity of 85 %, and a Youden-index of 0.72. The hierarchically
organized importance was again determined by using the permutation
method, and is summarized in Fig. 5B.

For the association of Golbe stages and Al results refer to Supple-
mentary Information IV.

5. Discussion

5.1. Application of Al approaches to MRI for the diagnostic classification
of PSP

In this study, different traditional ML and less traditional DL neural
network approaches were evaluated for their applicability in diagnos-
tically relevant classification of PSP versus controls and PSP versus PD,
respectively, based on FA indices derived from DTI data, and callosal
texture parameters from T1-w data. The classification importance of
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Table 3

The best performance parameters for each of the different AI approaches for
different distributions and classifications. (A) Al approaches for PSP vs controls
(B) Al approaches for PSP vs. PD.

(A) PSP vs controls

Distribution Al approach accuracy  sensitivity  specificity =~ Youden
index

D1 Random 0.94 0.97 0.90 0.87
forest

D2 Random 0.86 0.95 0.77 0.73
forest

D1 Multilayer- 0.88 1.0 0.71 0.71
perceptron

D2 Multilayer- 0.84 0.95 0.73 0.68
perceptron

D1 Support 0.88 1.0 0.71 0.71
vector
machine

D2 Support 0.86 0.95 0.77 0.73
vector
machine

D1 Decision tree 0.84 0.93 0.71 0.64

D2 Decision tree 0.73 0.77 0.68 0.45

D1 Neural 0.88 0.90 0.86 0.75
network

D2 Neural 0.95 1.0 0.91 0.91
network

(B) PSP vs PD
Random 0.59 0.46 0.69 0.15
forest
Multilayer- 0.48 0.84 0.19 0.03
perceptron
Support 0.59 0.62 0.56 0.18
vector
machine
Neural 0.86 0.85 0.88 0.72
network

different features to obtain the best classification performance indices
for each of the different algorithms applied was hierarchically defined.
This study used a rather large multi-center setup, including 140 patients
with PSP, 66 patients with PD, and 107 heathy controls. The differen-
tiation of PSP versus controls was achieved with an accuracy of 92 %
using a random forest model, and with 95 % accuracy using a DL neural
network. The differentiation of PSP versus PD achieved an accuracy of
86 % using a DL neural network and clearly outperformed each of the
different ML approaches (see Table 3). The number of relevant features
for the differentiation between PSP and controls using ML algorithms,
and between PSP and PD using DL neural networks, respectively, were
different. While this issue did not allow for direct comparisons between
ML- and DL-based categorization performances, it allowed us to identify
the least necessary set of features in order to achieve between-methods
comparability (ML algorithms and DL) at diagnostically relevant higher
levels of accuracy, specificity, sensitivity, and the Youden-index.
Previous studies based on atlas-based volumetry [4] of T1-w data or
based on automated segmentation and measurement of specific brain
regions (MRPI 2.0 [13,18], have already been successful in aiding for
diagnosis of PSP, or quantitatively detecting disease progression in PSP.
The FA-based microstructure analysis of this study could further in-
crease the set of features and, with it, accuracy in the diagnosis of PSP.

5.2. Comparison with previous studies

Previous studies focused on the discrimination between PSP and
controls as well as on the discrimination between PSP and other
Parkinsonian syndromes. Using data from atlas-based volumetry (ABV),
Huppertz and colleagues (2016) found the majority of binary SVM
classifications between PD, PSP-RS, and multiple system atrophy (MSA)
with balanced accuracies of >80 %; SVM classifications between PD,
PSP, and MSA achieved sensitivities from 79 % to 87 % [70]. classified
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MSA and PD against healthy controls with 95 % accuracy. More recent
studies [71] differentiated between PD and atypical neurodegenerative
Parkinsonism (MSA and PSP) reaching 95 % accuracy with DTI data.
Chougar and colleagues (2020) reviewed various imaging approaches to
discriminate between PD and PSP with high accuracies; highest accu-
racies (up to 100 %) were reported by combination of volumetry and
DTI metrics using SVM [72].

Concerning MR imaging modalities, previous studies [73,74]
showed that a combination of DTI and T1-w imaging achieved high
accuracy in finding PSP-associated alterations that support classification
and diagnostic accuracy. In contrast, another study [44] showed that
diffusion parameters did not significantly contribute to the classifica-
tion, perhaps due to scanner variability. It should be noted, however,
that the present study was not intended as a systematic head-to-head
comparison of both MRI modalities.

It should also be noted that while this is not the first study to address
the differentiation of PSP versus controls and PD, previous studies often
relied on smaller samples. In the study by [74], the authors did also not
separate training and validation data completely [74], but used a
leave-one-out approach which increases the risk of over-fitting [75].
Another previous study [58] performed comparisons among MRPI,
MRPI 2.0, volumetric/thickness data and used traditional ML methods
for the differentiation of PSP-RS and PSP-P. That study suggested that
ML models using a combination of MRPI, and volumetric/thickness data
achieve the best classification performance in distinguishing between
these two PSP phenotypes. However, DTI data and DL-neural networks
were not employed.

The present study highlights numerous brain regions, including
those predominantly composed of white matter, which is specifically
targeted by DTI, but also incorporated several grey matter structures.
The most important structures for differentiating PSP from PD were
prefrontal white matter, the fasciculus occipitalis, the CC area II (FA),
and the midbrain tegmentum. This result is in agreement with the
findings by [76] who reported reductions in FA within the prefrontal
white matter of PD patients [76]. The outcomes from the random forest
analysis revealed that particularly the grey matter regions midbrain
tegmentum, pons, putamen and globus pallidus, previously identified as
pathological by [1], are important for Al methods to differentiate be-
tween PSP and controls at high performance indices. Furthermore, the
contribution of the CC to the differentiation of PSP versus controls was
demonstrated in the present study, confirming previous findings [8].

5.3. Limitations

The first limitation of our study was the difference of imaging pro-
tocols between the cohorts. Cohort A consisted exclusively of 3.0 T MRI
scans, whereas cohort B included 1.5 T scans only. To address the po-
tential impact of these differences in image quality, we included 1.5 T
images only at the training level and did not use them for validation.
However, the inclusion of more 3.0 T scans might likely further improve
the overall results. The Al models for differentiating between PSP and
PD were trained and validated exclusively on 1.5 T data since no 3.0 T
data were available for PD patients.

Even though this study used one of the largest DTI data samples for
investigating classification of PSP vs controls and PD, the limitation to
140 PSP data may still cause a significant challenge for the imple-
mentation of Al methods. Nonetheless, it was ensured that the data used
in the validation process were randomly selected, and one validation
even used data from a different site that was entirely not involved in
delivering training data.

Furthermore, longitudinal data were not excluded. While that data
represented less than one third of baseline data, the ratios between
healthy controls and PSP patients were rather alike, i.e., 0.85 for base-
line and 0.81 for the follow up. Nevertheless, inclusion of longitudinal
data might lead to overfitting in the ML methods However, all ML
methods were validated across both distributions D1 and D2 and due to
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Fig. 5. Descending feature importance of the PSP vs controls neural network analysis. (A) This figure displays descending feature importance of the PSP vs
controls neural network analysis with the most important parameter on the left and the least important parameter on the right. (B) This figure shows descending
feature importance of Parameters of the PSP vs PD neural network analysis with the most important parameter on the left and the least important parameter on

the right.

the random selection process, it happened, that D1 compromised just
one PSP follow-up. The accuracy of the random forest algorithm of 0.94
for D1 indicated a low risk of overfitting due to follow-up scans.

Furthermore, in the current study, we specifically focused on
microstructural alterations. Structural alterations in PSP, e.g. e vacuo
expansion of the third ventricle [4,18] were not addressed but can in
combination with volumetric techniques, principally further improve
accuracy. Similarly, a recent study investigated PSP patients and con-
trols showing interconnections among different brain areas by multi-
parametric MRI, providing a new perspective on the coordinated
changes in structure and function in PSP pathogenesis and their re-
lationships with the microstructural cellular structure hierarchy [77].

An important challenge in clinical routine is also to differentiate PD,
MSA and PSP [70,71,73,78], but this study addressed the task to
differentiate PSP and PD patients. A future task is to extend the devel-
oped methodological approach to other neurodegenerative Parkinso-
nian syndromes such as MSA.

Finally, as in many other current studies, the PSP diagnoses in our
study were not verified post-mortem.

6. Conclusion

In conclusion, we demonstrated that Al applications to DTI data can
be used to differentiate PSP from healthy controls and PD, respectively.
These results highlight that the patho-anatomical complexity of PSP can
be deduced by ML and DL neural network techniques. ML techniques

appear already rather useful for classifying patients with PSP against
controls. However, to achieve reliability at 100 % accuracy for auto-
mated diagnostics while also acknowledging computational feasibility
in clinical routines, further evaluation of DTI metrics other than FA in
combination with informing brain structures seems to be a worthwhile
task. More complex AI methods, such as DL neural networks are
apparently necessary for distinguishing PSP from PD. Further research is
needed to determine the most important combinations of affected brain
structures and DTI metrics, providing the least necessary set of features
that would inform DL neural networks to reliably solve this challenge at
100 % accuracy.
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